
An Investigation of Human Error in

Software Development

A thesis submitted as partial fulfillment of the

requirement of Doctor of Philosophy (Ph.D.)

by

Bhaveet Nagaria

Computer Science Department

Brunel University London

January 2021

Abstract

Context: Software defects occurring in code bases lead to an increased cost

for software production and maintenance. To err is human nature and the

process of software development is human centric. My analysis of the litera-

ture shows that the use of human error theory is emerging as an important

tool for software development. Aim: The aim of my thesis is to present a

training tool aimed at reducing the number of human errors developers make

while working within the development phase of the Software Development

Life cycle (SDLC) by improving developer situation awareness. Methods:

My first study uses semi structured interviews to gain insight into what

Skill-based (SB) errors developers make and how they mitigate these errors.

My second study employs an experimental setup where developers log all

human errors they make during developmental tasks across two weeks. At

the beginning of week two the developers are asked to complete an online

training package which I have developed on situation awareness. Results:

The first study shows that the complexity of the development environment

is one of the most frequently reported reasons for errors. I found that soft-

ware developers struggle with effective mitigation strategies for their errors,

reporting strategies largely based on improving their own willpower to con-

centrate better on development tasks. The results from the second study

show that training software developers in situation awareness does lead to a

decrease in the number of human errors made by those software developers.

Conclusion: My doctoral research shows that human errors are a problem

for software developers and loss of situation awareness is key for many of

these developers. My preliminary results show that training tools which

address situation awareness can aid developers in reducing the number of

human errors that they make. Further work is required to investigate other

means of improving developer situation awareness and determine whether

my findings are generalisable.

i

Acknowledgements

I would like to thank my principal supervisor, Professor Tracy Hall for her

invaluable guidance, mentorship, support and encouragement throughout

my studies both academically and personally. Our fruitful discussions always

gave me the motivation to keep on going and gave me the confidence I was

progressing in the right way. Special thanks to Professor Steve Counsell

for his support throughout by doctoral journey. I would like to thank my

research development advisors and members of my academic review panel

Dr Nour Ali, Dr Andrea Capillupi, Dr Giuseppe Destefanis, Dr Allan Tucker

and Professor Burak Turhan for their invaluable comments and suggestions.

I have been inspired, motivated, supported, guided and much more by

many of the academics and support staff within the department and uni-

versity. I would like to express my thanks to you all, in addition to my

supervisors and panel members, key individuals are; Peter, Amy, Martyn,

Sandi, Ela, Dr Theodora Koulouri, Dr Mahir Arzoky, Dr Stephen Swift,

Profesor Simon Taylor and Professor Kate Hone.

Thanks to Gabriel, Mohammed, my DigiBru family (Toyah, Ben, Ashley,

Isabel and Fawzia) and others, you have always been on hand to motivate me

and more importantly been a great bunch of friends during this incredible

journey.

ii

Declaration

The following papers have been accepted for publication as a direct result

of the research discussed in this thesis:

• Nagaria, B. and Hall, T., 2020. How Software Developers Mitigate

their Errors when Developing Code. IEEE Transactions on Software

Engineering. (Accepted to appear) [Presented in Chapter 4 & 6]

• Nagaria, B. and Hall, T., 2020. Reducing Software Developer Hu-

man Errors by Improving Situation Awareness. IEEE Software, 37(6),

pp.32-37. [Presented in Chapter 5 & 6]

The following paper has been accepted for publication as a part of col-

laborative research conducted during my doctoral research:

• Capiluppi, A., Ajienka, N., Ali, N., Arzoky, M., Counsell, S., Deste-

fanis, G., Miron, A., Nagaria, B., Neykova, R., Shepperd, M. and

Swift, S., 2020. Using the Lexicon from Source Code to Determine Ap-

plication Domain. In Proceedings of the Evaluation and Assessment

in Software Engineering (pp. 110-119).

iii

Contents

Abstract . i

Acknowledgements . ii

Declaration . iii

1 Introduction 1

1.1 Problem Definition . 1

1.2 Problem Solution . 3

1.3 Research Aim and Objectives 4

1.4 Expected Contributions . 6

1.5 Ethical Issues . 7

1.6 Thesis Structure . 7

2 Background 10

2.1 Human Factors . 11

2.2 Theoretical Concepts in Human Error Theory 13

2.2.1 Basic Cognition . 14

2.2.2 Skill - Rule - Knowledge Framework 15

2.2.3 Generic Error-Modelling System (GEMS) 15

2.2.4 Swiss Cheese Model 17

2.2.5 Summary . 21

2.3 Applied Human Error Theory 21

2.3.1 Human Error Theory in Medicine 21

iv

2.3.2 Human Error Theory in SE 23

2.4 Situation Awareness (SA) . 27

2.4.1 OODA Loop . 29

2.5 Application of Human Error Theory Within My Doctoral Re-

search . 31

2.6 Summary . 32

3 Research Methodology 34

3.1 Background . 35

3.1.1 Methods reported by Pirzadeh 35

3.1.2 Methods reported in Human Error Theory and soft-

ware requirements . 37

3.1.3 Methods reported in Human Error Theory and soft-

ware development . 38

3.1.4 Summary . 39

3.2 Research Questions . 39

3.3 Study One: Survey Method 42

3.4 Study Two: Field Experiments 46

3.5 Analysis Techniques . 48

3.6 Pilot Study . 50

3.6.1 Pilot of Study 1 . 51

3.6.2 Pilot of Study 2 . 52

3.7 Participant Type: Student, Professional or Both 52

3.8 Sampling . 56

3.8.1 Sample Size . 57

3.9 Empirical Validity . 59

3.10 Summary . 61

4 What SB errors do industry sofwtare developers make and

how can we mitigate these? - An Interview Study 63

v

4.1 Research Questions Addressed In This Study 64

4.2 Approach . 64

4.2.1 Participants & Recruitment 64

4.2.2 Interview Method . 68

4.2.3 Data Analysis . 70

4.3 Results . 72

4.3.1 RQ1: What Skill-based (SB) human errors do indus-

try software developers make while performing soft-

ware development tasks? 72

4.3.2 RQ2: How do industry software developers mitigate

their Skill-based (SB) human errors? 77

4.4 Threats To Validity . 83

4.4.1 Construct Validity . 85

4.4.2 Internal Validity . 87

4.4.3 External Validity . 87

4.4.4 Repeatability . 88

4.4.5 Descriptive Validity 88

4.4.6 Interpretation Validity 89

4.5 Summary . 89

5 Can improving industry software developers SA reduce the

number of human errors they make? - An Exploratory

Study 91

5.1 Research Questions Addressed In This Study 92

5.2 Approach . 92

5.2.1 The OODA Loop Intervention 94

5.2.2 Participant & Recruitment 96

5.2.3 Evaluation Method . 98

5.2.4 Data Analysis . 100

5.3 Results . 103

vi

5.3.1 RQ3 - Do industry software developers make more

slips/lapses compared to mistakes? 103

5.3.2 RQ4 - Does the online training package on the OODA

loop reduce the number of human errors that industry

software developers make? 108

5.3.3 RQ5 - Do industry software developers find the online

training package easy and useful to use? 109

5.4 Threats to Validity . 110

5.4.1 Construct Validity . 111

5.4.2 Internal Validity . 111

5.4.3 External Validity . 111

5.4.4 Repeatability . 112

5.5 Summary . 112

6 Discussion 114

6.1 RQ1: What SB errors do industry software developers make

during development? . 114

6.2 RQ2: How do industry software developers mitigate the SB

errors they experience during development? 116

6.2.1 Improving Situation Awareness 119

6.2.2 Improving Cognitive Skills 120

6.2.3 Using Checklists . 121

6.2.4 Tool use . 122

6.2.5 Faster feedback loops 123

6.2.6 Tiredness . 125

6.3 RQ3: What type of human errors do industry software de-

velopers make? . 125

6.4 RQ4: Does the online training package on the OODA loop

reduce the number of human errors that industry software

developers make? . 127

vii

6.5 RQ5: Do industry software developers find the online train-

ing package easy and useful to use? 129

6.6 Summary . 131

7 Conclusion 132

7.1 Research Aims & Objectives 133

7.2 Research Contributions . 134

7.3 Research Limitations . 136

7.4 Future Work . 137

A Skill-based (SB) Errors 150

A.1 Inattention . 150

A.1.1 Double-Capture Slips 150

A.1.2 Omissions following interruptions 151

A.1.3 Reduced Intentionality 151

A.1.4 Perceptual Confusions 152

A.1.5 Interference Errors . 153

A.2 Overattention . 154

A.2.1 Omissions . 154

A.2.2 Repetitions . 154

A.2.3 Reversal . 155

B Supporting Material For Study One 156

B.1 Study Introduction . 156

B.1.1 Participant Information Sheet 156

B.1.2 Consent Sheet . 159

B.2 Explanation of Skill-based (SB) errors 161

B.3 Sample Questions to ask Interviewee 163

B.4 Demographic Questions . 165

B.5 List Of Error Themes . 166

viii

C Supporting Material For Study Two 169

C.1 Study Introduction . 169

C.1.1 Participant Information Sheet 169

C.1.2 Consent Sheet . 173

C.2 Demographic Questions . 175

C.3 Logging Sheet . 175

C.4 Training Package Slides . 177

C.4.1 Video 1: Introduction to SA 177

C.4.2 Video 2: Introduction to the OODA Loop 179

C.4.3 Video 3: Applied OODA Loop 182

C.5 Quiz for SA Training Package 184

C.6 Follow Up Questions . 187

C.7 Coding of Human Errors . 187

D Snippets of Raw Data 189

ix

List of Figures

2.1 Reason’s Reason (1990) Slips, Lapses, Mistakes mapped to

Rasmussen’s Rasmussen (1983) Skill-based (SB), Rule-based

(RB) and Knowledge-based (KB) error types 16

2.2 James Reasons’s Swiss Cheese Model Reason (2008) adapted

from Carthey (2013) . 18

2.3 Model of SA in Dynamic Decision Making (Endsley 1995) . . 28

2.4 OODA Loop (Boyd 1987) . 30

2.5 Conceptual Model . 33

3.1 Research Methods to Conceptual Model 41

4.1 Interview Process for Interview Study 69

4.2 Data Analysis Process for Interview Study 70

5.1 James Reasons’s Swiss Cheese Model Reason (2008) adapted

from Carthey (2013) . 93

5.2 OODA Loop (Boyd 1987) . 95

6.1 James Reasons’s Swiss Cheese Model Reason (2008) adapted

from Carthey (2013) . 117

6.2 Mitigation Strategies . 118

D.1 Snippet 1 of Raw Data from Transcript 189

D.2 Snippet 2 of Raw Data from Transcript 190

x

D.3 Snippet of Coded Data from Trello 191

D.4 Example of Raw Data from a Log Sheet 192

D.5 Snippet of Raw Data from Quiz 193

D.6 Snippet of Raw Data from Follow Up Questionnaire 194

xi

List of Tables

4.1 Social Media Views For Participant Recruitment 65

4.2 Demographic Data - Interview Participants 68

4.3 Developer Error Themes (in ranked order) 73

4.4 Number of Theme Occurrences of each Skill Based Error Type 74

4.5 Mapping Mitigation Strategy Themes to Sub-Themes 79

4.6 Themes of Developer Mitigation Strategies 83

4.7 Themes of Processes Mitigation Strategies 84

4.8 Themes of Tools Mitigation Strategies 85

4.9 Themes of Management Mitigation Strategies 86

5.1 Social Media Views For Participant Recruitment 96

5.2 Demographic Data - Experiment Participants Rows in italics

indicate that the participate withdrew from the study or was

not engaging. 98

5.3 Agreeability of Coding . 101

5.4 High Level Themes (1/3) . 104

5.5 High Level Themes (2/3) . 105

5.6 High Level Themes (3/3) . 106

5.7 Numbers of logged Human Errors 108

5.8 Participants Results from Training 109

xii

5.9 Follow Up Questionnaire Coded By Sentiment

Key: 1 = Positive, 0 = Neutral, -1 = Negative & - = No

comment To Code . 110

xiii

Acronyms

CSS Closed Source System.

DPeHE Defect Prevention Based on Human Error Theories.

GEMS Generic Error-Modelling System.

KB Knowledge-based.

OSS Open Source System.

RB Rule-based.

SA Situation Awareness.

SB Skill-based.

SDLC Software Development Life cycle.

SE Software Engineering.

SLR Systematic Literature Review.

xiv

Chapter 1

Introduction

The use of software is heavily embedded within our daily lives. The media

commonly reports on defective software, recent examples include; Facebook1

mass outage, British Airways2 IT crash, Microchips3 affected by Spectre &

Meltdown bugs. These defects are typically introduced by industry software

developers i.e. humans. Humans are susceptible to making errors. This

chapter forms the basis of my exploration using Human Error Theory within

software development.

Section 1.1 defines the problem. Section 1.2 details the problem solu-

tion. Section 1.3 defines the aims and objectives of my doctoral research.

Section 1.4 provides insight into the expected contributions. Section 1.5

highlights the ethical issues that need to be addressed. Section 1.6 describes

the structure of this thesis.

1.1 Problem Definition

Software defects are a problem as they lead to an increased cost for software

production and maintenance. The development of software is very human

1https://www.bbc.co.uk/news/technology-47562281
2https://www.bbc.co.uk/news/uk-40069865
3https://www.bbc.co.uk/news/technology-42575033

1

Chapter 1: Introduction

centered, therefore I look at which human factors have been investigated

within software development. Pirzadeh (2010) identifies that many human

issues in software engineering have been heavily researched. Pirzadeh’s Sys-

tematic Literature Review (SLR) reports investigations of the main aspects

of estimation skills, management skills, pair programming, group perfor-

mance, knowledge sharing, cost estimation and scheduling, staffing and man-

agement. Pirzadeh (2010) does not report of any studies which investigate

software development using Human Error Theory as its focal point. Since

Pirzadeh’s SLR a decade ago, researchers have started to tackle the prob-

lem of human error within software requirements e.g. Anu et al. (2016a), Hu

et al. (2016), Walia & Carver (2009) and software development e.g. Huang

(2016), Huang & Liu (2017), Li et al. (2008).

To err is human nature and software development is a process which is

centered around humans. Reason (1990) reports that errors are introduced

during two phases of human cognition: execution and planning. There are

two types of execution error: slips and lapses. A slip is the result of careless

or inattentive actions, for example, fat fingering. A lapse is the result of a

failure of memory, for example, intending to do a task but forgetting about

it. Mistakes are defined as planning errors. A mistake results from lack of

knowledge during the planning stage of an activity. An example of a mistake

is misdiagnosing a patient due to lack of experience. Execution errors can be

viewed as day to day things you know how to do, but for some reason you get

wrong. Planning errors can be viewed as things you do not how to do and

get wrong due to insufficient planning. Slips and lapses are further described

by Rasmussen (1983) as Skill-based (SB) errors with mistakes described as

Rule-based (RB) and Knowledge-based (KB) errors.

Huang et al. (2014) report that the number one cause of defects is the

developer. Huang & Liu (2011) report that human error is a major contrib-

utor to software defects. Reason (1990) paved the way within human error

2

Chapter 1: Introduction

research and explains how Human Error Theory has been successfully used

within the nuclear and transportation industries. By using Human Error

Theory I investigate whether the number of human errors can be reduced

during software development. Human error has been studied extensively and

implemented successfully in other disciplines but there are very few studies

of how Human Error Theory has been used in software development. One

example such study by Huang (2016) reports that post completion errors4

do occur within software development.

1.2 Problem Solution

I have started to address the problem of human errors within software de-

velopment in two stages. The first uncovers what types of human errors are

made and the second provides a training package which helps to safeguard

against the most frequent form of human error identified.

Firstly I use Rasmussen (1983)’s error based framework of human errors

to establish which Skill-based (SB) human errors are the most likely to occur

within software development. Rasmussen (1983)’s error based framework

describes a number of human errors, SB human errors best fit the day to

day work that software developers undertake. I use SB errors to survey 27

industry software developers to gain an understanding of what type of errors

they make and how they currently mitigate them. Reason (1990) describes

the Swiss Cheese Model, as a model showing that layers of barriers are

needed to block errors from slipping through to cause major failures. The

errors identified in the survey study form a virtual Swiss Cheese Model. As a

result I am able to propose four layers of ‘cheese’ i.e. developer, tool, process

and management. The identified errors are represented as holes of varying

4Post completion errors happen when a sub-task is omitted at the end of a task which

is not necessary for the completion of the task, for example, omitting to collect your bank

card from an Automated Teller Machine (ATM) machine after collecting your cash.

3

Chapter 1: Introduction

sizes Within these layers, where an error is more frequently occurring the

larger the size of the hole with a layer.

I use my results and identify that Situation Awareness (SA) is a key

problem to industry software developers. Endsley (1988) reports Situation

Awareness (SA) is maintaining an understanding of what is going on around

you while performing a task. Endsley (1988) describes three levels of situa-

tion awareness: (1) perception of the environment, (2) comprehension of the

situation, (3) predicting the future situation. I develop, test and implement

a four part training package centered around SA. The training package em-

ploys work on the OODA Loop by Boyd (1987) which is a cognitive training

method designed to improve decision-making.

1.3 Research Aim and Objectives

The aim of this doctoral research is to:

Deliver a training package for industry software developers aimed

at reducing the number of human errors industry software de-

velopers make while working on development tasks.

In order to allow for successful completion of the aim, I have set out the

following objectives:

• Obj1 To understand what SB human errors occur during software

development.

• Obj2 To understand how industry software developers currently try

to mitigate against their human errors.

• Obj3 To establish whether industry software developers make more

slips/lapses vs mistakes.

4

Chapter 1: Introduction

• Obj4 To deliver and validate a training tool which aids industry soft-

ware developers to mitigate against the most frequent forms of human

error.

To gain a preliminary understanding of human error and its mitiga-

tion Obj1 and Obj2 are conducted together. I develop a survey which

is delivered through semi structured interviews in which industry software

developers participate. This survey will provide me with a preliminary un-

derstanding about what type of human errors manifest to industry software

developers. The participants will provide an insight into how they currently

mitigate against human errors. This knowledge will aid in appropriately

designing the training tool mentioned in objective four.

To successfully complete Obj4, I design, implement and test a training

tool which aims to improve software developer SA by training them on the

OODA loop. Industry software developers will use the tool for a period

of time in an experimental setup. During this tool use I will ask industry

software developers to record all the human errors they make. Recording

what human errors occur during the two week window will allow me to

complete Obj3 and further expand our understanding for Obj1.

I use an experimental setup to evaluate the impact of the tool by analysing

the human errors made before using the training package vs the human er-

rors made after using the training package. Huang & Liu (2017) successfully

uses experiments to achieve a similar goal, where Huang & Liu attempts to

reduce the number of defects by training industry software developers on

a human error framework called Defect Prevention Based on Human Error

Theories (DPeHE). My research differs from Huang & Liu (2017) as it fo-

cuses specifically on improving industry software developer SA instead of

targeting all human errors. It employs a shorter period of training and is

delivered via an online training package vs a trainer.

5

Chapter 1: Introduction

1.4 Expected Contributions

I expect four main contributions as a result of this doctoral research, these

are;

• Cont1 New understanding about typical human errors made by indus-

try software developers is identified. While all forms of human error

occur, slips and lapses (SB errors) seem to occur most commonly for

industry software developers. Causes of human errors during develop-

ment activities include the complex development environment, lack of

developer concentration and going down rabbit holes.

• Cont2 New understanding is presented about how industry software

developers mitigate human errors during development activities e.g.

focusing more, using headphones, increased automation and planning.

Maintaining focus and concentration were reported frequently as a

means of mitigating against human error.

• Cont3 Designed, implemented and evaluated an online training pack-

age which allows industry software developers to improve their sit-

uation awareness. The package was trialled using industry software

developers and enabled a reduction in the number of human errors

being made.

• Cont4 Gain an initial understanding of the layers (developer, process,

tool and management) in the Swiss Cheese model as described by

Reason (1990). Identification of SA being a large route through for

errors in the developer slice of cheese. This led to the development of

a training package which aids industry software developers in reducing

the size of the hole in the slice.

6

Chapter 1: Introduction

1.5 Ethical Issues

This research project will require ethical approval as data will be collected

and analysed from humans. In order to complete objectives one, two, three

and four ethical approval will need to be obtained from the College using

BREO.

1. To complete the first and second objective I will need to develop

a survey delivered through a semi structured interview for industry

software developers to participate in. [Ethics approval was granted

on 20/07/2018 by University Research Ethics Committee under ref-

erence 12218-LR-Jul/2018-13605-1. The duration was extended for

this study. This extension was granted ethics approval on 28/09/2018

by University Research Ethics Committee under reference 12218-A-

Sept/2018-14228-1.]

2. To complete the third and fourth objective I will need to run an ex-

periment for industry software developers to participant in. [Ethics

approval was granted on 08/10/2019 by University Research Ethics

Committee under reference 18067-LR-Oct/2019-20590-1.]

1.6 Thesis Structure

The thesis is delivered in seven chapters; there is a brief description of each

chapter below.

Chapter One: Introduction

This chapter provides a high-level overview into the nature of the problem.

It starts by discussing the problem and proposed solution. Furthermore,

it details the aims and objectives, highlights the approach to the project,

expected contribution to knowledge and ends with an outline of the projects

ethical issues.

7

Chapter 1: Introduction

Chapter Two: Literature Review

This chapter provides an insight in the existing literature surrounding Hu-

man Error Theory, successful application of Human Error Theory in indus-

tries including; medicine, power and transportation. It explores research

conducted within Human Error Theory in software requirements and Hu-

man Error Theory in software development. Finally explores how different

aspects of Human Error Theory could be used to mitigate SB errors. This

chapter presents the conceptulisation for Cont4.

Chapter Three: Research Methodology

This chapter considers various research methods that were considered for

this empirical software engineering study. I explore why mixed method

research is the chosen research methodology for my doctoral research. I

explore what type of research methods have been used to address similar

questions, provide details of data collection techniques, analysis techniques,

empirical validity and how these change based on the type of research being

conducted.

Chapter Four: Which SB errors occur in the development phase

of the SDLC and how can we mitigate these? - An interview ap-

proach.

This chapter considers the type of Skill-based (SB) errrors which are made

by industry software developers and methods used to mitigate these er-

rors during the development phase of the Software Development Life cycle

(SDLC). Using a semi structured interview method I interviewed 27 indus-

try software developers. The interviews were transcribed and coded. The

analysis showed that industry software developers’ cognition tended to cause

the most SB errors. This chapter details the approach and results for Cont1

8

Chapter 1: Introduction

and 2.

Chapter Five: Can training industry software developers Situation

Awareness (SA) reduce the number of human errors they make?

- An experimental approach.

This chapter describes an experimental study to gain insight into whether

training software developer SA can lead to a reduction in the human errors

being made. Industry software developers were asked to log human errors

for 10 working days. On day 5 of the study they were asked to complete the

training package which I developed to train in SA. I conduct this experiment

with 10 industry software developers. The human error logs were coded.

The analysis showed that there is a reduction in human errors post training.

This chapter details the approach and results for Cont1 and 3.

Chapter Six: Discussion

This chapter discusses our findings for the studies detailed in Chapter 4 & 5.

I discuss the various types of human errors that are made, what these look

like, how they are mitigated and whether training software developer SA

is an effective method to reducing software developer human errors. This

chapter discusses the findings which contribute to Cont1, 2, 3 and shows

the application for Cont4.

Chapter Seven: Conclusion

This chapter summarises the key points within the literature, highlights the

research methods being used and reports the importance behind the initial

findings.

9

Chapter 2

Background

Human factors research within empirical software engineering investigates

a plethora of topics, however, one that does not appear to have been ex-

tensively investigated is the use of Human Error Theory within software

development (Pirzadeh 2010). Reason (1990) describes a number of small

Human Error Theories which can be used to help us understand things that

may go wrong for example; slips, lapses, mistakes which can manifest as

accidents. Human Error comes from field of psychology. Requirements en-

gineering has recently seem some application of Human Error Theory, an

example of this can be seen in works by who This chapter provides an

insight into the literature and details the conceptual model which is the

foundation behind Cont4.

Section 2.1 discusses human factors within software development. Sec-

tion 2.2 provides insight into the theoretical strands within Human Error

Theory. Section 2.3 describes applications of Human Error Theory within

other industries e.g. medicine and transportation. Section 2.5 explains the

application of Human Error Theory within my doctoral research. Section

2.6 presents a summary of this chapter.

10

Chapter 2: Background

2.1 Human Factors

Pirzadeh (2010) conducted a SLR of human factors research within software

development published in journal papers between 2000 and 2010. After the

application of search criteria there were 67 papers remaining in the review.

Pirzadeh (2010) answers four research questions, three of which are relevant

to my work. I explore two of these below and the third in the next chapter.1

Pirzadeh’s first RQ asks ‘Which phases of software development have

been addressed in SE human factors research? What are the most and

least studied phases and what is missing?’. Pirzadeh (2010) categorised the

papers against the following five software development phases; requirements

engineering (67%), design (52%), implementation (46%), test (37%) and

maintenance (31%). Pirzadeh (2010) report that 16% or 11 papers were

common to all five development phases. The mid and later phases of the

software development cycle seem most in need of further research addressing

human factors i.e. implementation, test and maintenance.

Pirzadeh’s second RQ asks ‘What is the human role in these papers?’.

Pirzadeh (2010) finds that there were three different groups of human in the

studies these are; developer, manager and customer/user. Pirzadeh (2010)

reports that 94% of papers looked at developers, 58% of papers looked at

managers and 34% of papers looked at customers. When we consider that

large amounts of software development is centered around developers i.e.

the development of software itself these results are not surprising. Pirzadeh

(2010)’s findings suggest that customers are least frequently study and there-

fore would benefit with more research. Given Human Error Theory research

within SE is new, focus should be given to developers as this is the human

group who is developing the software. Once Human Error Theory research

is established within SE, researchers can branch out and focus on managers

1Due to overlapping category responses the total percentage exceeds 100 in Pirzadeh’s

research questions discussed below.

11

Chapter 2: Background

and customers.

Pirzadeh (2010) also investigates the focus of each human factor paper.

The focus of each paper was classified into three groups: individual (76%),

interpersonal (56%) and organisational (71%). Individual characteristics

which impact the development process include, psychological issues, estima-

tion skills and management skills. Group characteristics which influence the

development process tend to reside within the interpersonal category, exam-

ples of which include, pair programming, group performance and knowledge

sharing. Organisational characteristics which affect the development process

tend to reside within the organisational category, examples include, cost es-

timation and scheduling, staffing and management issues. Pirzadeh (2010)’s

findings suggest that interpersonal characteristics are least frequently stud-

ied and therefore could do with more research. Given Human Error Theory

research within SE is new, focus should be given to individual characteristics

before branching out to interpersonal and organisational characteristics.

Pirzadeh (2010) finds the requirements and design stages of the soft-

ware development lifecycle to be more frequently studied in the literature

compared to implementation, testing and maintenance. I have decided to

target my literature review at the development stage of the lifecycle. In this

stage we know that the human role is with the developer and therefore we

know that the focus is at the individual level. However where developers

work with agile methodologies the focus lies between both individual and

interpersonal. Given that the individual focus persists regardless of whether

a plan-driven or agile development process I have decided to pursue an indi-

vidual focus. The employment of Human Error Theory in other industries

is common, after reviewing the factors highlighted by Pirzadeh, I notice

that human error is not cited. Following the successful use of Human Error

Theory in multiple safety critical industries e.g. transportation, power and

medicine, I have decided to delve into it further.

12

Chapter 2: Background

2.2 Theoretical Concepts in Human Error Theory

Human Error Theory is not widely adopted within software development.

Software development is an entirely human driven process, understanding

what and why human errors are made and how these can be safeguarded

needs more focused attention within software development. Reason (1990)

paved the way in human error research concentrating on incidents occurring

within the nuclear and aviation industries. In addition to nuclear power

and aviation, medicine regularly uses Human Error Theory, we are able

to learn from their past work and implement safeguards within software

development. These industries are safety critical, consequently employ a

number of physical and digital safeguards e.g. checklists, physical barriers,

two person controls and more. Firstly I provide a brief explanation of how

Human Error Theory has been used within aviation. Secondly I explore the

landscape of human error and provide an explanation on many theories.

A simple example of the use of how Human Error Theory has been

used is within aviation can be found examining why some control knobs

form part of certification requirements. Fitts & Jones (1947) conducted a

series of individual and group interviews with pilots to collect accounts and

analyse 460 “pilot-errors”. Fitts & Jones (1947) found that by redesigning

equipment in accordance with human requirements then it should be possible

to eliminate a large number of “pilot-error” accidents. An example error

that Fitts & Jones report is pilots confusing wing flap and landing gear

controls. Dekker (2005) reports the immediate wartime fix was to attach

a rubber wheel to the landing gear control and a small wedge to the flap

control. Fitts & Jones (1947) make a suggestion that aircraft should provide

uniform shape-coding of all control knobs which must be grasped quickly or

without looking. Dekker (2005) reports that wartime design solution went

on become a certification requirement.

13

Chapter 2: Background

2.2.1 Basic Cognition

Reason (1990) reports that human errors are introduced during two phases

of human cognition; planning and execution. There are three error types

which manifest at different stages of cognition. These are slips, which occur

during execution, lapses, which occur during storage and mistakes, which

occur during planning. A slip is a result of carelessness or inattentive actions

for example day-to-day activities such as fat fingering. A lapse is a result

of forgetfulness or a failure of memory, examples could include intending

to do task A but not doing so due to an interruption and then resuming

with another task. A mistake is the most severe type of error and a result

of lack of knowledge during the planning stage of an activity. An example

could include misdiagnosing a patient due to lack of experience and or not

exploring their signs/symptoms properly. At a high level, slips and lapses

are classified as execution errors whereas mistakes are referred to as planning

errors.

In addition to these errors are violations, which are errors that look like

slips, lapses and mistakes. Reason (1990) describes violations as illegal ac-

tions which are performed intentionally to cause harm, an example would

be deliberately not following a safety protocol. Violations can be split into

three groups; routine violations, optimising violations and necessary or sit-

uational violations. Routine violations are when people cut corners where

the opportunity presents itself. Optimising violations are when actions are

taken to further the goals of an individual. Necessary or situational vio-

lations are when it is deemed to be the only method of accomplishing a

specific job (Reason 1995).

Reason (1990) reports that when referring to error mechanisms there are

two structural features of human cognition which are working memory and

the knowledge base. Reason (1990) also refers to brain bottlenecks in these

structures, however they are known as attentional control mode (working

14

Chapter 2: Background

memory) and schematic control mode (the knowledge base). Reason (1990)

reports that the attentional control mode is slow, effortful and difficult to

uphold for more than brief periods. On the other hand the schematic control

mode is able to process familiar information rapidly and without conscious

effort. Reason (1990) reports that knowledge-based errors stem from limi-

tations and incomplete or incorrect knowledge.

2.2.2 Skill - Rule - Knowledge Framework

Rasmussen developed an error-based framework of cognitive control mech-

anisms. Rasmussen’s skill-rule-knowledge classification of human perfor-

mance is error oriented and formed of three levels. These are Skill-based

(SB) level, Rule-based (RB) level and Knowledge-based (KB) level. At the

SB level the focus is on patterns of preprogrammed instructions. Reason

(1990) defines these preprogrammed instructions as errors related to the in-

trinsic variability of force, space or time coordination. At the RB level the

focus is on addressing recognisable patterns which are controlled by stored

rules. These rules tend to take the form of if state then diagnosis or if state

then remedial action. Therefore the errors in the RB level usually take the

form of classification of a situation (state) therefore application of wrong rule

(diagnosis) or incorrect recall of procedures (remedial action). At the KB

level the focus is on unknown situations where by forth coming actions must

be planned by employing analytical processes and stored knowledge. Con-

sequently we can expect errors occurring from a combination of incomplete

and incorrect knowledge and resource limitations (Reason 1990).

2.2.3 Generic Error-Modelling System (GEMS)

This subsection provides theoretical understanding and mapping in between

the fundamental error types within Human Error Theory.

15

Chapter 2: Background

Reason (1990) describes GEMS which is based on the skill-rule-knowledge

classification. GEMS is formed of three error types which map to the skill-

rule-knowledge classification. The mapping between error type and perfor-

mance level is as follows; slips and lapses occur at the SB level and are

classed as execution failures. mistakes occur either at the RB or KB level

and are classed as planning failures. Figure 2.1 helps to visualise how the

two classifications map to each other.

Figure 2.1: Reason’s Reason (1990) Slips, Lapses, Mistakes mapped to

Rasmussen’s Rasmussen (1983) Skill-based (SB), Rule-based (RB) and

Knowledge-based (KB) error types

Below I provide a comprehensive list of all the SB, RB and KB errors.

By understanding the various error modes within Human Error Theory, I

am able to classify the varying human errors software developers encounter

during their work. Understanding each error is important as it will enable

researchers to address issues at their route cause.

The major failure modes at the SB level as described by Reason (1990)

are split in to two sub groups which are inattention or omitted check and

overattention or mistimed checks. Within inattention there are five failure

modes which are; double-capture slips, omissions following interruptions,

reduced intentionally, perceptual confusions and interference errors. Within

16

Chapter 2: Background

overattention there are three failure modes which are; omission, repetitions

and reversals (Reason 1990). SB errors take form as slips or lapses and are

known as execution failures. For further information of these failure modes

see Appendix A - Skill-based (SB) Errors.

The major failure modes at the RB level as described by Reason (1990)

are split in to two sub groups which are misapplication of good rules and

application of bad rules. Within misapplication of good rules there are

seven failure modes which are; first exceptions, countersigns and nonsigns,

informational overload, rule strength, general rules, redundancy and rigidity.

Within the application of bad rules there are 4 failure modes which are;

encoding deficiencies and action deficiencies. Within action deficiencies there

is; wrong rules, inelegant rules and inadvisable rules (Reason 1990). RB

errors take form as mistakes and are known as planning failures.

The major failure modes at the KB level as described by Reason (1990)

are; selectivity, workspace limitations, out of sight out of mind, confirma-

tion bias, overconfidence, biased reviewing, illusory correlation, halo effects,

problem with causality and problems with complexity. Within problems

with complexity there is; problems with delayed feedback, insufficient con-

sideration of processes in time, difficulties with exponential developments,

thinking in causal series not causal nets, thematic vagabonding and encyst-

ing (Reason 1990). KB errors take form as mistakes and are known as

planning failures.

2.2.4 Swiss Cheese Model

In this subsection I explore what the Swiss Cheese Model is and how it has

been applied within a SE environment.

The Swiss Cheese Model is a model which shows the route of an error

through various layers of defence. Reason (2000) reports that each coun-

termeasure or layer in the Swiss Cheese Model is likely to work effectively

17

Chapter 2: Background

Figure 2.2: James Reasons’s Swiss Cheese Model Reason (2008) adapted

from Carthey (2013)

but will have some weakness. The Swiss Cheese Model (see Figure 2.2) of

accident causation assumes that each defence layer is a slice of cheese. Each

of the weaknesses represents a hole within the cheese. When all the slices

of cheese are lined up usually there is no direct route through the layers of

cheese. This represents a model where errors may occur but are likely to be

caught out by another layer. In the event where the cheese layers are in a

different angle such that a direct route becomes available this represents an

ideal opportunity for an accident to occur (Reason 2000).

Reason (1990) reports that the holes in the cheese are nearly always

caused by a combination of active failures and latent conditions. Active

failures are acts of an unsafe nature which are committed by people with di-

rect access to a system (Reason 1990). These acts tend to be direct and tend

to have a short lived impact on the integrity of the defences. Defences are

found a various layers of the Swiss Cheese Model and take form as physical

or virtual safeguards e.g. access control or software systems. Slips, lapses,

mistakes and violations are some of the forms active failures take. Latent

18

Chapter 2: Background

conditions are resident causes within a system. Latent conditions can have

two types of effect, firstly, they have the potential to translate into error

provoking conditions within the local workplace. Secondly they can create

long lasting holes or weaknesses in defences. Untrustworthy alarms, de-

sign deficiencies, inexperience, inadequate equipment are some of the forms

latent conditions take (Reason 2000). Latent conditions typically lie unde-

tected within the system for long periods of time before a combination of

local triggers and active failures create an accident opportunity. As such

latent conditions can be discovered and mitigated against before an adverse

event occurs, this creates proactive risk management (Reason 2000). I have

explored the theoretical background of the Swiss Cheese Model above. My

doctoral research elicits four layers of defence in the Swiss Cheese Model

from interviews with industry software developers (see Chapter 4 for more

details). These layers are; Developer, Process, Tool and Management. One

latent condition that was identified is poor SA. I developed a online training

package to mitigate against the latent condition of poor SA (see Chapter 5

for more details).

Within the context of SE Sommerville (2015) reports four strategies that

can be employed when thinking about the Swiss Cheese Model within SE.

These strategies are;

(i) ‘Reduce the probability of the occurrence of an external event that

might trigger system failures’ - Analyse system triggers and imple-

ment mechanisms to reduce the likelihood of them occurring e.g. Pre-

vent overloaded staff by giving staff more control over their workload

(Sommerville 2015).

(ii) ‘Increase the number of defensive layers’ - Reduces the likelihood of

holes in the cheese lining up (Sommerville 2015).

(iii) ‘Design a system so that diverse types of barriers are included’ - De-

crease the likelihood of holes lining up by having holes in different

19

Chapter 2: Background

places (Sommerville 2015).

(iv) ‘Minimise the number of latent conditions in a system’ - Reduce the

size and number of holes in each layer of cheese (Sommerville 2015).

Sommerville (2015) reports that all options must be considered and a

decision is required to select the most cost effective method when improv-

ing a system’s defence to human error. Sommerville (2015) reports that if

custom software is being created then increased layers in the model may

be the best option. Sommerville (2015) reports that sociotechnical defences

and or changes to training procedures maybe required if off-the-shelf soft-

ware is being used. My doctoral research focuses on employing suggestions

3 & 4. Within SE, safeguards are typically embedded within process e.g.

daily stand up meetings and tools e.g. compilers. I introduce an short on-

line training package which forces software developers to look at their own

decision making ability. By doing so this reduces the size of the SA hole.

The problem of reducing software faults caused by human error has al-

ready been addressed using the Swiss Cheese Model unknowingly. The Swiss

Cheese Model highlights the path an error takes through various layers. The

error could be prevented through use of different types of safeguards, barriers

and other mechanisms, within SE these already exist. One such examples is

automated deployment pipelines which can significantly reduce deployment

errors, another is the compiler which can catch syntax errors. By increasing

the number of safeguards at each layer in the Swiss Cheese Model we as

a SE community can further reduce the number of errors made. Work is

required to understand exactly what errors occur at the human level and

how these are currently safeguarded.

Looking at the Swiss Cheese Model, the ideal situation is one in which

the holes in the cheese never line up therefore never cause a system failure.

I target one type of latent condition in my solution - SA. Through the

introduction of a training package, I am introducing a defensive mechanism

20

Chapter 2: Background

which aims to significantly reduce the size of the SA hole in the developer

cheese layer relating to the targeted human error.

2.2.5 Summary

In this section I have explored the theoretical background of many of the

human error theories. I have explained basic cognition, skill-rule-knowledge

based framework, how the two map to each other within the GEMS and

explaining the Swiss Cheese Model along with how it is applied within SE

and my research.

2.3 Applied Human Error Theory

In this section I explore how Human Error Theory has been used within

the field of medicine, its relevance to software engineering and its emerging

application within software requirements and software development.

2.3.1 Human Error Theory in Medicine

In this section I explore the work of Leape (1994) who explores human error

within the field of medicine. He explores how SB, RB and KB errors are

affected by physiological, psychological and environmental factors. I report

on work conducted by Ribeiro et al. (2016) who looks at what types of errors

nurses make while operating specific machinery in an Intensive Care Unit.

The literature I present provides examples of how Human Error Theory has

been successfully applied within medicine.

Leape (1994) report that SB, RB and KB errors are affected by physi-

ological, psychological and environmental factors. The physiological factors

include fatigue, sleep loss, alcohol, drugs and illness. The psychological

factors include other activity and emotional stakes e.g. boredom, fear, frus-

tration, anger or anxiety. The environmental factors include noise, heat,

21

Chapter 2: Background

visual stimuli and motion. Given the abundance of mechanisms and error

causes there is no single means of reducing human error. There are vary-

ing methods of error reduction at each phase of system design. Short-term

memory, planning and problem solving are amongst the weakest aspects of

cognition, therefore tasks should be simplified to minimise the load on these

aspects (Leape 1994). Given the infancy of Human Error Theory research

within SE, researchers should focus on all issues. Future work could un-

cover the impacts of each of these factors in more depth and also consider

implementing safeguards around these factors. An example would be the

use of tacographs in commercial driving to ensure that drivers are getting

sufficient amounts of rest daily.

Ribeiro et al. (2016) ask what is the nature of the use of equipment by

nurses working in the Intensive Care Unit, and what is the relationship be-

tween such use and the occurrence of errors? Ribeiro et al. (2016) identify

human errors relating to use of equipment by Intensive Care Unit nurses.

They use observations and interviews of eight Intensive Care Unit unit nurses

between March to December 2014 totally 130 hours of observations. The

observations were only conducted when nurses were using specific equip-

ment. This subset of equipment has been selected as the literature supports

a higher incidence of error occurring when using these items. The inter-

view process was aimed at establishing the type of errors, related factors,

behaviour and damage to patients.

Slips and lapse errors that occur during the programming of infusion

pumps relate directly to the SB level. The tasks the nurses undertake while

using the machines are typically routine tasks which are performed auto-

matically and do not require much thought (Ribeiro et al. 2016).

Ribeiro et al. (2016) identify a variety of slips, lapses and mistakes which

are made when nurses use equipment in Intensive Care Unit. Ribeiro et al.

(2016) find that it is mainly infusion pumps and monitoring systems which

22

Chapter 2: Background

involve unfavourable events that harm patient safety. Ribeiro et al. (2016)

report the route mechanism behind these errors are memory and attention

lapses in the handling of infusion pump ability; planning failures during pro-

gramming of the monitors; application of rules and knowledge. To mitigate

against these errors, Ribeiro et al. suggest that daily checks of infusion

pumps and monitors are performed.

My doctoral research follows a similar pattern to that identified in the

example above, a list of latent conditions are identified by observing nurses.

Following on from the observation Ribeiro et al. (2016) implement a safe-

guard of daily checks. This will assist with reducing the hole size of the

latent condition within the Swiss Cheese Model. My research uses semi

structured interviews to identify human errors. I develop an online training

package as the safeguard which aims to reduce the hole size of the latent

condition.

2.3.2 Human Error Theory in SE

Over the years human factors have been researched within SE. This research

has not been tied back to Human Error Theory, below I highlight two ex-

amples of where existing research could be tied into Human Error Theory.

I show how an experimental study reduces the rate of human error and

the application of the nested application of the Swiss Cheese Model within

another study.

LaToza et al. (2006) interviewed a group of developers about activities,

tools and problems. LaToza et al. (2006) found that the top three problems

reported by developers were ‘understanding the rationale behind a piece of

code’, ‘having to switch tasks often because of requests from my teammates

or manager’ and ‘being aware of changes to code elsewhere that impact my

code’. These problems can be categorised within slip, lapse and mistake

groupings. Having many tasks changes could lead to lapses and being un-

23

Chapter 2: Background

aware of significant changes could lead to mistakes. The problems described

by LaToza et al. (2006) can be linked to Situation Awareness (SA), which

is knowing what is going on around you and within your environment (SA

is explained in detail in Section 2.4). Developers who are able to better

manage their SA, will likely not struggle as much with these problems.

Developers invest greatly in recovering knowledge by code exploration

and disrupting teammates; the acquired knowledge is only saved in their

memory (LaToza et al. 2006). There are two control modes within the brain;

attentional control mode (working memory) and schematic control mode

(the knowledge base). Reason (1990) reports that the attentional control

mode is slow, effortful and difficult to uphold for more than brief periods.

On the other hand the schematic control mode is able to process familiar

information rapidly and without conscious effort. Due to the weakness of the

attentional mode we can see how developers could introduce more defects

due to increased interruptions.

Typically mistakes otherwise known as RB or KB errors occur when

some element of planning is involved. Bird et al. (2011) reports that software

testers should give components with low ownership2 priority. It is easy to

see here how low code ownership links with knowledge based errors as there

is no given expert or owner of the code therefore increasing the chances of

more defects in that part of the code. If software testers develop a better

understanding and awareness of who made the code they would be better

placed to focus on key areas of code that could be more likely to contain

faults.

Some strands of human factors research can be directly linked to aspects

of Human Error Theory which can be applied to SE. When Human Error

Theory is studied more closely within SE linkages may be made between

the two. There are some clear areas of human factors research that should

2A developer who has made less than 5% of the changes to a given file Bird et al. (2011)

24

Chapter 2: Background

investigate the impacts it has in terms of Human Error Theory e.g. pro-

ductivity, do productivity tools reduce the number of distractions in turn

reducing the number of human errors made?

Huang et al. (2012) and Hu et al. (2017) have developed taxonomies

to help classify various types of error made by developers in terms of Hu-

man Error Theory. Anu et al. (2016b) evaluate two taxonomies, the first is

Requirements Error Taxonomy and the second is Human Error Taxonomy.

The Requirements Error Taxonomy categorises errors at a high level which

are people (communication), process (elicitation) and documentation (spec-

ification) errors. The Human Error Taxonomy categorises errors at a high

level using Reason’s slips (lack of consistency in the requirement specifica-

tion), lapses (accidentally overlooking requirements) and mistakes (not hav-

ing clear distinction between client and users) categories (Anu et al. 2016b).

These studies describe success in being able to extract human errors from

requirements engineers. Researchers have been able to create taxonomies

with the described errors. Researchers could view the taxonomy levels can

be viewed as layers of cheese within the Swiss Cheese Model.

Huang & Liu (2017) propose a defect prevention approach which is hu-

man centered using Defect Prevention Based on Human Error Theories

(DPeHE) framework. This framework is made up of three key stages namely

knowledge training (stage 1), regulation training (stage 2) and continuous

improvement (stage 3) (Huang & Liu 2017).

During the first stage developers are educated on human errors specif-

ically the why, when, what and how questions. They are then trained on

why and when developers make errors and patterns of errors that maybe

committed in specific scenarios. Finally they are at a stage where they can

self-regulate in error prone situations, as such they are consciously aware of

these situations and are able to employ prevention strategies (Huang & Liu

2017).

25

Chapter 2: Background

In the second stage developers are regulating themselves based on the

knowledge they obtained in stage 1. They have to complete checklists pre

and during programming tasks in order to monitor problem solving processes

assisted by the problem solving regulation list. Developers are required to

continue iterating through this process until they become able to consciously

reflect and be aware of symptoms under error prone situations (Huang &

Liu 2017). In the final stage developers acquire constant cognitive ability

of human error prevention and perform continuous improvement with the

build up of experience. Huang and Bin, test the DPeHE framework in two

companies, the first company is at Capability Maturity Model Level 5 with

8 participating developers. The second company is at Capability Maturity

Model Level 1 with 6 participating developers (Huang & Liu 2017). Huang

& Liu (2017) report that the case studies suggest that DPeHE is successful

in improving software developers’ ability to prevent software defects. The

Relative Progress of Defect Rate is increased in developers whom partici-

pated in the study. The mean Relative Progress of Defect Rate for company

A participants it is 56.1% while for non participants it is 28.4%. For com-

pany B participants it is 31.3% while for non participants it is 0.7%. Huang

and Bin outline that the delivery of DPeHE is not easy as it requires inter-

disciplinary trainers whom possess knowledge of both software engineering

and psychology (Huang & Liu 2017).

Huang & Liu (2017) show that there are other avenues with defect pre-

vention opposed to the conventional routes within organisational software

process improvement. The suggested method of using DPeHE focuses effort

on the cognitive ability of the developer in relation to human error preven-

tion. This shows that similar approaches can be take with other human

factors to further boost defect prevention.

Huang (2016) report that post completion error is a type of human error.

This type of error is where a sub task is omitted at the end of task but is not

26

Chapter 2: Background

necessary for the completion of the task, an example would be removing your

bank card from an ATM machine prior to your cash being issued. Huang

(2016) reports that there are three strategies that can be employed to aid

in defending against post completion error. These are as follows:

(i) Eliminate the post completion task where it is not necessary.

(ii) Change the procedure of the task if possible.

(iii) Highlight the places of post completion tasks in the requirement doc-

uments.

Huang (2016) concludes that there is a high likelihood that developers will

introduce post completion errors if the post completion scenario is present

in software requirements. In this example we learn how post completion

errors move from requirements to development, if they are not caught early.

We can see that the error has been identified i.e. post completion errors, re-

moval of tasks that could lead to these errors or highlighting post completion

tasks to safeguard against these errors occurring. This employs the Swiss

Cheese Model in its basic form, identification of an error and implementing

a safeguard to prevent the error from passing through. It would be useful if

future work looked to automate these safeguards if and where possible as it

is still reliant on a human to identify the post completion tasks.

2.4 Situation Awareness (SA)

My research uncovers that maintaining Situation Awareness (SA) is an area

of difficulty for software developers. Below we explore what SA is, how it

has been applied and explore a means of improving ones SA by using the

OODA Loop.

Endsley defines Situation Awareness (SA) as the perception of the ele-

ments in the environment within a volume of time and space, the compre-

hension of their meaning and the projection of their status in the near future

27

Chapter 2: Background

(Endsley 1995). Endsley (1995) reports that there are three levels of SA.

These are; Level One - Perception, Level Two - Comprehension and Level

Three - Projection. Figure 2.3 shows how SA fits into the dynamic decision

making process.

Figure 2.3: Model of SA in Dynamic Decision Making (Endsley 1995)

Level One SA is about the perception of the elements in the environment.

Endsley (1995) reports that the first step in achieving SA is to perceive the

status, attributes and dynamics of relevant elements in the environment.

Level Two SA is about comprehension of the current situation. Endsley

(1995) reports that comprehension of the situation is based on a synthesis

of disjointed level one elements. Level two SA goes beyond simply being

aware of the elements that are present to include an understanding of the

significance of those elements in light of pertinent operator goals.

Level Three SA is about projection of future status. Endsley (1995)

reports that the ability to project the future actions of the elements in the

environment at least in the very near term forms the third and highest level

28

Chapter 2: Background

of SA. This is achieved through knowledge of the status and dynamics of

the elements and comprehension of the situation.

SA is used in any decision making process. First you are aware of a

situation, second you understand elements within the situation and you

may be able to project future actions. An example of day to day SA is your

personal safety. You may enter a room and detect a threat. You consider the

threat and possibly exit the room / neutralise the threat / raise the alarm.

SA has been used with success in a variety of domains e.g. autonomous

driving (Petersen et al. 2019), medicine (Wright et al. 2004), transportation

(Wickens 2002) and cyber security (Ioannou et al. 2019). It has also been

used in the military for combat situations, an example of this is Colonel

John Boyd’s OODA Loop (we take a closer look at this in the next section).

Endsley & Garland (2000) report two methods by which to identify meth-

ods for improving SA. The first is though an examination of the ways in

which SA errors occur. The second is identify the successful methods that

pilots use to develop and maintain SA compared to pilots that do not per-

form well at maintaining SA while performing a task.

Endsley & Garland (2000) report seven SA problems within General

Aviation, these are; task management, basic procedures, vigilance, dealing

with malfunctions, building mental models and critical skills. Endsley &

Garland (2000) identifies four training recommendations; task management,

development of comprehension (level 2 SA), projection (level 3 SA) and

planning and information seeking and self checking activities.

2.4.1 OODA Loop

The OODA (Observe-Orient-Decide-Act) loop is a key element to the online

training package I develop to aid software developers to reduce the number

of human errors they make (see Chapter 5). We typically go through the

OODA loop process hundreds if not thousands of times every day (High-

29

Chapter 2: Background

tower 2007). The OODA loop is a cognitive training method designed to

improve decision-making (Boyd 1987). The four stages of the OODA loop

(Figure 2.4) are Observe - Orient - Decide - Act, which form the basis of

improving critical decision making. The OODA loop will only assist the user

in getting to level two SA i.e. Comprehension. The OODA loop encourages

the maintenance of situation awareness (SA) by iteratively ‘Observing’ (level

1 of SA), ‘Orienting‘ (level 2 of SA), and ‘Deciding’ before ‘Acting’.

Figure 2.4: OODA Loop (Boyd 1987)

Richards (2020) report that it has sometimes proven advantageous to

take extra time selecting a course of action—that is, reaching a decision to

act—in order to create a more favorable environment for actions in the fu-

ture. Given software development is not a combat situation, developers have

the luxury of time. When developers use the OODA Loop, it is imperative

that they bring the decision making in to the forefront of their minds and

actively think during the decision making process before pursuing an action.

An example of day to day use of the OODA loop is the process of pur-

chasing a meal. First you notice you are hungry, this the observation phase.

You proceed to the phase of orientation which could be remembering its still

breakfast hour in your local bakery and you can get a sausage roll. Next

30

Chapter 2: Background

comes the decision making in which you actively decide to take a break from

your current task and get a sausage roll or do nothing about your hunger.

Finally comes the action phase in which you actual going to the bakery and

purchase a sausage roll.

2.5 Application of Human Error Theory Within

My Doctoral Research

My doctoral research will use a combination of the two human error frame-

works i.e. GEMS and the skill-rule-knowledge framework. My research

employs use of the Swiss Cheese Model. Figure 2.5 depicts the process at

a high level and explains how I tie the human error classification in to use

with the Swiss Cheese Model. This forms the basis of Cont4.

I will use part of the skill-rule-knowledge framework to gain an initial

understanding of what human errors software developers make and how they

mitigate these. In Chapter 4 I identify four high level themes of human errors

which were elicited from the participants. These themes can be viewed as

layers, which are developer, process, tool and management. I aim to use

these layers to create a virtual Swiss Cheese Model with 4 layers of ‘cheese’

based on insights obtained from these developers. This investigation takes

place during Study one as detailed in Chapter 4.

Chapter 4 unpicks all the themes identified during elicitation of human

errors from software developers. I learn that the developer layer of ‘cheese’

has the largest number of frequently occurring holes within it. Looking at

the lower level themes within the developer layer, I have identified that SA

is the area in significant need of addressing. The identification of SA as

the area to address means I am able to develop a training package which

acts as a safeguard measure for the SA hole in the developer slice of the

cheese. The training package will aim to improve software developer situ-

31

Chapter 2: Background

ation awareness, in turn reducing the size of the SA hole in the developer

slice. This investigation takes place during Study two as detailed in Chapter

5.

I will use the GEMS framework for further the understanding I have on

what human errors software developers make. By using the GEMS frame-

work I will be able to gain an insight into whether software developers do

indeed make SB errors i.e. slips and lapses more often than RB errors and

KB errors i.e. mistakes. This investigation takes place during Study one as

detailed in Chapter 4.

2.6 Summary

Having conducted an initial exploration of human error within the develop-

ment phase of the SDLC. The literature suggests that there are different er-

ror frameworks/models that can be used including the Swiss Cheese Model,

GEMS and skill-rule-knowledge framework. My review of existing works

shows that there is very little work conducted within the area of Human Er-

ror Theory and software development. My review shows numerous successes

where sectors such as medicine, transportation and nuclear power have used

Human Error Theory. Consequently there was a need for an exploratory

study to be conducted so that I could establish exactly which human errors

are most frequently occurring within the development phase of the SDLC.

The study looked to explore which human errors occur when software de-

velopers are developing code on industry projects. In the next chapter we

explore how this exploratory study will take place and the appropriate re-

search methodology to be used.

32

Chapter 2: Background

Figure 2.5: Conceptual Model

33

Chapter 3

Research Methodology

Software engineering is a growing and diverse field which pushes many

boundaries including social and technical. It is imperative that studies look

at surrounding aspects as well as the core to properly understand the impli-

cations of the work. This requires researchers to study the users i.e. humans

as well as the tools and process. Easterbrook et al. (2008) highlight that

researchers select methods with little to no understanding of the purpose of

a given method or the available alternatives. Easterbrook et al. (2008) also

report that methods from other fields are drawn upon in software engineer-

ing when it comes to the study of human behaviour. These fields include

psychology when looking at an individual level and sociology when looking

at a group level. This chapter focuses mainly on the theory of the methods,

I detail the specific methods used for each study in Chapter 4 and 5.

Section 3.1 presents a background to research methodologies used in hu-

man factors and Human Error Theory studies. Section 3.2 presents the

research questions I ask for my doctoral research. Section 3.3 presents the

theory behind survey methods. Section 3.4 presents the theory behind exper-

imental methods. Section 3.5 presents the analysis techniques used. Section

3.6 discusses the need for pilot studies. Section 3.7 argues why industry

participants should be used over student participants. Section 3.8 discusses

34

Chapter 3: Research Methodology

sampling. Section 3.9 discusses empirical validity. Section 3.10 presents a

summary of this chapter.

3.1 Background

In this section I explore which research methods have been used in; human

factors research within software development and Human Error Theory re-

search conducted in the fields of software requirements and software devel-

opment. By looking at the research methods used in these areas of research

I will be able to better select correct research methodology for my doctoral

research.

3.1.1 Methods reported by Pirzadeh

Pirzadeh (2010) conducted a SLR of human factors research within software

development published in journal papers between 2000 and 2010. I explore

the last research question, ‘What kind of research methods/tools (empirical,

case study, survey, etc) have been used in this research area? What types

of papers are published in the area of research and what was their approach

to the topic?’ asked by (Pirzadeh 2010) below.1

Pirzadeh (2010) provides useful context to the methods typically used

in research on human factors in software engineering. Pirzadeh (2010) finds

that the majority of papers (82%) use empirical research methods. My

doctoral research will add to the body of existing empirical research. Four

research methods were found to be used across the reviewed papers; case

study (78%), design (65%), survey (47%) and controlled experiment (25%).

Pirzadeh (2010) reports that industrial reports have not been used in any

study. My doctoral research will employ survey and controlled experiment

methods.

1Due to overlapping category responses the total percentage exceeds 100 in Pirzadeh’s

research questions discussed below.

35

Chapter 3: Research Methodology

When selecting participants for a study more effort should be directed at

recruiting industrial partners. Pirzadeh (2010) reports that 74% of papers

which use the case study methodology have used industrial case studies.

Experiences of students who are learning can be different from experienced

professionals, therefore more studies should focus what impacts the practi-

tioners vs students. Survey methods is split between interviews (62%) which

use semi structured and structured interviews and questionnaires (35%)

which utilise a variety of open ended, self administered, web based and

scaling questionnaires. Pirzadeh (2010) reports eight solutions within the

design method which are model (25%), guideline (22%), framework (17%),

hypothesis (11%), lessons learned (8%), approach/proposal (8%), method

(6%) and metaphor (3%). Controlled experiments showed overlap with sur-

vey methods (33%) and case study (56%).

Papers that explored human factors using case studies commonly ex-

plored factors including collaboration, team work, psychological, cognitive

issues, management and communication. Papers that used controlled exper-

iments seemed to target cost estimation and the related cognitive, manage-

ment and psychological factors. The popular topics of interest were not re-

ported for survey and design methods. Theoretical research review concepts

including individual professionalism, systematic studies on pair program-

ming human factors/motivations of software engineers, technical communi-

cations, software developers and their personality types and work centered

organisations and leadership (Pirzadeh 2010).

I have gained an insight into what research methods have been used in

human factors research applied to software engineering. This has allowed

me to understand which methods have been used in human factors research

and notice that some methods have not been used e.g. ethnographic. This

surprises me as observations of people appear an effective way to under-

stand developer experiences in industry. Ethnographic research can be time

36

Chapter 3: Research Methodology

and cost heavy to both the researcher and participants/industrial collabo-

rators. This could be why researchers tend to favour survey and controlled

experiments when it comes to SE human factors research. In the next two

subsections I explore which research methods have been used in Human

Error Theory research in software requirements and software development

research. To my knowledge these are the only areas with SE that have been

researched within terms of Human Error Theory, therefore it is useful to

explore what methods have been used.

3.1.2 Methods reported in Human Error Theory and soft-

ware requirements

Anu et al. (2016a, 2017), Hu et al. (2017) collect quantitative data by us-

ing an experiment and a five point likert scale questionnaire. Anu et al.

(2016b) collect quantitative and qualitative data by using an experiment,

using randomized pre-test post-test control group experiment was planned

and executed in controlled settings. Hu et al. (2017a) collect qualitative

data using a questionnaire to determine what type of human errors and

faults requirements engineers make on real projects and what methods are

used/intended to be used to prevent requirement errors. Hu et al. (2017)

collect quantitative data using an experiment to evaluate whether an under-

standing of Human Error helps prevent faults during requirements creation.

Participants completed a training session and five experimental steps as part

of this evaluation.

Research conducted about Human Error Theory and software require-

ments has focused on understanding what type of human errors have been

made and introduced. The first objective of my doctoral research is to estab-

lish which type of human error occurs most within the development phase

of the SDLC. By understanding how a similar objective has been achieved

within a similar discipline, I am able to better guide my selection of research

37

Chapter 3: Research Methodology

methodology. Existing research within software requirements show effective

elicitation of human errors by using survey instruments.

3.1.3 Methods reported in Human Error Theory and soft-

ware development

Huang et al. (2014) collect quantitative data from an empirical study using

a questionnaire and programming contest. Huang (2016) used a screening

questionnaire and collect quantitative data by using an experiment where

participants completed a programming contest. Huang & Liu (2017) conduct

a case study to investigate DPeHE. Huang & Liu (2017) collect quantita-

tive data from participants using a questionnaire designed using likert-scale

questions and data about the defects found in the software system. Huang &

Liu (2017) collect qualitative data form participants by using open questions

in the questionnaire. Huang & Liu (2017) report that the quantitative data

was used to explore the effectiveness of DPeHE while, quantitative data was

used to gain an understanding of how DPeHE affected ability to prevent

errors. This shows a variety of methods that can be employed within SE

Human Error Theory research. Case studies while being rich and insight-

ful are time costly and require commitment from industrial collaborators.

Survery instruments and short experiments are rather quick to complete,

therefore reducing the time and cost overhead on participants.

Research conducted about Human Error Theory and software develop-

ment has focused on understanding what type of human errors have been

made and testing whether prevention strategies work. The third objective

of my doctoral research is to understand how industry software developers

currently mitigate against human errors. The fourth objective of my doc-

toral research is to deliver a tool which aids industry software developers

to mitigate against the most frequent forms of human error. I have learned

how other researchers have used a variety of methods to gather qualitative

38

Chapter 3: Research Methodology

and or quantitative data to understand similar objectives. This allows me

to consider whether a different methodology could provide a varying insight

on the objectives I intend to address in my doctoral research.

3.1.4 Summary

The literature shows that empirical research is the common route with hu-

man factors research in software development, Human Error Theory research

in software requirements and Human Error Theory research in software de-

velopment. This provides a strong foundation to using empirical research

methods when selecting the research methodology for my research. There is

no clear leading choice of empirical research methodology for human factors

research in Pirzadehs’ findings. I will be considering the benefits and draw-

backs of each method given the time/cost/access to industrial software en-

gineers/other constraints of my doctoral research. Reviewing Human Error

Theory research in software requirements and Human Error Theory research

in software development, the scope of methods used is narrowed down to pri-

marily surveys (questionnaire), case studies and design (experiment). Each

research method has its advantages and disadvantages, given the time/cost

limitations of my doctoral research, it is clear that a combination of empirical

research methods may be best suited to addressing the research problem.

This will allow me to utilise survey methods to elicit human errors from

software developers and run experiments to see if safeguards are effective.

3.2 Research Questions

This section presents the research questions for my doctoral research. I

used Easterbrook et al. (2008) to inform me while developing my research

questions. In Section 1 I set out the aim and objectives, in order to reach

these I ask the following research questions:

39

Chapter 3: Research Methodology

• RQ1 What SB errors do industry software developers experience dur-

ing development? This research question allows me to understand what

SB human errors software developers make and then start to form a

virtual Swiss Cheese Model.

• RQ2 How do industry software developers mitigate the SB errors they

experience during development? This research question allows me to

understand what software developers do to mitigate SB human errors

make and then complete the virtual Swiss Cheese Model created in

RQ1.

• RQ3 Do industry software developers make more slips/lapses com-

pared to mistakes? This research question aims to understand whether

software developers do indeed make more SB errors i.e. slips and lapses

vs RB and KB errors i.e. mistakes. This allows SE researchers to cor-

rectly target safeguards at more frequently occuring errors types.

• RQ4 Does the online training package on the OODA loop reduce the

number of human errors that software developers make? This research

question allows me to understand whether the safeguard, in this case

online training package, is effective at reducing human errors.

• RQ5 Do developers find the online training package easy and useful

to use? This research question aims to better understand developer

experience of the online training package. Should developers struggle

to use the online training package this is something that would need to

be factored in when analysing the reduction of results.

In Figure 3.1 I show when and where each research question will be

answered alongside which research method(s) will be employed.

My doctoral research is broken into two key studies. The first looks to

understand what human errors occur and how these are currently mitigated.

40

Chapter 3: Research Methodology

Figure 3.1: Research Methods to Conceptual Model

The second looks to evaluate a training package which employs SA. I conduct

a survey study to answer RQ1 and RQ2 where I employ semi structured

interviews. A survey instrument was selected so I could increase the number

of participants within a limited time frame and make optimal use of the

limited time each industrial software engineer could offer. I conduct an

experimental study to answer RQ4 and RQ5 where I employ questionnaires,

participant logs and training results. This experimental study was chosen

to best compare the number and type of human errors industry software

41

Chapter 3: Research Methodology

developers make pre and post using the training package on SA. RQ3 is

answered from the data obtained across both studies, as they both look to

understand what types of human errors industry software developers make.

3.3 Study One: Survey Method

This study looks to answer RQ1, RQ2 & RQ3. These questions aim to under

the types of human errors software developers make and the mitigation

strategies that they employ to safeguard themselves against these errors.

The primary focus of this study is uncover information about developer

human errors from developers. The could be done by using ethnographic

research and studying them in the workplace, survey research and asking

them to report on human errors. Ethnographic graphic research was im-

mediately ruled out due to time constraints on access to industry software

developers from my industrial collaborators.

This led me to surveys and exploring questionnaires vs interviews. While

questionnaires could get a greater reach in terms of participants, the data

collected could potential not be as descriptive as required which could lead

to interpretation threats or me not being able to use the data. Interviews

allow me directly question participants and clarify any misunderstandings

or obtain additional contextual information if required.

I decided to use semi structured interviews as the data collection method

for this study. By using a series of predefined questions I was able to ask

each participant the same thing, while being able to probe where necessary to

gain any other useful data from the participant. Semi structured interviews

are however time consuming, costly and subject to a number of threats e.g.

interview bias, descriptive and interpretation validity.

The vast majority of interviews were conducted face to face in partici-

pants work places. These interviews were conducted in meeting rooms at

pre arranged times. Thought was given to the layout of the room so that

42

Chapter 3: Research Methodology

neither the interviewer or interviewee were distracted by anything going on

outside the room. Some interviews had to be conducted virtually using

platforms such as Skype. These were pre arranged with the participants. I

was fortunate that my interviews didn’t experience technical difficulties or

interruptions that could be expected while working from home.

I conducted all the interviewees myself and was reminded myself of inter-

viewer bias before each interview. By sticking to the pre arranged questions

and only opening up the discussion when appropriate, I was able to limit

any interviewer bias. I only further questioned a participants response when

information was missing or unclear. I kept the interview style as semi re-

strictive so as to allow me to probe the participants responses as and when

required. I kept the tone of the interview casual and relaxed so that partic-

ipants did not feel intimidated when being asked about human errors they

had made. This casual style is intended to try and strike up some rapport

and allow participants to feel comfortable with sharing instances of human

error.

When designing my interview questions I aimed to use open-ended ques-

tions, this would allow participants to respond with rich and descriptive

answers. In order to simplify the process I am kept the language simple so

that each participant was able to easily understand. I kept questions short

and succinct and did not use negative phrasing.

In an ideal world, I would have like to use observations with a think

aloud protocol to really understand exactly what is going on when a devel-

oper makes a human error. There are a number of factors that impact on

a developer at any given time including personal stressors, which are not

always apparent when asking industry software developers about a given

error retrospectively.

Seaman (1999) reports that interviews are used to collect historical data,

opinions or impressions about something, identify terminology used in a

43

Chapter 3: Research Methodology

given setting from interviewees. There are three main forms of interview,

these are structured, semi structured and unstructured. Structured inter-

views are used to elicit answers to specific questions the interviewer has pre

set. Unstructured interviews are used to gain answers to open ended ques-

tions and are ideal to gather as much information on a a broadly defined

topic. Finally semi structured interview are designed to be a mix of both

structured and unstructured as such they use a mixture of open ended and

specific questions (Seaman 1999).

In addition to the three main forms of interview there is also narra-

tive and life history interviews. In narrative interviews the key focus is on

getting the interviewee to talk about an event or issue as a narrative. In

these interviews, interviewees must be careful when telling the story as it is

easy to jump through life stories along the way. Interviewers should refrain

from asking questions during the narrative part and make notes about the

important parts to ask questions on after (Morris 2015).

Interviews in which interviewees tell their life story while focusing on key

aspects are called life history interviews. This interview technique maybe

used to determine why the interviewee is in a certain state e.g. been in an

abusive relationship. This interview technique does cross over with semi-

structured interviews as the interviewer does provide some guidance where

necessary. This interview technique can be hard to do well as it requires a

lot of trust between the interviewer and interviewee (Morris 2015).

Seaman (1999) reports that interviewers should commence interviews

with a brief introduction about the research being conducted. The content

of this interview introduction should be carefully considered such that the

interviewees do not bias unconsciously bias there responses by leaving out

information they feel is not relevant to the interviewer. The interviewer must

also keep track of an interview to ensure that it stays on track especially

in the unstructured interviews. The interviewer must carefully guide the

44

Chapter 3: Research Methodology

interviewee back on track or interrupt them in a non abrupt or rude manner.

Interviewers may feign ignorance to gain information from the interviewee,

but also to build a rapport and eliminate any feeling that the interviewer is

an expert (Seaman 1999).

The loss of information is something that should be avoided at all costs,

where it does occur the researcher must consider at what point it will have

the least bias on the findings. There are two main stages in which infor-

mation loss can occur which are data collection and coding. Below I briefly

explore each of these and what kind of information in addition can be lost

in addition to the ’recoverable data’ in each stage (Oppenheim 1992).

In the first instance we explore data collection, so if the answer to a

question has been lost, we can simply re ask the question. While this is re-

coverable information we cannot guarantee the answer they give is the same

as previously given as the thought process maybe different. Additionally the

researcher has lost information relating to the tone of the candidates voice,

facial expression, hesitations, digression’s etc (Oppenheim 1992).

In the second instance we explore coding, which can take place in the

field or in the office. Irrespective of whether coding occurs in the field or in

the office, attention must be given to amount of categories created as this

could affect the statistical analysis if categories are combined. Where coding

occurs in the field there is a potential for bias as the interviewer has to fit

the respondents response in to an appropriate category. This bias has the

potential of being further increased if the interviewer is under pressure to

conduct the interviews again and recollect the data as quickly as possible.

On the other hand if coding occurs in the office then the coder has more

time to review the recorded responses and categorise them appropriately

(Oppenheim 1992).

45

Chapter 3: Research Methodology

3.4 Study Two: Field Experiments

This study looks to answer RQ3, RQ4 & RQ5. These questions aim to under

the types of human errors software developers make and determine whether

training software developer situation awareness can be a method to reduce

the number of human errors made.

The primary focus of this study is evaluate whether a intervention has

led to a reduction in the number of reported human errors by participants.

The could be done by using field experiment or controlled experiment. A

controlled experiment was ruled out quickly due to the time input required

from developers each day i.e. it would have been too time and financially

costly to put developers into a controlled setup for a two week period.

This led me to a field experiment, where developers would continue their

daily activities as normal and only log instances of any human errors that

occurred during the experiment. The intervention would be applied during

the experiment and then I would be able to see if the number of human

errors had reduced or not. A field experiment is an experiment conducted

outside of laboratory / controlled conditions and typically occur in real world

settings.

By allowing developers to continue their with there jobs, the time and

financial overhead was significantly reduced as they only have to contribute

to the study when they made a human error. This allows the results of the

study to more accurately reflect the impact the intervention would have on

developers i.e. they are continuing to develop real world solutions on real

projects with real world problems surrounding development.

A drawback of using field experiments is that there is limited control

over extraneous variables which could bias results. This could potentially

make it harder for future researchers to replicate the study in an identical

way.

A field experiment needs to be planned thoroughly to ensure the research

46

Chapter 3: Research Methodology

is conducted correctly and the appropriate tools and measures are used. A

sample needs to be selected in my research this is a convenience sample.

The research design needs to outlined alongside the tools for data collection

and procedure to be used. Finally consideration needs to be given to any

appropriate statistical analysis.

In addition to field experimentation I make use of a short online ques-

tionnaire to help answer RQ5. Given the short number of questions, and

responses were predominately defined a questionnaire was the ideal selec-

tion. It meant that participants could complete the follow up questionnaire

in there own time, and eliminate time in transcribing an interview for some-

thing that can easily be administered via questionnaire.

In this online questionnaire, I use a combination of free text and simple

rating scales of ‘Yes/No’ and ‘Easy/Average/Difficult’, in favour of using

more standardised Likert scale ratings. This was to help simplify the ques-

tionnaire and make it easy for participants to respond. By using a binary

scale and then providing a freetext option later, participants are able to

expand if they wish. Using ‘Easy/Average/Difficult’, instead a 5or 7 point

Likert scale makes it very simple for participants to understand what they

are selecting when completing the questionnaire.

In an ideal world, I would have like to use observations with a think aloud

protocol to really understand exactly what is going on when a developer

makes a human error. Not only would it allow me to better understand

what is going on when a developer makes an error (RQ3), but it will give a

rich insight into how developers are applying OODA loop training (RQ4).

There are a number of factors that impact on a developer at any given time

including personal stressors, which are not always apparent when asking

industry software developers about a given error retrospectively.

Sjøberg et al. (2005) report that the method for identifying cause-effect

relationships is to conduct controlled experiments. Shadish et al. (2002)

47

Chapter 3: Research Methodology

define experiment as a study in which an intervention is deliberately intro-

duced to observe its effects.

Basili (2007) report that controlled experiments need to be replicated

with varying conditions, designs and allowing for evolving questions to be

answered. Due to limitations of time and cost, my doctoral research will

not be replicated. By using developers from different companies, countries

and experience levels I hope to have a data set which represents varying

conditions.

Ko et al. (2015) report of 10 key components when designing a tool eval-

uation experiment. While my end solution is not a tool and is an online

training package the concept is very similar. I carefully evaluated the key

components and ignored two of them as I deemed them unnecessary. These

were group assignment as the online training package is designed to com-

pleted alone and training as the online training package is easy to navigate.

In addition the online training package went through a pilot study phase

which confirmed the ease of navigation.

Sjøberg et al. (2003) report using professional system development tools

in an experiment increases the realism, but requires careful planning, risk

analysis and more resources. The simplicity of my online training package

meant that participants had to follow a simple set of instructions which were

delivered as a how to guide via email. This simplicity meant that I could

afford not to add a system development tool and not add an extra system

for the participants to interact with.

3.5 Analysis Techniques

The data I have collated throughout my doctoral research is predominately

qualitative. In this section I discuss the coding techniques used.

The coding process of qualitative data becomes difficult when the data

is subjective opposed to objective as the terminology used to describe it

48

Chapter 3: Research Methodology

varies and is difficult to interpret. During the coding process it is impera-

tive that there is minimal information loss during the transformation phase

thus maintaining a high level of accuracy. The researcher may find prob-

lems during the transformation when it comes to different words used to

describe the same phenomenon or the same words used to describe different

phenomenon (Seaman 1999).

Basit (2003) reports that coding is one of the most significant steps taken

during analysis to organize and make sense of textual data. Raw data can

be extremely interesting to look at however it is difficult to gain much with

out conducting some for of systematic analysis on it. The process of coding

involves subdividing the data as well as assigning categories (Dey 2003).

Coding can either be conducted as inductive or deductive. Inductive

coding is where codes are derived from the data. Deductive coding is where

codes are applied from a pre defined list (Linneberg & Korsgaard 2019).

In my research there is a need to use both inductive and deductive coding

methods, for example human errors are already pre defined and therefore

deductive coding will be applied. While coding participant instances of these

errors in the work they have conducted will be inductive coding.

Hoda et al. (2010) report that grounded theory is being increasingly used

in the study of human aspects within SE. Stol et al. (2016) report using

version control, project management and team communication systems to

aid in the management of large amounts of heterogeneous data.

I conduct a thematic analysis (Braun & Clarke 2006) of the coded themes

and sub-themes. My approach was very similar to that used by Meyer et al.

(2019) in their analysis of reflective goal setting by developers. My supervi-

sor and I extensively discussed commonalities between the sub-themes.

For each study coding was broken down in to various stages. Typically

this took the form of verification that the described human error indeed

matched that of the category it was described in. This is to say that when

49

Chapter 3: Research Methodology

coding omission’s is the described human error an omission, if not move

it to the correct category of human error. The next stage was to assign

themes/sub-themes the data using predefined themes or generating our own.

Following on from this both my supervisor and I had a discussion about

each instance (e.g. a human error log in a log sheet). Where there was a

disagreement in the themes/sub-themes applied an extensive discussion was

had until agree ability was met.

As recommended by Kitchenham et al. Kitchenham et al. (2010) where

any disagreement on classification occurred between my supervisor and I

extensive discussion of the issues ensued and a decision made on a categori-

sation for that data or an update to the set of themes was made. Errors and

mitigation strategies that did not fit well with the current set of themes were

discussed extensively and in some cases the set of themes updated. This was

an iterative process.

It is important to note that in some instances sub-themes may be al-

located to multiple themes as where appropriate therefore figures may not

tally up entirely.

3.6 Pilot Study

No version of a questionnaire is perfect on the first attempt, it is refined

multiple times to rule out various issues and ensure it will aid in answering

the research question / aim. Before putting a questionnaire to the actual

group of target participants we should aim at targeting a subset of people

who come from a similar background or are a subset of the target audience.

By doing so we can ensure that the questions are appropriate and worded

correctly, so that the respondents can correctly answer the questions.

To ensure the pilot study is effective in its execution we need to ensure

that we target similar professionals. We have two options when it comes

to select groups for the pilot study, the first being a study set of the actual

50

Chapter 3: Research Methodology

target group. The second is taking a group of similar professionals who are

outside of the target group. Having reviewed the options and size of the

desired target population we decided to use a similar group so as to not use

the intended target.

By ensuring the pilot group is a similar group or a subset of the tar-

get group we can be sure that feedback gained from the pilot group will

be useful feedback and make the questionnaire more understandable as the

pilot respondents will come from a similar background. Dependant on feed-

back and the target audience of the questionnaire it may require multiple

iterations of pilot study.

I decided to target PhD students, researchers, academics who have ex-

perience at writing code and active software developers internal to Brunel

University London as my target audience for the pilot studies. The pilot

candidates will be targeted using email or social media. This will be achiev-

able as the target population are known colleagues of the research team.

While the sample of participants to be used in the pilot study are easy to

access, the typically aren’t full time industry software developers. There

is a definitive experience difference in the sample of participants given how

some develop industry code, some write academic code / personal projects

and others no longer actively write code.

Below I briefly explain how the pilot study was executed for Study 1 and

Study 2 respectively in Sub Section 3.6.1 & 3.6.2.

3.6.1 Pilot of Study 1

I recruited 3 doctoral researchers from the Department of Computer Science

at Brunel University to participant within my pilot study. All three of these

participants have worked within industry prior to commencing their doctoral

degrees.

I conducted the all the interviewees in an iterative manner, that is; con-

51

Chapter 3: Research Methodology

duct interview, discuss the interview with the participant, make appropriate

changes to the script and then repeated with the next participant.

3.6.2 Pilot of Study 2

I recruited 3 doctoral researchers from the Department of Computer Science

at Brunel University to participant within my pilot study. All three of these

participants have worked within industry prior to commencing their doctoral

degrees.

I condensed the time in which each experiment took to conduct. I elimi-

nated all the days and focus on the contact points and activities that needed

to be completed. I conducted a study introduction, ask my pilot participants

to complete some errors in the log sheet. I then asked them to complete the

intervention. Any necessary feedback on the log sheet will have already been

obtained so I do not asked them to complete it post intervention. I then ask

the pilot participants to complete the end of study follow up questionnaire.

I conducted the all the experiments in an iterative manner, that is; con-

duct interview, discuss the interview with the participant, make appropri-

ate changes to any study documentation, log sheets, intervention material,

follow up questionnaire and then repeated with the next participant.

By iterating through participants in this cycling method I am able to

build on feedback. If I had approached pilot study participants all at once,

I could have got the same / similar feedback from all. This way more things

can come to light and be addressed as small issues get fixed between pilot

cycles.

3.7 Participant Type: Student, Professional or Both

What type of participant should be used for my study, student, professional

or both. In this section I explore the literature to determine what the correct

52

Chapter 3: Research Methodology

approach is and also highlight the approach that I will use for my doctoral

research.

Sjøberg et al. (2002) reports that students typically used in software en-

gineering research as they are more accessible and easier to organise. Sjøberg

et al. (2002) argue that there are a variety of differences between student and

professional, examples include; experience and skill level, use of professional

methods and tools and team work versus individual work. Sjøberg et al.

(2002) report that differences amongst students and professionals may be

large enough that the subject category could be irrelevant and the difference

accounted for as one of many characteristics of being a software engineer.

Vegas et al. (2015) reports that within the area of empirical software

engineering, lab experiments have become common practice. Currently it is

unclear as to how generalizable the results of a lab experiment are given that

they are simplifications of real world situations (Vegas et al. 2015). Vegas

et al. (2015) reports that typically students are used over professionals, par-

ticipants conduct exercises or create toy software instead of working on real

projects and participants are typically putting what they have learned into

practice instead of harnessing developer knowledge and experience. Vegas

et al. (2015) reports of 15 difficulties regarding securing company involve-

ment in running an experiment. Vegas et al. (2015) report that industrial

environments have imposed more constraints than laboratory environments

and professionals were under motivated and performed worse than students.

Salman et al. (2015) conducts an experiment to determine whether stu-

dents are representatives of professionals in software engineering experi-

ments. Salman et al. (2015) perform a Test Driven Development experi-

ment on the subject groups; student (17 participants) and professional (24

participants). Salman et al. (2015) asks “How much does the code quality

of a task produced by students using Test Driven Development differ from

the code quality of a task produced completed by professionals using Test

53

Chapter 3: Research Methodology

Driven Development?” and “How much does the code quality of a task pro-

duced by students using Test Last Development differ fromt he code quality

of a task produced by professionals using Test Last Development?”.

Salman et al. (2015) report that there was a difference in code quality

when Test Last Development was used, however both groups performed sim-

ilarly when Test Driven Development was used. Salman et al. (2015) find

that the difference in code quality may be due to the tasks the groups were

assigned. Salman et al. (2015) conclude that there neither subject group

outperform each other when applying a new technology during experimen-

tation.

Falessi et al. (2018) report the opinions of a group of experts on the

use of students and professionals as subjects in software engineering exper-

iments. They ask three research questions which are ‘What are the pros

and cons of using professionals and students as subjects in software engi-

neering experiments?’, ‘As a community, what do we agree and disagree on

with respect to subjects in software engineering experiments?’ and ‘Is it

possible to characterize subjects using a different classification than profes-

sionals or students?’ Falessi et al. (2018) conducted a focus group during

a session at ISERN 2014, in which 65 empirical researchers including the

authors argued on the challenges with using students as subjects in soft-

ware engineering experiments. The authors consolidated there findings in

to 14 statements. These statements were evaluated by the ISERN session

attendees in fall 2016 by completing a questionnaire which reported their

personal level of agreement with the statements.

Falessi et al. (2018) find that neither subject category is always better

than the other. Professionals come at a higher cost and are not as accessible

as students, although professionals are more representative (Falessi et al.

2018). It is impossible to say that students or professionals will always be

better than the other due to the number of pros and cons that each subject

54

Chapter 3: Research Methodology

category poses (Falessi et al. 2018). Falessi et al. (2018) report that the com-

munity agrees with statement nine and fourteen. The statements are “ST9

- We should think about population and validity already before conduct-

ing the experiment, at the time when we are planning to use convenience

sampling” and “ST14 - The suitability and representativeness of students as

proxies for professional developers change with different contexts and with

different types of population.”. Given that students and professionals are

not mutually exclusive subject categories, Falessi et al. (2018), propose a

scheme in which subjects should be categorized. This scheme categorizes

subjects with respect to: real experience, relevant experience and recent

experience (Falessi et al. 2018).

Höst et al. (2000) investigates the difference between student and profes-

sional groups by assessing the difference on ten different factors which affect

the lead time of software development projects. Höst et al. (2000) reports

that there are minor differences in conception and no significant differences

in correctness between the two groups. Höst et al. (2000) reports that fi-

nal year software engineering students are relevant as subjects in empirical

software engineering research.

Reviewing the findings it becomes apparent that neither student or pro-

fessional are better sources of subject in empirical software engineering re-

search. Salman et al. (2015) ask questions of code quality differences between

students and professionals. There is a similarity with what I plan to do and

this, where I will ask developers to develop a solution using a tool and as-

sess the number of faults detected after. This presents an argument to use a

combination of both students and professionals. Falessi et al. (2018) report

that the suitability of a group of subjects changes given the context and

type of population. Falessi et al. (2018) propose a scheme which factors in

real experience, relevant experience and recent experience.

As it is clear that neither group is better than the other, I now explore

55

Chapter 3: Research Methodology

the literature to see what subject category has been used. Hu et al. (2017,

2016), Anu et al. (2016a), Huang (2016), Huang et al. (2014), Anu et al.

(2017, 2016b) use computer science students (70%) at undergraduate (50%)

or postgraduate level (20%). Huang & Liu (2017), Huang et al. (2012), Hu

et al. (2017a) use professionals (30%) made up of practitioners (10%) or com-

bination of practitioners and researchers (20%). Of the research conducted

using students 20% is focused on software development. Of the research us-

ing professionals 20% is focused on software development. This shows that

human error research within software development uses professionals over

students.

For my research I will be aiming to use research participants who have

experience at writing code on industry projects. By doing so I am able to use

participants who may have retrained e.g. become a researcher or participants

who have gone back to study for postgraduate qualifications. When seeking

participants for pilot studies I will be aiming to get participants who have

experience at writing code.

3.8 Sampling

In any qualitative research a sample of the population is used and studied.

Marshall (1996) reports that there are three sample strategies when it comes

to selecting a sample for a qualitative study; convenience sample, judgement

sample and theoretical sample. These samples can be defined as;

• A convenience sample involves selecting the most accessible sub-

jects. (Marshall 1996)

• A judgement sample involves the researcher actively selecting the

most productive sample. (Marshall 1996)

• A theoretical sample involves building interpretative theories from

56

Chapter 3: Research Methodology

the emerging data and selecting a new sample to examine and elabo-

rate on this theory. (Marshall 1996)

Having had keen industrial collaborators from the beginning of my re-

search, I have used a convenience sample due to the ease of access to highly

desirable participants. I did set out basic preconditions which said any par-

ticipant should be a practising software developer on industrial projects.

This is automatically met by using the convenience sample of industrial

collaborators.

3.8.1 Sample Size

In this subsection I will consider the sample size required for doctoral re-

search. The sample size will vary depending on what stage of research is

being conducted i.e. is it a pilot or actual study, is the sample a group of

experts or industry practitioners?

Kadam & Bhalerao (2010) reports that if a sample size is too small the

results are not generalizable, as the sample is not an accurate representa-

tion of the target population. Kadam & Bhalerao (2010) reports that if a

sample size is too big the researcher runs the risk of subjecting participants

to unnecessary interventions and wasting valuable resources e.g. partici-

pant/researcher time.

In order to determine the sample size, we must first determine what

the confidence level, confidence interval and population are. The confidence

level is a percentage which indicates how sure you are that the results are

going to be true. The confidence level is typically set at 95%. The confidence

interval is the range within which the respondents would have picked the

same answer. The confidence level is typically set at 5%. I define the

population as software developers within an industry setting as this is the

focal point of my doctoral research. Thibodeau (2013) estimates that there

are 18.2 million software developers worldwide, rising to 26.4 million software

57

Chapter 3: Research Methodology

developers in 2019.

Using the sample size calculator provided by www.surveysystem.com/

sscalc.htm, I set the confidence level to 95%, confidence interval to 5 and

population to 26,400,000 (population as estimated by Thibodeau (2013)).

The sample size required is 384. Wagner et al. (2020) report of a similar

figure, they suggest a sample size of 400 to attain generalisability.

Barlett et al. (2001) report that researchers use inadequate sample sizes

as they are faced with various constraints. These constraints include; time,

personnel or other resource limitation. Barlett et al. (2001) report that in

instances where inadequate sample sizes have been used, researchers should

report the appropriate sample size, used sample size, reasons behind using

an inadequate sample size and discuss the effect of using an inadequate

sample may have upon the research study.

Trying to recruit 384 participants on two separate occasions is not going

to be a trivial task. This presents me with a constraint as described by

(Barlett et al. 2001). I will now looking at the literature to see what type

of sample size has been used. Hu et al. (2017a) do not report how many

professionals and researchers are used.

Looking first at the participant numbers where undergraduate students

have been used. Huang et al. (2014) reports using 70 undergraduate stu-

dents. Huang et al. (2012) reports using 55 undergraduate students. Hu

et al. (2016) reports using 28 undergraduate students. Anu et al. (2016a)

reports using 46 undergraduate students. Hu et al. (2017) reports using 31

undergraduate students. The mean number of participants where under-

graduate students are used is 46.

Looking next at the participant numbers where postgraduate students

have been used. Anu et al. (2017) reports using 34 postgraduate students.

Anu et al. (2016b) reports using 17 postgraduate students. The mean num-

ber of participants where postgraduate students are used is 26.

58

Chapter 3: Research Methodology

Finally looking at the participant numbers where professionals have been

used. Huang & Liu (2017) reports using 14 professionals. Huang (2016)

reports using 15 professionals and 1 researcher. The mean number of par-

ticipants where professionals are used is 15.

I have learned how the sample size vary depending on the participant

group. Given that I aim to use industry software developers for my research

I aim to realistically get 20 participants per study. 20 industry software

developers would be more than any other study has used to investigate

human error within software development to my knowledge. Having looked

at the mean number of participants from studies in the area I believe 20

industry software developers is a sufficient number for a small scale study.

Connelly (2008) reports that a sample size for a pilot study should be

10% of the actual study. This means I need to get a minimum of 2 partici-

pants per pilot study.

To conclude I have learned that there are many factors that can influence

an ideal sample size representing the population. I noticed that I am likely

to encounter constraints on recruitment of participants during my research.

I have explored what sample sizes other researchers have used and will base

my sample size of similar values.

3.9 Empirical Validity

Careful attention must be paid to construct, internal and external validity

and reliability in order to ensure that the conclusions drawn from the re-

search can be seen as valid (Easterbrook et al. 2008). Kitchenham et al.

(2002) highlight guidelines for conducting empirical software engineering re-

search, which explore all angles of research. These guidelines aid in ensuring

that construct, internal and external validity threats are minimised to ac-

ceptable levels.

59

Chapter 3: Research Methodology

Easterbrook et al. (2008) reports construct validity addresses whether

theoretical constructs are interpreted and measured correctly. As such an

example would be if an experiment designed to test the efficiency of a net-

work, that the researcher’s interpretation of efficiency is the same as other

researchers.

Easterbrook et al. (2008) reports that internal validity focuses on whether

the study has been designed and conducted properly. An example of an in-

ternal validity threat would be comparing a control group of average students

taught to program using conventional teaching methods against an experi-

mental group of excellent students taught to program using novel teaching

methods.

Easterbrook et al. (2008) reports that external validity addresses whether

claims for generality of results are justified. As such if a given piece of

research was focused at developers within Capability Maturity Model Level

5 organisation, it would be difficult to convince readers that the results are

applicable to first year undergraduate computer science students.

Reliability focuses on the repeatability of a given piece of research. As

such it contains details of the conducted research at a level such that another

researcher could conduct the same research and gain the same results. East-

erbrook et al. (2008) highlight that potential problems could be identified if

another researcher can not gain the same results, it could highlight that the

researcher bias has been introduced. This could be because the researcher

had a stake in that particular piece of research perhaps the requiring the

successful evaluation of a tool.

Maxwell (1992) reports a number of threats to validity when it comes to

qualitative research, some of these include; descriptive validity, interpreta-

tion validity, theoretical validity and generalisability.

Maxwell (1992) reports that descriptive validity addresses whether a

researcher has accurately recorded what they heard a participant say and

60

Chapter 3: Research Methodology

or do. Walsh (2003) discusses the same concept at ‘credibility’. Has the

researcher accurately recorded what was said during the interview. If factors

like stress and tone of voice are important, have these been recorded? In

my research it is only important to ensure that the transcriptions accurately

record what has been said.

Maxwell (1992) reports that interpretation validity addresses whether a

researcher has captured the observation as interpreted by the participant

being researched.

Maxwell (1992) reports that theoretical validity addresses whether the

validity of the researcher’s concepts and the theorized relationships among

the concepts in context with the phenomena.

Auerbach & Silverstein (2003), Maxwell (1992) report that generalis-

ability addresses whether you can apply the theory resulting from the study

universally. Within qualitative research this is difficult as any body of re-

search hones in on the themes and sub-themes identified within the sample

group being studied. My research is exploratory in nature and would require

a much larger sample size before generalisability can be considered.

3.10 Summary

In this chapter I explore the methods that have been employed in studies

throughout Human Error Theory literature, examine the theory behind sur-

vey methods along side the appropriate analysis techniques. Key takeaways

from this chapter are:

• Historical Methods used in Human Error Theory research

An array of methods are used within Human Error Theory research

including; survey, case study and experimentation. Some methods

are used more often for eliciting human errors from participants e.g.

surveys.

61

Chapter 3: Research Methodology

• Methods to Used I will employ survey methods to elicit example of

human errors from industry software developers. I will employ con-

trolled experiments to determine whether a safeguard (online training

package on SA) is effective at reducing the number of human errors

made.

• Participant Types While students are easily accessible and com-

monly used with SE Human Error Theory I will be using industrial

software engineers. This is to prevent anomalous human errors (specif-

ically human errors reported by students alone) being reported.

• Sample Size An ideal sample size would be 384 industry software

developers. Recruiting such a number of software developers could

be challenging, having looked at similar research I aim to recruit 20

participants in a study.

62

Chapter 4

What SB errors do industry

sofwtare developers make

and how can we mitigate

these? - An Interview Study

This chapter develops an understanding of human errors within software de-

veloper. This will allows for the identification of frequently occurring errors

and lead to reduce the number of defects introduced into code as a result

of human error by industry software developers. I need to first understand

which type of SB human error occurs most within the development phase of

the SDLC and how industry software developers mitigate these SB errors.

This will allow me to build a basic Swiss Cheese Model and identify which

areas are in most need of attention.

Section 4.1 presents the research questions I ask in this study. Section

4.2 details the approach taken for the study. Section 4.3 presents the results

for this study. Section 4.4 presents the threats to validity for this study.

Section 4.5 presents a summary of this chapter.

63

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

4.1 Research Questions Addressed In This Study

In this chapter I address the following research questions;

• RQ1 What SB errors do industry software developers experience dur-

ing development?

• RQ2 How do industry software developers mitigate the SB errors they

experience during development?

4.2 Approach

To understand developer experiences of the errors they make during devel-

opment I used qualitative research in the form of semi structured interviews.

I iterate through the eight SB errors described by Reason, describing each

error and a non software engineering related example. I then ask developers

to describe instances where an error has occurred in the development work

they have done. Additionally I ask developers to describe any mitigation

factors they have subsequently put in place to safeguard themselves against

the error in the future. (See Appendix B.2 for more detail on the definitions

and associated real world examples provided) I implemented a grounded ap-

proach to coding the qualitative interview data collected. I now detail the

study participants and their recruitment, the interview process and data

analysis involved in our study.

4.2.1 Participants & Recruitment

The study was performed over a sixteen week period. During this time I

interviewed 27 industry software developers. Those interviewed included: 4

women and 23 men aged between 18 and 54. Of these industry software de-

velopers 14 had more than ten years of industry experience. These industry

software developers were a convenience sample and had been contacted by

64

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

word-of-mouth, email and face-to-face. Table 4.2 provides a full breakdown

of the participants who were recruited for this study. In addition to this I

shared details of the study and issued invitations to participate on social

media, with posts on LinkedIn and Twitter.

Table 4.1 shows how many views, likes and shares each post gained.

When reviewing the figures in the views column it is important to note that

this reflects how many people have seen it. This is not an indication of how

many people have read the post fully or followed up on details. I do not

have any demographic information about the users that viewed the posts

therefore I cannot be sure whether they are views from the intended target

group i.e. industry software developers.

Views Like Shares

Twitter 6340 18 19

LinkedIn 632 5 2

Table 4.1: Social Media Views For Participant Recruitment

Please see Table 4.2 for demographic data of participants of the inter-

views.

G
e
n
d
e
r

A
g
e

R
a
n
g
e

Y
e
a
rs

o
f

In
d
u
st
ry

E
x
p
e
ri
e
n
c
e

P
ri
m
a
ry

J
o
b

R
o
le

P
ri
m
a
ry

In
d
u
st
ry

P
ri
m
a
ry

L
a
n
g
u
a
g
e

O
S
S

v
s

C
S
S

P1 Male 18-24 1-3 Software De-

veloper

Software

Industry

Python CSS

P2 Male 35-44 4-7 Software De-

veloper

Software

Industry

Python CSS

P3 Male 18-24 <1 Data Ana-

lyst

Healthcare R, Bash

and Mat-

lab

CSS

65

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

G
e
n
d
e
r

A
g
e

R
a
n
g
e

Y
e
a
rs

o
f

In
d
u
st
ry

E
x
p
e
ri
e
n
c
e

P
ri
m
a
ry

J
o
b

R
o
le

P
ri
m
a
ry

In
d
u
st
ry

P
ri
m
a
ry

L
a
n
g
u
a
g
e

O
S
S

v
s

C
S
S

P4 Male 35-44 10+ Lead Scala

Developer

Fashion Scala CSS

P5 Male 35-44 10+ Senior Devel-

oper

Meetings and

Events

PHP CSS

P6 Female 35-44 8-10 Senior Devel-

oper

Meetings and

Events

PHP and

JavaScript

CSS

P7 Male 25-34 4-7 Developer Meetings and

Events

PHP and

SQL

CSS

P8 Male 35-44 10+ Solutions

Consultant

Meetings and

Events

C#,

Pascal,

Fortran

and C++

CSS

P9 Male 45-54 10+ Technical

Architect

Meetings and

Events

PHP CSS

P10 Male 25-34 4-7 Product

Manager

Tech (Indus-

trial Applica-

tions)

Python CSS

P11 Male 35-44 10+ Director Digital In-

novation in

Manufactur-

ing

Python OSS

P12 Male 45-54 10+ Python De-

veloper

Contract pro-

grammer for

aid organisa-

tion

Python CSS

66

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

G
e
n
d
e
r

A
g
e

R
a
n
g
e

Y
e
a
rs

o
f

In
d
u
st
ry

E
x
p
e
ri
e
n
c
e

P
ri
m
a
ry

J
o
b

R
o
le

P
ri
m
a
ry

In
d
u
st
ry

P
ri
m
a
ry

L
a
n
g
u
a
g
e

O
S
S

v
s

C
S
S

P13 Male 35-44 10+ Software En-

gineer

Finance Java CSS

P14 Male 35-44 10+ Developer Finance JavaScript CSS

P15 Male 25-34 4-7 Oracle

DBA Devel-

oper/Analyst

Inhouse IT C++ OSS

P16 Female 45-54 10+ Software De-

veloper

Education VB.Net CSS

P17 Female 35-44 8-10 Software De-

veloper

University

(Software and

Development

Team)

.NET,

c#, An-

gularJs,

JavaScript,

HTML,

CSS

CSS
OSS

P18 Male 25-34 1-3 Software De-

veloper

IT Service

Management

Scala CSS

P19 Male 25-34 10+ Technical

Architect

Meetings and

Events

PHP CSS

P20 Male 25-34 4-7 Agile JAVA

Developer

Tele-

communications

JAVA CSS

P21 Male 35-44 10+ System Ana-

lyst

Education JAVA OSS

P22 Male 35-44 10+ Software Ar-

chitect

Leisure JAVA, Js CSS

67

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

G
e
n
d
e
r

A
g
e

R
a
n
g
e

Y
e
a
rs

o
f

In
d
u
st
ry

E
x
p
e
ri
e
n
c
e

P
ri
m
a
ry

J
o
b

R
o
le

P
ri
m
a
ry

In
d
u
st
ry

P
ri
m
a
ry

L
a
n
g
u
a
g
e

O
S
S

v
s

C
S
S

P23 Male 25-34 8-10 Backend

Support

Developer

Events Man-

agement

PHP CSS

P24 Male 25-34 1-3 Research As-

sistant

Academia C/C++ OSS

P25 Male 45-54 10+ Principal

Software

Architect

Media & En-

tertainment

C++
Python

CSS
OSS

P26 Male 25-34 10+ Engineering

Manager

Broadcast

Software

JavaScript CSS

P27 Female 35-44 1-3 Software De-

veloper

Software

Development

Java CSS

Table 4.2: Demographic Data - Interview Participants

4.2.2 Interview Method

I describe the process taken during the data analysis phase as shown in Fig-

ure 4.1. In this study I used semi-structured interviews to question industry

software developers about their errors during coding. I asked industry soft-

ware developers how they mitigated their errors. Although the interviews

had predetermined questions, there was an element of unstructured open

ended questions that could be used as follow-ups. This was based on an

interviewee’s answers and the interviewer’s interpretation.

Interviews were held between August 2018 and December 2018. I con-

ducted all the interviews and so consistency was maintained across all in-

68

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Figure 4.1: Interview Process for Interview Study

terviews. The interviews were either face-to-face, mostly at the developer’s

workplace, and video calls using Skype. The interviews lasted between 30

to 45 minutes. All interviews have been recorded and transcribed.

The structure of the interview was as follows;

1. Introduction and overview of logistics.

2. Explain each of the eight skill-based errors. Each explanation included

providing a definition and a non software engineering-related real world

example. Details of the eight skill-based errors and the non software

engineering examples can be found in Appendix B.2 - Supporting Ma-

terial For Study One.

3. Ask each developer about their error occurrences and mitigation strate-

gies for each of the eight skill-based error types. A sample set of ques-

tions can be found in Appendix B.3 - Supporting Material For Study

One.

69

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Figure 4.2: Data Analysis Process for Interview Study

4. Close and thanks. The demographic questions that I asked indus-

try software developers can be found in Appendix B.4 - Supporting

Material For Study One.

4.2.3 Data Analysis

Below I explain the data analysis process as depicted in Figure 4.2. Once

the interviews were performed, each interview audio recording was then

transcribed manually by myself to allow for coding and analysis.

I identified n sub-themes and grouped them into 4 themes for errors and

mitigation strategies in the transcripts using Thematic Analysis (Braun &

Clarke 2006). My approach was very similar to that used by Meyer et al.

(2019) in their analysis of reflective goal setting by industry software de-

velopers. My supervisor and I extensively discussed commonalities between

the sub-themes and noticed that these themes for mitigation strategies re-

lated well to the generic high level concepts identified by (Graziotin et al.

2017). These high level themes were: management, tools, processes and

70

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

the developer. Graziotin et al. (2017)’s scheme seemed a useful high level

clustering of the mitigation strategies themes my supervisor and I extracted

and so I adopted this theme structure and organised our mitigation strategy

sub-themes within it.

Structuring interviews around the eight SB error types meant that all

interview data was also already organised into those eight SB error headings.

My supervisor and I open coded each reported error and mitigation

strategy based on direct quotes from transcripts against the sub-themes

established. To ensure that coding was conducted reliably my supervisor

and I extensively discussed each error type prior to performing any coding

to ensure their understanding was the same. Then my supervisor and I

independently coded interview transcripts. When coding the transcripts my

supervisor and I looked to:

1. Themes and supporting evidence for a given SB error.

2. Themes and supporting evidence for a given mitigation strategy.

I noticed that the error themes which emerged from the interview data

were not all psychological events, i.e., were not errors in the true Human

Error Theory sense. Some of the themes which emerged from the data

were the reasons that errors had occurred, while other themes were the

consequences of errors having occurred. Although this spread of data across

the three aspects of error (reason, error and consequence) was not what

I had expected, it seemed to me that what industry software developers

reported was nevertheless important. Consequently, I labelled each industry

software developer reported ‘error’ as either: a reason for error, an error or

the consequence of an error.

As recommended by Kitchenham et al. (2010) where any disagreement

on classification occurred between my supervisor and I extensive discussion

of the issues ensued and a decision made on a categorisation for that data or

an update to the set of themes was made. Errors and mitigation strategies

71

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

that did not fit well with the current set of themes were discussed extensively

and in some cases the set of themes updated. This was an iterative process.

It is important to note that in some instances sub-themes may be al-

located to multiple themes as where appropriate therefore figures may not

tally up entirely.

Theme categorisation was documented using a custom kanban style board

using Trello1. Cards were created with themes to support a SB error type

or a mitigation strategy. The cards were assigned labels to show which par-

ticipant transcript supports the theme. Evidence to support a theme was

highlighted on the transcripts and given a reference number. This reference

number was added to the appropriate Trello card.

4.3 Results

In this section, I present the findings that arose in the interviews. I present

the data for both error and error mitigation in separate sub-sections related

to the two research questions posed.

4.3.1 RQ1: What Skill-based (SB) human errors do industry

software developers make while performing software

development tasks?

The 27 interviews elicited 57 themes of errors across eight SB error types.

Table 4.42 shows the number of error and mitigation strategies broken down

by SB error type. It is important to be able to see if there is a signifi-

cant difference in the number of inattention errors or over attention errors

and or mitigation strategies being described by developers. It is also useful

know if a given SB error type has a significantly larger number of mitiga-

1https://trello.com/en
2All participants were asked about each SB error type, however, not every participant

was able to provide an example, for every SB error type.

72

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Sub-Theme Explanation Reason, Error,

Consequence

Mentions

Complexity of Develop-

ment Environment

Too many things going on in

development space

R 16

Concentration Lacking concentration E 13

Duplications Repeating tasks C 10

Requirements Problems Poor requirements engineer-

ing

R 8

Context Switching Switching tasks R 6

Rabbit Hole Going down the rabbit hole

while performing a task

C 4

Testing Not testing as well as they

could have / lacking test au-

tomation coverage

C 4

Distractions Variety of distractions e.g.,

noise

R 4

Work Pressure Increased work pressure to de-

liver tasks

R 4

Understanding Lack of understanding of the

task

R 2

Table 4.3: Developer Error Themes (in ranked order)

73

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

tion strategies described compared with the errors described. A SB with a

higher number of mitigation strategies to errors could be argued as better

understood and or easier to safeguard against as developers know of more

effective ways to safeguard themselves. Table 4.4 shows that Perceptual

Confusion errors were mentioned most frequently with industry software

developers giving examples of errors stemming from being on auto pilot.

These autopilot errors relate to a range of error causes (e.g., complexity of

developer environment) which I discuss next. Some SB error types (e.g.,

double capture and interference errors) were not mentioned often (4 and 5

mentions respectively), which may mean that these errors do not happen as

often but more research is needed to establish this.

Skill Based Error Type Error Themes Mitigation

Strategy

Themes

Omission 9 18

Repetition 8 18

Reversal 6 8

Omission following Interruption 6 23

Double capture slips 4 12

Reduced Intentionality 6 15

Perceptual Confusion 13 13

Interference Error 5 6

Table 4.4: Number of Theme Occurrences of each Skill Based Error Type

I also considered the errors mentioned by industry software developers

in terms of developer error sub-themes as shown in Table 4.3. (Table 4.3

is a subset of a larger list of error sub themes, to view the list of all error

themes see Appendix B.5). More details of each error theme in Table 4.3

(which also includes a classification of each theme in terms of whether the

74

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

theme is an error reason, an error or the consequence of an error). My

results suggest that industry software developers focus more on the reasons

for errors and their consequences, than the errors themselves (see Table

4.3). The psychological event that is the error (e.g. lost concentration)

seems no more important to developers than the reasons and consequences

of errors. Table 4.3 suggests industry software developers believe that many

errors are as a result of the complexity of the development environment that

they work with. In particular, knowledge of multiple languages, multiple

tools, multiple views and dependencies between these needs to be maintained

and context switched during programming tasks. Complex programming

tasks themselves have a significant cognitive load Peitek et al. (2020), but

performing programming tasks within a complex development environment

is likely to increase this cognitive load still further. For example, S1P17 told

me that errors occurred when

‘...running some queries or SQL on the database, when you don’t

realise you are on QA or Live.’

S1P12 said

‘typing commands into the wrong window’

caused errors and S1P10 said that

‘...using a JavaScript based templating language we wrote an if

statement with an end condition in and I used the python way

of writing the end which meant at the next step the whole thing

didn’t render.’

Table 4.3 shows that industry software developers also recognise that

a frequent human error is their own concentration being impaired. Issues

surrounding concentration, context switching, work pressure, rabbit hole3,

3Going down a rabbit hole is a metaphor commonly used to indicate someone has gone

75

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

understanding and distractions were cited regularly by industry software

developers which suggests that it is easy for industry software developers to

lose their awareness of a given task:

• S1P26

‘You go and reply to the email and by the time you come

back you have forgotten what you were going to do.’

• S1P13

‘Very often what I found is you can just go down blind alleys,

but also you can go into this reversal thing where you can’t

see why you made a certain change in a certain area of the

code...’

• S1P16

‘It is to do with the nature of the speed of when you have to

deliver...’ ‘...someone comes in at 5pm and says I need that

for tomorrow. So you are under a lot of pressure and that

is when a lot of errors can occur.’

• S1P22

‘...its like I am jedi, its all flowing out of the fingers and it

will be like that for several hours and suddenly I will think

oh I am really hungry or oh I need a wee. But it could be

anything, it could be like the phone ringing and because you

are kind of there in the moment, quite often you have fingers

in many different pies all at the same time. And you have

got a model you are holding in your head, pulling you out

into a situation or started a process which is particularly difficult, complex or chaotic,

especially one that becomes increasingly so as it develops or unfolds

76

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

of that flow means that occasionally you drop some of that

model on the floor. I mean you usually find it again at bit

later, but yeah it has caused some disruption to me in the

past.’

• S1P16

‘...I do SSRS reports and uploading them is a repetitive task.

So you could easily upload the wrong report, if you don’t

concentrate on what you are doing...’

Duplications are mentioned 10 times by industry software developers as

the consequence of an error. Duplicate code is a well-known bad smell so

it is interesting that industry software developers recognise duplications as

an outcome of human error. Requirements problems also feature in the list

of reasons for errors. Requirements problems are well-known as a source

of failure throughout the development process (for example, the London

Ambulance System failure Beynon-Davies (1999)), so it is not surprising

that industry software developers say these problems underpin some of the

errors they make.

Overall my results in response to RQ1 suggest that industry software

developers blame their own lack of focus and concentration errors for many

faults. With many errors reported by industry software developers to be

caused by the complex development environment in which software devel-

opment occurs.

4.3.2 RQ2: How do industry software developers mitigate

their Skill-based (SB) human errors?

I have classified the mitigation strategies mentioned by industry software

developers into four themes which are the developer, processes, tools and

management. Table 4.5 presents these themes and shows the number of

77

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

times each theme was mentioned by industry software developers during

interviews. Table 4.5 shows that industry software developers see themselves

as highly influential in mitigating errors, suggesting that industry software

developers seem to take a great deal of personal responsibility for trying to

prevent errors.

Table 4.6 shows the sub-themes of the developer mitigation strategies.

Table 4.6 suggests that a large number of themes relate to the industry

software developers’ cognitive issues such as focus, concentration, discipline,

attention, understanding and awareness. Most of these issues were discussed

by industry software developers in terms of them using willpower to improve

their coding behaviour. For example, industry software developers said:

• S1P10

‘...being very disciplined if you know you have a context you

know you need to restore...’

• S1P16

‘So you take responsibility by checking your work to ensure

you are filtering out the one record...’

• S1P12

‘... awareness is there and developers should be aware all

the time...’

• S1P16

‘...focusing on what you are delivering as opposed to meeting

the deadline...’

• S1P12

‘Just by remembering.’

78

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Sub-Theme Developer Process Tools Management

Focus 10

Concentration 8

Use Headphones 7

Awareness 6

Discipline 5

Learn 4

Checklist 12

Code Reviews 9

Testing 8

Note Taking 6

Communication 6

Documentation 6

Pull Requests 3

Automation 9

Git 5

Compiler 4

Navigation Helper 2

Planning 3 3

Training 2

Best Practices 2

Prioritisation 1

Well formed, low level

processes

1

Awareness 1

Other 15 7 8

Total Instances 58 57 28 10

Table 4.5: Mapping Mitigation Strategy Themes to Sub-Themes

79

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

These quotes suggest that industry software developers believe that by

being more self controlled they could reduce coding errors. Increased willpower

and self discipline is notoriously hard to achieve without structured support.

In addition, external factors such as those mentioned previously (e.g., fa-

tigue, illness, boredom, frustration, noise, heat, etc.) can hamper willpower

and self discipline.

Although Table 4.6 shows a variety of developer-based mitigation strate-

gies, it is surprising that reducing tiredness and taking breaks was not ex-

plicitly mentioned more frequently by industry software developers. The

impact of tiredness on errors seems conventional wisdom. It is unclear why

tiredness did not feature more directly in my results. It is clear that tired-

ness etc. can be a reason for industry software developers to lose their focus

on a task Sarkar & Parnin (2017) so it is surprising that industry software

developers did not mention this more often. Similarly it is surprising that

interruptions were not mentioned more explicitly by industry software de-

velopers. Interruptions are widely thought to underpin errors Sykes (2011)

but were not mentioned much in my study. Bailey & Konstan (2006) report

that interruptions have a disruptive impact on completion time and error

rate. Where interruptions were mentioned it was indirectly, with industry

software developers talking about mitigation for errors like using headphones

and turning emails off.

Processes

Mitigation strategies related to processes were frequently mentioned by in-

dustry software developers. Most of these strategies are based on detecting

the consequences of errors in terms of spotting faults in code. Table 4.7

suggests that many process themes are related to getting faster feedback

on whether work is likely to contain faults. For example, ‘testing’, ‘code

reviews’ and ‘pull requests’ all enable early checking of work products in re-

80

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

lation to faults. For example, some industry software developers mentioned:

• S1P13

‘And the pull request is a deliberate, these are my commits

and this is my change set, I’m going to review it myself and

someone will also peer review and only then will it become

consequential. And that’s really important because you will

always pick up issues.’

• S1P19

‘...first of all from a developer point of view any change must

be documented. No one is allowed to make any changes

before documenting the change and running it by a senior

developer first.’

Table 4.8 suggests that automation is an important element of mitigating

developer errors. Industry software developers seem to rely on automation

tools or tools that have elements of automation to aid in reducing their

errors. For example, some industry software developers mentioned:

• S1P20

‘...generally the pattern is we have automated something

that would have been a human error before and you can’t

always do that but its nice when you can.’

• S1P7

‘Usually I stash all of them for instance if I am on some

branch, something urgent, imminent comes up and they say

you need to fix this one, this is very urgent one.’

81

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Management

Although management did not feature hugely in mitigation strategies, Table

4.9 suggests that management need to better plan workloads, promote and

provide training for industry software developers to use best practises. For

example, some industry software developers mentioned:

• S1P11

‘...to be aware of how you prioritise things and to switch to

these new tasks only if it is really urgent. So it takes some

effort to do that. Prioritisation’

• S1P10

‘...we have always had someone from a more product-y per-

spective or the user or client or whoever, looking at a staging

server or a version of the code running, making sure that the

functional requirements were being fulfilled.’

The mitigation strategies cited by industry software developers are not

very surprising. Industry software developers seem to know what errors they

make and what they need to do to mitigate errors and to detect the conse-

quential faults. Despite this knowledge industry software developers seem to

struggle to implement these mitigation strategies themselves. Taking per-

sonal responsibility for error mitigation may not be the most effective route

to reduce errors. Supporting industry software developers in effective error

mitigation is likely to depend on better tools, management and processes.

Overall in response to RQ2 my results suggest that industry software

developers predominately rely on trying to improve their own willpower to

mitigate errors. Industry software developers use a variety of strategies

to retain their focus and concentration in order to reduce the number of

errors they make. Industry software developers also use mitigation strategies

82

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Theme Explanation Mentions

Focus To give special attention to a specific task. 10

Concentration To think intensely about a specific task. 8

Use headphones Use headphones to reduce background dis-

tractions.

7

Planning Appropriately plan the task. 6

Awareness Develop an awareness of the project and

task, so you can address potential issues.

5

Discipline To follow a series of rules or a code of prac-

tice.

4

Learn Learn about the project, software tools,

language etc.

3

Other Example Ignore emails when conducting

tasks

15

Table 4.6: Themes of Developer Mitigation Strategies

within the development process, often to detect faults (e.g., checklists), tools

(e.g., automation) and management (e.g., planning).

4.4 Threats To Validity

As with any empirical research our study has several threats to validity.

Below I explore the threats to validity as construct validity, internal valid-

ity, external validity and repeatability. In addition to these I explore the

following threats to qualitative research as described by Maxwell (1992);

descriptive validity and interpretation validity.

83

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Theme Explanation Mentions

Checklist Use checklists to verify process flow has

been conducted.

12

Code Reviews Use code reviews to peer review work prior

to committing.

9

Testing Have better test coverage to ensure more

cases are covered.

8

Note taking Don’t rely on memory, keep physi-

cal/typed notes to serve as a prompt.

6

Communication Promote communication within the team. 6

Documentation Create and use code documentation. 6

Pull Requests Use pull requests to peer review work prior

to committing.

3

Other Example Complete refactoring tasks sep-

arately

7

Table 4.7: Themes of Processes Mitigation Strategies

84

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Theme Explanation Mentions

Automation Where appropriate automate routine

tasks.

9

Git Utlise the full power of Git so slip of the

finger errors cannot be commited.

5

Compiler Utilise the power of the compiler to pick

up on syntax errors.

4

Navigation

Helper

Provide developers a clear indication of

where they are within an application(s)

and or code base.

2

Other Example Utilise helpers that are ingrained

in the IDE

8

Table 4.8: Themes of Tools Mitigation Strategies

4.4.1 Construct Validity

Construct validity assesses our ability to measure an ‘object’ I intend mea-

suring. The responses given to me by a developer have been processed by

the developer, therefore, I can not be certain the data is accurate. Intervie-

wees may distort their responses to influence the impression of themselves

they are presenting. Accuracy is a common threat to validity in all inter-

view and questionnaire studies. Participants’ reactions to the researcher

presence must also be considered. I have tried to address this by allowing

participants to volunteer their time to the study and schedule interviews

on days/times that suit them best. In order to reduce the observer bias I

recorded and transcribed the interviews. In addition I investigate only a

subset of all human errors i.e. SB errors. Future work will investigate RB

and KB errors.

85

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

Theme Explanation Mentions

Planning Appropriately planning the workflow of

developers.

3

Training Provide formal and informal training op-

portunities to developers.

2

Best Practices Actively encourage and promote the use

best practices in all developmental activi-

ties.

2

Prioritisation Appropriately prioritise developmental

tasks, so as to minimise interruptions to

developers.

1

Well formed, low

level processes

Ensure work units are small, measurable

and achievable.

1

Awareness Having a global awareness of the project

to ensure tasks like planning and prioriti-

sation can be done correctly.

1

Table 4.9: Themes of Management Mitigation Strategies

86

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

4.4.2 Internal Validity

Internal validity assesses whether all elements of the study have been de-

signed and executed correctly. Interviewer bias is a common internal validity

threat to interview studies. It is difficult to mitigate interviewer bias, how-

ever, I used the same interviewer throughout the study. This allowed me to

ensure all interviews had been conducted in the same way and the approach

to asking questions to probe and clarify were uniform throughout. Two other

aspects of the interview design may have introduced unintentional bias:

1. The focus of the interviews was developer errors. This focus may

have biased interviewee answers such that they over-reported developer-

based mitigation strategies and under-reported tool, process and manager

mitigation. Further research is needed to explore mitigation strategies which

most effectively prevent developer errors becoming system failures.

2. Our interviews required industry software developers to discuss the

historic errors that they had made. The accurate recall of these errors relied

on memory. Reliance on retrospective reporting has been shown Ericsson &

Simon (1984) to not necessarily be reliable and to be systematically biased

towards particularly memorable events.

These two potential biases are intrinsic to most interview studies and

hopefully do not detract from the value of the exploratory results that I

report.

4.4.3 External Validity

External validity assesses the ability to generalise our results. My sample

size of industry software developers is relatively small and it is not a random

sample. So it is difficult to claim generalisabity to the wider population. In

addition our sample of industry software developers may have been biased,

as participants may have already had an interest in the research or they

were hoping to learn something about the topic. On the other hand, over

87

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

half of our respondents have been practicing in industry for over 10 years

and the qualitative data provided by these industry software developers

during the semi-structured interviews was very detailed. So the insights

reported are hopefully authentic and potentially useful. In addition, lack of

generalisability is almost always the case in empirical research in software

engineering so our study is not an exception to the norm.

4.4.4 Repeatability

Repeatability assesses whether if this study were to be repeated by another

they would get the same results. I provide a replication package (see our

online appendix: https://bit.ly/2ZKgIsj) which contains a description of

how participants have been recruited, interviews have been performed and

analysis has been conducted. I encourage the replication of this study with

a wider group of participants. Recruiting a similar group of participants

could prove difficult as each researcher’s social media, email, word of mouth

outreach to potential participants is different. The demographics of the

group recruited is important, as the type of SB human errors may vary

based on a developer’s experience.

4.4.5 Descriptive Validity

Descriptive validity assesses whether a researcher has accurately recorded

what they heard a participant say and or do. I transcribed all the recorded

interviews. I was able to ensure that the transcribed all transcripts in the

same way, to reflect what was said in each interview recording by; (a) re-

playing each interview and reading what was transcribed to ensure a match,

(b) including all stumbles/stutters in speech from both the researchers and

participants.

88

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

4.4.6 Interpretation Validity

Interpretation validity assesses whether a researcher has captured the ob-

servation as interpreted by the participant being researched. During each

interview I attempted to get each participant to be as descriptive as possible

about each scenario so that during analysis, it would be clear and easy to

interpret the scenario from the participants point of view. Where it was not

clear I asked further questions to the participant until a clear picture had

been captured.

4.5 Summary

In this chapter I presented preliminary work on the errors industry soft-

ware developers make and how they mitigate these errors. I discuss the

implications of these findings in Chapter 6. This study makes the following

contributions:

• To the best of my knowledge this is the first study to provide empirical

evidence about what SB human errors industry software developers

make and how they currently mitigate errors. Future work is needed

to understand the Rule-based (RB) and Knowledge-based (KB) human

errors industry software developers make and mitigation for these error

types.

• I uncover that industry software developers appear to take personal

responsibility for their SB human errors. My results suggest that miti-

gation was also developer-centric, revolving around improving concen-

tration, awareness and focus.

• RQ1: What SB errors do industry software developers experience dur-

ing development? My results suggest that industry software devel-

oper make all eight SB errors. Perceptual confusions (13 mentions)

89

Chapter 4: What SB Errors Do Industry Sofwtare Developers Make & Do
They Mitigate Them? - An Interview Study

appear to be the most commonly occurring and double capture slips

(4 mentions) being least occurring. Errors were labelled as reason for

error, error or consequence. The most common reason for error was

complexity of development environment (16 mentions), most common

error was concentration (13 mentions) and most common consequence

of error was duplications (10 mentions).

• RQ2: How do industry software developers mitigate the SB errors they

experience during development? My results suggest that industry soft-

ware developers are aware of methods to mitigate the SB errors they

make. Industry software developers were able to suggest the most mit-

igation strategies for omission following interruptions (25 mentions)

while the least amount of mitigation strategies for interference errors

(7 mentions). Mitigation strategies were labelled as developer, tool,

process and management. The most common developer mitigation

strategy was focus (10 mentions), most common tool mitigation strat-

egy was automation (9 mentions), most common process mitigation

strategy was checklist (12 mentions) and most common management

mitigation strategy was planning (3 mentions).

90

Chapter 5

Can improving industry

software developers SA

reduce the number of human

errors they make? - An

Exploratory Study

This chapter explores whether the number of industry software developer

human error reduces after undergoing training on Situation Awareness (SA).

This study focuses on looking at all human error error types; slips, lapses

and mistakes. 10 industry software developers participate in a two week

experiment where they log all human errors they make and undertake a

training package on SA which employs the OODA loop by Boyd (1987).

The OODA loop is critical thinking pathway, in which one follows the cycle

of Observe - Orient - Decide - Act.

Section 5.1 presents the research questions I ask in this study. Section

5.2 details the approach taken for the study. Section 5.3 presents the results

91

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

for this study. Section 5.4 presents the threats to validity for this study.

Section 5.5 presents a summary of this chapter.

5.1 Research Questions Addressed In This Study

In this chapter I ask the following research questions;

• RQ3 What type of human errors do industry software developers

make?

• RQ4 Does the online training package on the OODA loop reduce the

number of human errors that industry software developers make?

• RQ5 Do industry software developers find the online training package

easy and useful to use?

5.2 Approach

To aid industry software developers reduce the number of human errors they

make, I propose introducing a defence mechanism to the Swiss Cheese Model

in the form of an online training package targeting software developer SA

at the developer layer of the Swiss Cheese Model.

In Chapter 4 I learn that 27 industry software developers do suffer with

skill-based human errors. These industry software developers seemed aware

of methods that could help them reduce the number of skill-based errors.

It was noted that the industry software developers do not know how to

implement all mitigation strategies e.g. how to improve their ability to

focus on a task. The mitigation strategies reported by the industry software

developers in the previous study (Chapter 4) were broken down in to four

high level themes, these are; developer, process, tool and management.

Figure 5.1 shows the Swiss Cheese Model. The SB errors shown described

by industry software developers in Chapter 4 can be seen as the holes in the

92

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

Figure 5.1: James Reasons’s Swiss Cheese Model Reason (2008) adapted

from Carthey (2013)

layers of cheese, the larger the hole, the more prevalent the error is. The

identified themes (developer, process, tool and management) can be seen as

the levels of defence. By strengthening a defence layer, you can reduce the

size the of the hole in a defence layer and aid in reducing the likelihood of

an error making its way through the layers of the Swiss Cheese Model.

I have chosen to focus this body of research on the layer of cheese with the

most amount of hole identified within the Swiss Cheese Model. In Chapter

4 this has been identified as being the developer layer of cheese. Having

conducted some preliminary background research in the identified holes of

cheese, situation awareness started to become a common theme tying many

of these holes together. As a result I focus my work towards the use of

situation awareness within the designed intervention.

Endsley (1988) describes situation awareness as maintaining an under-

standing of what is going on around you while you perform a task so that

you can predict what is likely to happen next. Many of the error causes

given by industry software developers suggest lost situation awareness. This

93

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

is further discussed within Section 6.2.1.

I used qualitative data in the form of human error logs and survey re-

sponses, alongside quantitative data in the form of online training results.

I implemented a grounded approach to coding the human error logs and

survey response data collected. I now detail the OODA loop intervention,

study participants and their recruitment, the experimental process and data

analysis involved in my study.

5.2.1 The OODA Loop Intervention

When designing the intervention to be used to train software developer situ-

ation awareness there were multiple factors I had to consider. Some of these

factors included ranged from the ease of use and reuse of the intervention,

how much time would my industrial collaborators grant me with developers,

intervention delivery e.g. games, classroom, virtual learning environment,

etc and many more.

There are a number of cognitive training methods that could have been

used instead of the OODA Loop, some of these include memory recall games,

peripheral vision training, sound identification, person/intruder identifica-

tion, spot the difference and many more. Some of these training methods

are rather specific to combat related scenarios and immediately deemed in-

appropriate for my setting of training software developers. Other training

methods were excluded due to time limitations from my industry collabora-

tors.

The OODA loop is one of the most widely used training methods and is

very easy to apply within software development. I discuss the background

to the OODA Loop in Section 2.4.1, however a brief reminder of the OODA

loop is as follows. The OODA loop is a cognitive training method designed

to improve decision-making (Boyd 1987). The four stages of the OODA loop

(Figure 5.2) are Observe - Orient - Decide - Act, which form the basis of

94

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

improving critical decision making.

Figure 5.2: OODA Loop (Boyd 1987)

An example of day to day use of the OODA loop is the process of pur-

chasing a meal. First you notice you are hungry, this the observation phase.

You proceed to the phase of orientation which could be remembering its still

breakfast hour in your local bakery and you can get a sausage roll. Next

comes the decision making in which you actively decide to take a break from

your current task and get a sausage roll or do nothing about your hunger.

Finally comes the action phase in which you actual going to the bakery and

purchase a sausage roll.

By using a simple but effective training method I was able to partner this

is easy to access training delivery platform i.e. online videos. This was ideal

for developers as it meant they could do the training at the beginning of their

working days and not need to change flexible working hours to in a classroom

based training setting at a specific time. In addition it significantly improved

the reach of the training and kept it consistent for all participants as it was

the same video and quiz.

The OODA loop encourages the maintenance of situation awareness (SA)

by iteratively ‘Observing’ (level 1 of SA), ‘Orienting‘ (level 2 of SA), and

95

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

‘Deciding’ before ‘Acting’. By employing the use a simple loop software

developers should be able to better maintain their situation awareness and

reduce the number of holes within the developer layer of cheese in the Swiss

Cheese Model.

5.2.2 Participant & Recruitment

The study was performed over a fifteen week period. During this time 10 in-

dustry software developers participated in the study, three of whom dropped

out of the study due to withdrawal from the study or lack of engagement.

All participants were men aged between 18 and 54. Of these industry soft-

ware developers 4 had more than ten years of industry experience. These

industry software developers were a convenience sample and had been con-

tacted by word-of-mouth, email and face-to-face. Table 5.2 provides a full

breakdown of the participants who were recruited for this study. In addition

to this I shared details of the study and issued invitations to participate on

social media, with posts on LinkedIn and Twitter.

Given this is a separate study, a new call for participants was made on

social media. Table 5.1 shows how many views, likes and shares each post

gained. When reviewing the figures in the views column it is important

to note that this reflects how many people have seen it. This is not an

indication of how many people have read the post fully or followed up on

details. I do not know have any demographic information about the users

that viewed the posts therefore I can not be sure whether they are views

from the intended target group i.e. active industry software developers.

Views Like Shares

Twitter 1790 6 2

LinkedIn 450 2 2

Table 5.1: Social Media Views For Participant Recruitment

96

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

Please see Table 5.2 for demographic data of participants of the experi-

mental study.
G
e
n
d
e
r

A
g
e

R
a
n
g
e

Y
e
a
rs

o
f

In
d
u
st
ry

E
x
p
e
ri
e
n
c
e

P
ri
m
a
ry

J
o
b

R
o
le

P
ri
m
a
ry

In
d
u
st
ry

O
S
S

v
s

C
S
S

P
ri
m
a
ry

L
a
n
g
u
a
g
e

P1 M 45-54 10+ Software De-

veloper

Software

Development

CSS Python

P2 M 45-54 10+ Technical

Architect

Humanitarian

Aid

CSS Java

P3 M 25-34 <1 Junior De-

veloper

Software

Development

OSS Python

P4 M 25-34 <1 Software De-

veloper

Employed CSS Python

P5 M 25-34 4-7 Software De-

veloper

Humanitarian

Aid

CSS Python

P6 M 25-34 8-10 Senior Web

Developer

Software

Developer

CSS PHP

P7 M 18-24 1-3 Web Devel-

oper

Software

Development

CSS PHP

P8 M 25-34 10+ Software De-

veloper

Engineering CSS C/AL

P9 M 35-44 10+ Software

Manager

Software

Developement

CSS PHP /

.NET

P10 M 25-34 1-3 Software En-

gineer

SaaS Predic-

tive Mainte-

nance

CSS Scala

97

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

G
e
n
d
e
r

A
g
e

R
a
n
g
e

Y
e
a
rs

o
f

In
d
u
st
ry

E
x
p
e
ri
e
n
c
e

P
ri
m
a
ry

J
o
b

R
o
le

P
ri
m
a
ry

In
d
u
st
ry

O
S
S

v
s

C
S
S

P
ri
m
a
ry

L
a
n
g
u
a
g
e

Table 5.2: Demographic Data - Experiment Participants

Rows in italics indicate that the participate withdrew from

the study or was not engaging.

5.2.3 Evaluation Method

The method used for this study is a field experiment where participants

were required to keep a log of all human errors they encounter over a two

week (ten working day) period. The OODA loop intervention (described in

Section 5.2.1 was administered half way through the study (the morning of

day 6). This intervention takes form as an online training package in which

industry software developers use a series of short online videos. In order

to confirm participants basic understanding of the OODA loop they were

asked to complete a brief quiz.

The exploratory study was broken down in the three key stages, firstly

an introduction and week one, secondly the intervention and week two and

finally the follow up. Participants were contacted via email at the beginning

of each of these stages. Below I describe what participants were made aware

of in each of these three stages.

In the first instance to kick start the study (Email One). Industry soft-

ware developers were provided with the following documents:

1. Introduction To Study (Video): A short video explaining the study.

This will be a hyperlink in the email and an optional resource for

industry software developers to use. You can watch the same ‘Intro To

Study’ video here: https://www.dropbox.com/s/gjd9o0almn865sl/

98

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

IntroToStudy.mp4?dl=0

2. Participant Information Sheet: Provided participants basic informa-

tion about the study and highlights key contacts they may need to

speak with during the study. This was attached to the email and is a

mandatory resource for industry software developers to read.

3. Consent Sheet: Gains participants consent to participate in the study

and ensures they agree and understand the necessary points. This

was attached to the email and is a mandatory resource for industry

software developers to complete.

4. About Them Questions: Basic demographic questions about the par-

ticipant and some questions about how they deal with human error.

This was attached to the email and is a mandatory resource for indus-

try software developers to complete. The questions asked are available

in Appendix C.2 - Supporting Material For Study Two.

5. Record Log: A log sheet to help industry software developers keep

track of any human errors that occur during the working day. This

was attached to the email and is a mandatory resource for industry

software developers to complete.

In the second instance the participants were emailed to kick start the

online training package (Email Two). Participants were provided with the

following links:

1. Intro to situation awareness. You can watch the same ‘Intro To Situa-

tion Awareness’ video here: https://www.dropbox.com/s/j8b9aahy331ff8j/

TrainingOneIntroToSA.mp4?dl=0 Screenshots of the slides used in

this video can be viewed in Appendix C.4.1 - Supporting Material For

Study Two.

2. Intro to OODA loop. You can watch the same ‘Intro To OODA

Loop’ video here: https://www.dropbox.com/s/xz2pjh1t895gt1v/

99

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

TrainingTwoIntroToOODA.mp4?dl=0 Screenshots of the slides used in

this video can be viewed in Appendix C.4.2 - Supporting Material For

Study Two.

3. Applied OODA loop in software development. You can watch the same

‘Intro To Applied OODA LOOP’ video here: https://www.dropbox.

com/s/kf67z508w3dv9n5/TrainingThreeOODAExamples.mp4?dl=0 Screen-

shots of the slides used in this video can be viewed in Appendix C.4.3

- Supporting Material For Study Two.

4. Quiz. his quiz will take form as an online questionnaire and results

were emailed to industry software developers. The questions asked are

in the Quiz in Appendix C.5 - Supporting Material For Study Two.

The final email requested that participants send their completed log

sheets back to me and complete the follow up questionnaire. The ques-

tions asked in the follow up questionnaire can be viewed in Appendix C.6 -

Supporting Material For Study Two.

In order to help my participants I sent them a daily message via Skype/Email

(depending on the company setup and the level of access I can gain). This

message served as a reminder to complete the log sheet every day and aimed

to engage industry software developers by getting them to reply saying how

many errors they logged that working day.

5.2.4 Data Analysis

Throughout the experimental study three key pieces of data were recorded;

(1) human error logs, (2) results of the training package and (3) participant

views on the training package. Below I explore what processing and analysis

was performed each piece of collected data.

Firstly I look at the data collected in the human error logs. This data was

coded using both inductive and deductive means to determine the human

100

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

Participant

Number

Initial Agreeability Be-

tween My Supervisor & I

Agreeability Between My

Supervisor & I After Dis-

cussion

P1 57.14% 100%

P5 50.00% 100%

P6 83.33% 100%

P7 57.89% 100%

P8 57.14% 100%

P9 43.75% 100%

P10 80.00% 100%

Average 61.32% 100%

Table 5.3: Agreeability of Coding

error category and its theme. The human error categories were predefined

therefore deductive coding was applied here. These were slip, lapse and

mistakes and coded against the definitions provided by Reason (1990), these

can be found in Appendix C.7. Coding of errors described by the developers

in each log, was done in an inductive manner, in that the themes were

derived from the data. The initial agreeability shown in Table 5.3 fluctuates

between the two researchers (my supervisor and I), with high agreement for

some participants (e.g. P6) and low agreement for others (e.g. P9). During

discussion of disagreements between my supervisor and I, (recommended by

Kitchenham et al. (2012)) it was clear that lack of contextual detail around

error reports from some participants was the reason for these disagreements.

Extensive discussion took place between the two raters (my supervisor and

I) which resulted in some errors being multi-classified. Multi classifications

were mainly across slips and lapses (both of which are execution errors so

have some commonality) as it was difficult to retrospectively know whether

an error was the result of a memory issue if this was not explicitly mentioned

101

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

by the developer. After this process of discussion, 100% agreement was

achieved. I identified seven themes across the human errors which are:

• Internal communication Poor internal communication e.g. incom-

plete documentation.

• External communication Poor external communication e.g. failing

to obtain full error details from end user.

• Code structure/complexity Poor code structure and or increased

code complexity.

• Complexity of development environment Having many things

running in the development environment at anyone time

• Ordering/sequencing tasks Executing a series of tasks in the in-

correct order.

• Syntax issues Use the wrong syntax / syntax errors in newly written

code.

• Special cases Unique errors which do not fit the other themes e.g.

UI/UX design / functionality issues

The second piece of data was the results from the training package. This

did not need processing as the results were binary i.e. pass / fail on each

question and the results tallied up.

The final piece of data was the views of participants on the training.

These were coded via sentiment with four potential codes: 1 = Positive, 0 =

Neutral, -1 = Negative & - = No comment To Code. Many of the questions

asks already had codes associated with them e.g. yes / no questions. As

result I coded all responses and my supervisor reviewed the codes assigned.

My supervisor and I had a 100% agreeability on these.

102

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

5.3 Results

The results from my small-scale snapshot study confirms that industry soft-

ware developers make human errors manifesting as slips, lapses and mistakes.

Training industry software developers to maintain situation awareness us-

ing the OODA Loop seems to lead to decreased developer errors. I will

now present the results broken down by each research question posed at the

beginning of the chapter.

5.3.1 RQ3 - Do industry software developers make more

slips/lapses compared to mistakes?

Participants record all human errors they make during development work

across a ten day period in a log sheet. Table 5.4, 5.5 and 5.6 shows each

error for each developer classified two ways; first, errors in each of the seven

themes, second, each error classified as either a slip, lapse or mistake. A

small number of errors are multi-classified because they cut across human

error classifications.

Table 5.4, 5.5 and 5.6 suggests that the distribution of human error types

(i.e. slips, lapses and mistakes) varies between industry software developers

with some reporting many more mistakes than others.

103

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

T
e
a
m

C
o
m
m
u
n
ic
a
ti
o
n

P
a
rt
ic
ip
a
n
t

N
u
m
b
e
r

In
te
rn

a
l

E
x
te
rn

a
l

C
o
d
e

S
tr
u
c
-

tu
re

/
C
o
m
-

p
le
x
it
y

C
o
m
p
le
x
it
y

o
f

D
e
v
e
lo
p
-

m
e
n
t

E
n
v
i-

ro
n
m
e
n
t

O
rd

e
ri
n
g

/

S
e
q
u
e
n
c
in
g

T
a
sk

s

S
y
n
ta

x

Is
su

e
s

S
p
e
c
ia
l

C
a
se
s

P
1

M
1

L
/M

1
S
1

S
/
L
/
M

1
S
/
L
1

S
1

L
1

P
5

S
1

L
1

S
/L

1

S
2

S
/
L
/
M

1

S
3

P
6

S
/L

/M
1

M
1

S
/L

1
S
/L

1
S
/
L
1

M
2

S
/L

2
S
/
L
2

M
3

S
/L

3
S
/
L
3

S
/
L
4

S
/
L
5

S
/
L
6

D
ay

1
to

5:
W

h
it
e
B
ac
k
gr
ou

n
d
&

D
ay

6
to

10
:
G
re
y
B
a
ck
g
ro
u
n
d

K
ey
:
S
=

S
li
p
,
L
=

L
ap

se
,
M

=
M
is
ta
ke
,
S
/L

=
S
li
p
/L

ap
se
,
L
/M

=
L
ap

se
/M

is
ta
ke

&
S
/L

/M
=

S
li
p
/
L
a
p
se
/M

is
ta
ke

N
o
te
:
T
h
e
n
u
m
b
er

a
ft
er

th
e
ke
y
is

a
co
u
n
te
r
fo
r
ea
ch

p
ar
ti
ci
p
an

t
fo
r
th
e
ty
p
e
of

er
ro
r

N
o
te
:
P
a
rt
ic
ip
a
n
ts

2,
3,

4
w
it
h
d
re
w

d
u
e
to

a
ch
an

ge
in

w
or
k
lo
ad

or
n
o
n
-
en

ga
ge
m
en
t

T
ab

le
5.
4:

H
ig
h
L
ev
el

T
h
em

es
(1
/3

)

104

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

T
e
a
m

C
o
m
m
u
n
ic
a
ti
o
n

P
a
rt
ic
ip
a
n
t

N
u
m
b
e
r

In
te
rn

a
l

E
x
te
rn

a
l

C
o
d
e

S
tr
u
c
-

tu
re

/
C
o
m
-

p
le
x
it
y

C
o
m
p
le
x
it
y

o
f

D
e
v
e
lo
p
-

m
e
n
t

E
n
v
i-

ro
n
m
e
n
t

O
rd

e
ri
n
g

/

S
e
q
u
e
n
c
in
g

T
a
sk

s

S
y
n
ta

x

Is
su

e
s

S
p
e
c
ia
l

C
a
se
s

P
7

M
1

M
1

S
/L

1
S
/L

1
S
/
L
1

S
/L

1

S
/
L
/
M

1
S
/L

/M
1

S
/
L
2

S
/
L
/
M

2
M

1
S
/
L
3

M
1

L
1

P
8

M
1

S
/L

1

S
/L

2

S
/L

3

S
/M

1

S
/L

4

P
9

M
1

M
1

S
/L

/M
1

S
/
L
1

M
1

M
2

S
/L

2
S
/
L
2

D
ay

1
to

5:
W

h
it
e
B
ac
k
gr
ou

n
d
&

D
ay

6
to

10
:
G
re
y
B
a
ck
g
ro
u
n
d

K
ey
:
S
=

S
li
p
,
L
=

L
ap

se
,
M

=
M
is
ta
ke
,
S
/L

=
S
li
p
/L

ap
se
,
L
/M

=
L
ap

se
/M

is
ta
ke

&
S
/L

/M
=

S
li
p
/
L
a
p
se
/M

is
ta
ke

N
o
te
:
T
h
e
n
u
m
b
er

a
ft
er

th
e
ke
y
is

a
co
u
n
te
r
fo
r
ea
ch

p
ar
ti
ci
p
an

t
fo
r
th
e
ty
p
e
of

er
ro
r

N
o
te
:
P
a
rt
ic
ip
a
n
ts

2,
3,

4
w
it
h
d
re
w

d
u
e
to

a
ch
an

ge
in

w
or
k
lo
ad

or
n
o
n
-
en

ga
ge
m
en
t

T
ab

le
5.
5:

H
ig
h
L
ev
el

T
h
em

es
(2
/3

)

105

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

T
e
a
m

C
o
m
m
u
n
ic
a
ti
o
n

P
a
rt
ic
ip
a
n
t

N
u
m
b
e
r

In
te
rn

a
l

E
x
te
rn

a
l

C
o
d
e

S
tr
u
c
-

tu
re

/
C
o
m
-

p
le
x
it
y

C
o
m
p
le
x
it
y

o
f

D
e
v
e
lo
p
-

m
e
n
t

E
n
v
i-

ro
n
m
e
n
t

O
rd

e
ri
n
g

/

S
e
q
u
e
n
c
in
g

T
a
sk

s

S
y
n
ta

x

Is
su

e
s

S
p
e
c
ia
l

C
a
se
s

P
1
0

M
1

L
/M

1
L
1

S
1

S
1

M
1

L
1

L
1

L
2

S
2

D
ay

1
to

5:
W

h
it
e
B
ac
k
gr
ou

n
d
&

D
ay

6
to

10
:
G
re
y
B
a
ck
g
ro
u
n
d

K
ey
:
S
=

S
li
p
,
L
=

L
ap

se
,
M

=
M
is
ta
ke
,
S
/L

=
S
li
p
/L

ap
se
,
L
/M

=
L
ap

se
/M

is
ta
ke

&
S
/L

/M
=

S
li
p
/
L
a
p
se
/M

is
ta
ke

N
o
te
:
T
h
e
n
u
m
b
er

a
ft
er

th
e
ke
y
is

a
co
u
n
te
r
fo
r
ea
ch

p
ar
ti
ci
p
an

t
fo
r
th
e
ty
p
e
of

er
ro
r

N
o
te
:
P
a
rt
ic
ip
a
n
ts

2,
3,

4
w
it
h
d
re
w

d
u
e
to

a
ch
an

ge
in

w
or
k
lo
ad

or
n
o
n
-
en

ga
ge
m
en
t

T
ab

le
5.
6:

H
ig
h
L
ev
el

T
h
em

es
(3
/3

)

106

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

Table 5.4, 5.5 and 5.6 also shows variation in the error themes to which

industry software developers seem prone. For example, Participant 6 makes

the most syntax errors, a number of which appear to be related to JavaScript

and specifically the use of the keyword ‘this’. Whereas Participant 8 seems

to make more code structure / complexity errors. Participant 5 is the only

developer who does not record any communication related errors. My analy-

sis does not suggest experience or demographics explains why these industry

software developers seem prone to these specific errors but it might be that

the particular work tasks during the snapshot influenced the error themes

(See Table 5.2 for more details). Future work is needed to investigate the

relationship between errors and development context.

Table 5.4, 5.5 and 5.6 suggests that most communication based errors

are mistakes rather than slips or lapses. Mistakes are usually more substan-

tial errors than lapses or slips and can be more complex to correct. This

confirms the importance of strong communication during development ac-

tivities. Table 5.4, 5.5 and 5.6 also shows that syntax errors comprise mostly

of slips or lapses. This suggests that industry software developers generally

know syntax but make minor errors despite this knowledge. Most industry

software developers reported errors related to the complexity of the devel-

opment environment. For example Participant 10 says that they ‘Forgot to

increase the version of an updated dependency.’ This is because Participant

10 says they were ‘Juggling three different tasks all at the same time. Per-

formance research on one strand, bug fixing on two separate issues. Each

with their own programming languages! (Python, Java and Scala)’. Table

5.4, 5.5 and 5.6 shows only Participants 8 and 9 do not report such com-

plex development environment errors. More work is needed to uncover any

contextual factors explaining this variation.

107

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

5.3.2 RQ4 - Does the online training package on the OODA

loop reduce the number of human errors that industry

software developers make?

Participants undertook an online training package comprised of three videos

followed by a quiz. Industry software developers engaged well with my

OODA loop training. All but one of whom attained scores of eight or nine

in the nine question quiz that concluded the training package.

Table 5.7 shows how many errors were self-recorded by industry software

developers before and after OODA loop training. Although the numbers

of errors in the snapshot are small, Table 5.7 shows an encouraging error

reduction after training. In all cases there is either a reduction in errors (four

industry software developers) or no change in the number of errors (three

industry software developers) after the OODA loop training. I performed

a paired T-test, which shows a significant difference of 0.0414 between the

number of errors being made before and after the OODA loop training.

Total Hu-

man Errors

Before Training

Errors: D1- D5

After Training

Errors: D6 -

D10

Reduction

Rate

P1 7 6 1 83%

P5 6 3 3 0%

P6 14 9 5 44%

P7 14 8 6 25%

P8 6 5 1 80%

P9 8 4 4 0%

P10 10 5 5 0%

Table 5.7: Numbers of logged Human Errors

I looked in more detail at the types of errors before and after OODA loop

training and found that error reductions after training were predominately

108

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

in execution errors. For example Participant 6 makes 18 execution errors

before training which reduces to four execution errors after training. This

reduction in execution errors suggests that using the OODA loop during

development helps industry software developers retain situation awareness

of their code and maintain concentration sufficiently to reduce the slips and

lapses that they usually make. A larger scale study is needed to establish

whether this finding holds more generally for industry software developers

and whether the effect lasts over time.

Stage One Questions Stage Two Questions
S1 S2

Average

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 % % Score

P1 Y Y Y Y Y Y Y Y N 100% 75% 89%

P5 Y Y Y Y Y Y Y Y Y 100% 100% 100%

P6 Y Y Y N N Y Y Y N 60% 75% 67%

P7 Y Y Y Y Y Y Y Y Y 100% 100% 100%

P8 Y Y Y Y Y Y Y Y N 100% 75% 89%

P9 Y Y Y Y Y Y Y Y N 100% 75% 89%

P10 Y Y Y Y Y Y Y Y Y 100% 100% 100%

Table 5.8: Participants Results from Training

5.3.3 RQ5 - Do industry software developers find the online

training package easy and useful to use?

I asked industry software developers for their thoughts about the training.

The sentiment of all responses can be viewed in Table 5.9. The sentiment

is positive indicating that participants enjoyed participating in the study

and found the online training tool easy to use. Participants said that they

learned about the OODA loop and how to apply it in software development

for the first time. Participant 7 said ‘Yes, the idea of OODA was helpful when

dealing with developing problems.’ All industry software developers found

109

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

the content actionable, Participant 2 saying ‘Fully actionable especially in

our work.’ Participant 9 says the OODA loop is ‘Very helpful and is a

need in our daily work in software engineering.’ While the majority of the

participants found the OODA loop led to an improvement in their work,

Participants 1 & 10 did not. All except Participant 1 report that they will

continue to use the OODA loop in the their work. Participant 10 says that

they will continue to use the OODA loop in their development, despite not

finding any direct improvement.

About OODA Training About The Study

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

P1 1 0 -1 -1 0 1 1 1 0 0

P5 1 1 1 1 - 1 0 1 1 -

P6 1 1 1 1 0 1 1 1 1 -

P7 1 1 1 1 0 1 0 1 1 0

P8 1 1 1 1 1 1 1 1 1 0

P9 0 1 1 1 1 1 0 1 1 1

P10 1 0 -1 1 1 1 -1 1 1 0

Table 5.9: Follow Up Questionnaire Coded By Sentiment

Key: 1 = Positive, 0 = Neutral, -1 = Negative & - = No comment To Code

5.4 Threats to Validity

As with any empirical research my study has several threats to validity. Be-

low I explore the threats to validity as construct validity in Section 5.4.1,

internal validity in Section 5.4.2, external validity in Section 5.4.3 and re-

peatability in Section 5.4.4.

110

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

5.4.1 Construct Validity

Construct validity assesses our ability to measure an ‘object’ I intend mea-

suring. I was collating cognitive information from individual industry soft-

ware developers in each human error log. Each participant provide me with a

log sheet containing human errors which they have processed already, there-

fore, I can not be certain the data is accurate. Participants may falsify their

responses to influence the impression of themselves that they are presenting.

Accuracy is a common threat to validity in all interview and questionnaire

studies. Given the duration of the study, industry software developers may

forget to engage with the study and forget to log human errors day to day.

I attempt to combat this by sending daily reminders and pro actively en-

gaging with industry software developers by asking how many errors they

logged per day.

5.4.2 Internal Validity

Internal validity assesses whether all elements of the study have been de-

signed and executed correctly. I mitigate bias by asking the participants

to complete the same activities. I use the same forms and questions when

participates are asked to provide me with any responses. This allowed me

to ensure all individual data captures had been conducted in the same way

and the approach to asking questions were uniform throughout. During the

analysis phase my supervisor and I independently coded all human error

logs, upon comparison my supervisor and I came to the same results or had

extensive discussion until mutual agreement was reached.

5.4.3 External Validity

External validity assesses the ability to generalise our results. Although the

sample size of industry software developers is relatively small, the qualitative

data obtained from the human error logs provided by the participants has

111

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

been detailed. Over half of my respondents have been practicing in industry

for over 8 years. The sample size is not generalisable to the wider population

however the responses somewhat represent that of 3 different companies.

With such a small sample size, threats such as winner’s curse (Ioannidis

2008, Marino 2018, Palmer & Pe’er 2017) need to be considered. The large

effect size I have discovered could be significantly inflated. Future works

should look to expand upon this exploratory study and include a larger

sample set so that threats such as winner’s curse are not an issue.

5.4.4 Repeatability

Repeatability assesses whether if this study were to be repeated by another

they would get the same results. By providing an in depth explanation into

how participants have been recruited, experiments have been performed and

analysis has been conducted I hope that the study is replicable. Recruiting a

similar group of participants could prove difficult as each researcher’s access

to potential participants varies. The demographics of the group recruited is

important, as the type of human errors may vary based on the developer’s

experience, primary industry, technology use etc.

5.5 Summary

In this chapter I presented my preliminary study on reducing human error

during development by providing industry software developers with cogni-

tive training designed to improve their situation awareness. I discuss the

implications of these findings in Chapter 6. My study makes the following

contributions:

• To the best of my knowledge this is the first study to provide em-

pirical evidence showing how the number of human errors made by

industry software developers reduces when industry software develop-

112

Chapter 5: Can improving industry software developers SA reduce the
number of human errors they make? - An Exploratory Study

ers are provided with training to improve their situation awareness.

More work is needed to understand whether our results hold beyond

this small scale study.

• RQ3 - What type of human errors do industry software developers

make? My results show that industry software developers do make

all three types of human errors (slips, lapses and mistakes) in their

development work. My results suggest that slips and lapses occur

more commonly than mistakes. Slips and lapses are likely to result in

smaller defects which should be easier to mitigate.

• RQ4 - Does the online training package on the OODA loop reduce the

number of human errors that industry software developers make? My

results show that cognitive training using the OODA loop leads to a

decrease in the number of human errors industry software developers

make. I found that industry software developers particularly reduced

the number of execution errors they made following OODA loop train-

ing. More work is needed to understand if this finding is generalisable

and if the effect lasts over time.

• RQ5 - Do industry software developers find the online training package

easy and useful to use? My results show encouraging signs that most of

the industry software developers in my study were enthusiastic about

the training they received in how to maintain their situation awareness.

Most industry software developers found the training easy and useful in

a topic they had no previous knowledge. The majority of the industry

software developers said that they will continue to use the OODA loop

in their work.I intend to explore further the use of focused training

packages to educate and support industry software developers in their

work.

113

Chapter 6

Discussion

This chapter discusses the findings of two studies which investigate human

error within software development as detailed within Chapter 4 & 5. The

chapter is presented by addressing each research question individually. Sec-

tion 6.1 discusses SB errors reported in Chapter 4 (RQ1). Section 6.2

discusses mitigation strategies reported in Chapter 4 (RQ2). Section 6.3

discusses the type of human errors reported in Chapters 4 and 5 (RQ3).

Section 6.4 discusses our findings on training developer SA in Chapter 5

(RQ4). Section 6.5 discusses developer experience of using the training tool

in Chapter 5 (RQ5).

Note: This chapter discusses the results of both studies as a result par-

ticipant numbers are prefixed with S1 or S2 to identify which study the par-

ticipant belongs to, for example S1P2 relates to Participant 2 from Study

1.

6.1 RQ1: What SB errors do industry software

developers make during development?

The results of my study suggest that all industry software developers make

all 8 SB errors. SB errors indeed, slips/lapses or in other words execution

114

Chapter 6: Discussion

based errors. Many development activities fit execution based error well,

therefore it is unsurprising that all 8 SB errors are mentioned by participants

in my study. Double capture slips are mentioned the least and perceptual

confusions are mentioned the most. It is important to better understand

whether these findings are generalisable or not, as researchers will be able

to better target the correct subset of problematic errors. This will allow

researchers to better target efforts at either SB errors as a whole or focus

more specifically at commonly occurring errors.

There are varying cognitive loads on software engineers, these can man-

ifest in various ways, examples of these can include e.g. environmental

stressors such as work place distractions, personal stressors such as fam-

ily issues, health issues such as poor mental health etc. Taking these into

account I am surprised that more participants in my studies did not cite

more instances of trivial human errors e.g. omitting a semi colon. Trivial

errors such as omitting a semi colon are safeguarded against by the compiler.

Given the simplicity of these trivial errors participants may have felt these

were superficial and not mentioned them. Further work should investigate

what stressors / loads on industry software developers are measured.

In Table 4.3 I present developer error themes which were elicited from

the interviews from study one. The themes are coded as reason, error or

consequence. Further work is required to help industry software develop-

ers to identify the reason for the error and the consequence of the error.

This would better allow industry software developers to employ appropriate

methods to safeguard against their own frequently occurring errors.

In RQ2 I discuss the numerous methods that industry software develop-

ers employ to safeguard against SB errors.

115

Chapter 6: Discussion

6.2 RQ2: How do industry software developers

mitigate the SB errors they experience dur-

ing development?

My results suggest that developer-based mitigation strategies are the most

frequently reported ways to reduce human errors. I find this interesting as

I had believed that industry software developers may have leaned more to-

wards using tool automation or reliance on process based mitigation strate-

gies. Industry software developers seem to think that they individually

should stop making errors that get through to production. Other disci-

plines, for example, health Abimanyi-Ochom et al. (2019), have shown that

a human-based approach is likely to have limited success without the em-

bedded support of tools and processes.

The majority of the mitigation strategies cited could be described as psy-

chological, and ‘internal’ to a developer (e.g., industry software developers

saying that they need to concentrate more). Many of the process, tool and

management strategies could be described as ‘external’ to a industry soft-

ware developer, and mostly focused on detecting consequential physical code

faults. These external strategies are likely to aid industry software develop-

ers in implementing internal strategies to prevent the error. Figure 6.2 shows

how the developer is likely to be central to all mitigation strategies. The

developer is closely supported by process and tool mitigation strategies and

more widely by management mitigation strategies. Indeed I suggest that the

commonly mentioned mitigation strategies of using tools (e.g., automation)

and processes (e.g., checklists) can support industry software developers to

implement internal mitigation strategies (e.g., staying focused).

My results resonate with the Reason (2000) Swiss Cheese model of acci-

dent causation. The Swiss Cheese model (shown in Fig. 6.1) is an approach

to building effective organisational defences against failure. The aim of the

116

Chapter 6: Discussion

Figure 6.1: James Reasons’s Swiss Cheese Model Reason (2008) adapted

from Carthey (2013)

model is to enable a system-centric rather than a human-centric approach

to reducing failures. The model shows that layers of barriers are needed to

block errors from slipping through to cause major failures. Reason’s Swiss

Cheese model has been used extensively to manage the prevention of medi-

cal errors and reduce accidents in engineering settings (e.g., in the oil field

industry1). Taking such an approach to error mitigation by building defen-

sive tooling, process and management layers around the developer is likely

to be effective in preventing developer errors from causing major system

problems. More work is needed to adapt and evaluate the Swiss Cheese

approach in software development contexts.

Few of the errors reported by industry software developers are previously

unknown. For example, it is not a surprise that complexity, requirements

or concentration underpin developer errors. Similarly, many of the miti-

gation strategies identified by industry software developers are also previ-

ously known approaches. For example, using testing, pull-requests and well

1https://www.oilfieldtechnology.com/special-reports/23042015/rallying-against-risk/

117

Chapter 6: Discussion

Figure 6.2: Mitigation Strategies

formed processes to mitigate errors are all known to be helpful. It is more

surprising that these errors continue to be problematic, suggesting that the

existing mitigation strategies do not seem to be working effectively. More

work is needed to understand why established approaches do not seem to,

either be effectively embedded in software development practice, or, if they

are embedded, not effectively reducing developer errors.

118

Chapter 6: Discussion

6.2.1 Improving Situation Awareness

My results suggest that situation awareness is a problem for industry soft-

ware developers. Endsley (1988) describes situation awareness as maintain-

ing an understanding of what is going on around you while you perform

a task so that you can predict what is likely to happen next. Many of

the error causes given by industry software developers suggest lost situation

awareness. For example, S1P12 says

‘...start trying to do something and you find some kind of annoy-

ance gets in your way and it makes it impossible or more difficult

than it ought to be so you kind of fix that and maybe end up

going down a bit of a rabbit hole that is more complicated than

you expected. I can recognise the feeling of just kind of having

fought my way through that and not remember why I was doing

that in the first place.’

Situation awareness is also a problem in other disciplines. Procida (2017)

discusses how the Air France 447 crash resulted from the pilot’s lack of

situation awareness. The pilot was unable to see that the actions performed

would lead to the aircraft stalling (aerodynamic loss of lift that occurs when

an airfoil exceeds its critical angle). The pilot lost situational awareness

and was not aware of everything going on around him. Other domains use

maintaining situation awareness as an approach to reducing human errors,

for example; autonomous driving (Petersen et al. 2019), medicine (Wright

et al. 2004), transportation (Wickens 2002) and cyber security (Ioannou

et al. 2019).

In software development coding on ‘autopilot’ can lead to the loss of

situation awareness which can lead to industry software developers going

down rabbit holes. The unplanned refactoring of code is usually such a

rabbit hole. Industry software developers should probably resist temptation

119

Chapter 6: Discussion

to refactor while working on other development tasks and/or in an ad-hoc

manner, as it is difficult to predict what else they will encounter while they

make these additional refactoring changes. I recommend that industry soft-

ware developers conduct refactoring tasks as part of planned work rather

than embedded in other tasks.

S1P9 explains a mitigation strategy to prevent going down rabbit holes

‘Discipline in one sense. Experience teaches you that not all code

is perfect. You have to accept other people might write code in

other ways so you have to have a pragmatic style of programming

to look at code. Understanding is most important, thing for me

is understanding the intention of the code rather than how it

was written.’

My results suggest that industry software developers understand the

dangers of losing situation awareness and also know some mitigation strate-

gies for this. These mitigation strategies seem to be based on their own

willpower. Using only willpower is likely to have limited success. Approaches

to industry software support developers in recognising when situation aware-

ness is being lost need to be developed, perhaps in the form of training for

industry software developers as such training in situational awareness is

common in health and medical practice. Brennan et al. (2016) report that

improving surgeons’ ability to manage their awareness levels is an essential

requirement to reducing medical error.

6.2.2 Improving Cognitive Skills

My results suggest that cognitive skills such as remaining focused, remem-

bering, maintaining self discipline and attention all affect industry software

developers. These cognitive skills also impact a developer’s ability to main-

tain situational awareness. Industry software developers indicated that these

were skills they wanted to improve. Related to this, our results also show

120

Chapter 6: Discussion

that many industry software developers said they need to concentrate better,

pay more attention, focus more. S1P24 says

‘...you have to be 100% concentrated on the job otherwise you

wouldn’t succeed.’

S1P16 says

‘...if I am not giving 100% attention then I take a break’.

The working environment and time pressure is likely to impact on how

industry software developers are affected by cognitive issues. For example,

S1P16 says

‘...it’s actually detaching yourself from the urgency and focusing

on what you’re actually doing...’

Industry software developers also seem to take personal responsibility for

their ability to deploy effective cognitive skills. The underlining assumption

being that industry software developers just need more self-discipline and

willpower. More work is needed to investigate the impact of training in

existing approaches to improved cognitive skills. For example, training in

using the Orient-Observe-Decide-Act Loop (OODA) Boyd (1987) is often

a part of military training and may prove worthwhile in helping industry

software developers improve their cognitive skills.

6.2.3 Using Checklists

My results suggest that industry software developers find checklists to be

a useful mitigation strategy. Reducing the reliance to remember every step

can aid in reducing human errors. Ely et al. (2011) report that checklists

provide an alternative to reliance on intuition and memory in clinical prob-

lem solving. For example, S1P21 says

121

Chapter 6: Discussion

‘Checklist. I basically tried to checklist for instance when you

are implementing code and you have a use case instance, you

check if you have done everything.’

This suggests that industry software developers may use materials they al-

ready have as a checklist to aid the prevention of human errors. Check-

lists are the most frequently occurring process related mitigation strategy

reported by industry software developers I interviewed. This is a theme

consistent with other industries where checklists have been used in many

different situations. For example, in aviation pilots must complete a se-

ries of checklists during each flight stage (Clay-Williams & Colligan 2015).

Checklists have also been used in software development, for example, in

risk management and extensively in software inspection Brykczynski (1999).

Given the value of checklists that industry software developers I interviewed

reported in mitigating errors, more work is required to understand whether

embedding the comprehensive use of checklists throughout the development

process could reduce human error.

6.2.4 Tool use

My results suggest that using software tools can provide industry software

developers with greater support. Tool related mitigation strategies were

ranked second out of the four high level themes by the industry software

developers I interviewed. Table 4.8 shows the specific tools and types of

tools which industry software developers mentioned they used to mitigate

errors. For example:

S1P9 says

‘...the application helper is there to say you know. Start, finish

in effect and when you finish you kind of end your transaction

scope.’

122

Chapter 6: Discussion

This suggests that a developer uses a feature of their IDE to aid them in

their code generation process. Such use can help with reducing omissions

and repetitions as the application helper will identify that specific structures

are missing or repeated.

S1P18 says

‘...it [a specific tool] might be better if it was quiet maybe, that

it says building. Doesn’t give out all that information so at least

if I come back to it, it will just have nothing there. And if it

went wrong there would be something there.’

This quote suggests that the developer feels bombarded with information

which is not clearly useful. By making small adjustments to tools it might

be possible to make them more useful to industry software developers.

Some industry software developers also indicated that they commit code

as they worry about machine failure and losing code. If this is not managed

properly part completed code could be pushed to the master branch and

lead to merge conflicts. For example, S1P7 says ‘So if I tried to push a WIP,

Git would hook it and say that you are not allowed to do it...’. This simple

solution suggests that thoughtful tool configurations might benefit industry

software developers. Following the lead of the aviation industry, standard-

ising the interaction of tools with industry software developers could help

across multiple platforms and languages.

6.2.5 Faster feedback loops

Industry software developers mentioned process related mitigation strategies

(see Table 4.7) many of which seem to relate to getting fast feedback on code

faults (e.g., reviews, testing and pull requests). Our results suggest that the

quicker industry software developers can get feedback on the consequences

of their error, the quicker they can make improvements.

123

Chapter 6: Discussion

Pair programming is a well established approach to industry software

developers getting instant feedback on their code Williams et al. (2003),

Tomayko (2002). S1P20 says of pair programming:

‘...comparing it to for example, code reviews, it’s just a very

simple benefit. It’s just faster feedback loops is all it is.’

Pair programming allows for industry software developers to detect and

remove faults in code caused by SB errors very quickly. The second devel-

oper’s cognition is independent of the primary developer, therefore they are

likely to be able to see the consequences of SB human errors in the code

that have being written by the primary developer.

Pull requests seem to be an increasingly important way to get feedback

on code. S1P9 says

‘so the majority of time I would pick it up in pull requests and

you’re basically reviewing someone else’s code...’

The value of code review Sadowski et al. (2018) is reiterated by S1P1:

‘...sometimes you do not check for some errors and it just ends

up sitting in the code base. It comes up in code review...’

Pull requests and code reviews both provide external feedback on code.

Ideally, both should be used to identify developer errors in the form of code

defects. Pull requests are not available in all tools used by industry software

developers, but where they are, I encourage the setting up of repositories so

that pull request use is mandatory on top of code reviews. This intervention

adds another layer of defence against errors translating into production code

defects.

Overall my results suggest that industry software developers value mech-

anisms where code is checked for defects, which have occurred as a conse-

quence of their errors, and feedback quickly provided to them.

124

Chapter 6: Discussion

6.2.6 Tiredness

In some other industries, tiredness can be a serious cause of error for which

mitigation is embedded in the processes used. For example, in the trans-

portation industry drivers must not exceed driving a given number of hours

in a day and must have a break at set intervals. This is tracked through

the systematic use of a tacograph. Sugden et al. (2012) report that tired-

ness will affect decision-making, complex mental tasks and awareness. Our

results suggest that tiredness does not seem to be a high cause of errors in

software development. This is surprising to me as I expected tiredness to

be more problematic to software industry software developers. S1P11 says

‘...it is a sign that I’m tired...’ and ‘...it’s a matter of relaxing a

little bit or resting for a few minutes or grabbing a coffee.’

This suggests that industry software developers may recognise that they are

fatigued but can deploy their own mitigation strategies to combat tiredness.

6.3 RQ3: What type of human errors do industry

software developers make?

My results suggest that industry software developers make human errors

across the three main types of human error i.e. slips, lapses and mistakes.

The distribution of the human error types varied between industry soft-

ware developers with some reporting many more instances of mistakes than

others. While I suspect violations do occur within software development, I

believe these to be rare. Unsurprisingly none of our participants self-report

any violation human errors. Future work could employ use of ethnographic

research to determine whether violations do occur, what form these take

and why industry software developers make violation errors.

Table 5.4, 5.5 and 5.6 shows variation in the errors that different industry

125

Chapter 6: Discussion

software developers seem prone to during the two week snapshot of this

study. For example Table 5.4, 5.5 and 5.6 suggests that S2P6 makes the most

human errors related to syntax. Whereas S2P8 seems to make more code

structure / complexity related errors. S2P5 is the only developer who does

not record any communication related human errors. In relation to these

participants my analysis (See Table 5.2) does not suggest anything about

their experience or demographics which could explain why they seem prone

to these specific errors. Other factors related to the project or development

environment need further examination to identify any relationship with an

over-representation of error-types.

Table 5.4, 5.5 and 5.6 also shows the type of human errors (slips, lapse,

mistake) that occurred within each theme. Table 5.4, 5.5 and 5.6 suggests

that all communication based human errors are mistakes rather than slips or

lapses. Mistakes are usually more substantial errors than lapses or slips and

can be more complex to correct. This confirms the importance of strong

communication mechanisms during development activities. Table 5.4, 5.5

and 5.6 also shows that syntax errors comprise entirely of slips or lapses.

This suggests that industry software developers generally know syntax but

make minor errors despite this knowledge. Most industry software devel-

opers reported errors related to the complexity of the development envi-

ronment. Table 5.4, 5.5 and 5.6 shows only S2P8 and S2P9 do not report

such errors, for example S2P10 tells he they ‘Forgot to increase version of

updated dependency.’ This is because S2P10 was ‘Juggling three different

tasks all at the same time. Performance research on one strand, bug fix-

ing on two separate issues. Each with their own programming languages!

(Python, Java and Scala)’.

When looking specifically at the seven identified themes within Chapter

5, we can immediately a diverse range of human errors. We know that

planning based errors are mistakes while execution based errors are slips and

126

Chapter 6: Discussion

lapses. It is unsurprising to see errors from both execution and planning.

The planning based errors come from the two communication related themes,

while the execution related errors come from the other themes.

I find it note worthy that the majority of self reported errors described by

the participants were execution errors i.e. slips and lapses. Typically plan-

ning errors i.e. mistakes were noted as communication errors with external

stake holders. Future work should investigate whether execution errors are

more prevalent than planning errors.

6.4 RQ4: Does the online training package on the

OODA loop reduce the number of human er-

rors that industry software developers make?

To check how well participants engaged with the on-line training, partici-

pants completed an after training quiz with nine questions. The majority

of participants performed well in this quiz with all but one participant at-

taining scores of eight or nine. Only S2P6 recorded a lower score of six

(A full breakdown of participant performance can be found in the Table

5.8.). Overall the quiz results suggest that participants engaged well with

the OODA loop training.

Table 5.7 shows how many errors were self-recorded by industry software

developers broken down into before and after OODA loop training. Al-

though the numbers of errors across the snapshot are small Table 5.7 shows

an encouraging error reduction rate after training. In all cases there is either

a reduction in errors (four industry software developers) or no change in the

number of errors (three industry software developers) after the OODA loop

training.

I looked in more detail at the types of errors before and after OODA

loop training (Full details of this analysis can be found in Table 5.7.) and

127

Chapter 6: Discussion

found that error reductions after training were predominately in execution

errors. For example S2P6 makes 18 execution errors before training which

reduces to four execution errors after training. This reduction in execu-

tion errors suggests that using the OODA loop during development helps

industry software developers retain situation awareness of their code and

maintain concentration sufficiently to reduce the slips and lapses that they

usually make. A larger scale study is needed to establish whether this finding

holds more generally for industry software developers.

The OODA focuses on improving level 1 and level 2 SA i.e. observing

and orienteering. It lacks in level 3 SA i.e. prediction. This could explain

why there is a more noticeable reduction on execution errors post completion

of the online training package. A large study would help to confirm whether

the findings are generalisable and if there is a noticeable reduction in the

type of errors made. This larger study needs to build upon this study,

therefore should use software developers practising within industry. The

sample should be diverse and not come from a specific underlying population

or sector. Given that the type of human errors may reflect differently based

on certain demographic factors e.g. a junior developer in there first fews

months could be more likely to make more execution based errors as they

start to build patterns for repetitive tasks. In Section 6.2 I discuss a variety

of mitigation strategies as highlighted by participants in my study. The

OODA loop package helps to improve SA and cognitive skills of the industry

software developers who complete the online training package. This helps

to strength the skill set they have to guard against human errors.

Some interventions can be costly (financially and cognitively) and hard

to implement or maintain within an existing set of guidelines for an organisa-

tion. The online training package that I have developed is quick to complete

and reduces the number of human errors software developer makes. The

speed in which it takes to complete and gain direct benefits from the train-

128

Chapter 6: Discussion

ing package provides initial motivation for management to get their industry

software developers to complete the training package.

Participants in my study showed no reduction in terms of the number of

errors they made before and after completing the online training package.

There are no obvious indications as to why this could be. Looking at the data

the participants are experienced industry software developers who performed

well on the training quiz. Further work is required to understand the impacts

of other factors on developers and how they may impact the number and

type of errors made. Such further work must be carefully designed, as it

would not be ethical and could be intrusive to collate certain data points

about a industry software developers state e.g. mental health conditions,

sleep, personal/emotional stressors, etc.

6.5 RQ5: Do industry software developers find the

online training package easy and useful to use?

I asked our participants for their thoughts about the OODA training (Table

5.9 shows the coded results of participant feedback.). The sentiment of all

responses are positive which indicates that participants enjoyed participat-

ing in the study and found the online training tool easy to use. Participants

said that they learned about the OODA loop and how to apply it in software

engineering for the first time during the online training. S2P7 said

‘Yes, the idea of OODA was helpful when dealing with developing

problems.’

All of our participants found the content actionable, S2P2 saying

‘Fully actionable especially in our work.’

S2P9 says the OODA loop is

129

Chapter 6: Discussion

‘Very helpful and is a need in our daily work in software engi-

neering.’

While the majority of the participants found the OODA loop led to an

improvement in their work, S2P1 & S2P10 did not. All except S2P1 report

that they will continue to use the OODA loop in the their work.

S2P10 says that they

‘will continue to use the OODA loop in their development, de-

spite not finding any direct improvement’.

S2P10’s comment suggests that they found some benefit in using the OODA

loop in their work. Further work is required to understand whether other

industry software developers find the OODA loop beneficial in their devel-

opment work for reasons other than to reduce human errors.

Participants told me that the online training package was easy and useful

to use. I should have followed up with the study participants as to why they

found the online training package easy and useful to use. I assume this is

partly attributed to using short structured videos, followed by a quiz to test

a learners retention. Methods like these are used in common major open

online courses e.g. Coursera.

In RQ4 I learn that human errors do decrease as a result of industry soft-

ware developers completing the OODA loop training package. I can partly

attribute this success to the ease and usefulness of the training package.

This is to say, if the training package had not been developed using good

practices, users may not have attained such high scores in their quizzes and

may not have retained / applied the concept of the OODA loop to their

work successfully.

130

Chapter 6: Discussion

6.6 Summary

I show that SB errors do occur in industry software development. Many

industry software developers are aware of these and know some means of

mitigation. industry software developers appear to hold themselves account-

able for their own errors instead e.g. i need to concentrate better instead of

blaming others e.g. the workplace is too loud or i have too many tasks.

I show that the online training package I have developed is able to reduce

the number of human errors industry software developers make. This is a

simple, quick and easy means of aiding many industry software developers

in a short space of time. The nature of the online training package means

industry software developers can revisit the resource at anytime if they feel

the need to refresh their memory.

131

Chapter 7

Conclusion

This doctoral research investigated the use of Human Error Theory within

software development. I have provided an insight to the Human Error The-

ory literature, relevant fields in which Human Error Theory has been applied

in e.g. medicine and the preliminary work that has been conducted within

software engineering in particular software requirements. I have investi-

gated what SB human errors industry software developers make and how

they mitigate these. I show that maintaining SA is an issue to industry

software developers. I train industry software developers SA using an online

training tool on the OODA Loop to reduce the number of human errors that

industry software developers make.

Section 7.1 highlights the steps I undertaken to achieve the aims and

objectives of my doctoral research. Section 7.2 details the research contri-

butions my doctoral research makes. Section 7.3 highlights the key research

limitations of my doctoral research. Section 7.4 presents future in software

development using Human Error Theory based on my doctoral research.

132

Chapter 7: Conclusion

7.1 Research Aims & Objectives

The aim of this doctoral research was to: Deliver a training package for

industry software developers aimed at reducing the number of human errors

industry software developers make while working on development tasks. This

thesis delivers an online training tool which reduces the number of human

errors industry software developers make. This is based on a two week

experiment using ten industry software developers.

To allow for successful completion of the aim, I set out the following

objectives:

• Obj1 To understand what SB human errors occur during software de-

velopment. I ask industry software developers to self report on human

errors in two studies. In the first I interview industry software devel-

opers about SB human errors. In the second I get industry software

developers to report on any human error that occurs within a two week

window. The response across both studies show that SA is an area of

significant struggle to industry software developers.

• Obj2 To develop an understanding of how industry software develop-

ers currently try to mitigate against SB human errors. I ask developers

to self report on mitigation strategies they employ to their human er-

rors in the first study. Industry software developers listed a variety of

strategies that could be classified as developer, tool, process or man-

agement focused at a high level. It became apparent these industry

software developers viewed themselves as the focal point of many mit-

igation strategies. This is not surprising given how they are struggling

with maintaining SA.

• Obj3 To establish whether industry software developers make more

slips/lapses vs mistakes. By asking industry software developers to re-

port on all human errors that they make during software development

133

Chapter 7: Conclusion

activities across a two week period I can determine which type of er-

ror is more frequent. I learn that SB or slips/lapses are more common

within software development.

• Obj4 To deliver an educational tool which aids industry software de-

velopers to mitigate against the most frequent form of human error. I

develop a four part online training package which educates industry

software developers on SA and the OODA Loop. Industry software

developers self report human errors made across a two week period

where industry software developers complete the training on day 6. I

see a clear drop in the number of human error made after using the

tool.

7.2 Research Contributions

My doctoral research makes the following contributions to knowledge;

• Cont1 New understanding about typical human errors made by in-

dustry software developers. While all forms of human error occur,

slips and lapses or SB errors are most commonly occurring for indus-

try software developers. Causes of human errors during development

activities include complex development environment, lack of concen-

tration and going down rabbit holes. Additionally I identify seven

themes which software developer human errors tend to fall within.

• Cont2 New understanding about how industry software developers

mitigate human errors during development activities e.g. focusing, us-

ing headphones, automation and planning. Maintaining focus and con-

centration were reported frequently as a means of mitigating against

human error.

• Cont3 The use of SA training using the OODA loop can lead to a

134

Chapter 7: Conclusion

reduction in the number of human errors software developers make.

Designed, implemented an online training tool which allows industry

software developers to improve their situation awareness. The tool was

trialled using industry software developers and showed a reduction in

the number of human errors being made.

• Cont4 Gain an initial understanding of the layers (developer, process,

tool and management) in the Swiss Cheese Model. Identification of

that situation awareness is a large route through for errors and de-

veloping a training tool which aids industry software developers in

reducing the size of the hole in the slice.

My doctoral research makes the following contributions to practitioners;

• Know your own weaknesses. Every developer is different and

struggles with different concepts. Our analysis shows a variety of types

of errors that developers make. Developers becoming more conscious

of the human errors they commonly make and actively checking for

these can help reduce errors.

• Use cognitive training. We have shown that using cognitive train-

ing, like the OODA loop, seems to help decision making and can reduce

the human errors a developer makes.

• Simplify your workload. One of the biggest causes of human er-

ror reported by the developers in our study was the complexity of the

development environment. Reducing the cognitive load by simplifying

the complexity of the development environment could reduce human

errors. Actions such as minimising the number of simultaneous de-

velopment tasks and closing down unnecessary tools and windows can

help reduce the cognitive load.

135

Chapter 7: Conclusion

• Communicate carefully with stakeholders outside your team.

Our study suggests that a relatively high number of mistakes are re-

lated to communicating with stakeholders outside of the development

team. Ensuring that communication is clearly understood seems im-

portant to reducing mistakes.

7.3 Research Limitations

Limitations of my doctoral research include;

• Generalisability / Sample Size My findings only provide an initial

insight into human error within software development. The sample size

could have been increased had there been more industry collaborators

and or funding available to the participants of the study.

• Participant Bias Participants could easily hide part of or manipu-

late a response to what they believe I as the researcher is intending

on hearing. I attempted to address this by keeping each example as

high level as possible and providing little SE related examples so they

could choose examples from across their experience. Participants may

change their response because they fear their management finding out

about the errors they are making in their work. I attempted to address

this by providing reassurance that the data in raw form would not be

shared with anyone outside the research team and only processed /

annoymised data would be published.

• Interview Bias I conducted all the interviews to aid reducing in

irregularities of interview style. There is a danger that I could detect

trends as the number of interviews grew and try focusing participants

answers on specific responses. I mitigated this by only allowing the free

flowing nature of the interview to occur based on what a participant

says.

136

Chapter 7: Conclusion

7.4 Future Work

My doctoral research has provided a preliminary insight into causes of and

mitigation strategies of human errors alongside the development and imple-

mentation of a tool to aid in human error reduction for industry software

developers. This section explores some future work that could be conducted

based of my doctoral research and is presented in three sections.

The below items relate to my first study detailed in Chapter 4, which

investigated what SB errors industry software developers makes and how

they mitigate them.

1. What forms do other human errors and how are these cur-

rently mitigated? Investigate what form RB and KB errors manifest

as within software development. Additionally gain an understanding

of how RB and KB errors are currently mitigated.

2. Generalise Findings Investigate whether a larger participant pool

shows similar themes in relation to SB errors and mitigation methods.

The below items relate to my second study detailed in Chapter 5, which

investigated whether undergoing SA training leads to a reduction in human

errors.

1. Further understand adverse issues of using the OODA loop

Develop an understanding as to why planning errors increased when

industry software developers use OODA loop.

2. Generalise Findings Run the OODA loop study with a larger par-

ticipant pool to determine if its use does indeed lead to a reduce in

human errors.

3. Do results last? Extend the OODA study to investigate whether

the intervention has long lasting effects on human error reduction.

137

Chapter 7: Conclusion

4. Are there other benefits? Determine if there are any other benefits

to industry software developers in using the OODA loop other than

reducing the number of human errors.

The below items relate further work that is needed within the scope of

reducing human error within software development.

1. Blame Culture Investigate the type of blame culture that exists

within software development and its effect on human error.

2. Use other models Investigate does the use of other models within

human error research lead to a decrease in the number of software

developer human errors.

3. Violations Develop an understanding in what and why industry soft-

ware developers commit violation human errors.

4. Monitoring developer factors I know many factors e.g. amount of

sleep, mental/physical/emotional well being etc, can determine whether

a developer makes errors in their work. Develop a list of which of the

measures industry software developers are willing to monitor actively.

My doctoral thesis highlights the need for research to target the human

errors industry software developers make. I have shown that there are layers

of human error that need work. My doctoral thesis focused on SA from

the developer layer. I have shown that simple safeguard measures can be

introduced to aid industry software developers in their work. This simple

and effective measure can easily be rolled out within industry aiding millions

to improve their SA skills, in turn reducing the number of human errors they

make.

138

Bibliography

Abimanyi-Ochom, J., Bohingamu Mudiyanselage, S. & Catchpool, M.

(2019), ‘Strategies to reduce diagnostic errors: a systematic review.’, BMC

Med Inform Decis Mak 19(1), 174.

Anu, V., Walia, G. & Bradshaw, G. (2017), Incorporating Human Error

Education into Software Engineering Courses via Error-based Inspec-

tions, in ‘Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education’, SIGCSE ’17, ACM, New York, NY, USA,

pp. 39–44.

Anu, V., Walia, G., Hu, W., Carver, J. & Bradshaw, G. (2016a), Effec-

tiveness of human error taxonomy during requirements inspection: An

empirical investigation, in ‘Proceedings of the International Conference

on Software Engineering and Knowledge Engineering, SEKE’, Vol. 2016-

Janua, pp. 531–536.

Anu, V., Walia, G., Hu, W., Carver, J. C. & Bradshaw, G. (2016b), Using

a Cognitive Psychology Perspective on Errors to Improve Requirements

Quality: An Empirical Investigation, in ‘Proceedings - International Sym-

posium on Software Reliability Engineering, ISSRE’, IEEE, pp. 65–76.

Auerbach, C. & Silverstein, L. B. (2003), Qualitative data: An introduction

to coding and analysis, Vol. 21, NYU press.

Bailey, B. P. & Konstan, J. A. (2006), ‘On the need for attention-aware

139

systems: Measuring effects of interruption on task performance, error

rate, and affective state’, Computers in Human Behavior 22(4), 685 –

708. Attention aware systems.

URL: http://www.sciencedirect.com/science/article/pii/S074756320500107X

Barlett, J. E., Kotrlik, J. W. & Higgins, C. C. (2001), ‘Organizational re-

search: Determining appropriate sample size in survey research’, Infor-

mation technology, learning, and performance journal 19(1), 43.

Basili, V. R. (2007), The role of controlled experiments in software engineer-

ing research, in ‘Empirical Software Engineering Issues. Critical Assess-

ment and Future Directions’, Springer, pp. 33–37.

Basit, T. (2003), ‘Manual or electronic? the role of coding in qualitative

data analysis’, Educational research 45(2), 143–154.

Beynon-Davies, P. (1999), ‘Human error and information systems failure:

the case of the london ambulance service computer-aided despatch system

project’, Interacting with Computers 11(6), 699–720.

Bird, C., Nagappan, N., Murphy, B., Gall, H. & Devanbu, P. (2011), Don’t

touch my code!, in ‘Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineering

- SIGSOFT/FSE ’11’, ACM, p. 4.

Boyd, J. (1987), ‘A discourse on winning and losing [briefing slides]’, Maxwell

Air Force Base, AL: Air University Library.(Document No. MU 43947) .

Braun, V. & Clarke, V. (2006), ‘Using thematic analysis in psychology’,

Qualitative research in psychology 3(2), 77–101.

Brennan, P. A., Mitchell, D. A., Holmes, S., Plint, S. & Parry, D. (2016),

‘Good people who try their best can have problems: recognition of human

140

factors and how to minimise error’, British Journal of Oral and Maxillo-

facial Surgery 54(1), 3–7.

Brykczynski, B. (1999), ‘A survey of software inspection checklists’, ACM

SIGSOFT Software Engineering Notes 24(1), 82.

Carthey, J. (2013), ‘Understanding safety in healthcare: The system evolu-

tion, erosion and enhancement model’, Journal of public health research

2, e25.

Clay-Williams, R. & Colligan, L. (2015), ‘Back to basics: checklists in avi-

ation and healthcare’, BMJ Quality & Safety 24(7), 428–431.

URL: https://qualitysafety.bmj.com/content/24/7/428

Connelly, L. M. (2008), ‘Pilot studies’, Medsurg Nursing 17(6), 411–413.

Dekker, S. (2005), Ten questions about human error: a new view of human

factors and system safety, Lawrence Erlbaum Associates, Mahwah, N.J.

Dey, I. (2003), Qualitative data analysis: A user friendly guide for social

scientists, Routledge.

Easterbrook, S., Singer, J., Storey, M.-A. & Damian, D. (2008), Select-

ing Empirical Methods for Software Engineering Research, in ‘Guide to

Advanced Empirical Software Engineering’, Guide to advanced empirical

software engineering, Springer, pp. 285–311.

Ely, J. W., Graber, M. L. & Croskerry, P. (2011), ‘Checklists to reduce

diagnostic errors’, Academic Medicine 86(3), 307–313.

Endsley, M. R. (1988), Situation awareness global assessment technique

(sagat), in ‘Proceedings of the IEEE 1988 national aerospace and elec-

tronics conference’, IEEE, pp. 789–795.

Endsley, M. R. (1995), ‘Toward a theory of situation awareness in dynamic

systems’, Human factors 37(1), 32–64.

141

Endsley, M. R. & Garland, D. J. (2000), Pilot situation awareness training

in general aviation, in ‘Proceedings of the Human Factors and Ergonomics

Society Annual Meeting’, Vol. 44, SAGE Publications Sage CA: Los An-

geles, CA, pp. 357–360.

Ericsson, K. A. & Simon, H. A. (1984), Protocol analysis: Verbal reports as

data., the MIT Press.

Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A.

& Oivo, M. (2018), ‘Empirical software engineering experts on the use of

students and professionals in experiments’, Empirical Software Engineer-

ing 23(1), 452–489.

Fitts, P. M. & Jones, R. E. (1947), Analysis of factors contributing to 460”

pilot-error” experiences in operating aircraft controls, Aero Medical Lab-

oratory Wright-Patterson Air Force Base, OH.

Graziotin, D., Fagerholm, F., Wang, X. & Abrahamsson, P. (2017), ‘On the

unhappiness of software developers’, CoRR abs/1703.04993.

URL: http://arxiv.org/abs/1703.04993

Hightower, T. A. (2007), ‘Boyd’s ooda loop and how we use it’, Tactical

Response .

Hoda, R., Noble, J. & Marshall, S. (2010), Using grounded theory to study

the human aspects of software engineering, in ‘Human Aspects of Software

Engineering’, pp. 1–2.

Höst, M., Regnell, B. & Wohlin, C. (2000), ‘Using students as subjects—

a comparative study of students and professionals in lead-time impact

assessment’, Empirical Software Engineering 5(3), 201–214.

Hu, W., Carver, J., Anu, V., Walia, G. & Bradshaw, G. (2016), Detec-

tion of Requirement Errors and Faults via a Human Error Taxonomy:

142

A Feasibility Study, in ‘International Symposium on Empirical Software

Engineering and Measurement’, Vol. 08-09-Sept of ESEM ’16, ACM, New

York, NY, USA, p. 30:10.

Hu, W., Carver, J. C., Anu, V., Walia, G. & Bradshaw, G. (2017), ‘De-

fect Prevention in Requirements Using Human Error Information: An

Empirical Study’, pp. 61–76.

Hu, W., Carver, J. C., Walia, G. & Anu, V. (2017a), ‘Understanding Human

Errors In Software Requirements : An Online Survey’.

Huang, F. (2016), ‘Post-completion Error in Software Development’, Pro-

ceedings of the 9th International Workshop on Cooperative and Human

Aspects of Software Engineering pp. 108–113.

Huang, F. & Liu, B. (2011), Systematically improving software reliability:

considering human errors of software practitioners, in ‘23rd Psychology of

Programming Interest Group Annual Conference (PPIG 2011)’.

Huang, F. & Liu, B. (2017), ‘Software defect prevention based on human

error theories’, Chinese Journal of Aeronautics .

Huang, F., Liu, B. & Huang, B. (2012), ‘A Taxonomy System to Identify

Human Error Causes for Software Defects’, Proceedings of the 18th In-

ternational Conference on Reliability and Quality in Design, ISSAT 2012

pp. 44–49.

Huang, F., Liu, B., Song, Y. & Keyal, S. (2014), ‘The links between human

error diversity and software diversity: Implications for fault diversity seek-

ing’, Science of Computer Programming 89(PART C), 350–373.

Ioannidis, J. P. (2008), ‘Why most discovered true associations are inflated’,

Epidemiology pp. 640–648.

143

Ioannou, G., Louvieris, P. & Clewley, N. (2019), ‘A Markov Multi-phase

Transferable Belief Model for Cyber Situational Awareness’, IEEE Access

.

Kadam, P. & Bhalerao, S. (2010), ‘Sample size calculation’, International

Journal of Ayurveda Research 1(1), 55.

Kitchenham, B. A., Society, I. C., Pfleeger, S. L., Pickard, L. M., Jones,

P. W., Hoaglin, D. C., Emam, K. E. & Rosenberg, J. (2002), ‘Prelimi-

nary Guidelines for Empirical Research in Software Engineering’, Main

28(8), 721–734.

Kitchenham, B., Sjøberg, D. I., Dyb̊a, T., Brereton, O. P., Budgen, D., Höst,

M. & Runeson, P. (2012), ‘Trends in the quality of human-centric soft-

ware engineering experiments–a quasi-experiment’, IEEE Transactions on

Software Engineering 39(7), 1002–1017.

Kitchenham, B., Sjøberg, D. I. K., Brereton, O. P., Budgen, D., Dyb̊a, T.,

Höst, M., Pfahl, D. & Runeson, P. (2010), Can we evaluate the quality

of software engineering experiments?, in ‘Proceedings of the 2010 ACM-

IEEE International Symposium on Empirical Software Engineering and

Measurement’, ESEM ’10, Association for Computing Machinery, New

York, NY, USA.

URL: https://doi.org/10.1145/1852786.1852789

Ko, A. J., Latoza, T. D. & Burnett, M. M. (2015), ‘A practical guide to

controlled experiments of software engineering tools with human partici-

pants’, Empirical Software Engineering 20(1), 110–141.

LaToza, T. D., Venolia, G. & DeLine, R. (2006), Maintaining mental models,

in ‘Proceeding of the 28th international conference on Software engineer-

ing - ICSE ’06’, ICSE ’06, ACM, New York, NY, USA, p. 492.

Leape, L. L. (1994), ‘Error in medicine’, Jama 272(23), 1851–1857.

144

Li, S. Y. W., Blandford, A., Cairns, P. & Young, R. M. (2008), ‘The ef-

fect of interruptions on postcompletion and other procedural errors: An

account based on the activation-based goal memory model.’, Journal of

Experimental Psychology: Applied 14(4), 314 – 328.

Linneberg, M. S. & Korsgaard, S. (2019), ‘Coding qualitative data: A syn-

thesis guiding the novice’, Qualitative research journal .

Marino, M. J. (2018), ‘How often should we expect to be wrong? statis-

tical power, p values, and the expected prevalence of false discoveries’,

Biochemical pharmacology 151, 226–233.

Marshall, M. N. (1996), ‘Sampling for qualitative research’, Family practice

13(6), 522–526.

Maxwell, J. (1992), ‘Understanding and validity in qualitative research’,

Harvard educational review 62(3), 279–301.

Meyer, A. N., Murphy, G. C., Fritz, T. & Zimmermann, T. (2019), Develop-

ers’ Diverging Perceptions of Productivity, Apress, Berkeley, CA, pp. 137–

146.

Morris, A. (2015), A practical introduction to in-depth interviewing, SAGE,

Los Angeles.

Oppenheim, A. N. (1992), Questionnaire design, interviewing and attitude

measurement, 2nd edn.

Palmer, C. & Pe’er, I. (2017), ‘Statistical correction of the winner’s curse ex-

plains replication variability in quantitative trait genome-wide association

studies’, PLoS genetics 13(7), e1006916.

Peitek, N., Siegmund, J., Apel, S., Kästner, C., Parnin, C., Bethmann, A.,

Leich, T., Saake, G. & Brechmann, A. (2020), ‘A look into programmers’

heads’, IEEE Transactions on Software Engineering 46(4), 442–46.

145

Petersen, L., Robert, L., Yang, J. & Tilbury, D. (2019), ‘Situational Aware-

ness, Driver’s Trust in Automated Driving Systems and Secondary Task

Performance’, SAE International Journal of Connected and Autonomous

Vehicles, Forthcoming .

Pirzadeh, L. (2010), ‘Human Factors in Software Development: A System-

atic Literature Review’.

Procida, D. (2017), Fighting the controls: Madness and tragedy in program-

ming. DjangoCon Europe 2017.

URL: https://www.youtube.com/watch?v=qI7NZV-rak0

Rasmussen, J. (1983), ‘Skills, rules, and knowledge; signals, signs, and sym-

bols, and other distinctions in human performance models’, IEEE Trans-

actions on Systems, Man, and Cybernetics SMC-13(3), 257–266.

Reason, J. (1990), Human Error, Cambridge University Press, New York;

Cambridge [England].

Reason, J. (1995), ‘Understanding adverse events: human factors.’, BMJ

Quality & Safety 4(2), 80–89.

Reason, J. (2000), ‘Human error: models and management’, BMJ: British

Medical Journal 320(7237), 768.

Reason, J. T. (2008), The human contribution: unsafe acts, accidents and

heroic recoveries, Ashgate, Burlington, VT;Farnham, England;.

Ribeiro, G. d. S. R., Silva, R. C. d., Ferreira, M. A. d. A. A. A. & Silva,

G. R. d. (2016), ‘Slips, lapses and mistakes inthe use of equipment by

nurses in an intensive care unit’, Revista da Escola de Enfermagem da

USP 50, 419 – 426.

Richards, C. (2020), ‘Boyd’s ooda loop’.

146

Sadowski, C., Söderberg, E., Church, L., Sipko, M. & Bacchelli, A. (2018),

Modern code review: A case study at google, in ‘Proceedings of the 40th

International Conference on Software Engineering: Software Engineering

in Practice’, ICSE-SEIP ’18, ACM, New York, NY, USA, pp. 181–190.

URL: http://doi.acm.org/10.1145/3183519.3183525

Salman, I., Misirli, A. T. & Juristo, N. (2015), Are students represen-

tatives of professionals in software engineering experiments?, in ‘2015

IEEE/ACM 37th IEEE International Conference on Software Engineer-

ing’, Vol. 1, pp. 666–676.

Sarkar, S. & Parnin, C. (2017), Characterizing and predicting mental fa-

tigue during programming tasks, in ‘2017 IEEE/ACM 2nd International

Workshop on Emotion Awareness in Software Engineering (SEmotion)’,

pp. 32–37.

Seaman, C. (1999), ‘Qualitative methods in empirical studies of software

engineering’, IEEE Transactions on Software Engineering 25(4), 557–572.

Shadish, W. R., Cook, T. D., Campbell, D. T. et al. (2002), Experimental

and quasi-experimental designs for generalized causal inference/William

R. Shedish, Thomas D. Cook, Donald T. Campbell., Boston: Houghton

Mifflin,.

Sjøberg, D. I., Anda, B., Arisholm, E., Dyb̊a, T., Jørgensen, M., Kara-

hasanović, A. & Vokáč, M. (2003), Challenges and recommendations when

increasing the realism of controlled software engineering experiments, in

‘Empirical methods and studies in software engineering’, Springer, pp. 24–

38.

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic,

A., Liborg, N.-K. & Rekdal, A. C. (2005), ‘A survey of controlled experi-

147

ments in software engineering’, IEEE Transactions on Software Engineer-

ing 31(9), 733–753.

Sjøberg, D. I. K., Anda, B., Arisholm, E., Dyb̊a, T., J”rgensen, M., Kara-

hasanovic, A., Koren, E. F. & Vokác, M. (2002), Conducting realistic

experiments in software engineering, in ‘Proceedings of the 2002 Interna-

tional Symposium on Empirical Software Engineering’, ISESE ’02, IEEE

Computer Society, Washington, DC, USA, pp. 17–.

Sommerville, I. (2015), Software Engineering, Always learning, 10th edn,

ADDISON WESLEY Publishing Company Incorporated.

Stol, K.-J., Ralph, P. & Fitzgerald, B. (2016), Grounded theory in software

engineering research: a critical review and guidelines, in ‘Proceedings of

the 38th International Conference on Software Engineering’, pp. 120–131.

Sugden, C., Athanasiou, T. & Darzi, A. (2012), What are the effects of sleep

deprivation and fatigue in surgical practice?, in ‘Seminars in thoracic and

cardiovascular surgery’, Vol. 24, Elsevier, pp. 166–175.

Sykes, E. R. (2011), ‘Interruptions in the workplace: A case study to

reduce their effects’, International Journal of Information Management

31(4), 385–394.

Thibodeau, P. (2013), ‘India to overtake U.S. on number of developers by

2017’.

Tomayko, J. E. (2002), ‘A comparison of pair programming to inspections

for software defect reduction’, Computer Science Education 12(3), 213–

222.

Vegas, S., Dieste, O. & Juristo, N. (2015), Difficulties in running experiments

in the software industry: Experiences from the trenches, in ‘Proceedings

148

of the Third International Workshop on Conducting Empirical Studies in

Industry’, CESI ’15, IEEE Press, Piscataway, NJ, USA, pp. 3–9.

Wagner, S., Mendez, D., Felderer, M., Graziotin, D. & Kalinowski, M.

(2020), Challenges in survey research, in ‘Contemporary Empirical Meth-

ods in Software Engineering’, Springer, pp. 93–125.

Walia, G. S. & Carver, J. C. (2009), ‘A systematic literature review to iden-

tify and classify software requirement errors’, Information and Software

Technology 51(7), 1087–1109.

Walsh, K. (2003), ‘Qualitative research: Advancing the science and practice

of hospitality’, Cornell Hotel and Restaurant Administration Quarterly

44(2), 66–74.

Wickens, C. D. (2002), ‘Situation awareness and workload in aviation’, Cur-

rent directions in psychological science 11(4), 128–133.

Williams, L., Maximilien, E. M. & Vouk, M. (2003), Test-driven develop-

ment as a defect-reduction practice, in ‘14th International Symposium on

Software Reliability Engineering, 2003. ISSRE 2003.’, IEEE, pp. 34–45.

Wright, M. C., Taekman, J. M. & Endsley, M. R. (2004), ‘Objective mea-

sures of situation awareness in a simulated medical environment’, BMJ

Quality & Safety 13(suppl 1), i65–i71.

149

Appendix A

Skill-based (SB) Errors

A.1 Inattention

A.1.1 Double-Capture Slips

Reason (1990) reports

‘these are so named because they involve two distinct, though

causally related, kinds of capture. First, the greater part of the

limited attentional resource is claimed either by some internal

preoccupation or by some external distractor at a time when a

higher-order intervention (bringing the work-space into the con-

trol loop momentarily) is needed to set the action along the

currently intended pathway. As a result, the control of action

is usurped by the strongest schema leading onwards from that

particular point in the sequence. Such slips are lawful enough

to permit reasonably firm predictions regarding when they will

occur and what form they will take. The necessary conditions

for their occurrence appear to be (a) the performance of some

well-practised activity in familiar surroundings, (b) an intention

to depart from custom, (c) a departure point beyond which the

150

’strengths’ of the associated action schemata are markedly dif-

ferent, and (d) failure to make an appropriate attentional check.

The outcome, generally, is a strong habit intrusion, that is, the

unintended activation of the strongest (i.e., the most contextu-

ally frequent) action schema beyond the choice point.’

A.1.2 Omissions following interruptions

Reason (1990) reports

‘in some instances, the failure to make an attentional check is

compounded by some external event. For example: (a) “I picked

up my coat to go out when the phone rang. I answered it and

then went out of the front door without my coat.” (b) “I walked

to my bookcase to find the dictionary. In the process of taking

it off the shelf, other books fell onto the floor. I put them back

and returned to my desk without the dictionary.” (c) “While

making tea, I noticed that the tea caddy was empty. I got a

fresh packet of tea from the shelf and refilled the caddy. But

then I ommitted to put the tea in the pot, and poured boiling

water into an empty kettle.” Lapses (b) and (c) suggest that

secondary corrective routines (rule-based solutions to regularly

planned encountered ‘hiccups’ in a routine) can get ‘counted in’

as part of the planned sequence of actions, so that when the

rule-based activity is over, the original sequence is picked up at

a point one or two steps further along.’

A.1.3 Reduced Intentionality

Reason (1990) reports

‘it frequently happens that some delay intervenes between the

formulation of an intention to do something and the time for

151

this activity to be executed. Unless it is periodically refreshed by

attentional checks in the interim, this intention probably will be-

come overlaid by other demands upon the conscious workspace.

These failures of prospective memory lead to a common class

of slips and lapses that take a wide variety of forms. These in-

clude detached intentions (“I intended to close the window as it

was cold. I closed the cupboard door instead.”) environmental

capture (“I went into my bedroom intending to fetch a book.

I took off my rings, looked in the mirror and came out again

- without the book.”) and multiple sidesteps (“I intended to

go to the cupboard under the stairs to turn off the immersion

heater. I dried my hands to turn off the switch, but went to

the larder instead. After that, I wandered into the living room,

looked at the table, went back to the kitchen, and then I remem-

bered my original intention”). Sometimes these error take the

form of states rather than actions i.e., lapses rather than slips):

the what-am-I-doing-here experience (“I opened the fridge and

stood there looking at its contents, unable to remember what it

was I wanted.” and the even more frustrating I-should-be-doing-

something-but-I-can’t-remember-what experience.’

A.1.4 Perceptual Confusions

Reason (1990) reports

‘the characteristics of these fairly common errors suggest that

they occur because the recognition schemata accept as a match

for the proper object something that looks like it, is in the ex-

pected location or does a similar job. These slips could arise

because, in a highly routinised set of actions, it is unnecessary

to invest the same amount of attention in the matching pro-

152

cess. With relatively unusual or unexpected stimuli, attentional

processing brings noncurrent knowledge to bear upon their in-

terpretation. But with oft-repeated tasks, it is likely that the

recognition schemata, as well as the action schemata, become

automatised to the extent that they accept rough rather than

precise approximations to the expected inputs. This degradation

of the acceptance criteria is in keeping with ‘cognitive economics’

and its attendant liberation of attentional capacity. Thus, per-

ceptual slips commonly take the form of accepting look-alikes for

the intended object (“I intended to pick up the milk bottle, but

actually reached out for the squash bottle.”). A closely-related

variety involves pouring or placing something into a similar but

unintended receptacle (“I put a piece of dried toast on the cat’s

dish instead of in the bin.” “I began to pour tea into the sugar

bowl.”).’

A.1.5 Interference Errors

Reason (1990) reports

‘two currently active plans, or within a single plan, two action

elements, can become entangled in the struggle to gain control

of the effectors. This results in incongruous blends of speech

and action (“I had just finished talking on the phone when my

secretary ushered in some visitors. I got up from behind the

desk and walked to greet them with my hand outstretched saying

‘Smith speaking’.”)’

153

A.2 Overattention

A.2.1 Omissions

Reason (1990) reports

‘consider the situation in which one interrupts some reverie to

enquire where one is in the tea-making sequence Mistimed checks

such as these can produce at least two kinds of wrong assessment.

Either one concludes that the process is further along than it

actually is, and, as a consequence, omits some necessary step like

putting the tea in the pot or switching on the kettle (omission).

Or, one decides that is has not yet reached the point where it

actually is and then repeats an action already done, such as

setting the kettle to boil for a second time or trying to pour a

second kettle of water into an already full teapot (repetition).’

A.2.2 Repetitions

Reason (1990) reports

‘consider the situation in which one interrupts some reverie to

enquire where one is in the tea-making sequence Mistimed checks

such as these can produce at least two kinds of wrong assessment.

Either one concludes that the process is further along than it

actually is, and, as a consequence, omits some necessary step like

putting the tea in the pot or switching on the kettle (omission).

Or, one decides that is has not yet reached the point where it

actually is and then repeats an action already done, such as

setting the kettle to boil for a second time or trying to pour a

second kettle of water into an already full teapot (repetition).’

154

A.2.3 Reversal

Reason (1990) reports that

‘a rare but revealing kind of slip can appear in bi-directional se-

quences. An inappropriately timed check can cause am action

sequence to double back on itself (reversal), as in the following

cases. (a) ”I intended to take off my shoes and put on my slip-

pers. I took my shoes off and then noticed that a coat had fallen

off a hanger. I hung the coat up and then instead of putting

on my slippers, I put my shoes back on again.” (b) ”I got the

correct fare out of my purse to give to the bus conductor. A

few moments later I put the coins back into the purse before the

conductor had come to collect them.”’

155

Appendix B

Supporting Material For

Study One

B.1 Study Introduction

B.1.1 Participant Information Sheet

156

A Participant Sheet

Study title

What skill based human errors do developers make during the development of software

Invitation Paragraph

My name is Bhaveet Shah, I am a second year PhD student at Brunel University London in the

Department of Computer Science. I would like to invite you to take part in a research study. Before

you decide you need to understand why the research is being done and what it would involve for you.

Please take time to read the following information carefully. Ask questions if anything you read is not

clear or would like more information. Please take time to decide whether or not to take part.

What is the purpose of the study?

I am trying to see if we can determine which skill based human errors occur when developers a writing

code and if developers try to mitigate against any errors.

Why have I been invited to participate?

You have been invited to participate in this study as you are known to a member of the research team

as someone that has participated in the development phase of software e.g. developer or manager.

Do I have to take part?

As participation is entirely voluntary, it is up to you to decide whether or not to take part. If you do

decide to take part you will be given this information sheet to keep and be asked to sign a consent

form. If you decide to take part you are free to withdraw at any time and without giving a reason.

What will happen to me if I take part?

Nothing will happen to you personally as a result of this research study. Firstly you and your team will

be briefed about skill based human errors. I will ask you about any skill based errors you experienced.

To aid with recall any errors I will provide a crib sheet of error. The study will not require you to visit

the university as part of this research study.

What do I have to do?

You will be required to read this information sheet, attend the skill based human error training, be

observed while developing code and participate in the post development interview.

What are the possible disadvantages and risks of taking part?

There are no anticipated risks with participating in this study. However, if you experience any distress

following participation you are encouraged to inform Bhaveet Shah on Bhaveet.Shah@brunel.ac.uk.

What are the benefits of taking part?

There are no direct benefits to yourself from taking part in this research study. However you will aid

the research team to determine which skill based human errors occur during the development phase

of software. The research team will be able to share the results of the study, if published.

What if something goes wrong?

If you have any complaints about the project in the first instance you can contact Bhaveet Shah on

Bhaveet.Shah@ brunel.ac.uk. If you feel your complaint has not been handled to your satisfaction you

can contact Tracy Hall on t.hall3@lancaster.ac.uk. Any complaints/comments may be forwarded to

the chair of University Research Ethics Committee (UREC). They can be contacted by email at res-

ethics@brunel.ac.uk.

If you are harmed by taking part in this research project, there are no special compensation

arrangements. If you are harmed due to someone’s negligence, then you may have grounds for a legal

action but you may have to pay for it.

Will my taking part in this study be kept confidential?

All information which is collected about you during the course of the research study will be kept strictly

confidential and not shared outside the research team. Your responses will be anonymised, by having

personal information removed so that an individual cannot be identified from it.

What will happen to the results of the research study?

The results from the observations and post development interview will be analysed and used to guide

the phase of research. The anonymised results may be used if the findings are published.

Who is organising and funding the research?

Bhaveet Shah is organising the research as part of his PhD in Computer Science at Brunel University

London. The research is funded by Brunel University London.

What are the indemnity arrangements?

Brunel provides appropriate insurance cover for research which has received ethical approval.

Who has reviewed the study?

The College of Engineering, Design and Physical Sciences research ethics committee has reviewed this

study.

Include a passage on the University’s commitment to the UK Concordat on Research Integrity

Brunel University is committed to compliance with the Universities UK Research Integrity Concordat.

You are entitled to expect the highest level of integrity from our researchers during the course of their

research.

Contact for further information and complaints

For further information on this study please contact Bhaveet Shah on Bhaveet.Shah@brunel.ac.uk.

The supervisor of the research project is Professor Tracy Hall and can be contacted on

t.hall3@lancaster.ac.uk. Any complaints/comments may be forwarded to the chair of UREC. They can

be contacted by email at res-ethics@brunel. ac.uk.

B.1.2 Consent Sheet

159

CONSENT FORM: What skill based human errors do developers make

during the development of software?

The participant should complete the whole of this sheet

 Please tick the appropriate box

YES NO

Have you read the Research Participant Information Sheet?

Have you had an opportunity to ask questions and discuss this study?

Have you received satisfactory answers to all your questions?

Who have you spoken to?

Do you understand that you will not be referred to by name in any report

concerning the study?

Do you understand that you are free to withdraw from the study:

 at any time?

 without having to give a reason for withdrawing?

 (where relevant, adapt if necessary) without affecting your

future care?

(Where relevant) I agree to my interview being recorded.

(Where relevant) I agree to the use of non-attributable direct quotes when

 the study is written up or published.

Do you agree to take part in this study?

Signature of Research Participant:

Date:

Name in capitals:

B.2 Explanation of Skill-based (SB) errors

Omission

Description of Error Type: Omissions are when you conclude the process

is further along than it actually is, and, as a consequence, omit a necessary

step.

Real World Example of Error Type: Forgetting to turn the kettle on in the

tea making process.

Repetition

Description of Error Type: Repetitions are when you conclude the process

has not yet reached the point where it is further along that it actually is

and then repeat an action already done.

Real World Example of Error Type: Setting the kettle to boil for a second

time.

Reversal

Description of Error Type: Checking something outside a sequence, causing

you to double back on the sequence.

Real World Example of Error Type: I intended to take off my shoes and put

on my slippers. I took my shoes off and then noticed that a coat had fallen

off a hanger. I hung the coat up and then instead of putting on my slippers,

I put my shoes back on again.

Omission following interruptions

Description of Error Type: Forgetting something due to an external event.

Real World Example of Error Type: I picked up my coat to go out when the

phone rang. I answered it and then went out of the front door without my

coat.

161

Double-capture Slips

Description of Error Type: Unintentionally activating a strongly related ac-

tion pattern.

Real World Example of Error Type: I intended only to take my shoes off,

but took my socks off as well.

Reduced Intentionality

Description of Error Type: Some delay intervenes between the formulation

of an intention to do something and the time for this activity to be exe-

cuted.

Real World Example of Error Type: I opened the fridge and stood there

looking at its contents, unable to remember what is was I wanted.

Perceptual Confusion

Description of Error Type: Repeated tasks become automised. When con-

ducting these automised tasks we accept rough rather than precise approxi-

mations for expected inputs. This degradation of criteria leads to perceptual

slips.

Real World Example of Error Type: I intended to pick up the milk bottle,

but actually reached out for the squash bottle.

Interference Errors

Description of Error Type: Two active plans, or two parts of a single plan

can become entangled.

Real World Example of Error Type: I had just finished talking on the phone

when some visitors were ushered in. I got up from behind the desk and

walked to greet them with my hand outstretched saying ‘Smith speaking’.

162

B.3 Sample Questions to ask Interviewee

1. Omissions are when you conclude the process is further along than it

actually is, and, as a consequence, omit a necessary step. An example

of an omission is forgetting to turn the kettle on in the tea making pro-

cess. Please describe instances of omissions that you have encountered

during your development work.

2. What mitigation strategies did you use / have you started to use for

the described omissions(s)?

3. Repetitions are when you conclude the process has not yet reached the

point where it is further along that it actually is and then repeat an

action already done. An example of a repetition is setting the kettle

to boil for a second time. Please describe instances of repetitions that

you have encountered during your development work.

4. What mitigation strategies did you use / have you started to use for

the described repetitions(s)?

5. Reversals are checking something outside a sequence, causing you to

double back on the sequence. An example of a reversal is when I

intended to take off my shoes and put on my slippers. I took my shoes

off and then noticed that a coat had fallen off a hanger. I hung the

coat up and then instead of putting on my slippers, I put my shoes

back on again. Please describe instances of reversals that you have

encountered during your development work.

6. What mitigation strategies did you use / have you started to use for

the described reversals(s)?

7. Omission following interruption is forgetting something due to an ex-

ternal event. An example of omission following interruption is when I

picked up my coat to go out when the phone rang. I answered it and

then went out of the front door without my coat. Please describe in-

163

stances of omission following interruptions that you have encountered

during your development work.

8. What mitigation strategies did you use / have you started to use for

the described omission following interruptions(s)?

9. Double-capture slips are unintentionally activating a strongly related

action pattern. An example of double-capture slips are when I in-

tended only to take my shoes off, but took my socks off as well. Please

describe instances of double-capture slips that you have encountered

during your development work.

10. What mitigation strategies did you use / have you started to use for

the described double-capture slips(s)?

11. Reduced intentionality is when some delay intervenes between the for-

mulation of an intention to do something and the time for this activity

to be executed. An example of reduced intentionality is when I opened

the fridge and stood there looking at its contents, unable to remember

what is was I wanted. Please describe instances of reduced intention-

ality that you have encountered during your development work.

12. What mitigation strategies did you use / have you started to use for

the described reduced intentionality(s)?

13. Perceptual confusion is when repeated tasks become automised. When

conducting these automised tasks we accept rough rather than precise

approximations for expected inputs. This degradation of criteria leads

to perceptual slips. An example of perceptual confusion is when I

intended to pick up the milk bottle, but actually reached out for the

squash bottle. Please describe instances of perceptual confusion that

you have encountered during your development work.

14. What mitigation strategies did you use / have you started to use for

the described perceptual confusion(s)?

164

15. Interference error is when two active plans, or two parts of a single

plan can become entangled. An example of interference error is when

I had just finished talking on the phone when some visitors were ush-

ered in. I got up from behind the desk and walked to greet them

with my hand outstretched saying ‘Smith speaking’. Please describe

instances of interference errors that you have encountered during your

development work.

16. What mitigation strategies did you use / have you started to use for

the described interference error(s)?

B.4 Demographic Questions

1. What gender do you identify as? [Male, Female, Other]

2. What age band do you fit into? [18-24, 25-34, 35-44, 45-54, 55-64,

65+]

3. How many full years of industry experience do you currently have?

[<1, 1-3, 4-7, 8-10, 10+]

4. What is your current job role (If you have multiple roles, please state

your primary role. If you have left industry, please state your primary

role while in industry.)? [Freetext]

5. What industry do you currently work with (If you are self employed /

contracting / employed by a software house, what is the industry your

contract currently lies with. If you have left industry, please state the

primary industry you worked in within while in industry.)? [Freetext]

6. What is the current project type you are working on? [Open Source

System (OSS) / Closed Source System (CSS)]

7. What is the primary programming language you use? [Freetext]

165

B.5 List Of Error Themes

Below is the list of all identified error themes;

1. Missing documentation

2. Misunderstood the requirement

3. Database development omissions

4. Incorrect sequencing

5. Test All cases

6. Incomplete requirements

7. Time Pressure

8. Forgetting environmental changes

9. Tiredness

10. Repeated Testing

11. Learning Systems

12. Inserting duplicate code

13. Redoing a body of work

14. Replicating error handling

15. Work Pressure

16. Communication Gap

17. New feature, breaks master branch

18. Refactoring code

19. Modifying the wrong file

20. Being distracted by someone else

21. Going down a rabbit hole

22. Resolving merge conflicts

166

23. Context Switching

24. Crisis causing immediate shift from BAU

25. Assumptions

26. Distractions from things around the workbench

27. Task Urgency

28. Autopilot

29. Not planning properly

30. Understanding the work

31. Thinking you have found a bug

32. Something goes wrong in my mind

33. Inexperience

34. Multiple workstations

35. Reusing old commands

36. Not concentrating

37. Mistaking x for y

38. Using the wrong environment

39. Version inconsistencies of software

40. Problems transplanting code

41. Waiting for things to build

42. Forgetfulness

43. Hardware failure

44. Requirements change during development

45. Auto complete

46. Thinking you know everything

167

47. Multiple workspaces

48. Planning a workflow

49. Language switching

50. Copy and pasting incorrectly

51. Debugging multiple versions of the same software

52. Unfamiliar with tools

53. Looking in the wrong place

54. Version inconsistences of code

55. Being stressed

56. Being impatient with the development tools

57. Noise

168

Appendix C

Supporting Material For

Study Two

C.1 Study Introduction

C.1.1 Participant Information Sheet

169

A Participant Sheet

Study title

Can training software developers on human error reduce the number of skill based errors they make

in their development work?

Invitation Paragraph

My name is Bhaveet Nagaria, I am a third year PhD student at Brunel University London in the

Department of Computer Science. I would like to invite you to take part in a research study. Before

you decide you need to understand why the research is being done and what it would involve for you.

Please take time to read the following information carefully. Ask questions if anything you read is not

clear or would like more information. Please take time to decide whether or not to take part.

What is the purpose of the study?

I am trying to see if we can reduce the number of skill based human errors developers make during

development.

Why have I been invited to participate?

You have been invited to participate in this study as you are known to a member of the research team

as someone that has participated in the development phase of software e.g. developer or manager.

Do I have to take part?

As participation is entirely voluntary, it is up to you to decide whether or not to take part. If you do

decide to take part you will be given this information sheet to keep and be asked to sign a consent

form. If you decide to take part you are free to withdraw at any time and without giving a reason.

What will happen to me if I take part?

You will be asked to record any human errors that occur during a two week period. At the beginning

of week two you will be provided training on situation awareness. The study will not require you to

visit the university as part of this research study.

What do I have to do?

You will be required to read this information sheet and answer some demographic questions. Every

day for a two week window we ask you to keep track of any human errors (specific to software

development) that occur. Examples of human error can be seen in the table below. To assist you in

keeping this record we have supplied you with a record sheet with some worked examples. At the

beginning of week two you will complete training on situation awareness.

Forgetting to turn the kettle on in the tea making process.

Setting the kettle to boil for a second time or trying to pour a second kettle of water into an already
full teapot.
I intended to take off my shoes and put on my slippers. I took my shoes off and then noticed that a
coat had fallen off a hanger. I hung the coat up and then instead of putting on my slippers, I put my
shoes back on again.
I picked up my coat to go out when the phone rang. I answered it and then went out of the front
door without my coat.
I intended only to take my shoes off, but took my socks off as well.

I opened the fridge and stood there looking at its contents, unable to remember what is was I
wanted.
I intended to pick up the milk bottle, but actually reached out for the squash bottle.
I had just finished talking on the phone when my secretary ushered in some visitors. I got up from
behind the desk and walked to greet them with my hand outstretched saying ‘Smith speaking’.

What are the possible disadvantages and risks of taking part?

There are no anticipated risks with participating in this study. However, if you experience any distress

following participation you are encouraged to inform Bhaveet Nagaria on

Bhaveet.Nagaria@brunel.ac.uk.

What are the benefits of taking part?

By taking part in this research study you will be trained in a method of improving your situation

awareness. You will aid the research team to determine whether this intervention can reduce the

number skill based human errors which occur during the development phase of software. The

research team will be able to share the results of the study, if published.

What if something goes wrong?

If you have any complaints about the project in the first instance you can contact Bhaveet Nagaria on

Bhaveet.Nagaria@ brunel.ac.uk. If you feel your complaint has not been handled to your satisfaction

you can contact Tracy Hall on Tracy.Hall@lancaster.ac.uk. Any complaints/comments may be

forwarded to the chair of University Research Ethics Committee (UREC). They can be contacted by

email at res-ethics@brunel.ac.uk.

If you are harmed by taking part in this research project, there are no special compensation

arrangements. If you are harmed due to someone’s negligence, then you may have grounds for a legal

action but you may have to pay for it.

Will my taking part in this study be kept confidential?

All information which is collected about you during the course of the research study will be kept strictly

confidential and not shared outside the research team. Your responses will be anonymised, by having

personal information removed so that an individual cannot be identified from it.

What will happen to the results of the research study?

The results from the records and training will be analysed to determine if there is a change in skill

based errors. The anonymised results may be used if the findings are published.

Who is organising and funding the research?

Bhaveet Nagaria is organising the research as part of his PhD in Computer Science at Brunel University

London. The research is funded by Brunel University London.

What are the indemnity arrangements?

Brunel provides appropriate insurance cover for research which has received ethical approval.

Who has reviewed the study?

The College of Engineering, Design and Physical Sciences research ethics committee has reviewed this

study.

University’s commitment to the UK Concordat on Research Integrity

Brunel University is committed to compliance with the Universities UK Research Integrity Concordat.

You are entitled to expect the highest level of integrity from our researchers during the course of their

research.

Contact for further information and complaints

For further information on this study please contact Bhaveet Nagaria on

Bhaveet.Nagaria@brunel.ac.uk. The supervisor of the research project is Professor Tracy Hall and can

be contacted on Tracy.Hall@lancaster.ac.uk. Any complaints/comments may be forwarded to the

chair of UREC. They can be contacted by email at res-ethics@brunel. ac.uk.

C.1.2 Consent Sheet

173

CONSENT FORM: Can training software developers on human error

reduce the number of skill based errors they make in there development work?

The participant should complete the whole of this sheet

 Please tick the appropriate box

YES NO

Have you read the Research Participant Information Sheet?

Have you had an opportunity to ask questions and discuss this study?

Have you received satisfactory answers to all your questions?

Who have you spoken to?

Do you understand that you will not be referred to by name in any report

concerning the study?

Do you understand that you are free to withdraw from the study:

 at any time?

 without having to give a reason for withdrawing?

 (where relevant, adapt if necessary) without affecting your

future care?

(Where relevant) I agree to my interview being recorded.

(Where relevant) I agree to the use of non-attributable direct quotes when

 the study is written up or published.

Do you agree to take part in this study?

Signature of Research Participant:

Date:

Name in capitals:

C.2 Demographic Questions

1. What gender do you identify as? [Male, Female, Other]

2. What age band do you fit into? [18-24, 25-34, 35-44, 45-54, 55-64,

65+]

3. How many full years of industry experience do you currently have?

[<1, 1-3, 4-7, 8-10, 10+]

4. What is your current job role (If you have multiple roles, please state

your primary role. If you have left industry, please state your primary

role while in industry.)? [Freetext]

5. What industry do you currently work with (If you are self employed /

contracting / employed by a software house, what is the industry your

contract currently lies with. If you have left industry, please state the

primary industry you worked in within while in industry.)? [Freetext]

6. What is the current project type you are working on? [Open Source

System (OSS) / Closed Source System (CSS)]

7. What is the primary programming language you use? [Freetext]

8. Can we contact you to follow up / clarify any details? If yes, please

specify your email. [Freetext]

C.3 Logging Sheet

175

P
articip

an
t N

am
e:

D

etails o
f H

u
m

an
 Erro

r
C

o
n

text

H
u

m
an

 Erro
r

C
o

n
seq

u
en

ce o
f Erro

r

Exa
m

p
le Erro

r O
ne: D

a
y

O
n

e
C

o
m

m
u

n
ica

tio
n

 fa
ilu

re b
etw

een
 tw

o
 o

f u
s

w
o

rkin
g

 in
 th

e sam
e area

 at th
e sa

m
e tim

e
M

erge co
n

flicts
N

o
rm

a
l w

o
rkin

g
 co

n
d

itio
n

s
P

a
ir p

ro
g

ram
m

in
g

 w
h

ile erro
r o

ccurred

Exa
m

p
le Erro

r Tw
o: D

a
y

O
n

e
H

o
t fixin

g
 o

n
 th

e live server, fa
ilin

g
 to

 ru
n

a

n
y tests

Live system
 w

en
t d

o
w

n
; tota

l fa
ilu

re
Tim

e C
ritica

l
H

ig
h

 P
ressu

re

Exa
m

p
le Erro

r O
ne: D

a
y

Tw
o

N

o
 h

u
m

a
n

 erro
rs d

etected
 to

d
a

y
N

/A

N
/A

C.4 Training Package Slides

C.4.1 Video 1: Introduction to SA

Intro to situation awareness. You can watch the same ‘Intro To Situation

Awareness’ video here: https://www.dropbox.com/s/j8b9aahy331ff8j/

TrainingOneIntroToSA.mp4?dl=0 Screenshots of the slides used in this

video can be viewed below.

177

16/12/2020

1

Situation Awareness

What is it?

 Basic

 Knowing what is going on around us

 Advanced

 The perception of the elements in the environment within a volume of time and
space, the comprehension of their meaning and the projection of their status in
the near future

Why does it matter?

 We cannot remain aware of everything which is going on around us.

 We need to employ methods to help us maintain a high level of awareness.

Example use of Situation Awareness in
Aviation
 Fitts & Jones (1947) found that pilots were confusing wing flap and landing

gear controls.

 Dekker (2005) reports the solution was to attached a rubber wheel to landing
gear control & a small wedge to the flap control.

 Dekker (2005) reports that the solution went on to become a certification
requirement.

Fitts, P.M. & Jones, R.E. (1947), analysis of factors contributing to 460 ‘pilot-
error’ experiences in operating aircraft controls, Aero Medical Laboratory Wright-
Patterson AirForce Base, OH.

Dekker, S. (2005), Ten questions about human error: a new view of human factors
and system safety, Lawrence Erlbaum Associates, Mahwah, N.J.

Time to watch the next
video!

Link to the next video is in the email

1 2

3 4

5

C.4.2 Video 2: Introduction to the OODA Loop

Intro to OODA loop. You can watch the same ‘Intro To OODA Loop’ video

here: https://www.dropbox.com/s/xz2pjh1t895gt1v/TrainingTwoIntroToOODA.

mp4?dl=0 Screenshots of the slides used in this video can be viewed be-

low.

179

16/12/2020

1

OODA Loop

What is the OODA Loop?

 Tool originally developed by military strategist John Boyd

 To explain how individuals and organizations can win in uncertain and chaotic
environment

 Four step loop to help with critical thinking

So what is OODA?

Observe

Orient

Decide

Act

OODA - Observe
 Gather as much information as possible.

 Use as many sources as possible

OODA - Orient

 Analyse the information you have to establish:

 Where you are

 Where you need to be

OODA - Decide

 Develop plans of action

 Decide on the most appropriate plan

1 2

3 4

5 6

16/12/2020

2

OODA - Act

 Implementing the selected plan.

OODA - Recap

Observe

Orient

Decide

Act

Example use of the OODA Loop
 Scenario: You are in the middle of making a cup of tea to take on your

journey to work. You realise that you have run out of tea bags and only have
coffee left.

 Observe

 Recognise that you wish to make a mug of tea.

 Recognise that you only have coffee.

 Orient

 Do I really want tea or will coffee do? Do I need to have tea now?

 Decide

 Make a mug of coffee instead.

 Run to the shop, buy tea bags and risk being late for work.

 Make tea at work / buy a tea from the train station café.

 Act

 Make tea at work / buy a tea from the train station café.

Time to watch the next
video!

Link to the next video is in the email

7 8

9 10

C.4.3 Video 3: Applied OODA Loop

Applied OODA loop in software development. You can watch the same ‘In-

tro To Applied OODA LOOP’ video here: https://www.dropbox.com/s/

kf67z508w3dv9n5/TrainingThreeOODAExamples.mp4?dl=0 Screenshots of

the slides used in this video can be viewed below.

182

16/12/2020

1

OODA Loop Examples in
Software Development

Example One: Refactoring
 Scenario: You are in the flow of implementing a new piece of functionality.

You have to touch someone else’s code and notice it has not been written
efficiently.

 Observe

 Recognise you are implementing new functionality.

 Recognise you have seen a potential refactoring opportunity.

 Orient

 Is the refactoring essential to the implementation of the new functionality?

 Decide

 Do the refactoring while you are in the codebase.

 Make a note to come back and refactor the code as separate task after
implementing the new functionality.

 Act

 Continue implementing the new functionality without any refactoring.

Example Two: Interruption
 Scenario: You are in the flow doing your work and your boss interrupts you.

They ask you to do a piece of work for them.

 Observe

 Recognise you are doing a piece of work.

 Recognise you have a request to do some other work.

 Orient

 Where does the new work fit in relation to the existing work?

 Decide

 Do the bosses work immediately to keep them happy.

 The bosses work is low priority, continue with current work.

 Act

 Continue doing the existing piece of work.

Example Three: Refactoring
 Scenario: You are fixing a bug in a client server application which controls a

carpark. The processInput logic in the CarParkState class seems to be skipped
every time the application is run.

 Lets take a look

Time to complete the
quiz!

Link to the quiz is in the email

1 2

3 4

5

C.5 Quiz for SA Training Package

184

Section 1 – About OODA
Q1) What is the loop you should use in critical thinking?
- Orient, Observe, Act, Decide
- Observe, Decide, Orient, Act
- Observe, Orient, Decide, Act
- Orient, Decide, Observe, Act

Scenario: You notice that you are hungry. You remember there is a Greggs down the street and it’s
before 11am, which means they are still serving sausage rolls. You go to Greggs. You eat a delicious
sausage roll (or maybe two, why not, you’re already there).

Q2) What is the ‘Observe’ stage of the scenario?
- You remember there is a Greggs down the street and it’s before 11am, which means they are still
serving sausage roll.
- You notice that you are hungry.
- You go to Greggs.
- You eat a delicious sausage roll (or maybe two, why not, you’re already there).

Q3) What is the ‘Orient’ stage of the scenario?
- You eat a delicious sausage roll (or maybe two, why not, you’re already there).
- You notice that you are hungry.
- You go to sausage roll.
- You remember there is a Greggs down the street and it’s before 11am, which means they are still
serving sausage roll.

Q4) What is the ‘Decide’ stage of the scenario?
- You go to Greggs.
- You notice that you are hungry.
- You eat a delicious sausage roll (or maybe two, why not, you’re already there).
- You remember there is a Greggs down the street and it’s before 11am, which means they are still
serving sausage roll.

Q5) What is the ‘Act’ stage of the scenario?
- You notice that you are hungry.
- You eat a delicious breakfast sub (or maybe two, why not, you’re already there).
- You go to Greggs.
- You remember there is a Greggs down the street and it’s before 11am, which means they are still
serving sausage roll.

Section 2 – Applied OODA in SE

Scenario: You notice that there is a major defect in the live system. You remember that there is a
backup to the old version. You locate the old backup. You restore the old version while the defect is
fixed.

Q6) What is the ‘Act’ stage of the scenario?
- You hotfix the defect on the live server
- You fix the defect on your local and deploy it to the server
- You restore the old version while the defect is fixed.
- You do nothing and leave the system with a major defect.

Q7) What is the ‘Orient’ stage of the scenario?
- You establish how severe the defect is.
- You remember that there is a backup to the old version.
- You recall your boss telling you that should not roll back versions on live.
- You remember the passwords to the live server so a hotfix can be performed.

Q8) What is the ‘Observe’ stage of the scenario?
- You see on social media that the system is not working as intended.
- You get a call from the client telling you the live system is down.
- You go to use the system and find that it is down.
- You notice that there is a major defect in the live system.

Q9) What is the ‘Decide’ stage of the scenario?
- You could do a hot fix.
- Rolling back the system to the last stable position.
- You find the backup.
- You are not senior enough to make the call.

Section 3 – About You
Help us to get feedback to you individually. The data will be removed and anonymised once we have
delivered feedback to you.

Q10) What is your name?

Q11) What is your email address?

C.6 Follow Up Questions

Participants complete a two part online questionnaire to allow us to better

understand how they experienced learning about the OODA loop and par-

ticipating in the study. Below I detail the questions we ask our participants

and they type of responses I allow them to provide us with.

Part one asks them about the OODA Training.

1. Did you learn anything new? If no, where did you learn this? [Free-

text]

2. How actionable was the information you received in the OODA train-

ing package? [Freetext]

3. Has the OODA training led to an improvement to your work? [Yes/No]

4. Will you continue to use the OODA loop in your work? [Yes/No]

5. Do you have any comments on the OODA training? [Freetext]

The second part of the questionnaire asks the participants about the

study.

1. How easy did you find the study to complete? [Easy/Average/Difficult]

2. Were you able to log all human errors encountered over the study? If

no, why? [Freetext]

3. Did you find the daily email reminders helped? [Yes/No]

4. Did you find the log sheet helped you to record all human errors that

occurred? [Yes/No]

5. Do you have any comments about the study? [Freetext]

C.7 Coding of Human Errors

Below are the definitions of slips, lapses and mistakes are provided by Reason

(1990).

187

Slip A slip is a result of carelessness or inattentive actions for example

day-to-day activities such as fat fingering.

Lapse A lapse is a result of forgetfulness or a failure of memory, examples

could include intending to do task A but not doing so due to an interruption

and then resuming with another task.

Mistake A mistake is the most severe type of error and a result of

lack of knowledge during the planning stage of an activity. An example

could include misdiagnosing a patient due to lack of experience and or not

exploring their signs/symptoms properly.

188

Appendix D

Snippets of Raw Data

This appendix contains example snippets of data collected throughout my

doctoral research. Figure D.1 & D.2 shows examples of Transcripts from

Study 1. Figure D.3 shows a screen dump of part of the Trello board used

for coding of the transcripts. Figure D.4 shows a log sheet from a participant

in Study 2. Figure D.5 shows a screen dump of part of the results from the

online training quiz. Figure D.6 shows a screen dump of part of the results

from the follow up questionnaire.

Figure D.1: Snippet 1 of Raw Data from Transcript

189

Figure D.2: Snippet 2 of Raw Data from Transcript

190

Figure D.3: Snippet of Coded Data from Trello

191

Figure D.4: Example of Raw Data from a Log Sheet

192

Figure D.5: Snippet of Raw Data from Quiz

193

Figure D.6: Snippet of Raw Data from Follow Up Questionnaire

194

