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 
Abstract— A microgrid is considered to be a smart power system 

that can integrate local renewable energy effectively. However, the 
intermittent nature of renewable energy causes operating pressure 
and additional expense in maintaining the stable operation by the 
energy management system in a microgrid. The structure of multi-
microgrids provides the possibility to construct flexible and various 
energy trading framework. In this paper, in order to reduce the 
adverse effects of uncertain renewable energy output, a distributed 
robust model predictive control (DRMPC)-based energy 
management strategy is proposed for islanded multi-microgrids. 
This strategy balances the robustness and economy of single-
microgrid system operation by combining the advantages of robust 
optimization and model predictive control, while coping with the 
uncertainty of renewable energy sources. Furthermore, a dynamic 
energy trading market is formed among microgrids, which can 
enhance the overall economy of the multi-microgrids system. 
Simulation results verify the feasibility of the proposed DRMPC 
strategy. 

Index Terms—Multi-microgrids, energy management, 
distributed robust model predictive control, game theory, 
renewable energy 

I. INTRODUCTION

he renewable energy sources such as photovoltaic (PV) and 
wind turbine (WT) generation are connected to microgrids 
(MGs) as distributed generation (DG) units through the 

conversion of a series of power-electronic equipment to provide 
power for loads [1]. Compared with the traditional distribution 
network with centralized power generation, the needs of the 
rapid expansion of the power grid will be met by the closer 
electrical distance to the user side and the smaller line loss with 
these units. Moreover, the smaller environmental cost also helps 
the goal to lower carbon of energy transformation in power grid. 
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The microgrid is regarded as a platform for regional management 
of these flexible distributed devices to ensure the balance of 
power supply and demand. Nevertheless, in the face of the MG 
with high penetration rates of renewable energy, it is still a big 
problem and worth discussing to ensure the effective operation 
of energy management strategy because of the volatility and 
uncertainty of natural sources.  

In order to minimize the operation cost, the most economical 
operation decisions can be made with traditional day-ahead 
scheduling strategy. However, the accuracy of the strategy is 
constrained by the precision of the forecast output of renewable 
energy. Operators of MGs often inevitably need to pay more for 
the inaccurate predictions to ensure the stable operation of the 
MGs. Therefore, the strategies are designed more inclined to 
prevent the uncertainty of renewable energy in advance, which 
are more suitable for the flexible characteristics of MGs. 

The worst scenario is taken into account by the robust 
optimization (RO) strategy [2]. Therefore, RO can ensure that 
there is still a feasible solution even when the uncertain variable 
fluctuates within a certain range [3]. But this conservative 
solution will inevitably sacrifice a part of the economy [4]-[7]. 
In [4], a scenario-based robust energy management method was 
developed which the possible testing scenarios are provided by 
Taguchi’s orthogonal array testing method. In [5], a hybrid 
stochastic/robust optimization model was proposed to minimize 
the expected net cost considering the uncertainty of real-time 
market price. The research gap that cogeneration equipment 
cannot be effectively coordinated with industrial demand 
response on different time scales is filled with an adaptive robust 
approach in [6]. In [7], a short-term scheduling problem of 
integrated heat and power MG in the grid-connected mode was 
solved using RO method with uncertainty set. These studies 
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effectively warn MGs about forecast errors in advance by using 
different methods, which will increase the safety margin of the 
dispatch plan and the robustness of the energy management 
system (EMS) of MGs. However, some shortcomings of the RO 
strategy are exposed, such as larger computational burden and 
more insufficient flexibility. 

The application of model predictive control (MPC) in EMS is 
based on the idea of closed-loop rolling optimization to predict 
and respond to the fluctuation of renewable energy in advance 
[8]-[13]. A multi-time scale optimal scheduling based on MPC 
in a designed three-tier coordinated scheduling system is shown 
in [9]. In [10], a hierarchical stochastic control scheme based on 
MPC was proposed for the coordination of plug-in electric 
vehicles (PEVs) charging and wind power. A closed-loop 
distributed model predictive control (DMPC) was designed in 
[11] to address the intra-hour economic dispatch problem, which
can reduce potential variations in the determined generation
schedules. In [12], the results of multiple uncertainty sampling
were used to simulate the future characteristics of the converged
EV, and a two-layer control framework is proposed to optimize
it. As a real-time strategy with multi-time scale, the flexibility of
MPC provides a framework for combining with multiple
methods of optimization. For example, a two-layer optimization
model was proposed in [13] based on the robust model predictive
control (RMPC) to deal with the uncertainty of renewable energy
outputs in the distribution system restoration problem. The
RMPC strategy can be regarded as a novel control strategy that
combines the advantages of these two optimization methods,
which can better weigh the robustness and economy in
microgrids.

Furthermore, with the expansion of the number of MGs, 
operators tend to increase communication and interaction with 
nearby MGs to reduce more own operating costs. The emergence 
of multi-microgrids has laid a structural foundation for the 
cooperative operation of MGs, and also provides the possibility 
for the formation of free power market transactions among them 
[14]-[20]. An RO framework for joint an optimal scheduling of 
energy and reserves for multi-microgrids was proposed in [14], 
in which the non-anticipativity in reserve scheduling is 
considered. A decentralized robust model for optimal operation 
of the distribution company with private MGs was proposed in 
[15], in which the enforced operational uncertainties are handled 
by adaptive RO and the decentralized algorithm is solved by 
alternating direction method of multipliers (ADMM). In [16], 
two kinds of decentralized robust economic scheduling 
framework were reported based on analytical target cascading 
(ATC) method, which represents better information privacy and 
faster convergence rate respectively. The interconnected energy 
hubs (EH) concept in networked microgrids was studied in [17], 
which aims to exploit the potential capabilities of microgrids in 
satisfying various types of energy demands. However, compared 
with intraday scheduling, the day-ahead trading strategy based 
on robust optimization cannot make timely adjustments to the 
uncertainty and trading mentality based on real-time weather 
changes and the enthusiasm of dealing with transactions for 
microgrid operators. 

Similarly, based on the close and rapid information exchanges 
in the microgrid cluster, the real-time control strategies based 
MPC can be well applied in multi-microgrids energy 

management [18]-[20]. In [18], an online DMPC-based charging 
strategy for multiple EV charging stations was proposed in 
distribution systems, in which the online optimal charging 
problem is regarded as an optimal power flow problem that 
minimizes the total system energy cost. An optimal DMPC 
strategy to coordinate energy management among microgrid 
systems was presented in [19]; the renewable energy utilization 
is improved while maintaining its own systemwide supply and 
demand balance. In [20], an optimal procedure for the economic 
schedule was carried out through a control algorithm based on 
DMPC for networked interconnected microgrids with hybrid 
energy storage system. However, the complete trust in the 
forecast output of renewable energy will make the microgrids 
tend to make aggressive scheduling schemes in pursuit of 
economic which increase the high precision requirements of the 
forecasting method. Moreover, the lack of competition among 
microgrids in terms of transaction volume of energy and price 
makes these cooperative frameworks unattractive in the actual 
microgrid cluster. 

For various microgrids with different ownerships, operators 
more often want to maximize their own profits through deep 
cooperation. Therefore, the multi-microgrids tend to find a 
transaction agreement that balances fairness and privacy [21]-
[28]. In [21], a bi-level power management methodology based 
on approximate Reinforcement Learning was proposed to 
respond to the problem about the limited information 
cooperative agent can have from the MG asset behind the Point 
of Common Coupling (PCC). And a supervised multi-agent safe 
policy learning method for optimal power management was 
presented in [22] for networked microgrids considering AC 
power flow limits to ensure the safety of the control policy. In 
[23], a secure distributed transaction energy management 
scheme was proposed based on the collaborative optimization 
among microgrids with a misbehavior detection mechanism. A 
contribution-based energy trading mechanism among microgrids 
in a competitive market was designed in [24], in which the 
surplus energy will be allocated to consumers based on their 
historical contribution. However, the benefits and behaviors of 
seller who is the important participant in the power market have 
not been paid attention to. Based on [24], a method for fair and 
stable energy sharing among microgrid clusters with minimum 
information overhead was proposed in [25]. In this method, 
buyers will compete for the allocation with each other using 
priority factor based on a non-cooperative game. However, when 
the microgrid participates in the power market competition, its 
own energy management behavior is ignored, which cannot 
guarantee the maximization of the benefits of its operation and 
increases the risk of the safe operation of the microgrid. In [26], 
an agent-based hierarchical power management model was 
proposed, which is divided into a Nash bargaining game among 
MGs and an iterative machine learning mechanism on energy 
price for utility company. However, the wholesale price is the 
necessary reference that cannot be obtained in islanded multi-
microgrids. In [27], a distributed collaborative energy bargain 
scheduling algorithm was designed based on a stochastic 
renewable power forecasting method. The trading behaviors are 
analyzed with the impacts of cooperation and dishonest behavior 
on the bargaining outcome. And as discussed in [25], this 
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cooperative method of cost allocation is affected by the selfish 
behavior of users driven by the interests, which is inevitable. In 
[28], the problem of bargaining was decomposed into two 
sequential problems as minimizing social cost and sharing of 
transaction benefits, which an incentive mechanism is designed 
to encourage active energy trading and fair benefit sharing based 
on dissatisfaction cost. 

Most of the above research work focuses on the optimization 
of the overall cooperative economy, which requires a high 
degree of trust among microgrids to ensure the fairness of the 
strategy. And the main grid is one of the important participants 
in the strategy, who is difficult to connect for multi-microgrids 
operating in islanded scenario (i.e., remote island groups, rural 
areas, mountainous areas, and grassland.) In addition, under 
most competitive frameworks, transactions are only driven by 
price to pursue revenue, which there should be more behavioral 
choices for operators. Therefore, for more complex and 
changeable business relationships in the actual islanded multi-
microgrids, it is more suitable to establish a more flexible 
framework with interactions of cooperative and non-cooperative 
game where the multiple businesses coexist.  
 In summary, the main contributions of this paper are as 
follows: 

1) In response to the uncertainty of renewable energy, the
microgrid is modeled based on RMPC with closed-loop 
feedback mechanism. Operators have more options in real-time 
to choose the operation plan considering the balance of 
robustness and economy. 

2) By accounting for the complex business relationship with
multiple owners in islanded multi-microgrids, a dynamic 
alliance transaction framework for multi-microgrids system is 
established. And a transaction game mechanism based on 
individual contribution is proposed to enhance the enthusiasm of 
members. 

3) Combined with the ATC method, a distributed robust
model predictive control framework is realized by the necessary 
information exchanging which respect privacy. On the basis of 
fair trading under the framework, the economy of the entire 
multi-microgrids system is enhanced. 

II. ROBUST MODEL PREDICTIVE CONTROL STRATEGY FOR

SINGLE MICROGRID

A. Dynamic Model for Single Microgrid

The research in this paper is based on the islanded operation
of multi-microgrids, so a multi-microgrids system located on a 
remote island group shown in Fig. 1 is regarded as an example 
in this paper. Each microgrid is equipped with its own power 
generation equipment on its own island, and needs to supply a 
certain number of power users for normal life or production. 
Considering the geographical location of island, the microgrids 
are not connected to the main grid on land. And the power 
transmission channels are provided by submarine cables among 
these microgrids. 
1) Renewable energy generation units

The island microgrid is considered to be a typical renewable
energy microgrid with high penetration. Especially for PV and 
WT, the actual output of power is greatly affected by natural 
resources that change in real time. Therefore, the uncertainty set 
of them is described as follows: 
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where k  is the sampling time; v
iP  and w

iP  are the robust 

predictive output of PV and WT for MG i ; vf
iP , wf

iP  are the 

day-ahead predictive output; ve
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iP are the allowable range 

of predictive error; v
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i are the adjustment factors; 
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positive and negative error of PV and WT. And the constraints 
of these factors are shown as follows:  
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where M  represents the prediction layer. And v
i , w

i  are the 

overall uncertainty factor of prediction during period M . vf
iP , 

wf
iP  are taken as the equation constraints of the strategy without 

considering uncertainty, thus /roP M   indicates the 

probability of constraint violation [3]. 
2) Micro gas turbine generator set

In order to deal with the uncertainty of renewable energy,
controllable micro-sources like gas turbines are needed to be 
equipped to balance the basic balance of supply and demand. 
Therefore, the dynamic mathematical model of the power 
generation units is described as follows: 

( 1) ( ) ( )g g g
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Fig. 1. The studied islanded multi-microgrids system. 
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where 
i

gP  is the supply amount of generator from MG i .
min

i

gP ,

max

i

gP are the lower and upper limit of 
i

gP . g
iP  indicates the 

adjustment value at time  k  , which is constrained by the 
ramping rate of the generator as 
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where gu
iP , gd

iP  are the adjustment value of up and down. 
maxg

iP  is the upper limit of adjustment. And  , ,, 0,1i k i kX Y 

are state variables. 
3) Battery energy storage system

In order to consume renewable energy in time, the battery
energy storage system (BESS) is regarded as a good choice to be 
auxiliary power supply equipment, which can balance economy 
and stability:  
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where iSOC  indicates the remaining energy of BESS. 
i

bcP ,
i

bdP

are the output of charge and discharge of battery. 
i

ch ,
i

dis are

the efficiency factor. And T  is the running time of BESS. And 
the constraints of BESS are shown as follows. 
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where min
iSOC , max

iSOC are the energy security limit for storage. 
maxb

iP is the upper limit of output of battery that limited by power 

electronics.  , ,W , Z 0,1i k i k   are state variables. And Equation 

(14) indicates the constraint for balance of supply and demand in
MG i .

B. RMPC Prediction and Rolling Mechanism

As we mentioned in Section I, the MPC strategy contains the
idea of rolling optimization, which can be more flexibly 

integrated with other control strategies. Therefore, based on the 
renewable energy generation situation of the predicted layer 
length, the economic objective problem is transformed into a 
two-layer robust optimization problem to balance the robustness 
and economy of microgrid operation. 
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where if  is the set of cost coefficient. And iy  indicates the set 

of scheduling plan. 
It is worth mentioning that, in order to mobilize the 

enthusiasm of all power generation equipment in MG and also 
prevent excessive or low power reserves from damaging the 
battery, we designed a cost coefficient curve of the charging and 
discharging based on the remaining energy in a particular SOC.  
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where SOCcap
i is the total capacity of BESS. iA , iB  and iC are 

the linear coefficient. The cost coefficient is fixed in the 
optimization within the prediction layer until the next rollover. 
And the relationship between the cost coefficient and the state of 
charge of BESS is shown in Fig. 2. 

Finally, the control amount of length N  is inputted to the 
system until the next sampling time k N . 

C. RMPC Feedback Mechanism

Although there is an early warning for the forecast error of
renewable energy in the robust optimization stage, the 
fluctuation of renewable energy is also very large in the ultra-
short-term time frame. Therefore, the feedback mechanism is 
used to correct the deviation of smaller time scales that can form 
the closed-loop control in MPC. And the feedback mechanism is 
divided into prediction correction and output correction.  

 For the prediction correction, because there will be a certain 
error between the actual output and the predicted value, feedback 
of the actual output obtained in the past to the prediction model 
will correct the future predicted output. When the latest actual 
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Fig. 2. The cost factor of BESS (SoC: State of Charge). 
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output is obtained, the prediction module in the feedback module 
will update the forecast change of renewable energy output at the 
next feedback point. That means the prediction module is 
continuously updated and rolled forward throughout the day.  

This kind of prediction model generally adopts gray model or 
neural network, but the gray forecasting model is more sensitive 
to more regular simulation random fluctuation errors. Therefore, 
in order to cope with more complex real conditions, compared to 
our past work [29], this paper selects a convolutional neural 
network forecast model based on wavelet decomposition which 
is widely used in forecasting research. 

And these prediction values will be inputted into the output 
correction. In the ultra-short period of time, if there is no advance 
redistribution strategy, the deviation between the forecast and 
the actual output will be borne by the generator, which poses a 
danger to the safe operation of the microgrid. Therefore, in the 
output correction, compared to pursue economy, the principle of 
redistribution is described as the minimal pressure on remaining 
power capacity. 
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where iP  is the predicted deviation of the updated predicted 

value from the previous predicted point. And  g
iP  , b

iP  are 

the values redistributed to the power generation units and 
BESS, respectively. 

Finally, the revised scheduling plan will be executed when 
the next feedback point arrives, and the feedback module will 
be executed in a loop until the next rolling layer sampling point 
arrives. The entire RMPC strategy framework based on time 
flow is shown in Fig. 3. 

D. RO solution mechanism

As shown in Equation (3), ROP  can be changed by adjusting 

the size of  , which be determined by the operators of the 
microgrid [3]. Therefore, the size of   represents the degree of 
robustness and this kind of RO is called constraint robustness 
problem [30]. 

C&CG algorithm is used to solve the RO problem. According 
to Equations (1)-(14) and (17), the dynamic model and the 
operation constraints of the microgrid can be transformed into 
the following standard form:  

i i i i i

i i i

i i i

E y j F x

G y g

H y h

 
 
 

(20) 

v v
i i i i

w w
i i i i

I y u u U

J y u u U

  


 

，

，
(21) 

Therefore, by decomposing the ‘max-min-min’ problem of 
Equation (15), the optimization problem can be divided into two 
stages, which the form of the main problem obtained is 
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where *v
iu and *w

iu indicate the value of the uncertainty set

obtained by the sub-problem after the l  th iteration. 
And the form of the sub-problem is shown as 

1

max min
M

T
UB i i

U
k

f y




   (23) 

The strong duality theory is used to linearize constraints, 
which makes the ‘max-min’ problem in (23) turn to a ‘max’ 
problem. The transformed dual problem with Lagrange duality 
variables is shown as follows: 

 
 

max ( )

0

0 0

T T T T v T w
UB i i i i i

U

T T T T T T
i i i i i i

j F x g h u u

f E G H I J

    

    

 

       

      
  

，

(24)
At the beginning of the solution, the initial value LB  , 

UB   and the number of iterations  1l   was set. Then the 
main-problem will be solved to send x   to sub-problem while   

1max(LB , )l LBLB   being updated. And the sub-problem will 

be solved to find the worst scenario U  for updated operating 

variables x   and update 1min(UB , )l UBUB    . 

The new uncertain set U with new constraints (20) created by 

variables 1l
iy   will be sent back to the main problem to loop 

iteration until ROUB LB    is satisfied，where RO  is a very 
small positive number named the convergence threshold of the 

RO problem. And the final scheduling plan 1l
iy  will be regarded 

as the robust scheduling plan considering the worst scenario of 
renewable energy. 

III. DISTRIBUTED ROBUST MODEL PREDICTIVE CONTROL-
BASED ENERGY MANAGEMENT STRATEGY FOR MULTI-

MICROGRIDS

A. Dynamic Alliance for Energy Trading

As shown in Fig. 1, each MG has its own information server,
and the server contains a buyer aggregator (BA) and a seller 
aggregator (SA). The one which is allowed to be called depends 
on the identity of the microgrid in the electricity market at the 
current time. That means each aggregator represents the 
behavior of sellers and buyers in the strategy. 

The same aggregator unifies information among MGs. In 
order to transmit the minimum necessary information to ensure 
the privacy of the operating conditions, only the bidding power 
and power prices of the buyers and sellers are allowed to be 
transmitted in networks. 

In each sampling point in the prediction layer, operators show 
their identity to the corresponding aggregator according to their 
own needs. The seller and buyer alliances will be formed 
dynamically before closing the power market. And each alliance 
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has its own strategy which forming a flexible power market in 
which cooperation and non-cooperation coexist. In order to 
mobilize the enthusiasm of members in the microgrid cluster to 
participate in power market, the energy finally sold to the market 
when the microgrid acts as a seller is regarded as the contribution 
of itself to the cluster [24]. 

B. Strategy for Seller Aggregator

For long-term operations in a microgrid cluster based on the
same cooperation agreement, the accumulation of individual 
contributions to the group can greatly affect their priority in the 
power market. For sellers, selling renewable energy to demand 
users is the only way to accumulate their own contribution. 
Therefore, sellers want to maximize their own contribution while 
ensuring their own interests. That is to say, there is a competitive 
relationship among sellers. The contribution factor of sellers is 
calculated as follows: 

,t
1

( ) /
k

S
i i sum

t

L k L L


  (25) 

where , tiL is the contribution of MG to the cluster as a seller at 

every moment in the past. sumL is the total contribution value 

accumulated by all MGs.  And as a way to increase income and 
enthusiasm of sellers for selling excess energy, the bidding price 
is related to seller contribution factor: 

( ) ( )bid bas S
i i ik L k       (26) 

where bas
i is the basic price to ensure basic income.   is unified 

to all microgrids which indicates the degree of influence of the 
contribution factor on price. And the final bidding price tra from 
seller alliance is the average price which is calculated by 

( ) ( )
( )

( )

sug bid
i itra m

sug
im

P k k
k

P k





 


(27) 

( ) ( )sug
ii

S k P k  (28) 

where sug
iP  indicates the bidding power from MG i . And 

=0sug
iP  when it wants to be a buyer. S is total bidding power. 

And the objective function of sellers can be rewritten as: 

,
,

1

min ( - ) max min
sug

i k

tra
k

M
ba mg sug T

i iseller k i k UPk

P P f y 


    
  

   (29) 

where 
ba mg

kP 
 is the purchased energy, which will be discussed

in Section III-C. 
 From the overall point of view of the strategy, uncertain 
natural resources are regarded as virtual players to play a non-
cooperative game with microgrid. On the other hand, sellers also 
need to game with buyers to make trade-offs between their own 
profits and accumulated contributions. 

C. Strategy for Buyer Aggregator

For BA, it is necessary to strive for the minimum cost from
the sellers, but also to maintain the principle of fairness to the 
internal members. Therefore, a cooperative approach based on 
the ATC method is taken into account in the buyer aggregator. 

In the process of allocating resources in an alliance based on 
the contribution, it is necessary to the priority of the buyer's 
harvest considers the current demand ratio and accumulated 
contribution value. However, compared with the contribution 
factor for sellers that can be quickly accumulated, a calculation 
method for the contribution factor of buyers of diminishing 
influence over time is used to further ensure the fairness of the 
transaction and prevent the occurrence of monopoly. 

( (1/ ( - 1))
( ) 1,2, ,

k

iB t
i sum

L k t
L k t k

L

 
   (30) 

And the priority factor i of buyers is calculated as follows: 

( )
( ) ( )

( )
Bi

i i

d k
k L k

D k
      (31) 

where id and D  are power demand of MG i  and total demand 

of buyer alliance, respectively;   is the contribution coefficient.  
As shown in Fig. 4, the strategy for buyer alliance based on 

ATC method is divided into two stages. On the upper level, the 
BA needs to consider the maximization of overall expectation of 
all buyers to allocate the purchased energy and minimization of 
cost of purchasing energy from sellers. The objective function is 
shown as:  

1 3 2min( ) maxba                      (32) 

1
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
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
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(33) 

0 ( ) ( )sP k S k  (34) 

,( ) ( )s ba mg
ii

P k P k
  (35) 

1  is the total cost of purchasing electricity from SA. 2
indicates the total utility of the buyers [25], and the purpose is to 
maximize the total benefits of all buyers based on the 
accumulation of contribution. 3 is the area coupling constraint 

of BA in ATC method, which aims to converge the expected 
power distribution from buyers and BA. Moreover,  ,  and   

are penalty coefficients to balance the proportion of each 

objective. ( )sP k is the expected purchase amount of power from 

SA. ba mg
iP   and mg ba

iP   are optimal allocation to MG from BA 

Start 

Input initial variables and 
parameters

Solve the upper objective

Solve the lower 
objective

Solve the lower 
objective

Solve the lower 
objective

Inner loop 
convergence?
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End 
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...
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Fig. 4 The ATC-based strategy for buyer alliance. 
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and expected demand from MGs. l l  is the number of iterations. 

And  , i are LaGrange multiplier and penalty factor. 

 On the lower level, MGs only need to consider two aspects of 
the goal, its own cost and different opinion from the allocation 
of BA.  

,
4 5min

mg ba
i

buyer
P 




    （ ） (36)
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4 is the cost of buyer. 5 is the area coupling constraint of 

MG similar to 3 . And    indicates the degree of compromise 

of the buyer to the alliance. And the convergence criterion and 
coefficient update are shown in (38) - (40). 
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Equation (38) is the converged condition of the inner loop and 

Equation (39) is of the outer loop. And the convergence 
coefficient  , i   will be updated according to Equation (40) if 

the outer loop does not converge. 

 And finally, when the opinions are unified (convergence is 

complete), ba mgP   will be used as the decision amount for BA 

to distribute the purchased energy to buyers. 

D. Distributed Robust Model Predictive Control-Based
Energy Management Strategy

After obtaining the optimal scheduling plan calculated by 
RMPC prediction module mentioned in Section II, operators will 
show their identity in each sampling point to BA or SA according 
to their wishes to be a buyer or seller. And after the formation of 
the dynamic trading alliance, power market trading will be 
opened. 

After exchanging the expected transaction volume ( S and D ) 
and broadcast to the corresponding demanders, the two alliances 
will act separately according to the strategies we mentioned in 
Sections III-B and C. For BA, only the expected allocation of 

power (  ba mg mg ba
i ibu P P  ， ) can be exchanged between BA 

and buyers, which will maximize the privacy of microgrid 

information. The same for SA, [ , ]sug bid
i ise P   is the only 

circulating bidding information including power ( sug
iP ) and price 

( bid
i ). Therefore, the information that each microgrid needs to 

upload to the aggregator can be summarized as 

,t [ , ] 1, 2

 MG is a buyer
=

 MG is a seller

mg agg t t
i i i

t
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i t
i

PM id mar t k
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mar

se if

  
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Fig. 5. Schematic diagram of the alliance-based power market. 
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In addition, for SA, the sales share will be compulsorily 
distributed to each seller in proportion as:  

sex

sex

( )sug i
i

i

D k P
P

P



(42)  

where sex
iP  is the initial bidding volume of power from sellers. 

 Therefore, the response information which the aggregator 
returns to each microgrid will be sent as 

,

,

,

   from BA to buyer
1, 2

[ , ]  from SA to seller

ba mg
i kagg mg

i t tra sug
t i t

P
PM t k

P




 


  (43) 

 Then the lasted bidding information will be exchanged until 
the consensus in the market between BA and SA. The demand 
from two alliances is updated as (28) and (44).  

The schematic diagram of the alliance-based power market is 
shown in Fig. 5. 

( ) ( )SD k P k (44) 

While all the transactions are finished satisfactorily, it should 
be noted that, only the transaction included in the control amount 
of length N  can be truly implemented. The latest accumulation 
of contributions will be updated in the server based on actual 
transactions. 

Finally, the MGs will re-plan the scheduling based on the 
transaction information. And then, the feedback mechanism will 
be operated independently in each microgrid until the next time of 
power market opens. The whole DMPC-based energy 
management strategy for multi-microgrids is shown in Fig. 6. 

IV. VERIFICATION RESULTS AND DISCUSSIONS

As mentioned in Section II-B, each MG in the island shown 
in Fig. 1 can be controlled by the RMPC strategy. The forecast 
curves of the renewable energy and loads with 30-minute 
intervals of six islanded interconnected MGs on island group are 
shown in Fig. 7. Each curve of renewable energy is predicted by 
a neural network mentioned in Section II-C with 20 days of real 

Fig. 8.  Scheduling plan of three MGs controlled by RMPC strategy. 

Fig. 7.  The forecast curves of renewable energy and loads.  

TABLE I
MICROGRIDS PARAMETERS 

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6
PV (kW) 700 800 700 500 600 500
WT (kW) 1200 1000 1300 1300 1200 1200

BESS (kWh) 4000  4000 5000 5500 4500 6000
PG (kW) 800 800 800 800 800 800

Fig. 9. Changes of SOC with RMPC strategy intraday.  

TABLE II
OPERATION PARAMETERS 

MG 1 MG 2 MG 3
maxg

P (kW) 500 400 400 

maxSOC (p.u.) 0.85 0.85 0.85 

minSOC (p.u.) 0.15 0.15 0.15 

maxb
P (kW) 500 500 500 

(0)SOC (kWh) 1600 1600 2000 
COST FUNCTION 

A(￥) 1.66 C (￥) 4.60 ch dis 0.9 

B (￥) 6.26 Cg (￥) 5.43 bas (￥) 4.0 

TRADING PARAMETERS 

 1  0.01 (0)  0.05 

 0.4  0.01 (0) 0 

 50  10  2 
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historical data. We set the rolling layer 48P  , the prediction 
layer 8M  , and the control layer 1N  . This means that the 
sampling interval for rolling layer is 30-minute and 10-minute 
for feedback layer, the time scale of the prediction layer is 4 
hours.  

It should be noted that, in order to facilitate the analysis and 
explanation, only three microgrids are simulated in Sections IV-
A to D to show the feasibility of the proposed strategy. The 
extended discussion for more microgrids is presented in Section 
IV-E. In addition, the construction configuration parameters and
operating parameters of the microgrids are listed in Tables I and
II, respectively.
A. RMPC Strategy Applied in Independent Microgrid

The scheduling plan of three independent microgrids based on
the RMPC strategy is shown in Fig. 8, in which the uncertainty 
factor 4 and the allowable range of predictive error in 
Equation (1) are all 5%. Each microgrid achieves the balance of 
supply and demand based on its own forecast data, and also can 
operate independently without connecting with others. The 
significance of this is that in the complex and changeable 
environment of the islands, the independent microgrid needs to 
face communication interruption or reduce mutual power 
transmission to ensure power quality at any time.  

As shown in Figs. 7 and 8, due to the geographical proximity, 
the daily fluctuation trends of the renewable energy of the three 

MGs are similar. However, because of the different 
configurations and load levels, the surplus and deficit levels of 
three within a day are different. For example, from 0 A.M. to 8 
A.M., MG 1 and MG 3 have some energy storage behavior,
which results in using BESS as much as possible to meet demand
between 8 A.M. and 10 A.M. However, the three microgrids
have different degrees of power shortage from 3 P.M. to 21 P.M.

In addition, the SOC change of BESS is shown in Fig. 9. 
Except for the time of extremely abundant renewable energy, the 
BESS fluctuates but maintains at a very healthy operating level, 
which is what we expect from (18).  

B. DRMPC-based Energy Management Strategy

The proposed DRMPC strategy in this paper is adopted in
operation, and the results are shown in Fig. 10. On the whole, the 
operating range of the power generation units of each microgrid 
is effectively reduced within a day, especially in the morning and 
noon. This is the benefit brought by the power transaction among 
MGs. However, the improvement of the operation of the three 
MGs is limited in the evening, since the wind power in the entire 
region shows a downward trend and lack of PV power generation 
when sunlight is insufficient. It is also worth noting that there are 
still many fluctuating spikes in the expected scheduling plan. 
This is caused by the feedback mechanism of their own operation. 
Therefore, the adjustment pressure will still be caused on the 
equipment in pursuit of economic efficiency. Opening up a free 
market in a shorter period may be a way to further pursue 
operational stability and economic efficiency [31].  

As shown in Fig. 11, the flexible transactions and fair 
distribution are realized among microgrids during the day. The 
MG represents the identity of a seller when the power is less than 
zero. Under the strategy based on contribution accumulation, 
MGs are effectively motivated to invest as much energy trading 
as possible in the proposed power market. The contribution 
accumulation is more important for players who are buyers. 
Because when they become a buyer, they will get a proportion 
of energy distribution with priority based on contribution 
proportion. As we have analyzed in Fig. 10, the negative output 
of renewable energy from 4 P.M. to 21 P.M. also led to the 
closure of the electricity market, which will provide a reference 
for the long-term expansion of personal MG facilities to seize 
vacancies of the power market. However, it should be noted that 
it does not mean the negativity of the proposed framework of 
strategy, because of the decision made by operators to ensure the 

Fig. 12.  The prediction output of renewable energy of MG 1. (a) PV. (b) WT.
Fig. 10. Scheduling plan of three MGs controlled by DRMPC strategy.  

Fig. 11. Transactions in the power market intraday among 3 MGs. 
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stable operation of the microgrid by independent operating. With 
the addition of more microgrids, the market will become more 
active, which will be discussed in Section IV-E.  

C. Combating to the Uncertainty of Renewable Energy

For the feedback mechanism in MPC, its ability to deal with
the uncertainty of renewable energy depends first on the 
accuracy of its forecast correction. The forecast correction curve 
of the feedback module is shown in Fig. 12, in which the 
prediction curve has been updated in real time according to the 
historical and actual sampled data. This rolling prediction 
method based on historical and real-time data makes the 
correction curve in ultra-short timescale closer to the actual 
output situation, so that the output error can be corrected in 
advance in the correction module, which effectively distributes 
the adjustment pressure on the generator and improves the safety 
margin of the microgrid operation [29]. 

Due to the adjustability of the uncertainty factor, the worst 
scenario for a short period can be considered. Compared to the 
MPC strategy, the RMPC strategy including RO can help the 
system respond to the uncertainty of renewable energy one step 
ahead of time. Taking MG 1 with RMPC strategy as an example, 
the scheduling plans with different uncertainty factors are shown 
in Fig. 13. It can be seen from the comparison that with the 
increase of the uncertainty factor, the transfer of the controllable 

power generation equipment becomes more stable. That is 
because of responding to the worst scenarios in advance by 
robust optimization, the pressure on devices that need to be 
adjusted quickly in the feedback mechanism will reduce, which 
can make the operation of the microgrid more stable.  

Moreover, the average relative error of the net load is shown 
in Table III [32]. The calculated result of error with the DMPC 
strategy is better than the rolling optimization which is fully 
pursuing the economy. That is because the prediction curve is 
closer to the actual output curve by using the feedback 
mechanism. And because of the same predictive model used in 
the three MGs, the improvement effect is similar. However, 
comparing the DRMPC strategy with the DMPC strategy, this 
value has risen slightly. This is because the worst scenario 
predicted by the RO is not based on real data but based on the 
operating status of the device. Therefore, it does not necessarily 
match the real scenario in actual operation, which may cause 
more operational errors. But for operators facing uncertain 
factors in the future operation of MG, such errors can be 
accepted in exchange for preventing the emergence of scenarios 
that disrupt the stable operation of the microgrid.  

And the comparison of real operating conditions under 
different strategies is shown in Fig. 14. As we have analyzed 
before, compared with rolling optimization, the risk in the rolling 
RO strategy is allocated to all devices in advance. And as a 
further improvement strategy, RMPC uses a more accurate 
forecast curve to allocate risks more reasonably in the ultra-short 
term. For the same to have been shown in DRMPC strategy, in 
which the use of equipment is reduced on the basis of the DMPC 
strategy.   

D. Balance of Economy and Robustness

RO and MPC strategies deal with the uncertainty of renewable
in different time scales, which will correspondingly pay the price 
of economic loss for this. The comparison of the cost of intraday 
operation with different operating strategies is shown in Table IV. 

Compared to RMPC strategy, MPC strategy pursues the 
minimization of cost in the short-term planning stage, so that the 
total cost can be controlled to be lower. This is because the 
uncertainty set of RO has the probability of violating the 
constraints. In order to ensure the feasible solution of strategy 
within the uncertainty range of renewable energy, the result of 
RO is a conservative solution. It is called ‘The Price of 

Fig. 13. Scheduling plan under different uncertainty factors for MG 1. (a) 0 . 

(b) 4  . (c) 8  .

TABLE IV 

OPERATING COST OF THREE STRATEGIES ( 410 ￥) 

Operating Strategies MG 1 MG 2 MG 3 

MPC 2.623 1.815 2.296 

RMPC ( 4  ) 2.809 2.159 2.370 

DMPC 2.531 1.738 2.184 

DRMPC ( 4  ) 2.660 1.966 2.206 

TABLE III 
AVERAGE RELATIVE ERROR OF THE NET LOAD 

Operating Strategies MG 1 MG 2 MG 3 

RMPC ( 4  ) 2.0492 2.6362 3.9265 

Distribution rolling 
optimization 

0.9465 1.3860 1.8240 

DMPC 0.8711  1.1620 1.6166 

DRMPC ( 4  ) 0.9785 1.5123 2.0114 

Fig. 14.  Real operating conditions under different strategies for MG 1. 
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Robustness’, which is directly reflected on the changes of 
economic cost [3]. As shown in Table IV, the larger the  , the 
more conservative the robust solution, and the greater the price 
(extra cost) paid. Therefore, robustness and economy are 
negatively correlated. That is, when only the uncertainty 
parameter   changes, the change in cost reflects the degree of 
the conservativeness of the robust solution. However, the 
proposed free power market framework constructs a trading 
framework and enhances the enthusiasm for interaction among 
MGs, which can reduce the ‘Price’ that operators need to pay 
extra. Therefore, based on the objective of RMPC to enhance the 
robustness of the system, the proposed DRMPC strategy further 
reduces the operating cost of each microgrid. Compared with the 
independent operation, the daily operating cost of each MG with 
the DRMPC strategy has been reduced by 5.3%, 8.9% and 6.9%. 

And if the importance of contribution accumulation in the 
strategy is further increased to stimulate transactions among 
microgrids, the cost may be further reduced. But as we analyzed 
in Section IV-C, it depends on operators to weigh the balance 
between risks and benefits. As a whole, the proposed DRMPC 
strategy has the ability to be easily adjusted whether it is operated 
independently or with networked interaction, which depends on 
the expectations of the operators and the agreement with other 
members. Therefore, the proposed DRMPC strategy can well 
balance the robustness and economy of microgrid operation, 

which all are valued most from operators. 

E. Expansion of the multi-microgrids system

When the multi-microgrids system expands, the number of
microgrids increases, and the performance of the electricity 
market will be more active. Taking the expansion to six 
microgrids as an example, the results of liquidation in the power 
market is shown in Fig. 15, in which all microgrids participate 
with the proposed DRMPC strategy. Compared with the small-
scale markets of the three microgrids in Section IV-B, there are 
more transactions and transaction options among microgrids. As 
shown in Fig. 15, the trading behavior basically covers the whole 
day. And compared with Fig. 11, there are fewer market 
vacancies. This is because more participants provide more 
market uncertainty, which is a necessary condition for the market 
to be active. 

The result of the contribution calculation method given in 
Equation (30) is shown in Fig. 16. The contribution of MGs as a 
seller will increase the allocation priority when becoming a 
buyer, but will gradually diminish over time if there is no 
continuous contribution. For example, between 0 A.M. and 2 
A.M., due to the large surplus of renewable energy, the selling
behaviors of MG 3 and MG 4 make them basically occupied the
contribution accumulation. If the contribution rate is only
calculated by accumulation [25], the two microgrids will gain a
great advantage in allocated energy as a buyer when other
microgrids are unable to sell in large quantities for a period of
time. However, from the results of the contribution accumulation
method in this paper, due to the lack of continuous contributions
from these two microgrids, the time to enjoy the advantages is
also limited, which has avoided this kind of monopoly. As shown
in Fig. 16, when all microgrids begin to be active in the market
as sellers during the day, the contribution rate begins to show a
trend of fair competition.

However, as a simulation of an independent day, it is 
inevitable that the contribution rate shows a common downward 
trend. If the proposed DRMPC strategy is applied to the long-
term operation of the multi-microgrids system, this problem can 
be solved by adjusting the rate of decline of contribution degree 
and the proportion of contribution degree in the priority factor in 
Equations (30) and (31), in which the prerequisite is the consent 
of all participants.  

In addition, in order to show more details, the allocated energy 
results compare with the methods in other references for buyers 

TABLE V 
ENERGY ALLOCATED FOR BUYERS USED DIFFERENT METHOD

Time 7:30 A.M. 
Buyer MG 1 (kW) MG 4 (kW)

Demand 172.46 132.27
Method in [33] 116.84 116.84
Method in [19] 136.93 96.75
Method in [25] 145.7 87.97

This paper 130.42 103.26
Time 8:00 A.M. 

Buyer 
MG 1 
(kW)

MG 4 
(kW) 

MG 5 
(kW) 

MG 6 
(kW)

Demand 240.4146 61.0483 71.0326 222.9883
Method in [33] 80.54 80.54 80.54 80.54
Method in [19] 169.65 0 0 152.23
Method in [25] 199.09 0 0 123.065

This paper 105.28 38.51 49.53 119.80

Fig. 16. Real-time contribution ratio among buyers. 

Fig. 15. Transactions in the power market intraday among 6 MGs. 
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at 7:30 A.M. and 8:00 A.M. are shown in Table V. For the 
method in [33], each buyer will receive the same allocation. In 
[18], the goal of allocation is to maximize the utilization rate of 
renewable energy, that is, to minimize the sum of squares of the 
deviation between the allocation and demand. The objective of 
the method in [25] is to maximize social welfare, and the 
calculation method of contribution ratio in buyer priority factor 
is the proportion of self-contribution accumulation in the total 
contribution.  

The method in [33] allows every buyer to equally share energy 
that ignores the actual demand. In this way, as shown at 8 A.M., 
MG 1 and MG 6 with higher demand are allocated insufficient 
energy, while MG 4 and MG 5 with lower demand have obtained 
excessive energy which possibly unnecessary. The method in 
[19] maximizes the use of renewable energy, that is, to take into
account the demand ratio. However, as shown at 8 A.M., the
microgrids such as MG 4 and MG 5 with smaller demand are
ignored in the allocation plan, which is unfair. Although these
two methods have cooperative optimization schemes, the
allocation plan for buyers has nothing to do with historical
behavior. Some microgrids will make great sacrifices for the
cluster which will reduce the enthusiasm and willingness to
contribute energy to the cluster; thus, it is unable to establish an
attractive free power market. For the method in [25], compared
to MG 1 at the two moments, a higher proportion of energy is
allocated. This is because the energy that sold at 1:30 A.M. will
lead to an absolute dominance in the early morning, and will still
continue for some time in the future. This is detrimental to the
construction of a competitive market. And as shown at 8 A.M.,
the smaller demand from MG 4 and MG 5 also have been
ignored by aiming at the maximization of the social welfare,
even though MG 4 has contributed a lot to the cluster in the past.

In comparison, the influence of MG 1 contribution in the past 
has gradually weakened in these two time periods by the 
proposed DRMPC strategy. And even the gap among the 
demand from buyers is large, the results of allocation are still 
reasonable. The fairer result will in turn stimulate the microgrid 
to actively participate in the power market. This effectively 
builds a market environment for continuous competition, which 
is very helpful for the long-term operation of the multi-
microgrids system with multiple owners. 

V. CONCLUSION

In this paper, a distributed robust model predictive control 
strategy is proposed to optimize energy management for multi-
microgrids considering uncertainty. This strategy firstly 
guarantees the stable operation of the independent microgrid 
with RMPC strategy, in which the uncertainty of renewable 
energy can be mitigated by using the robust optimization and the 
feedback mechanism of MPC on different time scales. These two 
mechanisms complement each other which improve the 
robustness of microgrid operations and the safety of equipment 
operations at the expense of part of the economy. However, due 
to the adjustment of multiple operating parameters, operators can 
balance robustness and economy more flexibly. Furthermore, 
each member in multi-microgrids can form a dynamic trading 
alliance according to their own needs, and achieve a free power 
market framework based on community contribution in which 
cooperation and non-cooperation coexist with different goals. 

This is more in line with the complex market environment and 
the psychological game of operators. The proposed distributed 
control strategy with minimum necessary information 
interaction effectively guarantees the privacy of microgrid 
operation information.  
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