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ABSTRACT
Context: Information and tracking of defects can be severely
incomplete in almost every Open Source project, resulting
in a reduced traceability of defects into the development logs
(i.e., version control commit logs). In particular, defect data
often appears not in sync when considering what develop-
ers logged as their actions. Synchronizing or completing the
missing data of the bug repositories, with the logs detailing
the actions of developers, would benefit various branches of
empirical software engineering research: prediction of soft-
ware faults, software reliability, traceability, software qual-
ity, effort and cost estimation, bug prediction and bug fixing.

Objective: To design a framework that automates the
process of synchronizing and filling the gaps of the devel-
opment logs and bug issue data for open source software
projects.

Method: We instantiate the framework with a sample of
OSS projects from GitHub, and by parsing, linking and fill-
ing the gaps found in their bug issue data, and development
logs. UML diagrams show the relevant modules that will be
used to merge, link and connect the bug issue data with the
development data.

Results: Analysing a sample of over 300 OSS projects we
observed that around 1/2 of bug-related data is present in
either development logs or issue tracker logs: the rest of the
data is missing from one or the other source. We designed
an automated approach that fills the gaps of either source
by making use of the available data, and we successfully
mapped all the missing data of the analysed projects, when
using one heuristics of annotating bugs. Other heuristics
need to be investigated and implemented.

Conclusion: In this paper a framework to synchronise
the development logs and bug data used in empirical soft-
ware engineering was designed to automatically fill the miss-
ing parts of development logs and bugs of issue data.
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1. INTRODUCTION
Over the past two decades, there has been a significant

interest by software engineering researchers into the analy-
sis and use of empirical data. Open source software (OSS)
projects provide a large amount of process and product data,
and several tools are available to mine and analyse this data.
Utilising this vast amount of data can benefit both OSS and
commercial projects: mining and analysing software arte-
facts, like code, design documents, requirements or bug is-
sues, can offer fundamental contributions for empirical soft-
ware engineering research.

In particular, bug tracking data can be used to design
models for predicting software faults and software reliability;
faults and reliability of a software artefact can also be linked
to who, when and how changes were made to it. Similarly,
the analysis of development logs (version control commit
logs) can give important insights of the underlying software
quality, by focusing on software developers, their actions and
effort in order to build cost estimation models. Such logs,
actions and effort can also be used for detecting bug fix-
ing actions, improve bug prediction techniques and increase
software quality and reliability[15].

The extraction of version control commit logs and of bugs
issue data sets requires tools that (i) automatically mine
software projects (or software repositories) and (ii) store the
extracted data in specifically built databases, for posterior
analysis. Data does not include only source code, but also
meta-data, as logs, dates and types of actions performed on
specific software artefacts. Developers in OSS communities
use these tools as a medium of collaboration and communi-
cation, such as reporting bugs or mentioning changes that
occur as a result of a bug fix, as well as revising all the
commits to a software artefact [4].

Cross-analysing the two sets of bug-related data (version
control commit logs and bug tracking data) is related to
the traceability of bugs within software development. Such
traceability is complicated by the fact that the sources of bug
data might not be always in sync or complete [5]. Develop-
ment logs should form a superset of all development data:
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one would expect the data contained in issue trackers to be
mirrored in the version control commit logs, and developers
to record and distinguish their actions between development
and bug fixing. In reality, inconsistency, incompleteness and
skewed sets of data might be obtained when combining and
cross-analysing the version control commit logs and the is-
sue tracker data [2]. Missing or incomplete data can lead to
a biased or untrustable analysis in empirical software engi-
neering research [11].

This paper proposes a large empirical study that mines
the development logs and bug issue data of over 300 OSS
projects, hosted on GitHub1. The objective is to repli-
cate an initial, exploratory analysis performed on one OSS
project [10] with a larger dataset, and to quantify the issue
of traceability of issue tracker bugs into development logs.
In order to detect the bug fixing activity, we used a subset
of the SZZ algorithm [12]; and two data mining tools, the
Bicho issue tracker parser [6], and the CVSAnalY develop-
ment log parser [9]. For the purpose of this research we are
only interested in bug IDs that are being mentioned by de-
velopers: bug IDs do not necessarily need to be ”fixed” or
”resolved”. Since the tools act on different data sets, they
are run independently, produce independent results and fill-
in logs and bugs of the same software project in different
databases [7].

The second contribution of this paper is to propose a
framework not only for “extracting”, but also to automati-
cally “syncing” development logs and bugs of issue data sup-
porting multiple Bug Tracking Systems (BTS) and Version
Control Systems (VCS). The novelty of the framework, apart
from supporting various OSS software repositories, is the
ability to synchronise missing development logs (concerning
bugs) with data extracted from the BTS, and vice-versa.
The aim of such a framework is to assist in mining the com-
plete set of software evolutionary facts throughout the entire
life cycle of software projects; to provide complete data to
bug detection techniques; to assist the development during
the corrective software maintenance; as well as to provide an
unbiased dataset for empirical software engineering research
on bugs.

The rest of the paper is organised as follows: in Section 2
we discuss the methodology and detail the steps performed
to extract bugs and logs data, with a sample of 344 OSS
projects from GitHub. In Section 3 we test the scalability
of our approach and presents the results obtained within
the sample. We then quantify the discrepancies between the
development logs stored from the development logs and the
bug issue data stored from the issue trackers. Afterwards,
we discuss the results in Section 4. In Section 5 we introduce
the structure of the framework, which defines and details the
guidelines for implementation and the supported VCSs and
BTSs, using the CVSAnalY and Bicho tools to store data
in their respective databases. We integrate independently
running components into the framework, and we identify
the entities in Bicho and CVSAnalY databases that could be
used to synchronize the bugs and logs of issue data into their
respective databases. Also (In Section 5). We highlight the
related work and the novelty of our results and framework
in Section 6. Finally, Section 7) concludes.

2. METHODOLOGY
1https://github.com/

In the research reported in this paper, we partially imple-
ment the SZZ algorithm [12] to trace bugs and logs within
the OSS sample obtained from GitHub. In our formula-
tion, we only look for bugs described by the ’#’ sign and
various numeric values (e.g., #1234), that are linked to the
ID of a bug. In its original formulation, the SZZ algorithm
also searches for keywords like ‘Bug’, ‘Fixed’ and others. A
tool was developed to search for these IDs within the two
databases, and to combine the results into intersection and
union of sets.

The extraction of data and results was achieved in the
steps detailed below:

1. Sampling an OSS forge: we extracted the projects’
data from the GitHub repository through a crawler de-
veloped in Perl, obtaining the sample of OSS projects.
The sizing of the sample was done considering a 95% of
confidence level and 95% confidence interval, resulting
in 344 projects. This randomizing process and selec-
tion steps are integrated in the tool that was developed
for this research.

2. Obtaining the development logs: the tool is capable
to interface with, and execute CVSAnalY and Bicho
commands, in order to parse logs and bugs at once.
CVSAnalY and Bicho automatically create databases
and tables with meta-data, storing all the development
logs (version control commit logs) and bug issue data
of the sample. Among the tables generated by CVS-
AnalY, we then specifically query the scmlog table,
which mentions the number and unique IDs of changes
in the version control system. In the presence of a bug
ID, the version control commit logs also mentions the
bug ID with the #1234 format. For the purpose of
this research we are only interested in bug IDs that
are being mentioned by developers: bug IDs do not
necessarily need to be ”fixed” or ”resolved”. As above,
this step is integrated in the tool that was developed
for this research.

3. Obtaining the bug tracking data: the second phase in
our data preparation process was to execute the Bi-
cho tool to obtain and store all the information con-
tained in the bug trackers of the projects contained in
the sample, as well as all the issues reported by the
users of a project and confirmed as such by develop-
ers. One of the tables created by Bicho is the issues
and issues ext bugzilla table where the status (“open”,
“closed”.) or the message accompanying the entry is
stored and imported for publication by the relative
GitHub tracker. In this way, we queried specifically
the issues ext bugzilla table to obtain the set of unique
number and IDs of bugs reported and confirmed by de-
velopers. Also this step is integrated in the tool that
was developed for this research.

4. Data Cleaning: False Positives and True Positives:
The fourth step was the cleaning step, before isolat-
ing the bug numbers and IDs for both CVSAnalY and
Bicho. The query for the ’#’ sign followed by numeric
values in the version control commit logs imported
with CVSAnalY produces a large number of false pos-
itives in most of the sample of 344 OSS projects we
obtained from GitHub. In this case, the messages re-
fer to the pattern searched through the # sign, but
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they are all linked to a request of pulling a merge from
another distributed repository into the original one un-
der GitHub. These were filtered out automatically and
integrated in the tool that was developed for this re-
search.

5. Isolating the bug numbers and IDs: we composed two
sets of bug IDs, one from the development logs, and
the other from the issue tracking systems. In the de-
velopment logs, we looked for the bug IDs in the free
text descriptions left by developers (and stored in the
“scmlog” table). In the bug tracking data, we used the
bug IDs as assigned by the developers to the issues re-
ported as bugs. These steps are performed within the
developed tool, by querying the appropriate tables and
parsing and cleansing the results.

In addition, we randomly pick few on the sample of
344 OSS projects obtained from GitHub and manu-
ally analysed each of the remaining bugs in Bicho and
CVSAnalY databases, to make sure that each of the
remaining IDs pointed to real bugs before evaluating
the union and intersection of the sets. The bug IDs
within the dataset obtained through Bicho are always
related to bug IDs. In order to evaluate the bug data
within the dataset extracted by CVSAnalY, we manu-
ally computed the precision and recall of our approach
as follows:

Precision =
how many #s refer to bug

how many #s are present
(1)

Recall =
nr of bug activities in logs

how many #s are present
(2)

Using the formulas above, we manually found for ex-
ample that for project ID 47 the precision was 100%
and the recall was 67.57% . For project ID 52, we found
a lower precision of 68.75% and a recall of 7.273%.

6. Evaluating the union and intersection of the sets: the
final step was to evaluate the union and intersection
of the sets, per project. Given a set of bug IDs men-
tioned in the development logs, and the list of bug IDs
stored from the issue trackers of a project, we eval-
uated the intersection (i.e., the common bug IDs) of
these two sets, as well as the union of such sets (i.e.,
the overall set of unique bug IDs jointly held in the
two databases). We then formulated a metric (named
Shared Bug Coverage) to describe how many bug IDs
are common in the two databases. Also this final step
is integrated into the tool.

The further step that will be integrated in the tool is to
automatically populate the databases of bug tracking sys-
tems and development logs with missing bug information
originated from either information source. We detail how
we plan to integrate this further step in the section 5.3 be-
low.

3. RESULTS
In this section we report the analysis on the sample of

344 OSS projects from GitHub. In particular, we report on

how many bug IDs are mentioned in the two databases, per
project. The two overarching hypotheses that we planned
to verify in this research are:

1. bug-related data stored in the issue trackers should be
considered as complete;

2. bug-related data is common and shared in both devel-
opment logs and issue trackers.

In order to summarise the findings from the 344 OSS
projects, we produced a box-plot to display the Shared Bug
Coverage (SBC) ratio, defined as follows:

SBC =
BugIDs(V CS) ∩BugIDs(BTS)

BugIDs(V CS) ∪BugIDs(BTS)
(3)

where Bug IDs(VCS) is the set of bug IDs as found in
the development logs (of any project), and Bug IDs(BTS)
is the set of bug IDs from the issue trackers (of the same
project). This ratio was evaluated per project, and the val-
ues are always in the [0..1] interval. The box-plot is shown
in Figure 1.

As visible from the box-plot, the set of common bug IDs is
in general very low: in around 75% of the projects the com-
mon IDs (i.e., intersection of the sets) is no more than 20%
of the overall number of detected bug IDs (i.e., the union of
the sets). This could mean that in one of the two databases
(either development logs or issue tracker data) there is most
of the information on bug IDs, and that information is not
mirrored in the other database. It could also mean that
there is a common subset of bug IDs, but that most of the
other IDs are not shared in the two informations sources.
Below, we formulate 4 scenarios of bug coverage in the two
databases, as we observed in the sample.

3.1 Scenarios of Bug Coverage
Depending on the configuration found for the two sets

of bug IDs, four scenarios can be expected for a software
project: they are depicted graphically in Figure 2. The
number of projects in our sample that comply with such
scenarios are further described below.

Scenario 1 The first scenario that we observed is when the
set of bug IDs as found in the issue tracker database
has no intersection with the set of bug IDs coming from
the development logs. We observed this scenario in 106
projects: for the majority of these projects (81 out of
106), one of the sets of bug IDs is empty, therefore the
intersection of the sets will always be empty.

Scenario 2 The second scenario that we observed is when
all the bug IDs of either of the sets are contained within
the other set: in the theory of sets, the cardinality of
the union of the sets is the cardinality of the containing
set; while the cardinality of the intersection of the sets
is the cardinality of the contained set. We found an
overall 145 projects that comply with this scenario, in
which one of the bug ID set is a subset of the other:
for 111 projects, the bug IDs found in the development
logs are a subset of what found in the bug tracking
data. In a further 34 projects, it is the opposite: the
bug IDs found in the BTS are just a subset of what is
found in the development logs.
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Figure 1: Ratio of bug IDs mentioned in both de-
velopment logs and bug trackers, per project

Scenario 3 The third scenario is the most common: there
is a subset of bug IDs that is common to the two data
sources (e.g., the intersection of the sets). Apart from
the common IDs, there are also (i) one subset of bug
IDs that appear only in the development logs, and (ii)
another subset of bug IDs that appears only in the bug
tracking system.

Scenario 4 The final scenario is when all the bug IDs are
found in the bug tracking system, and the development
log: in the set theory language, the union of the sets is
equal to the intersection of the sets. This is the ideal
scenario, because the bugs are being mirrored exactly
in the two databases: unfortunately, we observed this
scenario in only 8 projects out of 344, and in all these
cases the sets of bug IDs from both development logs
and bug tracking issues were empty.

Figure 2: Three scenarios of intersection of sets

4. DISCUSSION
The research presented in this paper has the aim to be

an overarching discussion about how data on bugs are being
extracted and used to inform studies on bug prediction, bug
triaging and identification.

The findings of this paper do not confirm the hypotheses
at the basis of this research: bug IDs are not mirrored from
bug trackers into development logs and vice-versa. Also,
using the set of all bugs from bug tracking systems is not
always definitive to describe the overall set of bugs in a soft-
ware system. Therefore, the traceability of bugs in open
source projects could benefit from the integration of two
sources of information, one based on the development logs
and one based on the bug tracking data.

The four scenarios as described show an overarching prob-
lem in traceability of bugs, which can be described as the
“expressiveness” of an information source. Development logs
should be expressive enough to closely follow the opening,
fixing and closing of a bug; and update afterwards the bug
tracking system as a proof of what was achieved during the
development itself.

What we found from our sample of projects is that there
is never a perfect match in what is recorded by developers
in the different databases: what is more worrying, the in-
formation source that is intended primarily to track defects
and their resolution is often found missing some pieces of
information that are instead recorded in the development
logs.

To be truly effective, our (and others’) approach of trac-
ing bugs into development logs should be integrated into a
framework that not only detects and stores the discrepancies
in the traceability of bugs into the development logs. The
framework should also provide a means to fill the missing
data in one data source, if that was to be found in the other
data source. In the next section we present our framework,
that has the aim to integrate different types of repositories,
and various approaches to bug notations.

5. STRUCTURE OF THE FRAMEWORK
In this section, the structure of the framework is discussed,

comprising six modules: The Bug Tracking Issue System,
Control Version System, Bicho, CVSAnalY, SCMLog and
Issues. Figure 3 below depicts the components in a UML
notation that will be instantiated of the final implementa-
tion. On the other hand, Figure 4 shows the architectural
overview of the framework. The next subsections describe
the main components, what has been achieved so far, and
what is currently missing.

Figure 3: UML Diagram of Components

5.1 Issues-Tracker Parser through Bicho
This component provides an interface in which the inter-

action between Bicho and any Bug Tracking System is de-
fined. The interface that must be implemented by each client
when mining data from issue trackers is the Issues interface.
Thus, the interface would enable the interaction between Bi-
cho and the supported Bug Tracking Systems. Some BTSs
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Figure 4: Architectural Overview of the framework

are currently supported by our framework: JIRA, Bugzilla,
GitHub, SourceForge, Launchpad and Allura. Among these
systems only GitHub requires the user to authenticate their
identity using the logging credentials already registered on
GitHub, before it allows any interaction or communication.

5.2 Development Log Parser through CVSAnalY
This component defines the interaction between CVSAnalY

and any Version Control Systems. In addition, the SCMLog
component serves as the main entry point where develop-
ment logs are stored as extracted by CVSAnalY. In this way,
the SCMLog interface must be implemented, in order to al-
low communication with any VCS. Currently, the framework
supports the interaction with other VCS such as Git, CVS
and Subversion.

However, one of the main obstacles among the supported
CVS is that Git requires authentication by the clients or user
before CVSAnalY can point to a repository in Git to extract
and stored development logs. User-name and password need
to be entered, in order to allow a communication between
CVSAnalY and the Git (CVS). As a result, this paper im-
plemented this framework only in its static interaction with
Git: users need to first specify their logging credentials for
authentication in GitHub in order to extract data by CVS-
AnalY from the remote VCS and stored development logs
into a database generated by CVSAnalY.

5.3 Syncing Process
Observing the tables of Bicho and CVSAnalY and their

attributes, we propose to use bug-related data in either
database to fill the missing data as detected in the other
database. Any bug IDs and attributes stored by CVSAnalY
(but not found by Bicho) could be used to fill the sum-
mary and other attributes in the Bicho database. In conse-
quence, automating the integration of development log data
with issue tracker data (and vice-versa) will require the use
of meta-data contained in the ‘scmlog’ table (populated by
CVSAnalY) to be copied in the ‘issues’ table (populated by
Bicho). Figure 5 shows which attributes could be used from
either table to fill the gaps in the other table.

Figure 5: Corresponding fields linked in Bicho and
CVSAnalY

6. RELATED WORK
In this section, we report the related work that developed

methods to retrieve bug-related data. We also report the
tools that trace the bug-fixing commits to the bug traces in
the issue trackers.

A framework to sync development logs and bugs of issues
data has been proposed and designed this is by utilising and
improving existing framework developed in the past by [7] [3]
[14] [1] [13] [1] [8] Which are all attempts to integrate and
identified missing links between logs and bugs issues data
and thus provide researchers in empirical software engineer-
ing with a unified framework for integrating Bug Tracking
Issues Systems and Version Control System for mining soft-
ware repositories. In the same way our novelty, lies but
with an attempt to synchronised either the missing version
control commit logs or bugs issues data of software projects
retrieved by these tools (Bicho and CVSAnalY) and stored
into their respective databases.

The Buco reporter, developed by Ligu et al. [8], is an ex-
tensible framework that mirrors the development logs and
the bug tracking data, and it generates a complete set of
evolutionary facts and metrics about a given OSS projects.
Buco accurately traces development logs and bugs, but it
was not designed and developed to synchronise the missing
development logs and bugs, if discrepancies were found. The



contribution of the presented research is a complete frame-
work to synchronize the missing development logs and bugs,
supporting various repositories and bug tracing algorithms
and approaches.

The Linkster tool involves a series of steps to retrieve,
parse as well as convert and link the data sources [3]. As a
result, it requires significant manual effort to analyze recov-
ered links which might be much more accurate. On the other
hand, RELINK [14] collects information automatically from
the source code repository and bug tracking system, builds
the resulting information linked between bugs/issues or logs
and output the identified links. In general, both these tools
require a large amount of interaction but they recover miss-
ing logs and bugs/issues accurately. Our approach completes
these tools by filling the missing data in either database in
an automatic way.

7. CONCLUSION AND FUTURE WORK
This short paper presents the results of an extended quan-

titative analysis on a sample of 344 OSS projects, and how
the bug-related data is stored in the development logs and
the bug tracking logs. The set of bug IDs from the develop-
ment logs was compared to the set of bug IDs as found in
the issue tracker systems. The objective of this research was
to ascertain how much discrepancy is visible when consid-
ering these two sources of information, and whether either
could be considered as a complete and credible set of data
regarding bug issues.

We found that over half of the projects sampled have a
portion of bug IDs mentioned in one source (either develop-
ment logs or bug tracking logs) but not in the other. We
also found that the intersection of “common” or shared bug
IDs is very low (around 20% for some 75% of the projects
in the sample), while in some extreme cases projects hold
distinct, not shared set of IDs in either database.

Furthermore, we also presented a framework for detecting
and automatically synchronising missing bug-related data
from these sources. The extraction of data and detection
of discrepancies is partly completed: future work comprises
the implementation of the full SZZ algorithm. The syncing
process has been laid out and it will be also part of future
work.
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