
1

Formulation and a Two-Phase Matheuristic for the

Roaming Salesman Problem: Application to Election Logistics

Masoud Shahmanzari Deniz Aksen Saïd Salhi

Graduate School of Business,

Istanbul Şehir University, İstanbul, Turkey

College of Administrative Sciences and

Economics,

Koç University, İstanbul, Turkey

Kent Business School,

Centre for Logistics and Heuristic Optimisation,

University of Kent, Canterbury, United Kingdom

Revised on 12 July 2019

A B S T R A C T

In this paper we investigate a novel logistical problem. The goal is to determine daily tours for a traveling

salesperson who collects rewards from activities in cities during a fixed campaign period. We refer to this

problem as the Roaming Salesman Problem (RSP) motivated by real-world applications including election

logistics, touristic trip planning and marketing campaigns. RSP can be characterized as a combination of

the traditional Periodic TSP and the Prize-Collecting TSP with static arc costs and time-dependent node

rewards. Commercial solvers are capable of solving small-size instances of the RSP to near optimality in a

reasonable time. To tackle large-size instances we propose a two-phase matheuristic where the first phase

deals with city selection while the second phase focuses on route generation. The latter capitalizes on an

integer program to construct an optimal route among selected cities on a given day. The proposed

matheuristic decomposes the RSP into as many subproblems as the number of campaign days.

Computational results show that our approach provides near-optimal solutions in significantly shorter times

compared to commercial solvers.

Keywords: Routing, Roaming salesman problem, Election logistics, Matheuristic, Campaign planning.

1. Introduction

In this paper, we study a logistical problem arising in promotion and marketing campaigns where the

campaigner and his/her team needs to plan an efficient schedule throughout the campaign to maximize the

total reward by visiting appropriate cities. This problem has a wider range of applications including election

logistics, touristic trip planning, promotion of a new product launch, and planning of client visits by

company representatives, among others. We refer to this new problem as the roaming salesman problem

(RSP). It involves a salesperson who collects rewards from activities performed in selected cities during a

fixed campaign period. The goal in the RSP is to find an optimal or the ‘best’ schedule of daily tours for a

 Corresponding author. Tel.: +90 (1) 338 1684, Fax.: +90 (1) 338 1653, Email: daksen@ku.edu.tr (D. Aksen)

Copyright © 2019 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at
[https://doi.org/10.1016/j.ejor.2019.07.035, archived on this repository under a Creative Commons CC BY-NC-ND attribution licence.

mailto:daksen@ku.edu.tr

2

campaigner who seeks to maximize his/her net benefit throughout a given number of periods (days). The

net benefit is defined as the sum of all collected rewards minus the traveling costs incurred by the

salesperson. The RSP can be therefore classified as a rich traveling salesman problem (TSP) with the

following six properties which together make this problem rather unique. For an overview of rich routing

problems, see Lahyani et al. (2015).

(i) Multi-period. RSP generalizes the TSP by extending the planning horizon to n days, thereby forming a

multi-period problem.

(ii) Time-constrained. In each period, i.e. each day the salesperson is allowed to “roam” for no more than

a certain number of hours. We refer to this time limit as the maximum tour duration constraint.

(iii) Selective. The salesperson needs to decide which nodes to visit so as to realize an activity. In other

words, not every node is visited and not every node hosts an activity.

(iv) Absence of a fixed depot node, co-existence of open and closed tours. Tours do not have to start and

end at the same node. The only requirement is that today’s tour originate where yesterday’s tour

terminated. Hence, the salesperson has also to decide where to stay overnight at the end of each day.

(v) Time-dependent rewards. Each node is associated with a time-dependent reward which changes linearly

according to the day of the hosted activity in that node and the recency of the previous activity in the

same node. This is a challenging issue which is mainly attributed to this problem.

(vi) Multiple visits. There exists a subset of nodes which may host more than one activity during the

campaign, hence can be visited more than once.

One of the main differences between RSP and similar routing problems in the literature lies in time-

dependent rewards. This characteristic makes the problem applicable to various situations. For instance, in

the planning of touristic trips the scores of visited sites or tour stops can be modeled as time-dependent

rewards. This feature can be incorporated within a daily or weekly framework depending on the problem.

Some places are more appealing to visit during the day time while others have better sights in the evening

or at night. Also, some destinations may become more crowded, thus less attractive as we get closer to the

end of the week. RSP is able to encapsulate this kind of dynamic rewards. It can capture the possibility of

repeated visits to certain attractions during an extended tour as well.

In this paper, we address a novel adaptation of RSP to election logistics which revolves around a

politician holding meetings in various cities during a given campaign period. The problem generalizes the

traveling salesman problem (TSP) by extending the planning horizon to  days; hence, it corresponds to a

multi-period problem. The RSP can be defined as follows. Consider a set of nodes {0} N V including

a fictitious city (indexed as 0) where {1,..., }nV indicates the set of cities inclusive of a starting city

(indexed as 1) and a set of days {1,..., }.T Each city is associated with a nonnegative reward of i

referred to as the base reward. In each day tT any city iV can be visited either to collect the

3

associated reward from it or while in transit without collecting reward. The base reward of a city can depend

on several factors such as the city population. Moreover, the actual reward earned by having an activity in

city i on day t depends on two other factors:

Factor 1. The number of remaining days denoted by (t ) until the end of the campaign.

Factor 2. In case a city hosts more than one activity, the number of days passed since the previous

activity in the same city, denoted by s where 1 1s t   .

The traveling cost between each pair of cities is known and given by ijc , ,i j V where ijc denotes

the cost of driving (or flying where applicable) from city i to city j . The traveling time between each pair

of cities is also known with certainty and given by ., ,ijd i j V The traveling costs and traveling times

satisfy the triangular inequality. The time spent by the salesperson (also referred to as the campaigner in

the sequel) for an activity in city iV is shown by .i The maximum duration applicable to the tour of

each day is denoted by max .T This time limit imposes an implicit threshold on the number of cities that can

be visited in any given day. There is also an explicit limit  on the number of activities that can be realized

per day. For the fictitious city 0i  the activity duration, the base reward, the traveling costs and times are

all set to zero. The campaign starts in the base city 1i  in the morning of day 1t  and ends in the evening

of day t  . At the end of a day tT , the campaigner stays overnight in some city .iV Note that waking

up or staying overnight in city i does not necessarily mean that there will be a reward collection in that

city. One final remark should be made about periodic returns to the campaign base 1i  . The salesperson

cannot be away from the campaign base for more than  consecutive days.

A distinctive feature of the RSP is that there are three possible types of daily tours during the campaign.

Type 1: Open Tour. Type 2: Closed Tour. Type 3: No Tour. In order to highlight the importance of having

both open and closed routes during the campaign we build a toy instance containing six cities, two days,

and a daily maximum tour duration of 14 hours as illustrated in Figure 1. The travel times and activity times

j 2

8

3

Figure 1. An instance with both closed and open tours.

4

1

First day:

 Second day: 1

3 i

k

3

2 8
m

2

2

1

n

4

are written on the arcs and next to the nodes, respectively, both in hours. As shown in Figure 1, the tour of

the first day starts in city i and includes three activities in cities i , j , and k . The campaigner returns to

the starting city i at the end of day 1 without holding any more activities there. The return to city i on day

1 grants him/her enough time to visit more than one far city (m and n) the next day.

By ignoring the activity times i , taking the campaign duration as 1  day, setting i and maxT to

sufficiently large values, e.g. by setting

max{ } max{ }i ij ji
j j

d d
 

 
N N

 and max
,

max{ },ij
i j

T d



N

V a given

generic TSP instance can be reduced to the associated RSP instance in polynomial time. TSP is a well-

known -hard combinatorial optimization problem (Garey and Johnson, 1979). RSP is a generalization

of the TSP and is therefore also -hard. Furthermore, RSP is more complex than TSP since the selection

of the terminal node of each day, different tour types and time-dependent rewards are included in the

optimization problem as well. This leads to the conclusion that the RSP is also -hard, and thus cannot

be solved in polynomial time to optimality. Motivated by this challenge, we propose a simple but efficient

two-phase matheuristic method which we call Finding Daily Optimal Routes (FDOR). For each day of the

planning horizon, FDOR decomposes the RSP into a pair of subproblems, namely a city selection problem

in Phase I and a modified prize-collecting TSP which is solved optimally in Phase II. We experimented

with three different city selection approaches so as to arrive at an effective, yet efficient selection scheme.

Our proposed matheuristic can provide for medium- and large-size instances a promising bundle of

accommodation and activity schedules that are complemented by daily routing plans. Actually, FDOR

achieves this in remarkably short solution times. Thereby, it can help campaign planners in their decision-

making.

To the best of our knowledge, this is the first time the RSP is explored in depth and tackled. Our

contribution is fourfold:

1. The investigation of a new logistical problem arising in several areas including election logistics.

2. The development of a novel mixed-integer linear programming (MILP) formulation.

3. The development of a two-phase matheuristic to solve large-size instances of it.

4. A real-life application of the problem to election logistics covering 81 provinces and 12 highly

populated towns of Turkey.

The outline of the paper is as follows. In Section 2 we review the related literature. In Section 3 we

present the mathematical formulation of RSP. In Section 4 we present the proposed two-phase matheuristic

approach FDOR. We discuss our computational results in Section 5 in the framework of a case study

involving a great deal of cities and towns from Turkey. Finally, Section 6 summarizes our results and

recommends future research directions.

5

2. Literature review

The RSP is derived from the well-known traveling salesman problem (TSP) which is one of the most

famous -hard combinatorial optimization problem in the literature. A widely accepted and often cited

classification of the TSP and its variants has been presented in Gutin and Punnen (2007). The first TSP

variant that is closely related to the RSP is the periodic traveling salesman problem (PTSP). Many

variations of the TSP assume that traveling occurs in one period only. However, PTSP relaxes this

assumption by expanding the travel period to m days such that each city is visited at least once, while some

cities require multiple visits. There is only one salesperson available every day. The goal is to generate a

tour for each of the m days that will meet the visit frequency of each city and minimize the total traveling

distance throughout the whole planning horizon. The first mathematical formulation of the PTSP can be

found in Cordeau et al. (1997).

The other TSP variants resembling the RSP include the prize-collecting traveling salesman problem

(PCTSP), the profitable tour problem (PTP), and the orienteering problem (OP). We briefly describe these

three variants here. They are jointly referred to as the generic class of TSP with profits (TSPP). Problems

belonging to the TSPP class have been surveyed systematically in the seminal paper by Feillet et al. (2005)

where the name TSPP was coined for the first time.

Variant 1: PCTSP

PCTSP was originally introduced by Balas and Martin (1985) and formally defined in Balas (1989) to

model the scheduling of the daily operations of a steel rolling mill. In PCTSP there is a traveling salesperson

who travels between nodes i and j at cost ijc , earns a prize kp from every visited node k and pays a

penalty h for each unvisited node h. The aim is to find a circuit, i.e. a tour that minimizes the sum of

travel costs and penalties while collecting a total profit at least as high as a preset minimum value min . A

feasible circuit either in the PCTSP or the other TSPP variants visits each node at most once. The minimum

profit collection constraint can be viewed as a knapsack-like constraint. Feillet et al. (2005) note that the

majority of PCTSP papers deal with problems which have zero penalty terms. Another name coined for the

PCTSP is the quota TSP (QTSP) which was first studied in Awerbuch et al. (1998).

Variant 2: PTP

PTP derives directly from the PCTSP when the objective becomes the maximization of the net profit

defined as the difference between the collected prizes and the travel costs. In the presence of nonzero

penalties for unvisited nodes, the sum of incurred penalties is also deducted from the total amount of

collected prizes to yield the net profit. The PTP was initially introduced by Dell’Amico et al. (1995).

Fischetti et al. (2007) called the same problem the simple cycle problem (SCP). Archetti et al. (2009)

formulated a multi-tour version of the PTP with multiple identical and capacitated vehicles, which they

referred to as the capacitated PTP (CPTP).

6

Variant 3: OP

OP is evidently the most extensively studied variant of the TSPP class. The OP seeks to find a circuit or a

path on a graph with n nodes that maximizes the sum of collected prizes while containing traveling costs

under a preset value minC or the total travel time within a preset limit max .T Vansteenwegen et al. (2011)

argue that the OP can be viewed in this regard as a combination between the knapsack problem (KP) and

the TSP. Feillet et al. (2005) point to the equivalence between the path-seeking and circuit-seeking versions

of the problem. Pioneering studies of the OP can be found in Hayes and Norman (1984), Tsiligirides (1984),

Golden et al. (1987) and Golden et al. (1988) among others. OP was researched in the literature also under

different titles such as the selective TSP (STSP) (see Laporte and Martello, 1990; Gendreau et al., 1998;

Thomadsen and Stidsen, 2003), the maximum collection problem (MCP) (see Kataoka and Morito, 1988;

Butt and Cavalier, 1994) and the bank robber problem (BRP) (see Arkin et al., 1998). OP was shown to be

-hard by Golden et al. (1987) and by Laporte and Martello (1990) with separate proofs based on simple

reductions to the TSP and to the Hamiltonian circuit problem, respectively. Applications in the literature of

this selective routing problem span a wide range of areas. Labadie et al. (2012) solve single- and multi-tour

versions of the OP with time window constraints which dictate that the service at each node start within a

predefined time window. An early arrival to a given node leads to waiting times, while a late arrival causes

infeasibility. The authors devise a matheuristic which consists of a linear programming (LP)-based granular

variable neighborhood search. With this method they manage to obtain the best known solutions for 25

benchmark instances in the literature. Very recently, Archetti et al. (2018) introduce the Set Orienteering

Problem which is a generalization of the OP where customers are grouped in clusters and a profit is

associated with each cluster.

Within the generic class of TSPPs, the variant that seems most relevant and similar to our problem is

the multi-period OP with multiple time windows (MuPOPTW) introduced by Tricoire et al. (2010) for a

real-world sales representative planning problem. A software distribution company which sells decision

support systems for marketing departments needs to plan the visits to existing and potential customers by

each representative over a one-week period. There is a list of mandatory customers who should be visited

on a regular basis and another list of optional customers located nearby who should be also considered and

probably integrated into the schedules of the sales representatives. The authors solve the MuPOPTW for a

given representative with the aim of determining which of the mandatory and optional customers to visit

on which day. Some of the customers have one or two time windows per day which restrict the timing of

the visit, and there exist even a few customers who have a different time window for every day. MuPOPTW

in Tricoire et al. (2010) resembles our problem in that each day of the planning horizon is associated with

a separate tour. However, our problem differs from MuPOPTW considerably due to the following aspects:

(a) In MuPOPTW the tour of each day starts and ends at the same central node. The mathematical model

proposed by the authors can handle also the case where the representative makes a several-day trip

7

across the country and stops every night in previously fixed hotels such that the ending point for day t

matches the same location as the starting point for day 1t  . However, even in that case the terminal

node (i.e. the depot) of each tour is known in advance. In contrast, in the RSP this is unknown.

(b) In MuPOPTW, a customer node is visited at most once whereas RSP allows certain nodes to be visited

more than once.

(c) Moreover, rewards collected from customer nodes in MuPOPTW do not change over time while in

RSP their magnitude depends on the day and frequency of the visit.

Recent progress in CPU technologies and commercial solvers enables us to solve different MILP models

to optimality or near to optimality in short solution times. This leads to the design of a matheuristic, a

heuristic that incorporate stages where mathematical programming models are used. In brief, a matheuristic

is a heuristic or metaheuristic algorithm which solves at least one of its steps using an exact method such

as mathematical programming or dynamic programming. See Salhi (2017) for more details.

In the literature, there are a couple of articles that use matheuristic methods in order to solve routing

problems. Prins et al. (2007) propose a matheuristic approach to solve the capacitated location-routing

problem. The original problem is decomposed into two phases; location decisions and routing. The location

decision problem is solved as a facility location problem using an exact method whereas a tabu search is

adopted builds the routes based on given facility set. Halvorsen-Weare and Fagerholt (2013) investigate a

routing and scheduling problem emerging in naval logistics. They employ a matheuristic method which

separates the scheduling decisions from the routing decisions. The routing problem is solved through a local

search heuristic while the scheduling problem is tackled through the exact solution of a MILP formulation.

Hemmelmayr et al. (2013) investigate a two-phase matheuristic approach for the problem of determining

the size of waste bins on the streets and planning the daily routes of waste collector vehicles. They propose

a different solution method where a variable neighborhood search heuristic finds the daily route and an

MILP model solves the problem of determining the optimal size of the waste bins. A unified matheuristic

approach based on the variable neighborhood search is proposed by Lahyani et al. (2017) for solving multi-

constrained traveling salesman problems with profits. It includes exact procedures for the examination of

loading neighborhoods. A review of different heuristic methods including matheuristics can be found in

Salhi (2017).

Before concluding this section we would like to make a remark in regard to time-dependent routing

problems in the literature. Although there exist a huge number of papers where the travel duration or cost

of an arc depends on the actual time of travel, studies involving other time-dependent parameters are not in

abundance. We are aware of a recent paper by Taş et al. (2016) which investigates a variant of the TSP with

time-dependent service times. In the proposed setting the required service duration at a customer node is

not fixed, but determined as a function of the time at which service starts for that customer. Angelelli et al.

(2017) introduce the Traveling Purchaser Problem with time-dependent quantities. The authors assume that

8

the obtainable quantities of all products that can be purchased from the available markets decrease linearly

over time. To the best of our knowledge, none of the previous research has looked into time-dependent

rewards collected from customers in a multi-period and multi-visit framework. Our present study makes a

novel contribution to the time-dependent routing literature in this respect.

3. Notation and formulation

The RSP described in Section 1 can be formulated as a mixed integer linear program. We first provide the

notation followed by the formulation and the explanation of the new constraints which we devised.

3.1 Notation

Index Sets:

{0,..., }nN Set V joined by city ‘0’ which denotes a fictitious city with all associated costs, rewards

and activity duration being zero.

\ {0}V N The set of cities to be considered for collecting rewards throughout the campaign where

city 1i  denotes the campaign base.

{1,..., }T The set of  days comprising the campaign duration.

Parameters:

ijc Traveling cost from city i to j where 0.iic 

ijd Traveling time from city i to city j where 0.iid 

i The base reward of city i .

i The activity duration in city i .

 Maximum number of activities allowed each day.

maxT Maximum tour duration (in hours) in each daily tour.

 Maximum number of consecutive days during which the campaigner is allowed to be away

from the campaign base.

K The base reward depreciation coefficient applied in successive activities held in the same city.

K Normalization coefficient multiplied with the collected rewards to make traveling costs and daily

rewards compatible.

Decision Variables:

ijtX Binary variable indicating if arc (,)i j is traversed on day t (, ,)i j t N T with 0.iitX 

itL Binary variable indicating if the campaigner does not enter, but only leaves city i in day t .

If 1itL  , then the campaigner departs from city i on day t and does not come back. This indicates

that the tour on day t is Type 3 with i as the starting city (source) of the tour.

9

itE Binary variable indicating if the campaigner does not leave, but only enters city i in day t .

If 1itE  , then the campaigner enters city i on day t and does not leave again. This means the

tour on day t is Type 3 with i being the ending city (terminal) of the tour.

itS Binary variable indicating if the campaigner stays overnight (sleeps) in city i by the end of day .t

Note that 10 1S  since the campaign starts in the base city ‘1’.

itZ Binary variable indicating if the campaigner holds an activity in city i on day t and collects the

associated reward.

itFM Binary variable indicating if the first activity in city i is performed on day t .

itsR

itsR

Binary variable indicating if city i accommodates two consecutive activities on day t and day

()t s with no other activity in between. Since 1 s t  , we have 0itsR  for t s   .

itU A continuous nonnegative variable used in the Modified Miller-Tucker-Zemlin subtour

elimination constraints. It is used to determine the order of visit for city i on day t .

3.2 Mixed integer linear programming formulation

The RSP can be formulated as follows:

RSP

1

1 1
max.

i it its

i t i t s t

ij ij

i

t

i j t

t t s
NET BENEFIT FM R

K

K c X

 
 
       

  

   
  



    

  

N T N T

N N T

 (1)

Subject to:

1ijt

j

X



N

 , i t N T (2)

1jit

j

X



N

 , i t N T (3)

it

i

Z 



V

 tT (4)

1it

i

Z



V

 tT (5)

max i it ij ijt

i i j

Z d X T
  

   
V N N

 tT (6)

1 1i iFM Z iV (7)

it itFM Z , \{1}i t V T (8)

1it iuFM Z  , \{1}, 1i t u t   V T (9)

10

ijt jit it it

j j

X X L E
 

   
N N

 , i t N T (10)

1it itL E  , i t N T (11)

() 2it it

i

L E


 
N

 tT (12)

(1)
2

jt jt
i t it

j

L E
S S




  

N

 , \{1}i t N T (13)

(1)
2

jt jt
i t it

j

L E
S S




 

N

 , \{1}i t N T (14)

(1)i t it itS L S   , \{1}i t V T (15)

0 0tS  tT (16)

0it i tS X , i t V T (17)

(1) 0i t i tS X  , \{1}i t V T (18)

0 0i t itX X , i t V T (19)

it itE S , i t V T (20)

(1)it ij t

j

S X 



 
N

 , 1i t   V (21)

1it

i

S



V

 tT (22)

1 1
t

k

k t

S




 1 t     (23)

it ijt it

j

Z X E


 
N

 , i t V T (24)

it jit it

j

Z X L


 
N

 , i t V T (25)

(1)(1) (1)(1) 1j t ijt jt itS X U U        , () , \ {1}i j i j t  N T (26)

1itU   , i t N T (27)

1it jkt

j k

U X
 

  
N N

 , i t N T (28)

(1)it i tU S  , {1}i t N T \ (29)

(1)(1)(1) 1i t itS U     , \{1}i t N T (30)

11

it ijt

j

U X


 
N

 , i t N T (31)

it it ijt

j

U S X


  
N

 , i t N T (32)

(1) (1)it ijt jit

j j

U X X 
 

    
N N

 , i t N T (33)

its itR Z , 2 , 1i t s t    N (34)

()its i t sR Z  , 2 , 1i t s t    N (35)

1

1

(1)
t

ik its

k t s

Z s R


  

  , 3 , 2i t s t    N (36)

0itsR  , , i t t s    N T (37)

1ius itR FM  , \ {1}, , i t t u u t s u      V T (38)

1

()

1

 1
t

its i t s it k

k t s

R Z Z Z




  

    , 3 , 2i t s t    V (39)

ijtX , itL , itE , itS , itZ , itFM , {0,1}itsR  and 0itU  (40)

The MILP model in (1)-(40) has
1 112 2

2 2
+ 3n n n     binary variables, (1)n  continuous

variables and
1 3 62 45 13 2 2 2 2

6 2 3 2 2
2 3 4n n n n n n               constraints. Note that the

activity indicator variables itZ , itFM and itsR are defined for iV since the fictitious city cannot host an

activity. The objective function (1) seeks to maximize the difference between the collected rewards and the

incurred routing costs. Note that rewards are depreciated linearly in time as we get closer to the end of the

campaign rather than the other way around. We consulted with the political party for which we proposed

an application of the RSP; their suggestion was to adopt a depreciation scheme in which earlier meetings

of the party leader earn higher rewards than belated meetings towards the end of the campaign period.

The set of constraints (2)-(6) and (40) are adopted from the TSP literature (Öncan et al., 2009). The set

of inequalities (2) and (3) are typical selective TSP equations limiting the numbers of incoming and

outgoing arcs to one for each node in N . Constraints (4) impose an explicit upper bound  on the total

number of daily activities ().n  Constraints (5) force the campaigner to perform at least one activity in

each day t while constraints (6) ensure the maximum daily tour duration is not violated. An alternative

formulation for constraints (6) is provided in the next subsection. Binary integrality and nonnegativity

constraints on the respective decision variables are defined in (40).

12

Equality constraints (7) ensure that the first activity indicator variable and the activity indicator variable

for day 1 must be equal. Constraints (8) set an upper bound for itFM , thereby establish the coupling

between FM and Z . Due to the maximization of the objective, the model will try to set all itFM variables

to 1 as much as possible. Thus, there is no need for loose upper bound constraints on itFM Constraints (9)

guarantee that if the first activity in city i was held on day t , then there cannot be an activity on an earlier

day , u u t .

Constraints (10) couple the binary decision variables , and .X L E Constraints (11) ensure that if the

campaigner enters a city i on day t and does not leave it the same day, then 1itE  and 0.itL  Likewise,

if he exits a city i on day t and does not return to it the same day, then 0itE  and 1.itL  According to

constraints (12) the sum of the variables L and E over all cities on a given day cannot exceed two. In fact,

this sum will be two only in a tour of Type 3, i.e. in an open tour. Constraints (13) and (14) force the

campaigner to stay overnight in the source i on day t if there is a closed tour that day. Constraints (15)

make sure that terminal cities for days t and (1)t  will be the same if there is a closed tour on day .t

Constraints (16) set the variables
0tS to zero since the campaigner can never stay overnight in the fictitious

city ‘0’. Constraints (17)-(18) are added to prevent the inclusion of the fictitious city in Type 1 and Type 3

tours. Along with constraints (19) they capture the presence of a Type 2 tour as follows: When the

campaigner ‘goes’ from city i to the fictitious city (namely city 0) on a given day t , then he directly

‘returns’ from there the same day 0 0(1).i t itX X 

The set of constraints (20) ensure that if the campaigner enters city i on day t and does not depart from

there the same day, then he must stay overnight (sleep) in city i . Constraints (21) guarantee that if the

campaigner sleeps in city i on day t , he must depart from there the next day. Equalities (22) ensure that

the campaigner stays overnight in one city only. Constraints (23) prevent the campaigner from being away

from the campaign base (city ‘1’) for more than  consecutive days. The set of inequalities (24) and (25)

assure that in order for a city i to host an activity on a given day t , it must be visited that day in either of

the three types of tours. When there is no visit to city i , there is no activity in city i either.

Constraints (26)-(33) are Modified Miller-Tucker-Zemlin inequalities (M-MTZ) for subtour elimination

adapted to RSP. The disaggregated constraints (34)-(35) provide the logical coupling between the binary

variables itsR and itZ . Inequalities (36) ensure that if city i accommodates two activities in days t and

()t s and no other activity in between (i.e. if 1itsR ), then all corresponding ikZ variables for k days in

the interval [1, 1]t s t   should be zero. Constraints (37) signify the domain restriction on the definition

of the variables .itsR Constraints (38) make sure that if the first activity in city i is held on day ,t then there

cannot be a pair of activities on days u and ()u s where u comes after t and ()u s comes before t .

The lower bounds on the variables itsR in (39) may seem unnecessary since their coefficients in the

13

objective function to be maximized are all strictly positive. However, (39) serve as valid inequalities and

contribute affirmatively to the solution speed of the model. Other compact formulations for the subtour

elimination constraints can be found in Maffioli and Sciomachen (1997) and Bianchessi et al. (2018).

3.3 An alternative formulation for satisfying the maximum tour duration

An alternative way of satisfying the maximum tour duration is to introduce the continuous decision variable

.itA Such a formulation is especially useful for problems with time windows. It can also be beneficial if

the schedule of coaches or domestic flights is incorporated into the model, or if the time slots of the day are

considered in the reward function. However, our empirical testing of both formulations found that

constraints (6) provide more favorable results than constraints (41)-(46). See Section 5.1.

max (1)(1)it i tA T S   , \ {1}i t V T (41)

max (1)(1)jt it i it ij ijt j tA A Z d T X S       , , \ {1}i j t V T (42)

max (1)(1)jt it i it ij ijt j tA A Z d T X S       , , \ {1}i j t N T (43)

max0 it i itA T Z   , i t N T (44)

max (1)(2)it i it ij j t jtA Z d T M S S       , \ {1}i t V T (45)

max ()it jit ijt

j j

A T X X

 

  
V V

 , i t V T (46)

The set of constraints (41) ensure that the arrival time for city i on day t will be zero if the salesperson

stays overnight on day 1.t  Upon arrival in city ,j the travel time between city i and city j and the

activity time in city j are considered in constraints (42) and (43). Inequalities (44) impose the lower and

upper bounds of .itA Constraints (45) represent the general maximum tour duration definition. These are

binding for open tours. The set of constraints (46) are also binding for closed tours.

3.4 Valid inequalities for tightening up the formulation

In addition to the original constraints of the problem, we include the following valid inequalities:

1it

t

FM



T

 iV (47)

(1)2it i t itL S S   , i t N T (48)

(1)2it i t itE S S   , i t N T (49)

1ijt jit it jtX X S S    , () , i j i j t  N T (50)

Valid inequalities (47) ensure that the first activity for each city can occur at most once during the

campaign. Valid inequalities (48) and (49) state that if the campaigner stays overnight in the same city on

days t and (1),t  then the tour on day t will be a closed tour; hence, the corresponding variables itL and

14

itE must be zero. Valid inequalities (50) guarantee that if cities i and j are not terminal cities on day ,t

then there should not be a cyclic tour between them. These constraints are empirically demonstrated to be

effective. We provide the computational evidence in Section 5.

3.5 Operational assumptions about the meetings during an election campaign

In this section we introduce several operational assumptions pertinent to the meetings held by the politician.

We remark that the words activity (of a campaigner) and meeting (of a politician) are used interchangeably.

We propose the associated constraint equations (51)-(53) below, which have not been included in the

original RSP model in (1)-(40).

 1it

i

Z



B

 tT (51)

 1 0itR  ,iV {1}tT \ (52)

 it i

t

Z 



T

 iV (53)

The first supplementary assumption formulated in (51) is that a daily tour cannot involve more than one

big city. The set of big cities is indicated by B. The second assumption gives rise to constraints (52) which

state that it is not permitted to make two meetings in the same city on two consecutive days. The third

assumption brings about a maximum number of meetings allowed in a given city i during the entire

campaign. This maximum number is denoted by the parameter i in (53).

4. The proposed FDOR matheuristic

In this section, a two-phase matheuristic approach is described. We first present the underlying motivation

of this approach by introducing a partial variable fixing mechanism. Next, we explain the main steps of the

developed solution method.

4.1 Variable Fixing

The idea of using a matheuristic approach to tackle large-size instances is motivated by observing the results

of a partial variable fixing. In those instances which we are able to solve to proven optimality using the

MILP solver, we convert the binary decision variables itS , itL and itE to input parameters. Their values

are set equal to the optimal values of the respective variables. In the remaining instances which we are

unable to solve to proven optimality, we perform the same conversion by replacing itS , itL and itE with

their best feasible values obtained by the MILP solver. This way the formulation has a substantially smaller

number of decision variables and constraints. The best objective values of the original RSP model and the

partial variable fixing approach are contrasted in Table 3 in Section 0. We observe that the model with

some variables made fixed can be solved to optimality in shorter solution times (CPU times). We deduce

15

that the difficulty of the RSP is much more attributed to the scheduling and accommodation part rather than

to the routing part. Therefore, we decide to design a two-phase method where the scheduling and

accommodation part of the problem is segregated from the comprehensive formulation in (1)-(40). In such

an approach, the mathematical formulation will take care of the routing part only.

4.2 Finding Daily Optimal Routes method (FDOR)

 Motivated by the above observation, we propose a two-phase matheuristic to deal with large-size instances,

which we call Finding Daily Optimal Routes method (FDOR). It basically consists of two phases; city

selection and route generation. The route generation phase utilizes an integer program to build the optimal

route among selected cities. FDOR is an integer programming based heuristic which decomposes the

original MILP formulation into as many subproblems as the number of days, where the subproblem

associated with a given day depends on how frequently the campaign base is to be visited throughout the

campaign duration. For those days on which the campaigner needs to visit the campaign base, FDOR model

1 (FDORM1) is solved; for the other days we solve FDOR model 2 (FDORM2). Both models are solved

with respect to the particular subset of cities selected in the first phase of the matheuristic. The high-level

description of FDOR is provided in Algorithm 1.

Algorithm 1 The high level description of FDOR

Do the following for each day t of the planning horizon

Phase 1:

(a) Sort the cities in the decreasing order of their updated rewards.

(b) Choose  cities using one of the following city selection strategies:

- Deterministic City Selection (DCS): Select all available cities.

- Greedy City Selection (GCS): Select top  cities with the highest rewards.

- Pseudo-Random City Selection (PCS): Select  cities pseudo-randomly according to a

roulette wheel mechanism.

Phase 2:

(a) Solve a TSPP for the selected cities of Phase 1 using either:

- Model FDORM1: If the campaigner should stay overnight in the campaign base on day .t

- Model FDORM2: Otherwise.

 (b) Update the rewards.

Once the candidate cities are selected for a given day t , our matheuristic FDOR optimally solves a

Prize-Collecting Traveling Salesman Problem (PCTSP) using either the model FDORM1 or FDORM2.

The detailed pseudo code of FDOR is presented in Algorithm 2. The new notation used in Algorithm 2 is

defined below.

Additional Notation

16

tC : Set of candidate cities for day tT .

 : Number of candidate cities.

t : Set of updated rewards of day tT .

K : The base reward depreciation coefficient.

t : Depot (starting) node of day tT .

t : Terminal (ending) node of day tT .

 : Campaign base.

i : Number of activities held in city iN during the campaign.

is : Number of days since the last activity in city iN .

tS : Solution of day t .

*S : Solution of the whole campaign.

()tB S : The net benefit of solution tS .

*()B S : The total net benefit of the original problem.

Algorithm 2 The pseudo code of FDOR

Input: An RSP instance.

Output: A good feasible solution comprised of  daily tours.

0: Initialization:

1:
* ,S  *() 0,B S  0.i 

2: For 1:t 

3: Reward calculation:

4: If 1t  Then

5: ()t i ← i // Every city gets its own original base reward.

6: t  // Campaign starts from campaign base.

7: Else

8: If 0i  Then // This is going to be the first-time activity in city i.

9:
1

i i

t
 





 


10: Else // This is a repeated activity in city i.

11:
1 i

i i

st

K
 


 
 

 

12: ()t i ← i // Update the rewards.

13: End If

14: 1t t   // Depot of day t is equal to terminal node of day 1.t 

15: End If

16: Phase 1:

17

17: tC ← City_Selection_Approach (,)t  // Select  cities from N.

18: Phase 2:

19: If  1 2, ,...,t t t       Then // Force the campaigner to visit  as a terminal node.

20: Solve FDORM1(, , ,)t t t C → (), , , t t t iB S S   .

21: Else

22: Solve FDORM2(, ,)t t t C → (), , , t t t iB S S   .

23: End If

24: Update all i values according to tS .

25:
*S ← *

tS S // Update the best solution.

26: * *() () ()tB S B S B S  // Update the best total benefit.

27: End For

28: Return *()B S and
*S as the best objective value and the best feasible solution, respectively.

Algorithm 2 explains the steps of FDOR in detail. Updated rewards and the number of activities in each

city are initialized to zero. Afterwards, the reward of each city is calculated by taking into account the

current activity day t and the recency of previous activities which may have been held before day .t Once

the rewards of all cities are updated, one of the three city selection methods is called to select a subset of

cities to be considered for the second phase.

As discussed earlier, in FDOR we develop two mathematical formulations which are called iteratively

to solve daily STSPs. The first model (FDORM1) is called when the campaigner needs to return to the

campaign base. The second one (FDORM2) is called when the campaigner is free to start and finish the

daily tour in any node. FDORM1 is developed to build a daily route which may start in any city including

the campaign base (the city to be visited at least once every  days), but must terminate in the campaign

base at the end of that day. FDORM2, on the other hand, is developed for those days when the campaigner

is not required to return to the campaign base. The feasibility of the solution is guaranteed with respect to

the maximum tour duration constraint (the maximum single trip time) and also with respect to the maximum

count of daily activities.

4.3 Mathematical formulation of FDORM1 and FDORM2

Decision variables:

ijX : Binary variable indicating if arc (,)i j is traversed where 0.iiX 

iZ : Binary variable indicating if city i hosts an activity.

iU : A continuous nonnegative variable used in the Miller-Tucker-Zemlin Subtour Elimination

Constraints (referred to as MTZ inequalities) determining the order of visit for city i .

18

FDORM1(, , ,)t t t C :

max. Daily NET BENEFIT it i ij ij

i i j

Z c X

  

    
N N N

 (54)

Subject to:

maxi i ij ij

i i j

Z d X T

  

   
N N N

 (55)

ij ki

j k

X X

 

 
N N

 , , ti i   N (56)

, 1j i

j

X




N

 iN (57)

, 1i j

j

X




N

 iN (58)

(1)(1)j i ij ijU U X X     , , ti j j  N (59)

1i jk

j k

U X

 

  
N N

 iN (60)

0 (1)i iU Z   iN (61)

1
t

U  (62)

0
tj j

j j

X X 

 

  
N N

 (63)

2
t j j

j j

X X 

 

  
N N

 (64)

i ji

j

Z X



 
N

 , ti i  N (65)

i

i

Z 




N

 (66)

{0,1}ijX  ,i jN (67)

{0,1}iZ  iN (68)

0iU  iN (69)

In the above formulation, the objective function (54) maximizes the net benefit of a tour while deducting

travel costs from collected rewards. Constraint (55) ensures that the total travel time of the tour does not

exceed the maximum tour duration. The set of constraints (56) guarantee that if the campaigner enters any

city, except the depot and the campaign base, he/she should leave there. Constraints (57) and (58) are

typical selective TSP inequalities which impose the incoming and outgoing degree of each node. The set

of constraints (59) and (60) are node-based MTZ sub-tour elimination constraints (Miller et al., 1960). The

lower and upper bounds of the continuous variable iU are specified in constraints (61) and (62). Equalities

19

(63) and (64) force the campaigner to leave the depot and to stay overnight in the campaign base. The

inequalities (65) couple the binary decision variables Z and X , and ensure that there will be no activity in

non-visited cities. Such a definition results in holding an activity in every city that the campaigner enters

except the depot. Constraint (66) ensures that there will be no more than  activities. Finally, binary and

nonnegativity constraints on the respective decision variables are defined in (67)-(69).

Contrasted to the original formulation (1)-(40), FDORM1 is a much easier model to solve. First of all,

it represents a single-period problem. As we solve FDORM1 for a particular day ,t we already know the

activity schedule of the previous days. Therefore, there is no need to include the binary variables FM and

R in FDORM1 for the purpose of capturing first-time or repeated activities. Also the starting node of the

current day t is known due to the fact that the terminal node of day 1t  is known. Thus, there is no need

to keep the binary variables ,L E and S of the RSP model to track the terminal node of each previous

day. The exclusion of these variables leads to a simple yet effective model. The formulation of FDORM2

is similar to FDORM1 except that constraints (63) and (64) are replaced by:

1
t j

j

X




N

 (70)

ij ki

j k

X X

 

 
N N

 , ti i  N (71)

1ij ji i

j j

X X Z

 

   
N N

 iN (72)

Constraint (70) ensures that the campaigner leaves the depot. Constraints (71) allow the model to generate

either an open tour or a closed tour. Finally, constraints (72) couple the binary variables Z and X .

FDORM1 has
2n binary variables, n continuous variables, and 22 7 2n n  constraints. FDORM2 has

2n binary variables, n continuous variables, and 22 9n n constraints. Compared to the original model in

(1)-(40), both FDORM1 and FDORM2 comprise substantially fewer variables and constraints. This

massive reduction in size is achieved by decomposing the original problem into as many subproblems as

the number of days in the campaign duration.

5. Computational Results

Our computational tests were performed on a Dell Precision T7810 model work station equipped with one

Intel Xeon E5-2690 v4 2.60 GHz processor and 32 GBytes of ECC DDR3 type random access memory

(RAM). Our algorithms are coded in Python 3.6. 4 (64-bit version). For the second phase of the FDOR, we

employed the commercial MILP solver GUROBI 8.0.1 which is called from inside Python. Since no RSP

test instance is available in the literature, we generated three sets of instances:

20

1: Presidential Elections I (PE.I): it includes 22 instances where the smallest instance includes 6 cities

and 2 days and the real-world instance includes 93 cities and 40 days. The cities have been selected

according to their base rewards.

2: Presidential Elections II (PE.II): it includes 20 instances where the cities have been selected

according to their distances from each other.

3: Local Election (LE): it consists of 3 instances with 39 districts of Istanbul.

All 45 instances were generated with real-world distances and travel times queried from Google Maps

Turkey. We assume symmetric travel costs and times. The naming convention of instances sheds light on

the sizes of the 45 test instances and their types. An instance name ‘PE.I. nC D ’ tells that the problem

relates to presidential elections and it has n cities (excluding the fictitious city) and a planning horizon of

 days. All instances are publicly available online at http://shahmanzar.ir/RSP.html.

5.1 Comparison of the original and alternative MTD formulations

We compared the maximum tour duration (MTD) constraints (6) with the alternative MTD constraints in

(41)-(46) on a pilot test bed of 14 small size instances. The results are displayed in Table 1. The column

header ‘Opt.Gap (%)’ stands for the relative optimality gap of GUROBI. It is calculated as

Opt.Gap (%) 100
UB LB

LB


  where UB and LB stand for the best upper and lower bounds, respectively, that

are attained by GUROBI on a given RSP instance. The results in Table 1 suggest that the MTD constraints

(6) yield better CPU times and can also attain proven optimality in all 14 instances. The weakness of the

alternative MTD constraints can be attributed to the continuous variables itA which store arrival times for

all cities. In all cases, MTD constraints (6) reduce the solution times without compromising the solution

quality. This observation led us not to pursue the alternative MTD constraints any further.

Table 1. Comparison of two MTD formulations

Small

Instances

MTD constraints (41)-(46) using itA MTD constraints (6)

Opt.Gap (%) CPU (s)
a
 Opt.Gap (%) CPU (s)

a

5C2D 0.0 3.5 0.0 0.1

5C3D 0.0 3.8 0.0 0.1

7C2D 0.0 4.3 0.0 0.2

7C3D 0.0 4.7 0.0 0.4

7C4D 0.0 5.4 0.0 0.4

9C2D 0.0 15.3 0.0 0.3

9C3D 0.0 166.2 0.0 0.5

9C4D 0.0 640.7 0.0 1.3

12C3D 7.1 3600.0 0.0 5.2

12C4D 9.0 3600.0 0.0 5.8

12C5D 14.3 3600.0 0.0 6.0

15C3D 7.6 3600.0 0.0 32.1

http://shahmanzar.ir/RSP.html

21

15C4D 11.2 3600.0 0.0 214.8

15C5D 15.8 3600.0 0.0 409.5

a
 Measured on a notebook with Intel Core i5-4310U processor.

5.2 Effect of the added valid inequalities on solution quality

We tested the effect of the added valid inequalities (VIs) implied by constraints (47)-(50) on a test bed of

12 instances from the set PE.I. Table 2 below displays the GUROBI solutions and corresponding CPU

times (in seconds) for the models without valid inequalities, with all VIs but (50), and with all VIs. The

optimal solutions are shown in bold; the remaining figures show the objective value of the best feasible

solutions (BFSs). The better average objective values and gaps are printed in italic in the bottom row.

Table 2. Comparison of the models with and without valid inequalities.

PE.I

Instances

All VIs OFF All VIs ON except (50) All VIs ON

BFS
Opt.Gap

(%) CPU (s) BFS
Opt.Gap

(%) CPU (s) BFS
Opt.Gap

(%) CPU (s)

12C3D 12620 0.0 1.4 12620 0.0 0.9 12620 0.0 1.1

12C4D 16584 0.0 5.5 16584 0.0 2.7 16584 0.0 2.3

12C5D 14575 0.0 38.5 14575 0.0 7.3 14575 0.0 6.0

15C3D 12620 0.0 2.4 12620 0.0 1.7 12620 0.0 1.6

15C4D 14210 0.0 10.4 14210 0.0 5.9 14210 0.0 4.3

15C5D 15446 0.0 113.1 15446 0.0 37.3 15446 0.0 14.4

15C7D 17240 0.0 2477.1 17240 0.0 1528.0 17240 0.0 551.3

15C10D 18719 5.5 86400.0 18759 0.0 35355.0 18759 0.0 30458.5

21C7D 19138 0.0 17290.9 19138 0.0 5296.1 19138 0.0 6705.3

21C10D 21727 11.2 86400.0 21792 7.4 86400.0 21904 6.9 86400.0

30C7D 29427 0.0 19736.3 29427 0.0 7421.5 29427 0.0 20670.3

30C10D 32803 18.8 86400.0 33281 14.0 86400.0 35013 6.0 86400.0

Average 18759 2.9 18807 1.7 18961 1.0

According to Table 2, the original RSP formulation is more compact when all valid inequalities are

incorporated. The average objective value improves approximately by 2% from 18759 to 18961; the

average optimality gap reduces from 2.9% to a 1.0%. The largest gap is below 7%; this is a massive drop

from the previous value of 18.8%. Convinced by these test results, we opted to include in our experiments

all VIs proposed in Section 3.4.

5.3 The results of partial variable fixing

Table 3 represents the comparison of the original formulation and the partial variable fixing approach.

Boldface figures point to proven optimality attained by the commercial solver GUROBI in either case. The

first column in each table section hosts the best feasible solution reported by GUROBI.

22

Table 3. Comparison of the results of original formulation and variable fixing.

 RSP RSP with partial variable fixing

Instance BFS Opt.Gap (%) CPU (s) BFS Opt.Gap (%) CPU (s)

15C7D 17240 0.0 551.3 17240 0.0 0.05

15C10D 18759 0.0 30458.5 18759 0.0 0.08

21C7D 19138 0.0 6705.3 19138 0.0 0.80

21C10D 21904 6.9 86400.0 21904 0.0 1.13

30C7D 29427 0.0 20670.3 29427 0.0 5.35

30C10D 35013 6.0 86400.0 35013 0.0 3.54

40C7D 30086 4.1 86400.0 30195 0.0 25.02

40C10D 36409 12.6 86400.0 36409 0.0 211.32

51C7D 41087 9.9 86400.0 41182 0.0 95.86

51C10D 45667 22.4 86400.0 45810 0.0 424.67

5.4 Comparison of FDOR-DCS, FDOR-GCS and FDOR-PCS

Table 4 below presents the comparison of different city selection approaches for 16 of 22 PE.I instances.

We did not test the smallest six instances due to their excessively small solution times. The objective values

of the best feasible GUROBI solutions and the FDOR solutions (BFS and Obj.Val. respectively) are

provided along with the corresponding CPU times for all three approaches. FDOR-DCS outperforms the

other two in most instances. In two instances, namely 30C7D and 30C10D, FDOR-GCS finds better

solutions with higher objective values. In three other instances, 15C7D, 15C10D and 21C10D, FDOR-GCS

finds the same solution as FDOR-DCS in shorter times. In general, FDOR-DCS spends more time in Phase

2 by considering all n cities for selection. On the other hand, FDOR-GCS and FDOR-PCS work on a subset

of  cities which are selected in a greedy or pseudo-random way to ensure solution diversity.

FDOR-DCS approach dominates with an average total net benefit value of 37162 as can be seen in Table

4. It can find the optimal solution or the BFS in 11 of the 16 instances. FDOR-GCS can do so only in five

instances, while FDOR-PCS cannot find any. Compared to the commercial solver GUROBI which returns

a solution in the first 12 instances, the average gap between FDOR-DCS and GUROBI solutions is about

4.40%. This relative deviation of FDOR-GCS and FDOR-PCS solutions is 4.98% and 5.20%, respectively.

Both FDOR-GCS and FDOR-PCS city selection approaches have been tested thoroughly using five

different values of  ranging from 10 to 21 cities and performing 5, 10, 15 and 20 replications in FDOR-

PCS. Yet, FDOR-DCS happens to outperform the other two approaches in solution quality. The detailed

results are not provided here, but can be collected from the authors. Given the more promising performance

of FDOR-DCS, we focus just on this particular approach in the rest of our experiments. Figure 2

recapitulates the information shown in Table 4 to depict the solution quality comparison of the three city

selection approaches in FDOR.

23

Table 4. Comparison of FDOR-DCS, FDOR-GCS, and FDOR-PCS

Instances

GUROBI FDOR-DCS FDOR-GCS FDOR-PCS

BFS
Opt.Gap

(%)
 Obj.Val. CPU (s) Obj.Val. CPU (s) Obj.Val. CPU(s)

12C5D 14575 0.0 12906 0.30 12906 0.39 12906 1.47

15C7D 17240 0.0 16132 0.52 16132 0.44 16103 1.72

15C10D 18759 0.0 17356 0.70 17356 0.42 17234 2.34

21C7D 19138 0.0 17325 0.99 17324 0.38 17324 3.86

21C10D 21904 6.8 20673 1.22 20673 0.49 20673 5.07

30C7D 29427 0.0 27474 1.72 27963 0.38 27963 12.24

30C10D 35013 5.9 32213 2.26 32427 0.49 32533 23.51

40C7D 30086 4.0 28821 3.74 28114 1.08 27927 14.18

40C10D 36409 12.6 34672 4.97 34278 1.49 33233 14.67

51C7D 41087 9.9 36942 8.40 36446 0.95 36218 22.47

51C10D 45667 22.3 43212 11.38 42406 1.89 42165 15.59

51C30D 47279 186.7 59890 14.56 58587 3.49 59745 105.71

70C15D   46818 16.64 45752 2.36 43116 54.85

70C40D   58408 22.26 54235 7.60 54809 103.38

93C30D   68174 26.61 63085 8.03 58493 108.73

93C40D   73574 27.12 68307 9.94 62090 69.21

 Average 37162 8.96 35999 2.49 35158 34.94

Figure 2. Comparison of FDOR-DCS, FDOR-GCS, and FDOR-PCS

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

7.E+04

8.E+04

1
2
C
-
5
D

1
5
C
-
7
D

1
5
C
-
1
0
D

2
1
C
-
7
D

2
1
C
-
1
0
D

3
0
C
-
7
D

3
0
C
-
1
0
D

4
0
C
-
7
D

4
0
C
-
1
0
D

5
1
C
-
7
D

5
1
C
-
1
0
D

5
1
C
-
3
0
D

7
0
C
-
1
5
D

7
0
C
-
4
0
D

9
3
C
-
3
0
D

9
3
C
-
4
0
D

O
b
je

ct
iv

e
V

al
u
e

GUROBI FDOR-DCS FDOR-GCS FDOR-PCS

24

Table 5 presents for a particular test instance, namely 30C7D, the daily routes generated by FDOR-DCS

and the routes of the optimal solution. We specify “Holding a Meeting” by (M).

Table 5. Comparison of routes of FDOR-DCS and optimal solution

 Routes

`O
p

ti
m

al
 S

o
lu

ti
o

n

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun)

Day 2: Wakeup in İskenderun → Adana (M) → Istanbul (M) → Antalya (Sleep in Antalya)

Day 3: Wakeup in Antalya (M) → Denizli (M) → Aydin (M) → Izmir (Sleep in Izmir)

Day 4: Wakeup in Izmir (M) → Balıkesir (M) → Bursa (M) (Sleep in Bursa)

Day 5: Wakeup in Bursa → Istanbul (M) → Gebze (M) → Ankara (Sleep in Ankara)

Day 6: Wakeup in Ankara (M) → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş)

Day 7: Wakeup in Kahramanmaraş → Hatay (M) → Adana (M) (Sleep in Adana)

F
D

O
R


D
C

S

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun)

Day 2: Wakeup in İskenderun → Istanbul (M) → Bursa (M) (Sleep in Bursa)

Day 3: Wakeup in Bursa → Izmir (M) → Aydin (M) (Sleep in Aydin)

Day 4: Wakeup in Aydin → Denizli (M) → Antalya (M) → Alanya (M) (Sleep in Alanya)

Day 5: Wakeup in Alanya → Isparta (M) → Ankara (M) (Sleep in Ankara)

Day 6: Wakeup in Ankara → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş)

Day 7: Wakeup in Kahramanmaraş → Adana (M) → Istanbul (M) (Sleep in Istanbul)

In order to illustrate the efficiency of FDOR-DCS, we compared in Figure 3 the daily net benefit

(collected daily rewards minus daily travel costs) of the optimal solution with that of the FDOR-DCS

solution in the same instance 30C7D. For day 1, FDOR-DCS generates the same route as the optimal

GUROBI solution and for days 2 and 7, it was able to obtain higher daily net benefits.

Figure 3. The comparison of the daily net benefit of FDOR and original formulation

0

2000

4000

6000

8000

10000

12000

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

D
ai

ly
 B

en
ef

it

RSP FDOR-DCS

25

5.5 Comparison of GUROBI and FDOR-DCS for all three sets of instances

Since FDOR-DCS was found to return better solutions than FDOR-GCS and FDOR-PCS, we decided to

benchmark it against the commerical solver GUROBI in all 45 instances. Table 6 below displays the

objective values of all instances for both GUROBI and FDOR-DCS along with CPU times in seconds. The

column header
BFSt indicates the time elapsed before GUROBI has attained the tightest lower bound on

the true optimal objective value. That lower bound corresponds to the BFS of the problem. Finally, the

column header ‘FDOR.Gap (%)’ represents the gap of the FDOR-DCS solution with respect to the tightest

lower bound, i.e. the BFS found by GUROBI. It is calculated as
BFS Obj.Val.

BFS
FDOR.Gap (%) 100


  . In all

computational results, the boldface figures signify proven optimality achieved either by GUROBI or by

FDOR-DCS.

The results of Table 6 suggest that FDOR-DCS is able to generate good feasible solutions in remarkably

shorter times than GUROBI. The average gap between the optimal solution or the BFS of GRUOBI and

the net benefit found by FDOR-DCS is 0.83% still in favor of GUROBI. However, the average CPU time

decreases from 58357.0 seconds to 12.4 seconds. In other words, FDOR-DCS takes a tiny fraction,

approximately 0.021% of the commercial solver’s CPU time. Moreover, when the number of cities n rises

from 51 to 70 in PE.I instances, i.e. the last four instances 70C15D, 70C40D, 93C30D and 93C40D,

GUROBI fails to return a feasible solution even in 24 hours, whereas FDOR-DCS finds a feasible solution

in 23.1 seconds on average. The same situation is observed in three PE.II instances, namely 70C30D,

80C30D and 80C40D.

According to Table 6 for those instances where GUROBI is able to return a proven optimal solution,

FDOR-DCS finds quick solutions with an average optimality gap of 4.46%. For the remaining instances

where the commercial solver reports a BFS, but cannot reach proven optimality in 24 hours, the average

FDOR-DCS objective value is about 0.45% higher, thus better than the average BFS of the commercial

solver.

The promising FDOR-DCS solutions are generated very fast; they could be utilized as an initial feasible

solution (IFS) for GUROBI to tighten the final optimality gap of the associated MILP model. We elaborate

on this idea in Section 5.6. Another observation from Table 6 is that when the problem size (either n or

) increases, so does the time expenditure of FDOR-DCS at a rapid pace. To amend this, we investigated

the other city selection approaches for FDOR, namely FDOR-GCS and FDOR-PCS, which were proposed

in Section 4.2.

26

Table 6. Comparison of GUROBI with FDOR-DCS for all instances

PE.I

Instances

GUROBI FDOR-DCS

PE.II

Instances

GUROBI FDOR-DCS

BFS
Opt.Gap

(%)

BFSt

(s)

CPU

(s)
 Obj.Val.

CPU

(s)

FDOR.Gap

(%)
 BFS

Opt.Gap

(%)

BFSt

(s)

CPU

(s)
 Obj.Val.

CPU

(s)
FDOR.Gap

(%)

6C2D 7110 0.0 0 0.1 7110 0.1 0.0 20C5D 25118 0.0 44 239.2 24196 0.6 3.7

6C3D 8181 0.0 0 0.1 8181 0.1 0.0 20C7D 27523 0.0 454 1995.9 25419 0.6 7.6

7C2D 9629 0.0 0 0.2 9629 0.1 0.0 30C5D 16635 0.0 161 709.9 16052 1.5 3.5

7C4D 11597 0.0 0 0.4 11457 0.2 1.2 30C7D 18855 0.0 13163 28216.8 17997 1.8 4.6

9C3D 10939 0.0 0 0.5 10788 0.1 1.4 30C10D 21251 5.9 17722 86400.0 19577 2.0 7.9

9C4D 11668 0.0 1 1.3 11268 0.1 3.4 40C7D 32811 20.1 76679 86400.0 31748 3.0 3.2

12C5D 14575 0.0 6 6.0 12906 0.3 11.5 40C10D 37851 3.8 51297 86400.0 34267 3.6 9.5

15C7D 17240 0.0 462 551.3 16132 0.5 6.4 50C7D 32829 1.6 4945 86400.0 33101 6.9 −0.8

15C10D 18759 0.0 19972 30458.5 17356 0.7 7.5 50C10D 38098 11.8 45006 86400.0 37389 8.5 1.9

21C7D 19138 0.0 2026 6705.3 17325 0.9 9.5 50C15D 44098 35.6 70662 86400.0 41687 11.0 5.5

21C10D 21904 6.8 11582 86400.0 20673 1.2 5.6 60C7D 40480 2.5 36955 86400.0 38105 13.8 5.9

30C7D 29427 0.0 20665 20670.3 27474 1.7 6.6 60C10D 48270 7.0 82709 86400.0 45446 18.8 5.8

30C10D 35013 5.9 30040 86400.0 32213 2.2 8.0 60C20D 50559 80.1 64244 86400.0 62869 22.8 −24.3

40C7D 30086 4.0 59757 86400.0 28821 3.7 4.2 70C10D 42474 13.9 82434 86400.0 40201 26.1 5.4

40C10D 36409 12.6 62342 86400.0 34672 4.9 4.8 70C20D 43705 112.3 83589 86400.0 51055 34.9 −16.8

51C7D 41087 9.9 85597 86400.0 36942 8.4 10.1 70C30D − − − 86400.0 57065 36.2 −

51C10D 45667 22.3 77316 86400.0 43212 11.3 5.4 80C10D 40808 22.2 52003 86400.0 38423 38.6 5.8

51C30D 47279 186.7 61189 86400.0 59890 14.5 −26.7 80C20D 50777 75.1 74448 86400.0 53270 41.9 −4.9

70C15D    86400.0 46818 16.6  80C30D − − − 86400.0 57285 50.0 −

70C40D    86400.0 58408 22.2  80C40D − − − 86400.0 62576 48.7 −

93C30D    86400.0 68174 26.6  Average
 a 36008 44500.9 67903.6 35930 13.9 1.39

93C40D    86400.0 73574 27.1  LE

Instances

Average
a 23095 23941.9 36844.1 22558 2.8 3.27

 39C7D 22361 4.7 85841 86400.0 22164 11.7 0.9

a The average objective values, CPU times and gaps have been calculated for

the pool of only those instances in which GRUOBI is able to find a BFS.

 39C10D 26774 18.5 63714 86400.0 27191 13.5 −1.6

 39C14D 30214 57.5 76094 86400.0 31757 15.9 −5.1

 Average 26450 75216.3 86400.0 27037 13.7 −1.9

27

5.6 Speeding up GUROBI using the results of FDOR

The commercial solvers such as GUROBI and CPLEX assume the initial values of all decision variables to

be zero. On the other hand, we know that some greedy-like and heuristic methods are used inside the black

box of these solvers, especially in the preprocessing step. When we tackle a MILP problem, it is possible

to assist the commercial solver by setting the decision variables to certain initial values, which is known as

a warm start. A warm start may be performed by starting the solver at a nontrivial feasible solution.

In our case, we can generate a high-quality feasible solution through FDOR which executes in a small

amount of CPU time. So, we can feed it as an initial solution into the commercial solver for the purpose of

a warm start. This high-quality initial solution may help the solver, though not always, find the optimal

solution faster than before. Likewise, it could contribute in large size instances to the detection of a feasible

solution which the solver fails to find even in 24 hours. To this end, GUROBI is called after the initial

values of the binary decision variables X , Z , R , FM , S , L and E in the RSP model have been set to

the respective values retrieved from the FDOR solution of the same problem. The new GUROBI results are

presented in Table 7. The solution quality increased in 38 of 45 instances. It is worth noting that GUROBI

was previously unable to reach proven optimality for PE.I 40C7D and PE.II 50C7D; but by feeding the

FDOR solution into GUROBI as an initial solution it was possible to do so in less than 24 hours. Moreover,

in PE.I instances 70C15D, 70C40D, 93C30D and 93C40D as well as in PE.II instances 70C30D, 80C30D

and 80C40D, GUROBI was previously unable to return a feasible solution at all. Now after a warm start

with the FDOR solution, it can at least arrive at a feasible solution, albeit with an average Opt.Gap still

above 100%. For the remaining 38 instances, the average BFS improves (i.e. increases) by approximately

3.79%. Finally, the average Opt.Gap again in those 38 instances drops from 18.49% to 14.64%.

5.7 Comparison of the FDOR method with Party’s actual meeting plan

In order to testify the solution quality of the proposed FDOR method further, we scrutinize the real-life

instance 70C40D. We were able to obtain the political party’s realized meetings prior to the general election

of June 2015 in Turkey. The party started its campaign 40 days before the election day; the party leader

held meetings in a total of 70 cities and towns with repeated meetings in several of them. In the light of

these meetings, we created our large size instance 70C40D. We compare the total benefit value implied by

the party’s actual meeting plan to the BFS found by FDOR. In order to make a fair comparison, we also

define a “Reward-Only” scenario where we ignore the traveling costs and relax the following three

constraints in our assumptions. (i) The first constraint was forcing the politician to hold at least one meeting

every day. However, in the actual meeting schedule of the party there were two meeting-free days. (ii) The

second one was forcing the politician to end the campaign at the campaign base. We relaxed this constraint

since the actual campaign of the party back in June 2015 had not been completed in Ankara. (iii) The last

one was forcing the politician to return to the campaign base frequently. We lifted this constraint as well.

28

Table 7. The results of setting initial values of RSP to optimal values of FDOR

PE.I

Instances

RSP

(original)

RSP with FDOR solution as

the initial solution

PE.II

Instances

RSP

(original)

RSP with FDOR solution as

the initial solution

BFS
Opt.Gap

(%)

CPU

(s)
BFS

Opt.Gap

(%)

CPU

(s)

BFS
Opt.Gap

(%)

CPU

(s)
 BFS

Opt.Gap

(%)

CPU

(s)

6C2D 7110 0.0 0.1 7110 0.0 0.3

20C5D 25118 0.0 239.2 25118 0.0 255.0

6C3D 8181 0.0 0.1 8181 0.0 0.5

20C7D 27523 0.0 1995.9 27523 0.0 2118.4

7C2D 9629 0.0 0.2 9629 0.0 0.5

30C5D 16635 0.0 709.9 16635 0.0 885.1

7C4D 11597 0.0 0.4 11597 0.0 0.6

30C7D 18855 0.0 28216.8 18855 0.0 27959.7

9C3D 10939 0.0 0.5 10939 0.0 1.3

30C10D 21251 5.9 86400.0 22464 3.9 86400.0

9C4D 11668 0.0 1.3 11668 0.0 1.5

40C7D 32811 2.0 86400.0 32788 2.2 86400.0

12C5D 14575 0.0 6.0 14575 0.0 6.8

40C10D 37851 3.8 86400.0 37641 4.4 86400.0

15C7D 17240 0.0 551.3 17240 0.0 572.5

50C7D 32829 1.6 86400.0 33352 0.0 82875.1

15C10D 18759 0.0 30458.5 18759 0.0 20630.7

50C10D 38098 11.8 86400.0 42202 10.5 86400.0

21C7D 19138 0.0 6705.3 19138 0.0 5311.0

50C15D 44098 35.6 86400.0 41922 48.3 86400.0

21C10D 21904 6.8 86400.0 21684 6.7 86400.0

60C7D 40480 2.5 86400.0 39793 4.4 86400.0

30C7D 29427 0.0 20670.3 29427 0.0 14071.7

60C10D 48270 7.0 86400.0 48354 6.5 86400.0

30C10D 35013 5.9 86400.0 35197 5.7 86400.0

60C20D 50559 80.1 86400.0 62869 44.3 86400.0

40C7D 30086 4.0 86400.0 30122 0.0 77160.8

70C10D 42474 13.9 86400.0 40240 20.2 86400.0

40C10D 36409 12.6 86400.0 34763 17.8 86400.0

70C20D 43705 112.3 86400.0 51364 80.8 86400.0

51C7D 41087 9.9 86400.0 41442 7.8 86400.0

70C30D − − − 57092 167.6 86400.0

51C10D 45667 22.3 86400.0 46971 19.5 86400.0

80C10D 40808 22.2 86400.0 41773 19.4 86400.0

51C30D 47279 186.7 86400.0 59895 100.0 86400.0

80C20D 50777 75.1 86400.0 55206 88.6 86400.0

70C15D   86400.0 46818 66.1 86400.0

80C30D − − − 58008 153.4 86400.0

70C40D   86400.0 58408 170.1 86400.0

80C40D − − − 62576 196.1 86400.0

93C30D   86400.0 68174 96.4 86400.0

Average
a 36008 22.0 37535 19.6

93C40D   86400.0 73595 108.1 86400.0 LE
Instances

Average
a 23094 13.8 23797 8.8

39C7D 22361 4.7 86400.0 22782 2.7 86400.0

39C10D 26774 18.5 86400.0 27481 15.3 86400.0

a The average objective values and gaps have been calculated

 for the pool of only those instances in which GRUOBI is able

 to find a BFS.

39C14D 30214 57.5 86400.0 32496 47.5 86400.0

Average 26450 26.9 27586 21.8

Table 8 below shows the details of FDOR and the original model solutions alongside the actual plan.

Accordingly, GUROBI is not able to find an optimal solution even at the end of three days. However, the

best feasible solution returned by GUROBI bears a net benefit that is about 90% greater than the net benefit

accrued by the end of the actual campaign plan of the party. In the actual plan there are three meetings in

İstanbul, Ankara, and Mersin each, two meetings in İzmir, and one meeting in each of the remaining cities.

However, the best feasible solution prescribes three meetings in each of İstanbul, Ankara, İzmir, and

Mersin, two meetings in the majority of midsize cities such as Adana, Balıkesir, Bursa, Hatay, Konya, etc.,

and one meeting in the rest. The results highlight a massive advantage of solving the RSP for the

maximization of the net benefit obtained from an election campaign that spans an extended period.

29

Table 8. FDOR method vs Party’s actual meeting plan in the real-life instance 70C40D

 Solution Value Opt.Gap (%) # of Meetings CPU time

RSP

LB = 46,640

UB = 117,427
60.3 75

259,200 s

(3 days)

 FDOR 58,408  96 22.26 s

 Party’s Plan 24,534  77 n/a

R
ew

ar
d

-

O
n

ly

RSP
LB = 68,399

UB = 106,802
56.1 65

259,200 s

(3 days)

FDOR 94,044  102 34.15 s

Party’s Plan 64,124  77 n/a

In the Reward-Only scenario of the problem under study, both the original formulation and FDOR

outperform the party’s actual plan. Considering the number of meetings as a performance measure, the

solution obtained by FDOR holds 19 more meetings than the party’s plan. This difference is more

pronounced in the Reward-Only scenario where the number of meetings held in the FDOR solution

surpasses that number in the party’s plan by 25. Note that in both cases the objective value which we are

able to obtain in less than 35 seconds using FDOR is far superior to the objective value implied by the

party’s plan. These performance merits hint the success of the proposed matheuristic method FDOR in

scheduling and routing an election campaign.

6. Conclusions and future work

In this paper we introduce a novel logistical problem which we call the Roaming Salesman Problem (RSP).

It can be classified as a multi-period version of the prize-collecting traveling salesman problem with

dynamic profits, repeated visits to certain customer nodes, varying depot nodes, and three types of time

restricted tours. The salesperson in the problem whom we designate as the campaigner can stay overnight

in any arbitrary city to resume his/her daily tour there the next morning. This extraordinary feature adds

another level of complexity to the model of the problem. We propose an innovative MILP formulation

followed by an efficient two-phase matheuristic approach consisting of two primary components: a city

selection phase and a route generation phase. The proposed matheuristic, coined as Finding Daily Optimal

Routes (FDOR), decomposes the original MILP formulation into as many subproblems as the number of

days in the planning horizon. Each subproblem depends on how frequently the campaign base is to be

visited throughout the campaign duration. This decomposition strategy generates the next period’s route

without the need to track the route of each day, which in turn reduces the computational complexity of the

problem greatly. We rigorously tested three city selection approaches coupled with the associated parameter

calibration experiments. Computational results suggest that FDOR provides promising solutions in

remarkably short computing times.

30

Our work on this new problem can be extended in many directions. The decomposition scheme in our

proposed FDOR method can be adapted to other hard combinatorial problems that are rather difficult to

tackle otherwise. A relevant topic is the incorporation of the meetings of a rival party into the calculation

of the rewards. The accommodation cost and the weekday of the meetings can also be considered in the

calculation of rewards. Time windows constraints can be introduced to keep track of the time of the day

and the departure schedules of coaches and planes. Moreover, alternative formulations can be investigated

so as to improve the solution quality of the MILP model. For instance, connectivity constraints can be

introduced and separation of violated inequalities can be implemented in a branch-and-cut

algorithm. Finally, hybrid metaheuristics can be developed which would capitalize on FDOR to start at a

high-quality initial solution.

Acknowledgments

The authors would like to thank the two anonymous reviewers for their useful comments and valuable

suggestions which enriched the content as well as improved the exposition of the paper.

References

Angelelli, E., Gendreau, M., Mansini, R., & Vindigni, M. (2017). The traveling purchaser problem with time-

dependent quantities. Computers & Operations Research, 82, 15-26.

Archetti, C., Carrabs, F., & Cerulli, R. (2018). The set orienteering problem. European Journal of Operational

Research, 267(1), 264-272.

Archetti, C., Feillet, D., Hertz, A., & Speranza, M. G. (2009). The capacitated team orienteering and profitable tour

problems. Journal of the Operational Research Society, 60(6), 831-842.

Arkin, E. M., Mitchell, J. S., & Narasimhan, G. (1998, June). Resource-constrained geometric network optimization.

In Proceedings of the Fourteenth Annual Symposium on Computational Geometry (pp. 307-316). ACM.

Awerbuch, B., Azar, Y., Blum, A., & Vempala, S. (1998). New approximation guarantees for minimum-weight k-

trees and prize-collecting salesmen. SIAM Journal on Computing, 28(1), 254-262.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6), 621-636.

Balas, E., & Martin, G. (1985). ROLL-A-ROUND: Software package for scheduling the rounds of a rolling mill,

©Balas and Martin Associates, 104 Maple Heights Road, Pittsburgh, USA.

Bianchessi, N., Mansini, R., & Speranza, M. G. (2018). A branch‐and‐cut algorithm for the Team Orienteering

Problem. International Transactions in Operational Research, 25(2), 627-635.

Butt, S. E., & Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection problem. Computers &

Operations Research, 21(1), 101-111.

Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi‐depot vehicle

routing problems. Networks, 30(2), 105-119.

Dell'Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize‐collecting tours and the asymmetric travelling salesman

problem. International Transactions in Operational Research, 2(3), 297-308.

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with profits. Transportation Science,

39(2), 188-205.

31

Fischetti, M., Salazar-González, J. J., & Toth, P. (2007). The generalized traveling salesman and orienteering

problems. In: Gutin, G., & Punnen, A. P. (Eds.). The Traveling Salesman Problem and Its Variations (pp. 609-662).

Combinatorial Optimization Vol. 12. Springer Science+Business Media, LLC.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness

(Series of Books in the Mathematical Sciences, Vol. 29). New York: W. H. Freeman.

Gendreau, M., Laporte, G., & Semet, F. (1998). A branch-and-cut algorithm for the undirected selective traveling

salesman problem. Networks, 32(4), 263-273.

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34(3), 307-318.

Golden, B. L., Wang, Q., & Liu, L. (1988). A multifaceted heuristic for the orienteering problem. Naval Research

Logistics, 35(3), 359-366.

Gutin, G., & Punnen, A. P. (Eds.). (2007). The Traveling Salesman Problem and Its Variations. Combinatorial

Optimization Vol. 12. Springer Science+Business Media, LLC.

Halvorsen-Weare, E. E., and Fagerholt, K. (2013). Routing and scheduling in a liquefied natural gas shipping problem

with inventory and berth constraints. Annals of Operations Research, 203(1), 167-186.

Hayes, M., & Norman, J. M. (1984). Dynamic programming in orienteering: route choice and the siting of controls.

Journal of the Operational Research Society, 35(9), 791-796.

Hemmelmayr, V. C., Doerner, K. F., Hartl, R. F., & Vigo, D. (2013). Models and algorithms for the integrated

planning of bin allocation and vehicle routing in solid waste management. Transportation Science, 48(1), 103-120.

Kataoka, S., & Morito, S. (1988). An algorithm for single constraint maximum collection problem. Journal of the

Operations Research Society of Japan, 31(4), 515-531.

Labadie, N., Mansini, R., Melechovský, J., & Calvo, R. W. (2012). The team orienteering problem with time windows:

An LP-based granular variable neighborhood search. European Journal of Operational Research, 220(1), 15-27.

Lahyani, R., Khemakhem, M., and Semet, F. (2017). A unified matheuristic for solving multi-constrained traveling

salesman problems with profits. EURO Journal on Computational Optimization, 5(3), 393-422.

Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing problems: From a taxonomy to a definition.

European Journal of Operational Research, 241(1), 1-14.

Laporte, G., & Martello, S. (1990). The selective travelling salesman problem. Discrete Applied Mathematics, 26(2-

3), 193-207.

Maffioli, F., & Sciomachen, A. (1997). A mixed-integer model for solving ordering problems with side

constraints. Annals of Operations Research, 69, 277-297.

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman

problems. Journal of the ACM (JACM), 7(4), 326-329.

Öncan, T., Altınel, İ. K., & Laporte, G. (2009). A comparative analysis of several asymmetric traveling salesman

problem formulations. Computers & Operations Research, 36(3), 637-654.

Prins, C., Prodhon, C., Ruiz, A., Soriano, P., and Wolfler Calvo, R. (2007). Solving the capacitated location-routing

problem by a cooperative Lagrangean relaxation-granular tabu search heuristic. Transportation Science, 41(4), 470-

483.

Salhi, S (2017). Heuristic Search: The Emerging Science of Problem Solving. Cham, Switzerland, Springer.

Thomadsen, T., Stidsen, T. (2003). The quadratic selective travelling salesman problem. Informatics and

Mathematical Modelling Technical Report 2003-17, Technical University of Denmark.

Taş, D., Gendreau, M., Jabali, O., & Laporte, G. (2016). The traveling salesman problem with time-dependent service

times. European Journal of Operational Research, 248(2), 372-383.

32

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics for the multi-period orienteering problem

with multiple time windows. Computers & Operations Research, 37(2), 351-367.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational Research Society, 35(9),

797-809.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey. European

Journal of Operational Research, 209(1), 1-10.

