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Abstract 
In Asset and Liability Management (ALM) models, there are parameters 
whose values are not known with certainty at decision time, such as future 
asset returns, liability and contribution values. Simulation models generate 
possible “scenarios” for these parameters, which are used as inputs in the 
optimisation models and help thus in making decisions. These decisions 
can be evaluated in the sample, on the same scenarios that were used for 
making the decision, and out-of-sample, on a different, usually much larger, 
scenario set. With asset return simulation, the major difficulty lies in the 
multivariate nature of the data. We propose to capture this via the historical 
copula, making thus no distributional assumptions. We suggest the use of 
univariate sample generation which allows for different asset returns to be 
modelled by different distributions. The liabilities and contributions values 
have as a main source of uncertainty the population numbers; we propose 
to model this by adapting a model used in biology (BIDE). We use the re-
sulting scenario generator in four different ALM optimisation models, us-
ing a dataset from the largest Saudi Arabian pension fund and the Saudi 
Arabian market index. 
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1. Introduction and Motivation 

Market fluctuation and population aging require pension funds to adopt a new 
view on their asset allocation decisions. Asset and Liability Management (ALM) 
models have become well-established decision tools for pension funds. Other fi-
nancial organisations such as banks, insurance companies, and even some weal-
thy individuals are also underpinned by the balancing of cash flow to match and 
outperform some future obligations or liabilities. Asset management techniques 
that take into account the stochastic nature of liabilities are given the generic la-
bel: Asset and Liability Management techniques (ALM) which have been more 
recently renamed by some authors as Liability Driven Investment (LDI) Schwaiger 
(2009). 

While pure asset allocation problems are usually modeled as a single period, 
in ALM, the presence of liabilities to be paid over many future periods raises the 
need to adopt a multi-period setting. Thus, ALMs are commonly modelled as 
multi-stage optimisation models, in which a large terminal wealth is required, 
while at intermediate periods, constraints on the funding ratio, that is, the ratio 
of assets to liabilities, are imposed; see for example Alwohaibi & Roman (2018). 

In ALM models, the outcome of investment decisions depends on the future 
realisations of parameters that are not known with certainty at decision time. 
For pension funds, such parameters are future asset returns, liabilities (money to 
be paid out), and contributions (money paid in). These parameters are described 
by distributions, if we consider one planning period, or stochastic processes, in 
the case of a multi-period planning horizon. In order to use these parameters in 
optimisation models, one needs to approximate these distributions as discrete, de-
scribed by a representative set of “scenario” outcomes with corresponding proba-
bilities, other said, to “generate scenarios”. Simulation of the unknown parameters 
is necessary not only for making decisions as above, but also for evaluating the 
decisions. Out-of-sample evaluation means evaluating a decision using a differ-
ent set of scenarios than the one employed for making the decision, usually 
much larger. A special type of out of sample evaluation is stress testing, in which 
particularly unfavorable samples are being used for the purpose of testing per-
formance under worst-case situations. 

In this paper, we simulate the parameters of ALM models (liabilities, contri-
butions, and asset returns) as follows. 

The liabilities and contributions have the same main underlying source of 
uncertainty, namely the population numbers; once the numbers of members 
(paying contributors) and past members (retirees to whom liabilities are to be 
paid) are simulated, the corresponding contributions and liability values can be 
obtained using salary models and rules for pension payments. The plan’s demo-
graphic dynamics could be analysed either in a closed system or in an open sys-
tem (the latter allowing for new members to be considered). Markov processes 
have been commonly used to describe the population dynamics; see for example 
Mettler (2005) which describes population dynamics in a closed and open sys-
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tem for a defined benefit (DB) pension plan. 
We propose to model population numbers by adapting a model based on the 

“Birth, Immigration, Death and Emigration” (BIDE) concept, originally used in 
biology Nathan (2016). The motivation for this is the fact that the dynamics over 
time in pension funds populations are similar; in addition, it is a more intuitive 
and easier model to implement. 

Scenario generation methods for asset prices, or asset returns, have been ex-
tensively researched, mainly in the context of single period asset allocation. For 
an overview of scenario generation methods applied in finance and economic 
decision-making, see Vázsonyi (2006). Commonly used methods include sam-
pling or bootstrapping of historical data Efron (1979) and the Vector Autore-
gression model (VAR) Sims (1980). Scenario generation using VAR in the area 
of ALM has been used in Dert (1995), Kouwenberg (2001), and Sheikh Hussin 
(2012). 

Another established scenario generating method is the moment matching ap-
proach Høyland & Wallace (2001); it has been used in financial applications, in-
cluding ALM, see for example Dupačová & Polívka (2009), Fleten et al. (2002) 
and Kouwenberg (2001). In this approach, the decision-maker species a set of 
statistical properties (e.g. moments of order up to four). The scenario set is con-
structed in such a way that these statistical properties are matched. 

A major difficulty with scenario generation for asset prices is the multi-variate 
nature of data. One way to overcome this is to separately model the univariate 
marginal distributions and the dependencies between random variables via a 
copula Sklar (1959). This separation allows to combining approaches that cap-
ture shape with one method and handle margins with another. It allows to tak-
ing advantage of the versatility of statistical software packages (such as R, used in 
this work), which can fit a set of samples to a univariate distribution and gener-
ate further samples from the fitted univariate distribution. Different univariate 
distributions can be fitted to the marginals, rather than assuming that all asset 
returns follow the same distribution. 

Various copulas can be used in order to satisfy specific assumptions on data 
dependency. Following Kaut & Wallace (2011), we use an empirical copula, thus 
making no parametric assumptions but only modelling dependency as shown by 
historical data. Different scenario sets are obtained by sampling again from the 
univariate distributions and combining the univariate sets of samples via the 
empirical copula. 

To our knowledge, BIDE models have not been adapted and applied so far in 
the context of ALM models. Another contribution is the application of historical 
copula together with univariate sampling as a scenario generator of asset prices 
in ALM models. The two scenario generators, modelling different sources of 
randomness (population and asset prices) are combined in order to generate pa-
rameters in multi-period optimisation models of liability-driven investment. 

The rest of the paper is organised as follows. In Section 2 we describe the sce-
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nario generation method for asset returns, based on empirical copula and univa-
riate sample generation. Section 3 concerns the BIDE model and its application 
to ALM, in order to generate scenarios for contribution and liability values. In 
Section 4 we shortly describe the optimisation models, for which the parameters 
(asset returns, liability, and contribution values) were obtained with the scenario 
generation methods in Sections 2 and 3. Numerical results are presented in Sec-
tion 5, using a dataset drawn from GOSI, the largest Saudi Arabian pension 
fund, and TASI, the Saudi Arabian stock market. Conclusions are presented in 
Section 6. 

2. Simulation of Multivariate Distributions Using Copula 

In many applications, it is required to generate samples from multivariate dis-
tributions. While here we consider the specific case of simulating future asset 
returns, this approach is suitable for any type of data with a sufficient number of 
past observations available. 

There are well-established methods for fitting samples into univariate distri-
butions, implemented into standard statistical software, such as R (Rigby & Sta-
sinopoulos, 2005; Stasinopoulos & Rigby, 2007). Not the same is available for 
multivariate distributions, where the dependency between random variables 
needs to be taken into account. Here, we propose to model this dependency via 
empirical copulas, similar to Kaut & Wallace (2011). 

The name copula was first used by Sklar (1959) to define a tool that describes 
the multi-variate structure of a distribution (the dependence between the va-
riables) irrespective of the marginal distributions. Using copulas allows separat-
ing the multivariate structure from the marginal distributions, thus allowing the 
marginals to be independently modelled. It also overcomes some limitations of 
other methods, such as using a correlation matrix. 

A d-dimensional copula is the joint cumulative distribution function (cdf) of 
any d-dimensional random vector with standard uniform marginal distribu-
tions, i.e. a function [ ] [ ]: 0,1 0,1dC →  Sklar (1959). Sklar’s theorem (Sklar, 
1959) states that any multivariate distribution can be written in terms of univa-
riate marginal distribution functions and a copula: 

Let F be a d-dimensional joint cumulative distribution function of a random 
vector ( )1 2, , , dX X X  with margins 1, , dF F ,  
( ) ( )1 1 1, , , ,d d dF x x P X x X x= ≤ ≤  . Then, there exists a d-dimensional co-

pula C such that for all x in d . 

( ) ( ) ( )( )1 1 1, , , ,d n dF x x C F x F x= 

 

Moreover, if all the marginal cdfs iF  are continuous, then C is unique Nelsen 
(2007). 

An immediate consequence is that, for every ( ) [ ]1, , 0,1 d
du u ∈ , 

( ) ( ) ( )( )1 1
1 1 1, , , , ,d d dC u u F F u F u− −= 
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where 1
iF −  is the generalised inverse of iF : 

( ) ( ){ } [ ]1 : , 0,1i iF u inf t F t u u− = ≥ ∈
 

Just like distributions, copulas have many parametric families with specialized 
methods for generation (see for example Nelsen (2007)). In this paper, we use a 
special kind of copula, the so-called empirical copula. We generate samples for 
each univariate margin; using the copula, the univariate samples are combined 
to form a sample from the multivariate distribution. 

The basic motivation for using this method is to generate, starting from a large 
(historical) sample of multivariate data, other sets of samples of the same size. 

Suppose we have available N samples (observations) from a d-variate distribu-
tion of a random vector ( )1 2, , , dX X X ; denote these samples by  

( ){ }1 2 1
, , ,

Ni i i
d i

x x x
=

=  ; our goal is to generate a matrix X of the size N d×  of 

other samples from ( )1 2, , , dX X X  using the empirical copula. 

The main idea is to create a matrix N d×  of “ranks”; element i
jc  in this 

matrix is k
N

, where k is the “rank” of observation i
jx  among the observed 

values of variable jX . That is, element i
jc  corresponds to the k-th worst value 

out of the values of the observations i
jx , 1, ,i N=   of the random variable 

jX , 1, ,j d=  . In this approach, instead of making distribution assumptions 
on the marginal distribution functions jF , 1, ,j d=  , we use instead the em-
pirical distributions with marginal cdfs given by: 

( ) ( ),
, 1, , ; 1, ,

i
j je i

j j

rank x x
F x j d i N

N
= = = 

 
where ( ),irank x x  is the rank (order) of value ix  in a vector x, with values 
between 1 and N. 

Thus, we can interpret a row of this matrix as a “scenario” of dependence be-
tween the d random variables; for example, one scenario may be the maximum 
of margin 1 occurs at the same time with the second-worst value of margin 2 to-
gether with the minimum of margin 3, etc. 

Once N samples from each of the univariate distributions are (independently) 
generated, they can be combined according to the matrix of ranks in order to 
form a new scenario set of the multivariate data. 

3. BIDE Population Models Applied to Pension Fund  
Population 

The scenarios for the contributions and liabilities in an ALM model have the 
same main underlying source of uncertainty, namely the population numbers. 

We adopt here a population model used in biology, in order to model over 
time both the population of contributors and that of retirees in a pension fund. 

The dynamics of a population in a BIDE model (Birth, Immigration, Death, 
Emigration model) Nathan (2016) is given by: 

1t t t t t tN N B D I E+ = + − + −  
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where: 
• tN  represents the population size at time t; 
• tB  is the number of births within the population between tN  and 1tN + ; 
• tD  is the number of deaths within the population between tN  and 1tN + ; 
• tI  is the number of individuals immigrating into the population between 

tN  and 1tN + ; 
• tE  is the number of individuals emigrating from the population between 

tN  and 1tN + . 
In the remaining of this section, we explain how we construct sample paths 

for these populations and how to generate the scenarios for the contributions 
and liability payments. 

The Contributors’ and Retirees’ Population Sample Paths 

The BIDE equation is adapted as follows: 

1, , , , , , , , 0,1, , 1; 1, ,t s t s t s t s t s t s t sN N New R TI TO D t T s S+ = + − + − − = − =    (1) 

where T is the number of time periods considered (e.g. years), S is the number of 
sample paths to generate and: 
• ,t sN  the total number of contributors in employment by the end of time pe-

riod t under scenario s; 
• ,t sNew  the numbers of new employees between time t and t + 1 under sce-

nario s; 
• ,t sR  the total number of contributors who leave the scheme (due to retire-

ment or death) between t and t + 1 under scenario s; 
• ,t sTI  the total number of employees who enter the system from another 

pension fund (i.e. transferred) between t and t + 1 under scenario s; 
• ,t sTO  the total number of employees who leave the system and are trans-

ferred to another pension fund between time t and t + 1 under scenario s; 
• ,t sD  the total number of cases that received lump sum payments and leave 

the scheme between times t and t + 1 under scenario s. 
If past observations are available, we can compute a set of “observed” ratios as 

follows. Let tγ  denote the employment ratio at time t, defined as: 

t t tNew Nγ =  
Similarly, tµ  is the ratio of the retirement (including deaths) at time t, de-

fined as: 

t t tR Nµ =  
Similarly, let us denote by tη  the ratio of the transfers out of the fund at time 

t: 

t t tTI Nη =  

tφ  is the ratio of the transfers out of the fund at time t: 

t t tTO Nφ =  

Finally, t∆  represent the ratio of leaving the scheme at time t, defined as: 
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t t tD N∆ =  
Each of these ratios at the current time is a random variable that affects the 

total number of contributors the next time period. By sampling from these ob-
served (historical) ratios we obtain a vector ( γ , µ , η , φ , ∆ ) that represents 
a possible scenario of these ratios for the next time period. Using the current 
(known) number of contributors tN  and the scenario for ratios, we can simu-
late the number of new contributors and so forth until the next time period: 

; ; ; ;t t t t t t t t t t t t t t tNew N R N TI N TO N D N= γ = µ = η = φ = ∆  
Using (1) we obtain a simulated value for the number of contributors at the 

next time period 1tN + . Repeating the process, using 1tN +  and another sample 
of ratios ( γ , µ , η , φ , ∆ ) we obtain a scenario value for 2tN + , and so forth. 
We can thus construct a sample path for the contributors’ population. 

Similarly, we adopt the BIDE model to represent the dynamics of the retirees 
population: 

1, , , , , 0,1, , 1, 1, ,t s t s t s t sNR NR R G t T s S+ = + − = − =          (2) 

where: 
• ,t sNR  the total number of retirees who receive pension at time t under sce-

nario s (i.e. retires’ population size at time t under scenario s); 
• ,t sG  the number of cases that stop receiving pension (leaving the retirees 

population) between times t and t + 1 under scenario s; 
• ,t sR  the total number of contributors who leave the scheme and enter the re-

tirees’ population between times t and t + 1 under scenario s. 
A similar approach, based on observed rates, that is, percentages of cases 

leaving/entering the population out of the initial population, is employed in or-
der to construct sample paths for the retirees’ population numbers. 

Sample paths for the cash inflows (contributions) and outflows (liabilities) can 
be generated using salary models and specific payment rules of the considered 
funds. In Section 5 we do this, for a pension fund in Saudi Arabia. 

4. ALM Optimisation Models 

We consider ALM models with an initial portfolio of financial assets; decisions 
are to be made regarding the rebalancing of this portfolio at specific times such 
that, a long-term wealth growth is achieved, while liabilities are satisfied at all 
times. It is thus common to have the terminal wealth fund as an objective func-
tion (to maximise) while intermediate-risk constraints are imposed. These risk 
constraints refer to the funding ratio (that is, the ratio of assets value to liabilities 
value) being kept acceptably high, at all intermediate time points. Usually, a tar-
get value for the funding ratio (such as 1.1 or 1.2) is specified as a parameter of 
the model. 

Some of the most established models in this category include the integrated 
chance constraint model (ICCP) (Klein Haneveld et al., 2010) and the Maximin 
model (Young, 1998), which can be viewed as a particular case of the CVAR-ALM 
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model of Uryasev et al. (Bogentoft et al., 2001). With the ICCP model, a risk 
constraint is imposed, requiring that the expected value of the shortfall of the 
funding ratio with respect to the target is no more than a specified limit. Max-
imin models find the solution whose corresponding funding ratio performs the 
best under the worst-case scenario. 

The formulations of the models are given in the Appendix. 
A different approach is suggested in Alwohaibi & Roman (2018), where the 

risk of underfunding is modelled based on the concept of stochastic dominance 
Whitmore & Findlay (1978). Here, investment decisions are taken such that the 
distribution of the funding ratio is non-dominated with respect to Second-order 
Stochastic Dominance (SSD) and also is close in an optimal sense to a us-
er-specified target distribution. The terminal wealth is specified in a constraint, 
rather than as an objective. 

Two SSD-based models are developed, SSD-scaled and SSD-unscaled, depend-
ing on whether we compare scaled tails or unscaled tails of the distribution of 
funding ratio with the corresponding tails of the target distribution. Scaled tails 
are, roughly speaking, averages of worst-case outcomes while unscaled tails are 
sums of worst-case outcomes. It is developed in Alwohaibi & Roman (2018) that 
the ICCP and the Maximin are at two opposite extremes, one looking at the ex-
pected value of the shortfall (of funding ratio with respect to target) and the oth-
er looking at the worst-case scenario. In between, there is a multitude of solu-
tions offering different shapes of the funding ratio distributions, with different 
trade-offs between a good left tail and a low value of expected shortfall. As 
pointed out in Alwohaibi & Roman (2018), the SSD scaled solutions are gener-
ally closer to Maximin solutions, in the sense that they offer good left tails of the 
funding ratio distributions; the SSD unscaled solutions are closer to the ICCP 
solutions, in the sense of having a low value of expected shortfall. 

The algebraic formulations of the four optimisation models (ICCP, Maximin, 
SSD scaled, and SSD unscaled), together with parameter choices for the target 
funding ratio (in ICCP), distribution of the target funding ratio, and the mini-
mum terminal wealth (in the SSD models) are given in the Appendix. 

5. Numerical Results 
5.1. Dataset and Computational Setup 

We use the simulation models described in Sections 2 and 3 in order to generate 
scenarios for asset returns and liability and contribution values in ALM optimi-
sation models, applied to a Saudi Arabian pension fund. We use the four opti-
misation models described in Section 4 and formulated in the Appendix; they 
are implemented in AMPL Fourer et al. (1990) and solved using CPLEX 12.5.1.0. 
The decisions obtained are then evaluated out-of-sample, using much larger 
scenario sets generated with the same methods. 

As in Consigli & Dempster (1998) and Mulvey et al. (2000), the planning ho-
rizon is 10 years; 0t =  refers to the year 2016. We consider for investment 16 
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asset classes: the Saudi equities represented by 15 sectors indices and also cash. 
Investment decisions have to be taken “now” ( 0t = ) and then rebalanced every 
year, 1, ,9t =  . 

For generating the scenarios for liabilities and contributions, we consider a da-
taset drawn from the General Organisation for Social Insurance (GOSI) The Gen-
eral Organization for Social Insurance (GOSI) (n.d.) website:  
http://www.gosi.gov.sa/. The dynamics of the pension fund population are de-
scribed by a BIDE-type model, as per section 3. We use historical data from the 
GOSI’s population as an input; that includes for example the number of partici-
pants, number of retirees, employment, and retirement rates for the last 10 years. 
It also includes the average salary each year and average salary growth. We use a 
simple salary model assuming a constant growth rate each year. We follow the 
GOSI-specific regulations in setting the percentage of salary to be paid in, as 
contributions, or out, as liabilities. For more details, please see Alwohaibi & Ro-
man (2018). 

The in-sample scenarios for the asset returns are obtained by bootstrapping 
from historical data drawn from the Saudi Arabian stock market index (TASI) 
Saudi Stock Exchange (n.d.) website: https://www.tadawul.com.sa for the period 
Jun 2007 to Nov 2015; we bootstrap 30 yearly rates of return. For the risk-free 
rate of return (interest rate) we consider the current Saudi Arabian interest rate 
of 2% following Trading Economics (n.d.) website:  
http://www.tradingeconomics.com/saudi-arabia/interest-rate. 

The scenarios for asset returns are combined with 10 scenarios for contribu-
tions and liabilities, resulting thus in an in-sample scenario set of 300 sample 
paths. 

The out-of-sample analysis is conducted over 11 different, larger, data sets. As 
optimisation is not employed, much larger datasets can be used. 

For the asset returns, the first set is obtained by considering all the observed 
historical returns of the component assets; we compute 1937 scenarios for the 
annual rates of returns of the assets. The rest of the data sets for the asset returns 
are of the same size and are created by employing a historical copula, as de-
scribed in Section 2, and sampling from the marginals. For each marginal, we 
use the historical samples and fit them into a univariate distribution, using the R 
package gamlss (Rigby & Stasinopoulos, 2005); different distributions are ob-
tained. For the sake of brevity, we do not include the full details here; these can 
be obtained upon request. We then generate other 1937 samples from the fitted 
distribution for each margin and combine them via the empirical copula and re-
peat this process to create other 10 out-of-sample scenario sets for asset returns, 
in addition to the “historical” set. Each of these sets is then combined with 500 
scenarios for liabilities generated in the same manner as the in-sample data sets. 

To summarise, the out-of-sample analysis is conducted over 11 sets of scena-
rios each of size 968,500. 

The out-of-sample analysis is summarised below: 
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1) Generate the in-sample scenarios for the optimisation problems. 
2) Solve the models (SSD-Unscaled), (SSD-Scaled), (ICCP), and (Maximin) 

using the in-sample scenarios. 
3) Generate 11 larger sets of out-of-sample scenarios. 
4) Use the first stage investment decisions obtained at 2 and compute the rea-

lisations of the rate of returns distribution and the funding ratio distribution, 
considering an out-of-sample scenario set generated in 3. 

5) Compute performance and risk-adjusted performance measures. 
6) Repeat the last two steps for each of the 11 out-of-sample scenario sets. 

5.2. Computational Results 

We are interested in the funding ratio distributions (that is, the ratio of asset value 
to liabilities) at the first stage, in the sample, and out-of-sample. We compute key 
statistics from these distributions and investigate whether the out-of-sample statis-
tics indicate the same key characteristics of the funding ratios as indicated 
in-sample. 

Table 1 presents in-sample results regarding the funding ratio distributions in 
each of the four optimisation models considered. Apart from the expected value, 
we are interested in the expected value of shortfall with respect to a target fund-
ing ratio of 1.10 and in the left tails. The A% tail is defined as the average of the 
worst A% of the outcomes. We thus consider not only the worst-case scenarios in 
each of the distributions (the minimum) but also a progressively higher number of 
worst-case scenarios. For all of the above statistics apart from the expected 
shortfall, high values are desirable. 

The in-sample statistics are in line with the stated purposes of the optimisa-
tion models. That is, the Minimax distribution has the best (highest) worst-case 
value at 0.8932; moreover, it has the best-left tails when considering up to 25% of 
the worst-case scenarios: 0.9551 for the 25% Scaled tail. It also has, on the other 

 
Table 1. Statistics of the in-sample funding ratios: (SSD-Unscaled), (SSD-Scaled), (ICCP) 
and (Maximin) models. 

Statistic SSD-Unscaled SSD-Scaled ICCP Maximin 

Expected value 1.160 1.154 1.141 1.135 

Minimum 0.8168 0.876 0.7926 0.8932 

Expected shortfall w.r.t 1.10 0.0455 0.0526 0.0430 0.0517 

1%-Scaled tail 0.8200 0.8794 0.7957 0.8967 

5%-Scaled tail 0.8526 0.8969 0.8283 0.9124 

10%-Scaled tail 0.8725 0.9165 0.8556 0.9290 

15%-Scaled tail 0.8946 0.9284 0.8915 0.9392 

20%-Scaled tail 0.9207 0.9383 0.9227 0.9471 

25%-Scaled tail 0.9420 0.9477 0.9464 0.9551 
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hand, the lowest expected value at 1.135. 
The ICCP distribution has the lowest expected shortfall at 0.0430; it also has, 

however, the lowest minimum at 0.7926 and the worst left tails when consider-
ing up to 15% of the lowest outcomes. 

The SSD distributions are somewhat in between; their expected values are the 
highest, while at the same time, the left tails are reasonably high. The SSD scaled 
distribution is closer to the Minimax one, in the sense of having good left tails 
while the SSD unscaled distribution is close to the ICCP one, in the sense of 
having a low expected shortfall (also the highest mean). It is developed in Alwo-
haibi & Roman (2018) that the Minimax and ICCP models can be obtained as 
particular cases of the SSD scaled and SSD unscaled models, respectively. 

The first stage solution is used together with the 11 out-of-sample scenario 
sets (described in Section 5.1) in order to compute 11 out-of-sample distribu-
tions of funding ratios. 

Table 2 displays the expected values of the 11 out-of-sample distributions of 
funding ratios. Encouragingly, although the values are marginally lower, they are 
very similar to those obtained in the sample, although the number of out-of-sample 
scenarios is much higher. Importantly, the out-of-sample values preserve the 
ranking within the four models, in the sense of the highest means being those of 
the SSD-based distributions (on average, 1.1184 and 1.1126) and the lowest 
means those of the Minimax distribution (on average, 1.0982). 

In addition to expected values, we look at the left tails of the out-of-sample 
funding ratio distributions; we compute the 1%, 5%, 10%, 15%, 20%, and 25% 
scaled left tails of each of the out of sample distributions. For the sake of brevity, 

 
Table 2. The expected values of the out of sample funding ratio distributions, obtained 
using 11 out-of-sample scenario sets. 

Dataset SSD-Unscaled SSD-Scaled ICCP Maximin 

Data set 1 1.1198 1.1169 1.1036 1.1020 

Data set 2 1.1198 1.1148 1.1052 1.1002 

Data set 3 1.1227 1.1177 1.1087 1.1026 

Data set 4 1.1225 1.1108 1.1083 1.0963 

Data set 5 1.1171 1.1133 1.1026 1.0989 

Data set 6 1.1193 1.1156 1.1054 1.1009 

Data set 7 1.1195 1.1133 1.1060 1.0988 

Data set 8 1.1139 1.1140 1.1006 1.0995 

Data set 9 1.1175 1.1121 1.1029 1.0977 

Data set 10 1.1153 1.1073 1.1025 1.0934 

Data set 11 1.1178 1.1097 1.1034 1.0956 

Average 1.1184 1.1126 1.1045 1.0982 

St. Deviation 0.0030 0.0031 0.0028 0.0028 
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we include here the results for the 5% tails, as they are representative; the full set 
of results can be obtained upon request. 

Table 3 presents the out-of-sample results concerning the 5% scaled tails of the 
funding ratio. While these values are lower than the corresponding in-sample 
ones, this is to be expected, as the out-of-sample scenario sets are much bigger, 
accounting for more unfavorable outcomes. 

Very importantly, the out-of-sample scenario sets distributions preserve the 
same pattern as the in-sample ones, corresponding to the stated purposes of the 
optimisation models. The “best” left tail corresponds to the Maximin distribution, 
followed by the SSD scaled one. As shown in Table 3, the average of the 5% 
worst-case outcomes is around 0.8161 in the case of Maximin distribution, consi-
derably higher than the case of ICCP, which on average is at 0.7201; the “worst” 
left tail is that of the ICCP distribution, as computed on all out of sample datasets. 

6. Conclusions and Further Research 

We have proposed scenario generation models for the uncertain parameters of 
ALM models based on: 

1) the BIDE model for simulating population numbers; 
2) historical copula and univariate sample generation for simulating multiva-

riate distributions such as asset returns. 
The BIDE model has been used in biology but it can be adapted to popula-

tions describing both contributors and retirees in an ALM. Combined with sala-
ry models and the specific rules of payment and contribution of a fund, it can be 
used to generate scenarios for liability values and contribution values, which are 
ultimately the parameters required in ALM models. 

 
Table 3. The 5% scaled tails of the out of sample funding ratio distributions for the 11 
out-of-sample data sets. 

Sample number SSD-Unscaled SSD-Scaled ICCP Maximin 

Data set 1 0.7089 0.7810 0.6964 0.8103 

Data set 2 0.7273 0.7904 0.7221 0.8182 

Data set 3 0.735 0.7927 0.7298 0.82 

Data set 4 0.7344 0.7914 0.7288 0.8186 

Data set 5 0.7217 0.7865 0.7193 0.815 

Data set 6 0.7253 0.7872 0.721 0.8156 

Data set 7 0.7263 0.7879 0.7202 0.8159 

Data set 8 0.7251 0.7889 0.7205 0.8169 

Data set 9 0.7273 0.7893 0.7226 0.8171 

Data set 10 0.7215 0.7834 0.7153 0.8121 

Data set 11 0.7301 0.7905 0.725 0.8179 

Average 0.7257 0.7881 0.7201 0.8161 

St. Deviation 0.0071 0.0035 0.0089 0.0029 
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For asset returns, there is usually a large number of historical observations 
available; the use of historical copula is based on the assumption that the history 
captured well the dependency between asset returns. The purpose is to generate 
more scenario sets than available via historical data, including ideally those that 
would capture unfavorable scenarios. In our computational work, we used R in 
order to fit univariate distributions (individual asset returns) and generate fur-
ther samples. This offers good flexibility, as very different univariate distribu-
tions may fit. The samples generated from univariate distributions are then 
combined together via the historical copula. 

We have used the resulting scenario generators in four ALM optimisation 
models. The first stage solutions obtained, representing investment decisions, 
are evaluated in-sample (on the same scenario set, of size 300, used in order to 
obtain them) and out-of-sample (on several, much larger, scenario sets, not used 
in the optimisation process). More precisely, we looked at the distribution, in 
sample and out-of-sample, of the funding ratio: the ratio of assets value to liabili-
ties. We considered expected values and “left tails”: averages of progressively higher 
percentages of worst-case scenarios. The results are encouraging: the out-of-sample 
distributions have very similar expected values to the in-sample ones. While the 
left tails are worse in the out-of-sample cases, (which is expected, as more unfa-
vorable outcomes are taken into consideration), the shape of the out-of-sample 
distributions is similar to the in-sample case, in accordance with the stated pur-
poses of the optimisation models. For example, the solution of the Minimax 
model, which in-sample has the highest worst-case value of the funding ratio 
(and generally best-left tails) with the lowest expected value of funding ratio out 
of the four models considered, has the same characteristics evaluated out of 
sample. This is a very important aspect, as it shows that the scenario generators 
work well with the optimisation models for ALM. 

In our research, when applying the BIDE model in order to simulate future 
population numbers, the number of newcomers (‘births’), retirees, etc. are ob-
tained considering past (observed) proportions out of the total population. This 
is an important limitation; one way to overcome this is by considering additional 
scenarios, particularly those accounting for more recent trends such as the high-
er lifetime of contributing members and higher number of years in retirement. 

We also considered a simple salary model, assuming a constant increase rate; 
more realistic salary models may offer a better picture. Finally, our scenario tree 
is a fan one: after generating scenarios for the first period, each node results in a 
single scenario for the next period. While the usual multi-period scenario tree 
would have obvious implications e.g. in terms of computational time, it would 
also provide a more realistic representation. 
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Appendix: The Algebraic Formulation of ALM Optimisation 
Models 

In what follows, we present the formulations of the four ALM optimisation 
models described in Section 4. All models are two-stage stochastic programs 
with a scenario tree in the form of a fan. The following notations are used: 

I = The number of financial assets available for investment. 
T = The number of time periods. 
S = The number of scenarios. 
The parameters of the model are: 

iOP  = The amount of money held in asset i at the initial time period 0t = ; 
1, ,i I=  . 

0L  = Aggregated liability payments to be made “now” ( 0t = ). 

0C  = The funding contributions received “now” ( 0t = ). 

,t sL  = Liability value for time period t under scenario s; 1, ,t T=  , 
1, ,s S=  . 

,t sC  = The contributions paid into the fund at time period t under scenario s; 
1, ,t T=  , 1, ,s S=  . 

, ,i t sR  = The rate of return of asset i at time period t under scenario s; 
1, ,i I=  , 1, ,t T=  , 1, ,s S=  . 

iu  = The upper bound imposed on the investment in asset i; 1, ,i I=  . 
ψ  = The transaction cost expressed as a percentage of the value of each trade. 

sπ  = The probability of scenario s occurring; 1, ,s S=  . 
θ  =The maximum value of expected shortfall of the funding ratio with re-

spect to target 1.1. 
0d >  = Desired rate of return over the investment horizon. 
1.1λ =  the target funding ratio. 

Let us denote the first stage decision variables by: 

,0iB  = The monetary value of asset i to buy at the beginning of the planning 
horizon ( 0t = ); 1, ,i I=  . 

,0iS  = The monetary value of asset i to sell at 0t = ; 1, ,i I=  . 

,0iH  = The monetary value of asset i to hold at 0t = ; 1, ,i I=  . 
with ,0 ,0 ,0i i i iH OP B S= + − , 1, ,i I=  . 

Recourse decision variables: 

, ,i t sB  = The monetary value of asset i to buy at time t under scenario s; 
1, ,i I=  , 1, , 1t T= − , 1, ,s S=  . 

, ,i t sS  = The monetary value of asset i to sell at time t under scenario s; 
1, ,i I=  , 1, , 1t T= − , 1, ,s S=  . 

, ,i t sH  = The monetary value of asset i to hold at time t under scenario s; 
1, ,i I=  , 1, ,t T=  , 1, ,s S=  . 

,t sA  = The assets value at time t under scenario s, before portfolio rebalanc-
ing. 

The ICCP model: 
For the ICCP model, there additional variables , 0, 1, , ; 1,t sSh t T s≥ = =   
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representing the shortfalls of the funding ratio with respect to the target λ . 

,
1

Max
S

s T s
s

A
=

π∑
 

Subject to: 
• Asset Value Constraints 

1, ,0 ,1,
1

, 1, ,
I

s i i s
i

A H R s S
=

= =∑ 

 

, , 1, , ,
1

, 2, , ; 1, ,
I

t s i t s i t s
i

A H R t T s S−
=

= = =∑  

 
• Asset Holding Constraints 

,0 ,0 ,0 , 1, ,i i i iH OP B S i I= + − =   

,1, ,0 ,1, ,1, ,1, , 1, , ; 1, ,i s i i s i s i sH H R B S i I s S= + − = =   

, , , 1, , , , , , , , 1, , ; 2, , 1; 1, ,i t s i t s i t s i t s i t sH H R B S i I t T s S−= + − = = − =    

, , , 1, , , , 1, , ; 1, ,i T s i T s i T sH H R i I s S−= = =   

• Fund Balance Constraints 

( ) ( ),0 0 ,0 0
1 1

1 1
I I

i i
i i

B L S C
= =

+ ψ + = −ψ +∑ ∑
 

( ) ( ), , , , , ,
1 1

1 1 , 1, , 1; 1, ,
I I

i t s t s i t s t s
i i

B L S C t T s S
= =

+ ψ + = −ψ + = − =∑ ∑  

 

• Short-Selling Constraints 

,0 , 1, ,i iS OP i I≤ =   

, , , 1, , 1, , ; 1, , 1i t s i t sS H i I t T−≤ = = −   
• Bound Constraints 

, , , ,
1

, 1, , ; 1, , ; 1, ,
I

i t s i i t s
i

H u H i I t T S S
=

≤ = = =∑   

 
• The Integrated Chance Constraint 

, , , 0, 1, , ; 1, ,t s t s t sA L Sh t T s S−λ + ≥ = =   

,
1

, 1, ,
S

s t s
s

Sh t T
=

π ≤ θ =∑ 

 

, 0, 1, , ; 1, ,t sSh t T s S≥ = =   

In our computational work, we used a variant of this model in which the ob-
jective is to minimise the expected shortfall of the funding ratio at first time, 
with a constraint of a minimum terminal wealth. 

The Maximin model: For the Maximin model, there is an additional free va-
riable δ  representing the lowest outcome of the funding ratio at stage one. 

Max δ  
Subject to: 
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• Asset Value Constraints 

1, 1, , 1, ,s sA L s S≥ δ =   
• Expected terminal wealth constraint 

( ),
1 1

1
S I

s T s i
s i

A OP d
= =

π ≥ +∑ ∑
 

The Asset Value Constraints, Asset Holding Constraints, Fund Balance Con-
straints, Short-Selling Constraints and Bound Constraints, formulated above, 
also hold. 

The SSD Scaled model 
For the SSD models, additional parameters specify a target distribution for the 

distribution of the first stage funding ratio: , 1, ,kasp k S=   are aspiration le-
vels for the means of the worst k outcomes of the funding ratio distribution, 

1, ,k S=  . 
This 
The additional variables for the SSD models are: 

sF  = The funding ratio under scenario s at time t = 1; ( 1, 1,s s sF A L= );
1, ,s S=   

kT  = The k-th worst outcome of the funding ratio at time 1, 1, ,k S=   
(free variable); thus, 1, , ST T  are the outcomes of a random variable equal in 
distribution to the funding ratio 

kZ  = The mean of the worst k outcomes of the funding ratio, or other said, 
( )/ScaledTailk S F ; ( )1k kZ T T k= + + , 1, ,k S=   (free variable) 

( )1, ,mink S k kZ asp=δ = −


 = the worst partial achievement (free variable); 

,k sd  = Non-negative variables, [ ],k s k sd T F += −  that is 

,

0, if
, otherwise

s k
k s

k s

F T
d

T F
≥

=  −  

The objective is to maximise the minimum difference between the mean of the 
worst k funding ratios at time t = 1 and the k-th aspiration level; a regularisation 
term is added to tackle the case of multiple optimal solutions, with ε  a positive 
number close to 0. 

1 1
Max

S S

k k
k k

Z asp
= =

 δ + ε − 
 
∑ ∑

 

Subject to 
• Funding Ratio Definition 

( ),0 ,1, 1, 1, 1,
1

, 1, ,
I

s i i s s s s s
i

F H R L F A L s S
=

= = =∑ 

 

• Additional Constraints to Formulate the SSD Model 

,
1

1 , 1, ,
S

k k k s
s

Z T d k S
k =

= − =∑ 

 
, 1, ,k kZ asp k S− ≥ δ =   
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, , , 1, ,k s k sT F d k s S− ≤ =   

, 0, , 1, ,k sd k s S≥ =   
• Terminal Wealth Constraint 

( ),
1 1

1 1
S I

T s i
s i

A OP d
S = =

≥ +∑ ∑
 

The Asset Value Constraints, Asset Holding Constraints, Fund Balance Con-
straints, Short-Selling Constraints, and Bound Constraints, formulated above, 
also hold. 

The SSD unscaled model is obtained in a similar way, by considering aspira-
tion levels for sums (instead of means) of the worst outcomes of the funding ra-
tio. For the complete formulation and more details, please see Alwohaibi & Ro-
man (2018). 

In all models, the right-hand side of the constraint on the expected terminal 
asset value is the same (equal to TA  which corresponds to a cumulated terminal 
wealth of 581.5548 billion Saudi Riyals (SAR)). The value of ε  is fixed at 0.0001. 
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