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A B S T R A C T 

In this paper we investigate a novel logistical problem. The goal is to determine daily tours for a traveling 

salesperson who collects rewards from activities in cities during a fixed campaign period. We refer to this 

problem as the Roaming Salesman Problem (RSP) motivated by real-world applications including election 

logistics, touristic trip planning and marketing campaigns. RSP can be characterized as a combination of 

the traditional Periodic TSP and the Prize-Collecting TSP with static arc costs and time-dependent node 

rewards. Commercial solvers are capable of solving small-size instances of the RSP to near optimality in a 

reasonable time. To tackle large-size instances we propose a two-phase matheuristic where the first phase 

deals with city selection while the second phase focuses on route generation. The latter capitalizes on an 

integer program to construct an optimal route among selected cities on a given day. The proposed 

matheuristic decomposes the RSP into as many subproblems as the number of campaign days. 

Computational results show that our approach provides near-optimal solutions in significantly shorter times 

compared to commercial solvers. 

Keywords:  Routing, Roaming salesman problem, Election logistics, Matheuristic, Campaign planning. 

1. Introduction

In this paper, we study a logistical problem arising in promotion and marketing campaigns where the 

campaigner and his/her team needs to plan an efficient schedule throughout the campaign to maximize the 

total reward by visiting appropriate cities. This problem has a wider range of applications including election 

logistics, touristic trip planning, promotion of a new product launch, and planning of client visits by 

company representatives, among others. We refer to this new problem as the roaming salesman problem 

(RSP). It involves a salesperson who collects rewards from activities performed in selected cities during a 

fixed campaign period. The goal in the RSP is to find an optimal or the ‘best’ schedule of daily tours for a 
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campaigner who seeks to maximize his/her net benefit throughout a given number of periods (days). The 

net benefit is defined as the sum of all collected rewards minus the traveling costs incurred by the 

salesperson. The RSP can be therefore classified as a rich traveling salesman problem (TSP) with the 

following six properties which together make this problem rather unique. For an overview of rich routing 

problems, see Lahyani et al. (2015). 

(i) Multi-period. RSP generalizes the TSP by extending the planning horizon to n days, thereby forming a 

multi-period problem. 

(ii) Time-constrained. In each period, i.e. each day the salesperson is allowed to “roam” for no more than 

a certain number of hours. We refer to this time limit as the maximum tour duration constraint.  

(iii) Selective. The salesperson needs to decide which nodes to visit so as to realize an activity. In other 

words, not every node is visited and not every node hosts an activity.  

(iv) Absence of a fixed depot node, co-existence of open and closed tours. Tours do not have to start and 

end at the same node. The only requirement is that today’s tour originate where yesterday’s tour 

terminated. Hence, the salesperson has also to decide where to stay overnight at the end of each day.  

(v) Time-dependent rewards. Each node is associated with a time-dependent reward which changes linearly 

according to the day of the hosted activity in that node and the recency of the previous activity in the 

same node. This is a challenging issue which is mainly attributed to this problem. 

(vi) Multiple visits. There exists a subset of nodes which may host more than one activity during the 

campaign, hence can be visited more than once. 

One of the main differences between RSP and similar routing problems in the literature lies in time-

dependent rewards. This characteristic makes the problem applicable to various situations. For instance, in 

the planning of touristic trips the scores of visited sites or tour stops can be modeled as time-dependent 

rewards. This feature can be incorporated within a daily or weekly framework depending on the problem. 

Some places are more appealing to visit during the day time while others have better sights in the evening 

or at night. Also, some destinations may become more crowded, thus less attractive as we get closer to the 

end of the week. RSP is able to encapsulate this kind of dynamic rewards. It can capture the possibility of 

repeated visits to certain attractions during an extended tour as well. 

In this paper, we address a novel adaptation of RSP to election logistics which revolves around a 

politician holding meetings in various cities during a given campaign period. The problem generalizes the 

traveling salesman problem (TSP) by extending the planning horizon to   days; hence, it corresponds to a 

multi-period problem. The RSP can be defined as follows. Consider a set of nodes {0} N V  including 

a fictitious city (indexed as 0) where {1,..., }nV  indicates the set of cities inclusive of a starting city 

(indexed as 1) and a set of days {1,..., }.T  Each city is associated with a nonnegative reward of i   

referred to as the base reward. In each day tT  any city iV  can be visited either to collect the 
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associated reward from it or while in transit without collecting reward. The base reward of a city can depend 

on several factors such as the city population. Moreover, the actual reward earned by having an activity in 

city i  on day t  depends on two other factors:  

Factor 1. The number of remaining days denoted by ( t  ) until the end of the campaign. 

Factor 2. In case a city hosts more than one activity, the number of days passed since the previous 

activity in the same city, denoted by s  where 1 1s t   . 

The traveling cost between each pair of cities is known and given by ijc , ,i j V  where ijc  denotes 

the cost of driving (or flying where applicable) from city i  to city j . The traveling time between each pair 

of cities is also known with certainty and given by ., ,ijd i j V  The traveling costs and traveling times 

satisfy the triangular inequality. The time spent by the salesperson (also referred to as the campaigner in 

the sequel) for an activity in city iV  is shown by .i  The maximum duration applicable to the tour of 

each day is denoted by max .T  This time limit imposes an implicit threshold on the number of cities that can 

be visited in any given day. There is also an explicit limit   on the number of activities that can be realized 

per day. For the fictitious city 0i   the activity duration, the base reward, the traveling costs and times are 

all set to zero. The campaign starts in the base city 1i   in the morning of day 1t   and ends in the evening 

of day t  . At the end of a day tT , the campaigner stays overnight in some city .iV  Note that waking 

up or staying overnight in city i  does not necessarily mean that there will be a reward collection in that 

city. One final remark should be made about periodic returns to the campaign base 1i  . The salesperson 

cannot be away from the campaign base for more than   consecutive days. 

 

 

 

 

 

  

 

 

A distinctive feature of the RSP is that there are three possible types of daily tours during the campaign. 

Type 1: Open Tour. Type 2: Closed Tour. Type 3: No Tour. In order to highlight the importance of having 

both open and closed routes during the campaign we build a toy instance containing six cities, two days, 

and a daily maximum tour duration of 14 hours as illustrated in Figure 1. The travel times and activity times 
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Figure 1. An instance with both closed and open tours. 
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are written on the arcs and next to the nodes, respectively, both in hours. As shown in Figure 1, the tour of 

the first day starts in city i  and includes three activities in cities i , j , and k . The campaigner returns to 

the starting city i  at the end of day 1 without holding any more activities there. The return to city i  on day 

1 grants him/her enough time to visit more than one far city ( m  and n ) the next day. 

By ignoring the activity times i , taking the campaign duration as 1   day, setting i  and maxT   to 

sufficiently large values, e.g. by setting 
  

max{ } max{ }i ij ji
j j

d d
 

 
N N

 and max
,  

max{ },ij
i j

T d



N

V  a given 

generic TSP instance can be reduced to the associated RSP instance in polynomial time. TSP is a well-

known -hard combinatorial optimization problem (Garey and Johnson, 1979). RSP is a generalization 

of the TSP and is therefore also -hard. Furthermore, RSP is more complex than TSP since the selection 

of the terminal node of each day, different tour types and time-dependent rewards are included in the 

optimization problem as well. This leads to the conclusion that the RSP is also -hard, and thus cannot 

be solved in polynomial time to optimality. Motivated by this challenge, we propose a simple but efficient 

two-phase matheuristic method which we call Finding Daily Optimal Routes (FDOR). For each day of the 

planning horizon, FDOR decomposes the RSP into a pair of subproblems, namely a city selection problem 

in Phase I and a modified prize-collecting TSP which is solved optimally in Phase II. We experimented 

with three different city selection approaches so as to arrive at an effective, yet efficient selection scheme. 

Our proposed matheuristic can provide for medium- and large-size instances a promising bundle of 

accommodation and activity schedules that are complemented by daily routing plans. Actually, FDOR 

achieves this in remarkably short solution times. Thereby, it can help campaign planners in their decision-

making.  

To the best of our knowledge, this is the first time the RSP is explored in depth and tackled. Our 

contribution is fourfold:  

1. The investigation of a new logistical problem arising in several areas including election logistics.  

2. The development of a novel mixed-integer linear programming (MILP) formulation.  

3. The development of a two-phase matheuristic to solve large-size instances of it. 

4. A real-life application of the problem to election logistics covering 81 provinces and 12 highly 

populated towns of Turkey. 

The outline of the paper is as follows. In Section 2 we review the related literature. In Section 3 we 

present the mathematical formulation of RSP. In Section 4 we present the proposed two-phase matheuristic 

approach FDOR. We discuss our computational results in Section 5 in the framework of a case study 

involving a great deal of cities and towns from Turkey. Finally, Section 6 summarizes our results and 

recommends future research directions. 
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2. Literature review 

The RSP is derived from the well-known traveling salesman problem (TSP) which is one of the most 

famous -hard combinatorial optimization problem in the literature. A widely accepted and often cited 

classification of the TSP and its variants has been presented in Gutin and Punnen (2007). The first TSP 

variant that is closely related to the RSP is the periodic traveling salesman problem (PTSP). Many 

variations of the TSP assume that traveling occurs in one period only. However, PTSP relaxes this 

assumption by expanding the travel period to m days such that each city is visited at least once, while some 

cities require multiple visits. There is only one salesperson available every day. The goal is to generate a 

tour for each of the m days that will meet the visit frequency of each city and minimize the total traveling 

distance throughout the whole planning horizon. The first mathematical formulation of the PTSP can be 

found in Cordeau et al. (1997).  

The other TSP variants resembling the RSP include the prize-collecting traveling salesman problem 

(PCTSP), the profitable tour problem (PTP), and the orienteering problem (OP). We briefly describe these 

three variants here. They are jointly referred to as the generic class of TSP with profits (TSPP). Problems 

belonging to the TSPP class have been surveyed systematically in the seminal paper by Feillet et al. (2005) 

where the name TSPP was coined for the first time.  

Variant 1: PCTSP   

PCTSP was originally introduced by Balas and Martin (1985) and formally defined in Balas (1989) to 

model the scheduling of the daily operations of a steel rolling mill. In PCTSP there is a traveling salesperson 

who travels between nodes i  and j  at cost ijc , earns a prize kp  from every visited node k  and pays a 

penalty h  for each unvisited node h. The aim is to find a circuit, i.e. a tour that minimizes the sum of 

travel costs and penalties while collecting a total profit at least as high as a preset minimum value min . A 

feasible circuit either in the PCTSP or the other TSPP variants visits each node at most once. The minimum 

profit collection constraint can be viewed as a knapsack-like constraint. Feillet et al. (2005) note that the 

majority of PCTSP papers deal with problems which have zero penalty terms. Another name coined for the 

PCTSP is the quota TSP (QTSP) which was first studied in Awerbuch et al. (1998). 

Variant 2: PTP   

PTP derives directly from the PCTSP when the objective becomes the maximization of the net profit 

defined as the difference between the collected prizes and the travel costs. In the presence of nonzero 

penalties for unvisited nodes, the sum of incurred penalties is also deducted from the total amount of 

collected prizes to yield the net profit. The PTP was initially introduced by Dell’Amico et al. (1995). 

Fischetti et al. (2007) called the same problem the simple cycle problem (SCP). Archetti et al. (2009) 

formulated a multi-tour version of the PTP with multiple identical and capacitated vehicles, which they 

referred to as the capacitated PTP (CPTP).  



6 

 

Variant 3: OP  

OP is evidently the most extensively studied variant of the TSPP class. The OP seeks to find a circuit or a 

path on a graph with n  nodes that maximizes the sum of collected prizes while containing traveling costs 

under a preset value minC  or the total travel time within a preset limit  max .T  Vansteenwegen et al. (2011) 

argue that the OP can be viewed in this regard as a combination between the knapsack problem (KP) and 

the TSP. Feillet et al. (2005) point to the equivalence between the path-seeking and circuit-seeking versions 

of the problem. Pioneering studies of the OP can be found in Hayes and Norman (1984), Tsiligirides (1984), 

Golden et al. (1987) and Golden et al. (1988) among others. OP was researched in the literature also under 

different titles such as the selective TSP (STSP) (see Laporte and Martello, 1990; Gendreau et al., 1998; 

Thomadsen and Stidsen, 2003), the maximum collection problem (MCP) (see Kataoka and Morito, 1988; 

Butt and Cavalier, 1994) and the bank robber problem (BRP) (see Arkin et al., 1998). OP was shown to be 

-hard by Golden et al. (1987) and by Laporte and Martello (1990) with separate proofs based on simple 

reductions to the TSP and to the Hamiltonian circuit problem, respectively. Applications in the literature of 

this selective routing problem span a wide range of areas. Labadie et al. (2012) solve single- and multi-tour 

versions of the OP with time window constraints which dictate that the service at each node start within a 

predefined time window. An early arrival to a given node leads to waiting times, while a late arrival causes 

infeasibility. The authors devise a matheuristic which consists of a linear programming (LP)-based granular 

variable neighborhood search. With this method they manage to obtain the best known solutions for 25 

benchmark instances in the literature. Very recently, Archetti et al. (2018) introduce the Set Orienteering 

Problem which is a generalization of the OP where customers are grouped in clusters and a profit is 

associated with each cluster.  

Within the generic class of TSPPs, the variant that seems most relevant and similar to our problem is 

the multi-period OP with multiple time windows (MuPOPTW) introduced by Tricoire et al. (2010) for a 

real-world sales representative planning problem. A software distribution company which sells decision 

support systems for marketing departments needs to plan the visits to existing and potential customers by 

each representative over a one-week period. There is a list of mandatory customers who should be visited 

on a regular basis and another list of optional customers located nearby who should be also considered and 

probably integrated into the schedules of the sales representatives. The authors solve the MuPOPTW for a 

given representative with the aim of determining which of the mandatory and optional customers to visit 

on which day. Some of the customers have one or two time windows per day which restrict the timing of 

the visit, and there exist even a few customers who have a different time window for every day. MuPOPTW 

in Tricoire et al. (2010) resembles our problem in that each day of the planning horizon is associated with 

a separate tour. However, our problem differs from MuPOPTW considerably due to the following aspects:  

(a) In MuPOPTW the tour of each day starts and ends at the same central node. The mathematical model 

proposed by the authors can handle also the case where the representative makes a several-day trip 
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across the country and stops every night in previously fixed hotels such that the ending point for day t  

matches the same location as the starting point for day 1t  . However, even in that case the terminal 

node (i.e. the depot) of each tour is known in advance. In contrast, in the RSP this is unknown.  

(b) In MuPOPTW, a customer node is visited at most once whereas RSP allows certain nodes to be visited 

more than once.  

(c) Moreover, rewards collected from customer nodes in MuPOPTW do not change over time while in 

RSP their magnitude depends on the day and frequency of the visit.  

Recent progress in CPU technologies and commercial solvers enables us to solve different MILP models 

to optimality or near to optimality in short solution times. This leads to the design of a matheuristic, a 

heuristic that incorporate stages where mathematical programming models are used. In brief, a matheuristic 

is a heuristic or metaheuristic algorithm which solves at least one of its steps using an exact method such 

as mathematical programming or dynamic programming. See Salhi (2017) for more details. 

In the literature, there are a couple of articles that use matheuristic methods in order to solve routing 

problems. Prins et al. (2007) propose a matheuristic approach to solve the capacitated location-routing 

problem. The original problem is decomposed into two phases; location decisions and routing. The location 

decision problem is solved as a facility location problem using an exact method whereas a tabu search is 

adopted builds the routes based on given facility set. Halvorsen-Weare and Fagerholt (2013) investigate a 

routing and scheduling problem emerging in naval logistics. They employ a matheuristic method which 

separates the scheduling decisions from the routing decisions. The routing problem is solved through a local 

search heuristic while the scheduling problem is tackled through the exact solution of a MILP formulation. 

Hemmelmayr et al. (2013) investigate a two-phase matheuristic approach for the problem of determining 

the size of waste bins on the streets and planning the daily routes of waste collector vehicles. They propose 

a different solution method where a variable neighborhood search heuristic finds the daily route and an 

MILP model solves the problem of determining the optimal size of the waste bins. A unified matheuristic 

approach based on the variable neighborhood search is proposed by Lahyani et al. (2017) for solving multi-

constrained traveling salesman problems with profits. It includes exact procedures for the examination of 

loading neighborhoods. A review of different heuristic methods including matheuristics can be found in 

Salhi (2017). 

Before concluding this section we would like to make a remark in regard to time-dependent routing 

problems in the literature. Although there exist a huge number of papers where the travel duration or cost 

of an arc depends on the actual time of travel, studies involving other time-dependent parameters are not in 

abundance. We are aware of a recent paper by Taş et al. (2016) which investigates a variant of the TSP with 

time-dependent service times. In the proposed setting the required service duration at a customer node is 

not fixed, but determined as a function of the time at which service starts for that customer. Angelelli et al. 

(2017) introduce the Traveling Purchaser Problem with time-dependent quantities. The authors assume that 
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the obtainable quantities of all products that can be purchased from the available markets decrease linearly 

over time. To the best of our knowledge, none of the previous research has looked into time-dependent 

rewards collected from customers in a multi-period and multi-visit framework. Our present study makes a 

novel contribution to the time-dependent routing literature in this respect.  

3. Notation and formulation 

The RSP described in Section 1 can be formulated as a mixed integer linear program. We first provide the 

notation followed by the formulation and the explanation of the new constraints which we devised.  

3.1 Notation 

Index Sets: 

{0,..., }nN  Set V  joined by city ‘0’ which denotes a fictitious city with all associated costs, rewards 

and activity duration being zero. 

\ {0}V N  The set of cities to be considered for collecting rewards throughout the campaign where 

city 1i   denotes the campaign base. 

{1,..., }T  The set of   days comprising the campaign duration. 

Parameters: 

ijc  Traveling cost from city i  to j  where 0.iic   

ijd  Traveling time from city i  to city j  where 0.iid   

i  The base reward of city i . 

i  The activity duration in city i . 

  Maximum number of activities allowed each day. 

maxT   Maximum tour duration (in hours) in each daily tour. 

   Maximum number of consecutive days during which the campaigner is allowed to be away 

from the campaign base. 

K   The base reward depreciation coefficient applied in successive activities held in the same city. 

K   Normalization coefficient multiplied with the collected rewards to make traveling costs and daily 

rewards compatible. 

Decision Variables: 

ijtX  Binary variable indicating if arc ( , )i j  is traversed on day t  ( , ,  )i j t N T  with 0.iitX   

itL  Binary variable indicating if the campaigner does not enter, but only leaves city i  in day t .  

If 1itL  , then the campaigner departs from city i  on day t  and does not come back. This indicates 

that the tour on day t  is Type 3 with i as the starting city (source) of the tour.  
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itE   Binary variable indicating if the campaigner does not leave, but only enters city i  in day t .  

If 1itE  , then the campaigner enters city i  on day t  and does not leave again. This means the 

tour on day t  is Type 3 with i  being the ending city (terminal) of the tour. 

itS   Binary variable indicating if the campaigner stays overnight (sleeps) in city i  by the end of day .t  

Note that 10 1S   since the campaign starts in the base city ‘1’.  

itZ  Binary variable indicating if the campaigner holds an activity in city i  on day t  and collects the 

associated reward.  

itFM  Binary variable indicating if the first activity in city i  is performed on day t . 

itsR  

itsR  

Binary variable indicating if city i accommodates two consecutive activities on day t  and day 

( )t s  with no other activity in between. Since 1 s t  , we have 0itsR   for t s   . 

itU  A continuous nonnegative variable used in the Modified Miller-Tucker-Zemlin subtour 

elimination constraints. It is used to determine the order of visit for city i  on day t . 

3.2 Mixed integer linear programming formulation  

The RSP can be formulated as follows: 

RSP 

1

1 1
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( )its i t sR Z   ,  2 ,  1i t s t    N    (35)  

1

1

(1 )
t

ik its

k t s

Z s R


  

   ,   3 ,   2i t s t    N      (36) 

0itsR   ,  ,  i t t s    N T                (37) 

1ius itR FM   ,  \ {1},   ,   i t t u u t s u      V T   (38) 

1

( )

1

 1
t

its i t s it k

k t s

R Z Z Z




  

     ,  3 ,  2i t s t    V      (39) 

ijtX , itL , itE , itS , itZ , itFM , {0,1}itsR   and 0itU   (40) 

The MILP model in (1)-(40) has 
1 112 2

2 2
+ 3n n n      binary variables, ( 1)n   continuous 

variables and 
1 3 62 45 13 2 2 2 2

6 2 3 2 2
2 3 4n n n n n n                constraints. Note that the 

activity indicator variables itZ , itFM  and itsR  are defined for iV  since the fictitious city cannot host an 

activity. The objective function (1) seeks to maximize the difference between the collected rewards and the 

incurred routing costs. Note that rewards are depreciated linearly in time as we get closer to the end of the 

campaign rather than the other way around. We consulted with the political party for which we proposed 

an application of the RSP; their suggestion was to adopt a depreciation scheme in which earlier meetings 

of the party leader earn higher rewards than belated meetings towards the end of the campaign period.  

The set of constraints (2)-(6) and (40) are adopted from the TSP literature (Öncan et al., 2009). The set 

of inequalities (2) and (3) are typical selective TSP equations limiting the numbers of incoming and 

outgoing arcs to one for each node in N . Constraints (4) impose an explicit upper bound   on the total 

number of daily activities ( ).n   Constraints (5) force the campaigner to perform at least one activity in 

each day t  while constraints (6) ensure the maximum daily tour duration is not violated. An alternative 

formulation for constraints (6) is provided in the next subsection. Binary integrality and nonnegativity 

constraints on the respective decision variables are defined in (40). 
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Equality constraints (7) ensure that the first activity indicator variable and the activity indicator variable 

for day 1 must be equal. Constraints (8) set an upper bound for itFM , thereby establish the coupling 

between FM  and Z . Due to the maximization of the objective, the model will try to set all itFM  variables 

to 1 as much as possible. Thus, there is no need for loose upper bound constraints on itFM  Constraints (9) 

guarantee that if the first activity in city i  was held on day t , then there cannot be an activity on an earlier 

day ,  u u t .  

Constraints (10) couple the binary decision variables ,   and .X L E  Constraints (11) ensure that if the 

campaigner enters a city i  on day t  and does not leave it the same day, then 1itE   and 0.itL   Likewise, 

if he exits a city i  on day t  and does not return to it the same day, then 0itE   and 1.itL   According to 

constraints (12) the sum of the variables L  and E  over all cities on a given day cannot exceed two. In fact, 

this sum will be two only in a tour of Type 3, i.e. in an open tour. Constraints (13) and (14) force the 

campaigner to stay overnight in the source i  on day t  if there is a closed tour that day. Constraints (15) 

make sure that terminal cities for days t  and ( 1)t   will be the same if there is a closed tour on day .t   

Constraints (16) set the variables 
0tS  to zero since the campaigner can never stay overnight in the fictitious 

city ‘0’. Constraints (17)-(18) are added to prevent the inclusion of the fictitious city in Type 1 and Type 3 

tours. Along with constraints (19) they capture the presence of a Type 2 tour as follows: When the 

campaigner ‘goes’ from city i  to the fictitious city (namely city 0) on a given day t , then he directly 

‘returns’ from there the same day 0 0( 1).i t itX X    

The set of constraints (20) ensure that if the campaigner enters city i  on day t  and does not depart from 

there the same day, then he must stay overnight (sleep) in city i . Constraints (21) guarantee that if the 

campaigner sleeps in city i  on day t , he must depart from there the next day. Equalities (22) ensure that 

the campaigner stays overnight in one city only. Constraints (23) prevent the campaigner from being away 

from the campaign base (city ‘1’) for more than   consecutive days. The set of inequalities (24) and (25) 

assure that in order for a city i  to host an activity on a given day t , it must be visited that day in either of 

the three types of tours. When there is no visit to city i , there is no activity in city i  either.  

Constraints (26)-(33) are Modified Miller-Tucker-Zemlin inequalities (M-MTZ) for subtour elimination 

adapted to RSP. The disaggregated constraints (34)-(35) provide the logical coupling between the binary 

variables itsR  and itZ . Inequalities (36) ensure that if city i  accommodates two activities in days t  and 

( )t s  and no other activity in between (i.e. if 1itsR  ), then all corresponding ikZ  variables for k  days in 

the interval [ 1,  1]t s t    should be zero. Constraints (37) signify the domain restriction on the definition 

of the variables .itsR  Constraints (38) make sure that if the first activity in city i  is held on day ,t  then there 

cannot be a pair of activities on days u  and ( )u s  where u  comes after t  and ( )u s  comes before t . 

The lower bounds on the variables itsR  in (39) may seem unnecessary since their coefficients in the 
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objective function to be maximized are all strictly positive. However, (39) serve as valid inequalities and 

contribute affirmatively to the solution speed of the model. Other compact formulations for the subtour 

elimination constraints can be found in Maffioli and Sciomachen (1997) and Bianchessi et al. (2018). 

3.3 An alternative formulation for satisfying the maximum tour duration  

An alternative way of satisfying the maximum tour duration is to introduce the continuous decision variable 

.itA  Such a formulation is especially useful for problems with time windows. It can also be beneficial if 

the schedule of coaches or domestic flights is incorporated into the model, or if the time slots of the day are 

considered in the reward function. However, our empirical testing of both formulations found that 

constraints (6) provide more favorable results than constraints (41)-(46). See Section 5.1.  

max ( 1)(1 )it i tA T S    ,  \ {1}i t V T  (41) 

max ( 1)(1 )jt it i it ij ijt j tA A Z d T X S        , ,  \ {1}i j t V T  (42) 

max ( 1)(1 )jt it i it ij ijt j tA A Z d T X S        , ,  \ {1}i j t N T  (43) 

max0 it i itA T Z    ,  i t N T  (44) 

max ( 1)(2 )it i it ij j t jtA Z d T M S S        ,  \ {1}i t V T  (45) 

max ( )it jit ijt

j j

A T X X

 

  
V V

 ,  i t V T  (46)                                     

The set of constraints (41) ensure that the arrival time for city i  on day t  will be zero if the salesperson 

stays overnight on day 1.t   Upon arrival in city ,j  the travel time between city i  and city j  and the 

activity time in city j  are considered in constraints (42) and (43). Inequalities (44) impose the lower and 

upper bounds of .itA  Constraints (45) represent the general maximum tour duration definition. These are 

binding for open tours. The set of constraints (46) are also binding for closed tours. 

3.4 Valid inequalities for tightening up the formulation 

In addition to the original constraints of the problem, we include the following valid inequalities: 

1it

t

FM



T

 iV     (47) 

( 1)2it i t itL S S    ,  i t N T   (48) 

( 1)2it i t itE S S    ,  i t N T  (49) 

1ijt jit it jtX X S S     ,  ( ) ,  i j i j t  N T     (50) 

Valid inequalities (47) ensure that the first activity for each city can occur at most once during the 

campaign. Valid inequalities (48) and (49) state that if the campaigner stays overnight in the same city on 

days t   and ( 1),t   then the tour on day t  will be a closed tour; hence, the corresponding variables itL  and 
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itE  must be zero. Valid inequalities (50) guarantee that if cities  i  and j  are not terminal cities on day ,t  

then there should not be a cyclic tour between them. These constraints are empirically demonstrated to be 

effective. We provide the computational evidence in Section 5. 

3.5 Operational assumptions about the meetings during an election campaign 

In this section we introduce several operational assumptions pertinent to the meetings held by the politician. 

We remark that the words activity (of a campaigner) and meeting (of a politician) are used interchangeably. 

We propose the associated constraint equations (51)-(53) below, which have not been included in the 

original RSP model in (1)-(40).  

 1it

i

Z



B

 tT          (51) 

 1 0itR   ,iV  {1}tT \                (52) 

 it i

t

Z 



T

 iV                (53) 

The first supplementary assumption formulated in (51) is that a daily tour cannot involve more than one 

big city. The set of big cities is indicated by B. The second assumption gives rise to constraints (52) which 

state that it is not permitted to make two meetings in the same city on two consecutive days. The third 

assumption brings about a maximum number of meetings allowed in a given city i  during the entire 

campaign. This maximum number is denoted by the parameter i  in (53). 

4. The proposed FDOR matheuristic 

In this section, a two-phase matheuristic approach is described. We first present the underlying motivation 

of this approach by introducing a partial variable fixing mechanism. Next, we explain the main steps of the 

developed solution method. 

4.1 Variable Fixing 

The idea of using a matheuristic approach to tackle large-size instances is motivated by observing the results 

of a partial variable fixing. In those instances which we are able to solve to proven optimality using the 

MILP solver, we convert the binary decision variables itS , itL  and itE  to input parameters. Their values 

are set equal to the optimal values of the respective variables. In the remaining instances which we are 

unable to solve to proven optimality, we perform the same conversion by replacing itS , itL  and itE  with 

their best feasible values obtained by the MILP solver. This way the formulation has a substantially smaller 

number of decision variables and constraints. The best objective values of the original RSP model and the 

partial variable fixing approach are contrasted in Table 3 in Section 0. We observe that the model with 

some variables made fixed can be solved to optimality in shorter solution times (CPU times). We deduce 



15 

 

that the difficulty of the RSP is much more attributed to the scheduling and accommodation part rather than 

to the routing part. Therefore, we decide to design a two-phase method where the scheduling and 

accommodation part of the problem is segregated from the comprehensive formulation in (1)-(40). In such 

an approach, the mathematical formulation will take care of the routing part only. 

4.2 Finding Daily Optimal Routes method (FDOR) 

 Motivated by the above observation, we propose a two-phase matheuristic to deal with large-size instances, 

which we call Finding Daily Optimal Routes method (FDOR). It basically consists of two phases; city 

selection and route generation. The route generation phase utilizes an integer program to build the optimal 

route among selected cities. FDOR is an integer programming based heuristic which decomposes the 

original MILP formulation into as many subproblems as the number of days, where the subproblem 

associated with a given day depends on how frequently the campaign base is to be visited throughout the 

campaign duration. For those days on which the campaigner needs to visit the campaign base, FDOR model 

1 (FDORM1) is solved; for the other days we solve FDOR model 2 (FDORM2). Both models are solved 

with respect to the particular subset of cities selected in the first phase of the matheuristic. The high-level 

description of FDOR is provided in Algorithm 1.  

Algorithm 1 The high level description of FDOR 

Do the following for each day t  of the planning horizon 

Phase 1: 

(a) Sort the cities in the decreasing order of their updated rewards. 

(b) Choose   cities using one of the following city selection strategies: 

- Deterministic City Selection (DCS): Select all available cities. 

- Greedy City Selection (GCS): Select top   cities with the highest rewards. 

- Pseudo-Random City Selection (PCS):  Select   cities pseudo-randomly according to a 

roulette wheel mechanism. 

Phase 2: 

(a) Solve a TSPP for the selected cities of Phase 1 using either: 

- Model FDORM1: If the campaigner should stay overnight in the campaign base on day .t  

- Model FDORM2: Otherwise. 

 (b) Update the rewards. 

Once the candidate cities are selected for a given day t , our matheuristic FDOR optimally solves a 

Prize-Collecting Traveling Salesman Problem ( PCTSP) using either the model FDORM1 or FDORM2. 

The detailed pseudo code of FDOR is presented in Algorithm 2. The new notation used in Algorithm 2 is 

defined below. 

Additional Notation  
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tC : Set of candidate cities for day tT .  

 : Number of candidate cities.   

t : Set of updated rewards of day tT . 

K : The base reward depreciation coefficient.  

t : Depot (starting) node of day tT . 

t : Terminal (ending) node of day tT . 

 : Campaign base. 

i : Number of activities held in city iN  during the campaign. 

is : Number of days since the last activity in city iN . 

tS : Solution of day t . 

*S : Solution of the whole campaign. 

( )tB S : The net benefit of solution tS . 

*( )B S : The total net benefit of the original problem. 

Algorithm 2 The pseudo code of FDOR 

Input:  An RSP instance. 

Output: A good feasible solution comprised of   daily tours. 

0: Initialization:  

1: 
* ,S   *( ) 0,B S   0.i   

2: For 1:t    

3: Reward calculation: 

4: If 1t   Then  

5:  ( )t i  ← i  // Every city gets its own original base reward. 

6:  t   // Campaign starts from campaign base. 

7: Else 

8: If  0i    Then  // This is going to be the first-time activity in city i. 

9:  
1

i i

t
 





 
   

10: Else  // This is a repeated activity in city i. 

11:  
1 i

i i

st

K
 


 
 

    

12:  ( )t i  ← i  // Update the rewards. 

13: End If 

14: 1t t    // Depot of day t  is equal to terminal node of day 1.t    

15: End If 

16: Phase 1: 
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17: tC  ← City_Selection_Approach ( , )t   // Select   cities from N.  

18: Phase 2: 

19:  If  1 2, ,...,t t t        Then // Force the campaigner to visit  as a terminal node. 

20:  Solve FDORM1( , , , )t t t C  → ( ),  ,  ,  t t t iB S S   .  

21:  Else  

22:  Solve FDORM2( , , )t t t C  → ( ),  ,  ,  t t t iB S S   . 

23:  End If 

24:   Update all i  values according to tS . 

25:   
*S  ← *

tS S  // Update the best solution. 

26:  * *( ) ( ) ( )tB S B S B S     // Update the best total benefit.  

27: End For 

28: Return *( )B S  and 
*S  as the best objective value and the best feasible solution, respectively. 

Algorithm 2 explains the steps of FDOR in detail. Updated rewards and the number of activities in each 

city are initialized to zero. Afterwards, the reward of each city is calculated by taking into account the 

current activity day t  and the recency of previous activities which may have been held before day .t  Once 

the rewards of all cities are updated, one of the three city selection methods is called to select a subset of 

cities to be considered for the second phase.  

As discussed earlier, in FDOR we develop two mathematical formulations which are called iteratively 

to solve daily STSPs. The first model (FDORM1) is called when the campaigner needs to return to the 

campaign base. The second one (FDORM2) is called when the campaigner is free to start and finish the 

daily tour in any node. FDORM1 is developed to build a daily route which may start in any city including 

the campaign base (the city to be visited at least once every   days), but must terminate in the campaign 

base at the end of that day. FDORM2, on the other hand, is developed for those days when the campaigner 

is not required to return to the campaign base. The feasibility of the solution is guaranteed with respect to 

the maximum tour duration constraint (the maximum single trip time) and also with respect to the maximum 

count of daily activities.  

4.3 Mathematical formulation of FDORM1 and FDORM2 

Decision variables: 

ijX : Binary variable indicating if arc ( , )i j  is traversed where 0.iiX    

iZ : Binary variable indicating if city i  hosts an activity. 

iU : A continuous nonnegative variable used in the Miller-Tucker-Zemlin Subtour Elimination 

Constraints (referred to as MTZ inequalities) determining the order of visit for city i . 
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FDORM1( , , , )t t t C :  

max. Daily NET BENEFIT it i ij ij

i i j

Z c X

  

    
N N N

 (54) 

Subject to: 

maxi i ij ij

i i j

Z d X T

  

   
N N N

 (55) 

ij ki

j k

X X

 

 
N N

 ,  ,  ti i   N  (56) 

, 1j i

j

X




N

 iN  (57) 

, 1i j

j

X




N

 iN  (58) 

( 1)(1 )j i ij ijU U X X      , , ti j j  N  (59) 

1i jk

j k

U X

 

  
N N

 iN  (60) 

0 ( 1)i iU Z    iN  (61) 

1
t

U    (62) 

0
tj j

j j

X X 

 

  
N N

  (63) 

2
t j j

j j

X X 

 

  
N N

  (64) 

i ji

j

Z X



 
N

 ,  ti i  N  (65) 

i

i

Z 




N

  (66) 

{0,1}ijX   ,i jN  (67) 

{0,1}iZ   iN  (68) 

0iU   iN  (69) 

In the above formulation, the objective function (54) maximizes the net benefit of a tour while deducting 

travel costs from collected rewards. Constraint (55) ensures that the total travel time of the tour does not 

exceed the maximum tour duration. The set of constraints (56) guarantee that if the campaigner enters any 

city, except the depot and the campaign base, he/she should leave there. Constraints (57) and (58) are 

typical selective TSP inequalities which impose the incoming and outgoing degree of each node. The set 

of constraints (59) and (60) are node-based MTZ sub-tour elimination constraints (Miller et al., 1960). The 

lower and upper bounds of the continuous variable iU  are specified in constraints (61) and (62). Equalities 
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(63) and (64) force the campaigner to leave the depot and to stay overnight in the campaign base. The 

inequalities (65) couple the binary decision variables Z  and X , and ensure that there will be no activity in 

non-visited cities. Such a definition results in holding an activity in every city that the campaigner enters 

except the depot. Constraint (66) ensures that there will be no more than   activities. Finally, binary and 

nonnegativity constraints on the respective decision variables are defined in (67)-(69). 

Contrasted to the original formulation (1)-(40), FDORM1 is a much easier model to solve. First of all, 

it represents a single-period problem. As we solve FDORM1 for a particular day ,t  we already know the 

activity schedule of the previous days. Therefore, there is no need to include the binary variables FM   and 

R   in FDORM1 for the purpose of capturing first-time or repeated activities. Also the starting node of the 

current day t  is known due to the fact that the terminal node of day 1t   is known. Thus, there is no need 

to keep the binary variables ,L  E  and S  of the RSP model to track the terminal node of each previous 

day. The exclusion of these variables leads to a simple yet effective model. The formulation of FDORM2 

is similar to FDORM1 except that constraints (63) and (64) are replaced by: 

1
t j

j

X




N

 (70) 

ij ki

j k

X X

 

 
N N

 ,  ti i  N  (71) 

1ij ji i

j j

X X Z

 

   
N N

 iN  (72) 

Constraint (70) ensures that the campaigner leaves the depot. Constraints (71) allow the model to generate 

either an open tour or a closed tour. Finally, constraints (72) couple the binary variables Z  and X . 

FDORM1 has 
2n  binary variables, n  continuous variables, and 22 7 2n n   constraints. FDORM2 has 

2n  binary variables, n  continuous variables, and 22 9n n  constraints. Compared to the original model in 

(1)-(40), both FDORM1 and FDORM2 comprise substantially fewer variables and constraints. This 

massive reduction in size is achieved by decomposing the original problem into as many subproblems as 

the number of days in the campaign duration. 

5. Computational Results  

Our computational tests were performed on a Dell Precision T7810 model work station equipped with one 

Intel Xeon E5-2690 v4 2.60 GHz processor and 32 GBytes of ECC DDR3 type random access memory 

(RAM). Our algorithms are coded in Python 3.6. 4 (64-bit version). For the second phase of the FDOR, we 

employed the commercial MILP solver GUROBI 8.0.1 which is called from inside Python. Since no RSP 

test instance is available in the literature, we generated three sets of instances:  
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1: Presidential Elections I (PE.I): it includes 22 instances where the smallest instance includes 6 cities 

and 2 days and the real-world instance includes 93 cities and 40 days. The cities have been selected 

according to their base rewards.  

2: Presidential Elections II (PE.II): it includes 20 instances where the cities have been selected 

according to their distances from each other.  

3: Local Election (LE): it consists of 3 instances with 39 districts of Istanbul.  

All 45 instances were generated with real-world distances and travel times queried from Google Maps 

Turkey. We assume symmetric travel costs and times. The naming convention of instances sheds light on 

the sizes of the 45 test instances and their types. An instance name ‘PE.I. nC D ’ tells that the problem 

relates to presidential elections and it has n  cities (excluding the fictitious city) and a planning horizon of 

  days. All instances are publicly available online at http://shahmanzar.ir/RSP.html. 

5.1 Comparison of the original and alternative MTD formulations  

We compared the maximum tour duration (MTD) constraints (6) with the alternative MTD constraints in 

(41)-(46) on a pilot test bed of 14 small size instances. The results are displayed in Table 1. The column 

header ‘Opt.Gap (%)’ stands for the relative optimality gap of GUROBI. It is calculated as 

Opt.Gap (%) 100
UB LB

LB


   where UB and LB stand for the best upper and lower bounds, respectively, that 

are attained by GUROBI on a given RSP instance. The results in Table 1 suggest that the MTD constraints 

(6) yield better CPU times and can also attain proven optimality in all 14 instances. The weakness of the 

alternative MTD constraints  can be attributed to the continuous variables itA  which store arrival times for 

all cities. In all cases, MTD constraints (6) reduce the solution times without compromising the solution 

quality. This observation led us not to pursue the alternative MTD constraints any further. 

Table 1. Comparison of two MTD formulations 

Small 

Instances 

MTD constraints (41)-(46) using itA  MTD constraints (6) 

Opt.Gap (%) CPU (s)
a
 Opt.Gap (%) CPU (s)

a
 

5C2D  0.0 3.5 0.0 0.1 

5C3D 0.0 3.8 0.0 0.1 

7C2D 0.0 4.3 0.0 0.2 

7C3D 0.0 4.7 0.0 0.4 

7C4D 0.0 5.4 0.0 0.4 

9C2D 0.0 15.3 0.0 0.3 

9C3D 0.0 166.2 0.0 0.5 

9C4D 0.0 640.7 0.0 1.3 

12C3D 7.1 3600.0 0.0 5.2 

12C4D 9.0 3600.0 0.0 5.8 

12C5D 14.3 3600.0 0.0 6.0 

15C3D 7.6 3600.0 0.0 32.1 

http://shahmanzar.ir/RSP.html
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15C4D 11.2 3600.0 0.0 214.8 

15C5D 15.8 3600.0 0.0 409.5 

a
 Measured on a notebook with Intel Core i5-4310U processor. 

5.2 Effect of the added valid inequalities on solution quality 

We tested the effect of the added valid inequalities (VIs) implied by constraints (47)-(50) on a test bed of 

12 instances from the set PE.I. Table 2 below displays the GUROBI solutions and corresponding CPU 

times (in seconds) for the models without valid inequalities, with all VIs but (50), and with all VIs. The 

optimal solutions are shown in bold; the remaining figures show the objective value of the best feasible 

solutions (BFSs). The better average objective values and gaps are printed in italic in the bottom row.  

Table 2. Comparison of the models with and without valid inequalities. 

PE.I 

Instances 

All VIs OFF All VIs ON except (50) All VIs ON 

BFS 
Opt.Gap 

(%) CPU (s) BFS 
Opt.Gap 

(%) CPU (s) BFS 
Opt.Gap 

(%) CPU (s) 

12C3D 12620 0.0 1.4 12620 0.0 0.9 12620 0.0 1.1 

12C4D 16584 0.0 5.5 16584 0.0 2.7 16584 0.0 2.3 

12C5D 14575 0.0 38.5 14575 0.0 7.3 14575 0.0 6.0 

15C3D 12620 0.0 2.4 12620 0.0 1.7 12620 0.0 1.6 

15C4D 14210 0.0 10.4 14210 0.0 5.9 14210 0.0 4.3 

15C5D 15446 0.0 113.1 15446 0.0 37.3 15446 0.0 14.4 

15C7D 17240 0.0 2477.1 17240 0.0 1528.0 17240 0.0 551.3 

15C10D 18719 5.5 86400.0 18759 0.0 35355.0 18759 0.0 30458.5 

21C7D 19138 0.0 17290.9 19138 0.0 5296.1 19138 0.0 6705.3 

21C10D 21727 11.2 86400.0 21792 7.4 86400.0 21904 6.9 86400.0 

30C7D 29427 0.0 19736.3 29427 0.0 7421.5 29427 0.0 20670.3 

30C10D 32803 18.8 86400.0 33281 14.0 86400.0 35013 6.0 86400.0 

Average 18759 2.9  18807 1.7  18961 1.0  

 

According to Table 2, the original RSP formulation is more compact when all valid inequalities are 

incorporated. The average objective value improves approximately by 2% from 18759 to 18961; the 

average optimality gap reduces from 2.9% to a 1.0%. The largest gap is below 7%; this is a massive drop 

from the previous value of 18.8%. Convinced by these test results, we opted to include in our experiments 

all VIs proposed in Section 3.4. 

5.3 The results of partial variable fixing 

Table 3 represents the comparison of the original formulation and the partial variable fixing approach. 

Boldface figures point to proven optimality attained by the commercial solver GUROBI in either case. The 

first column in each table section hosts the best feasible solution reported by GUROBI. 
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Table 3. Comparison of the results of original formulation and variable fixing. 

  RSP  RSP with partial variable fixing 

Instance  BFS Opt.Gap (%) CPU (s)  BFS Opt.Gap (%) CPU (s) 

15C7D  17240 0.0 551.3  17240 0.0 0.05 

15C10D  18759 0.0 30458.5  18759 0.0 0.08 

21C7D  19138 0.0 6705.3  19138 0.0 0.80 

21C10D  21904 6.9 86400.0  21904 0.0 1.13 

30C7D  29427 0.0 20670.3  29427 0.0 5.35 

30C10D  35013 6.0 86400.0  35013 0.0 3.54 

40C7D  30086 4.1 86400.0  30195 0.0 25.02 

40C10D  36409 12.6 86400.0  36409 0.0 211.32 

51C7D  41087 9.9 86400.0  41182 0.0 95.86 

51C10D  45667 22.4 86400.0  45810 0.0 424.67 

5.4 Comparison of FDOR-DCS, FDOR-GCS and FDOR-PCS 

Table 4 below presents the comparison of different city selection approaches for 16 of 22 PE.I instances. 

We did not test the smallest six instances due to their excessively small solution times. The objective values 

of the best feasible GUROBI solutions and the FDOR solutions (BFS and Obj.Val. respectively) are 

provided along with the corresponding CPU times for all three approaches. FDOR-DCS outperforms the 

other two in most instances. In two instances, namely 30C7D and 30C10D, FDOR-GCS finds better 

solutions with higher objective values. In three other instances, 15C7D, 15C10D and 21C10D, FDOR-GCS 

finds the same solution as FDOR-DCS in shorter times. In general, FDOR-DCS spends more time in Phase 

2 by considering all n  cities for selection. On the other hand, FDOR-GCS and FDOR-PCS work on a subset 

of   cities which are selected in a greedy or pseudo-random way to ensure solution diversity.  

FDOR-DCS approach dominates with an average total net benefit value of 37162 as can be seen in Table 

4. It can find the optimal solution or the BFS in 11 of the 16 instances. FDOR-GCS can do so only in five 

instances, while FDOR-PCS cannot find any. Compared to the commercial solver GUROBI which returns 

a solution in the first 12 instances, the average gap between FDOR-DCS and GUROBI solutions is about 

4.40%. This relative deviation of FDOR-GCS and FDOR-PCS solutions is 4.98% and 5.20%, respectively. 

Both FDOR-GCS and FDOR-PCS city selection approaches have been tested thoroughly using five 

different values of   ranging from 10 to 21 cities and performing 5, 10, 15 and 20 replications in FDOR-

PCS. Yet, FDOR-DCS happens to outperform the other two approaches in solution quality. The detailed 

results are not provided here, but can be collected from the authors. Given the more promising performance 

of FDOR-DCS, we focus just on this particular approach in the rest of our experiments. Figure 2 

recapitulates the information shown in Table 4 to depict the solution quality comparison of the three city 

selection approaches in FDOR. 
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Table 4. Comparison of FDOR-DCS, FDOR-GCS, and FDOR-PCS 

Instances 

GUROBI  FDOR-DCS  FDOR-GCS  FDOR-PCS 

BFS 
Opt.Gap 

(%) 
 Obj.Val. CPU (s)  Obj.Val. CPU (s)  Obj.Val. CPU(s) 

12C5D 14575 0.0  12906 0.30  12906 0.39  12906 1.47 

15C7D 17240 0.0  16132 0.52  16132 0.44  16103 1.72 

15C10D 18759 0.0  17356 0.70  17356 0.42  17234 2.34 

21C7D 19138 0.0  17325 0.99  17324 0.38  17324 3.86 

21C10D 21904 6.8  20673 1.22  20673 0.49  20673 5.07 

30C7D 29427 0.0  27474 1.72  27963 0.38  27963 12.24 

30C10D 35013 5.9  32213 2.26  32427 0.49  32533 23.51 

40C7D 30086 4.0  28821 3.74  28114 1.08  27927 14.18 

40C10D 36409 12.6  34672 4.97  34278 1.49  33233 14.67 

51C7D 41087 9.9  36942 8.40  36446 0.95  36218 22.47 

51C10D 45667 22.3  43212 11.38  42406 1.89  42165 15.59 

51C30D 47279 186.7  59890 14.56  58587 3.49  59745 105.71 

70C15D    46818 16.64  45752 2.36  43116 54.85 

70C40D    58408 22.26  54235 7.60  54809 103.38 

93C30D    68174 26.61  63085 8.03  58493 108.73 

93C40D    73574 27.12  68307 9.94  62090 69.21 

  Average  37162 8.96  35999 2.49  35158 34.94 

 

 

Figure 2. Comparison of FDOR-DCS, FDOR-GCS, and FDOR-PCS 
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Table 5 presents for a particular test instance, namely 30C7D, the daily routes generated by FDOR-DCS 

and the routes of the optimal solution. We specify “Holding a Meeting” by (M). 

Table 5. Comparison of routes of FDOR-DCS and optimal solution 

 Routes 

`O
p

ti
m

al
 S

o
lu

ti
o

n
 

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun) 

Day 2: Wakeup in İskenderun → Adana (M) → Istanbul (M) → Antalya (Sleep in Antalya) 

Day 3: Wakeup in Antalya (M) → Denizli (M) → Aydin (M) → Izmir (Sleep in Izmir) 

Day 4: Wakeup in Izmir (M) → Balıkesir (M) → Bursa (M) (Sleep in Bursa) 

Day 5: Wakeup in Bursa → Istanbul (M) → Gebze (M) → Ankara (Sleep in Ankara) 

Day 6: Wakeup in Ankara (M) → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş) 

Day 7: Wakeup in Kahramanmaraş → Hatay (M) → Adana (M)  (Sleep in Adana) 

F
D

O
R


D
C

S
 

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun)  

Day 2: Wakeup in İskenderun → Istanbul (M) → Bursa (M) (Sleep in Bursa) 

Day 3: Wakeup in Bursa → Izmir (M) → Aydin (M) (Sleep in Aydin) 

Day 4: Wakeup in Aydin → Denizli (M) → Antalya (M) → Alanya (M) (Sleep in Alanya) 

Day 5: Wakeup in Alanya → Isparta (M) → Ankara (M) (Sleep in Ankara) 

Day 6: Wakeup in Ankara → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş) 

Day 7: Wakeup in Kahramanmaraş → Adana (M) → Istanbul (M) (Sleep in Istanbul) 

In order to illustrate the efficiency of FDOR-DCS, we compared in Figure 3 the daily net benefit 

(collected daily rewards minus daily travel costs) of the optimal solution with that of the FDOR-DCS 

solution in the same instance 30C7D. For day 1, FDOR-DCS generates the same route as the optimal 

GUROBI solution and for days 2 and 7, it was able to obtain higher daily net benefits. 

 

Figure 3. The comparison of the daily net benefit of FDOR and original formulation 
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5.5 Comparison of GUROBI and FDOR-DCS for all three sets of instances 

Since FDOR-DCS was found to return better solutions than FDOR-GCS and FDOR-PCS, we decided to 

benchmark it against the commerical solver GUROBI  in all 45 instances. Table 6 below displays the 

objective values of all instances for both GUROBI and FDOR-DCS along with CPU times in seconds. The 

column header 
BFSt  indicates the time elapsed before GUROBI has attained the tightest lower bound on 

the true optimal objective value. That lower bound corresponds to the BFS of the problem. Finally, the 

column header ‘FDOR.Gap (%)’ represents the gap of the FDOR-DCS solution with respect to the tightest 

lower bound, i.e. the BFS found by GUROBI. It is calculated as 
BFS  Obj.Val.

BFS
FDOR.Gap (%) 100


  . In all 

computational results, the boldface figures signify proven optimality achieved either by GUROBI or by 

FDOR-DCS.  

The results of Table 6 suggest that FDOR-DCS is able to generate good feasible solutions in remarkably 

shorter times than GUROBI. The average gap between the optimal solution or the BFS of GRUOBI and 

the net benefit found by FDOR-DCS is 0.83% still in favor of GUROBI. However, the average CPU time 

decreases from 58357.0 seconds to 12.4 seconds. In other words, FDOR-DCS takes a tiny fraction, 

approximately 0.021% of the commercial solver’s CPU time. Moreover, when the number of cities n rises 

from 51 to 70 in PE.I instances, i.e. the last four instances 70C15D, 70C40D, 93C30D and 93C40D, 

GUROBI fails to return a feasible solution even in 24 hours, whereas FDOR-DCS finds a feasible solution 

in 23.1 seconds on average. The same situation is observed in three PE.II instances, namely 70C30D, 

80C30D and 80C40D. 

According to Table 6 for those instances where GUROBI is able to return a proven optimal solution, 

FDOR-DCS finds quick solutions with an average optimality gap of 4.46%. For the remaining instances 

where the commercial solver reports a BFS, but cannot reach proven optimality in 24 hours, the average 

FDOR-DCS objective value is about 0.45% higher, thus better than the average BFS of the commercial 

solver.  

The promising FDOR-DCS solutions are generated very fast; they could be utilized as an initial feasible 

solution (IFS) for GUROBI to tighten the final optimality gap of the associated MILP model. We elaborate 

on this idea in Section 5.6. Another observation from Table 6 is that when the problem size ( either n  or 

)  increases, so does the time expenditure of FDOR-DCS at a rapid pace. To amend this, we investigated 

the other city selection approaches for FDOR, namely FDOR-GCS and FDOR-PCS, which were proposed 

in Section 4.2. 
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Table 6. Comparison of GUROBI with FDOR-DCS for all instances 

PE.I 

Instances 

GUROBI  FDOR-DCS   

PE.II 

Instances 

GUROBI  FDOR-DCS  

BFS 
Opt.Gap 

(%) 

BFSt  

(s) 

CPU 

(s) 
 Obj.Val. 

CPU 

(s) 

FDOR.Gap 

(%) 
 BFS 

Opt.Gap 

(%) 

BFSt  

(s) 

CPU 

(s) 
 Obj.Val. 

CPU 

(s) 
FDOR.Gap 

(%) 

6C2D 7110 0.0 0 0.1  7110 0.1 0.0  20C5D 25118 0.0 44 239.2  24196 0.6 3.7 

6C3D 8181 0.0 0 0.1  8181 0.1 0.0  20C7D 27523 0.0 454 1995.9  25419 0.6 7.6 

7C2D 9629 0.0 0 0.2  9629 0.1 0.0  30C5D 16635 0.0 161 709.9  16052 1.5 3.5 

7C4D 11597 0.0 0 0.4  11457 0.2 1.2  30C7D 18855 0.0 13163 28216.8  17997 1.8 4.6 

9C3D 10939 0.0 0 0.5  10788 0.1 1.4  30C10D 21251 5.9 17722 86400.0  19577 2.0 7.9 

9C4D 11668 0.0 1 1.3  11268 0.1 3.4  40C7D 32811 20.1 76679 86400.0  31748 3.0 3.2 

12C5D 14575 0.0 6 6.0  12906 0.3 11.5  40C10D 37851 3.8 51297 86400.0  34267 3.6 9.5 

15C7D 17240 0.0 462 551.3  16132 0.5 6.4  50C7D 32829 1.6 4945 86400.0  33101 6.9 −0.8 

15C10D 18759 0.0 19972 30458.5  17356 0.7 7.5  50C10D 38098 11.8 45006 86400.0  37389 8.5 1.9 

21C7D 19138 0.0 2026 6705.3  17325 0.9 9.5  50C15D 44098 35.6 70662 86400.0  41687 11.0 5.5 

21C10D 21904 6.8 11582 86400.0  20673 1.2 5.6  60C7D 40480 2.5 36955 86400.0  38105 13.8 5.9 

30C7D 29427 0.0 20665 20670.3  27474 1.7 6.6  60C10D 48270 7.0 82709 86400.0  45446 18.8 5.8 

30C10D 35013 5.9 30040 86400.0  32213 2.2 8.0  60C20D 50559 80.1 64244 86400.0  62869 22.8 −24.3 

40C7D 30086 4.0 59757 86400.0  28821 3.7 4.2  70C10D 42474 13.9 82434 86400.0  40201 26.1 5.4 

40C10D 36409 12.6 62342 86400.0  34672 4.9 4.8  70C20D 43705 112.3 83589 86400.0  51055 34.9 −16.8 

51C7D 41087 9.9 85597 86400.0  36942 8.4 10.1  70C30D − −  − 86400.0  57065 36.2 − 

51C10D 45667 22.3 77316 86400.0  43212 11.3 5.4  80C10D 40808 22.2 52003 86400.0  38423 38.6 5.8 

51C30D 47279 186.7 61189 86400.0  59890 14.5 −26.7  80C20D 50777 75.1 74448 86400.0  53270 41.9 −4.9 

70C15D    86400.0  46818 16.6   80C30D − − − 86400.0  57285 50.0 − 

70C40D    86400.0  58408 22.2   80C40D − − − 86400.0  62576 48.7 − 

93C30D    86400.0  68174 26.6   Average
 a 36008  44500.9 67903.6  35930 13.9 1.39 

93C40D    86400.0  73574 27.1   LE 

Instances 

      

Average 
a 23095  23941.9 36844.1  22558 2.8 3.27          

          39C7D 22361 4.7 85841 86400.0  22164 11.7 0.9 

a  The average objective values, CPU times and gaps have been calculated for 

the pool of only those instances in which GRUOBI is able to find a BFS. 

 39C10D 26774 18.5 63714 86400.0  27191 13.5 −1.6 

 39C14D 30214 57.5 76094 86400.0  31757 15.9 −5.1 

 Average 26450  75216.3 86400.0  27037 13.7 −1.9 
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5.6 Speeding up GUROBI using the results of FDOR  

The commercial solvers such as GUROBI and CPLEX assume the initial values of all decision variables to 

be zero. On the other hand, we know that some greedy-like and heuristic methods are used inside the black 

box of these solvers, especially in the preprocessing step. When we tackle a MILP problem, it is possible 

to assist the commercial solver by setting the decision variables to certain initial values, which is known as 

a warm start. A warm start may be performed by starting the solver at a nontrivial feasible solution.  

In our case, we can generate a high-quality feasible solution through FDOR which executes in a small 

amount of CPU time. So, we can feed it as an initial solution into the commercial solver for the purpose of 

a warm start. This high-quality initial solution may help the solver, though not always, find the optimal 

solution faster than before. Likewise, it could contribute in large size instances to the detection of a feasible 

solution which the solver fails to find even in 24 hours. To this end, GUROBI is called after the initial 

values of the binary decision variables X , Z , R , FM , S , L  and E  in the RSP model have been set to 

the respective values retrieved from the FDOR solution of the same problem. The new GUROBI results are 

presented in Table 7. The solution quality increased in 38 of 45 instances. It is worth noting that GUROBI 

was previously unable to reach proven optimality for PE.I 40C7D and PE.II 50C7D; but by feeding the 

FDOR solution into GUROBI as an initial solution it was possible to do so in less than 24 hours. Moreover, 

in PE.I instances 70C15D, 70C40D, 93C30D and 93C40D as well as in PE.II instances 70C30D, 80C30D 

and 80C40D, GUROBI was previously unable to return a feasible solution at all. Now after a warm start 

with the FDOR solution, it can at least arrive at a feasible solution, albeit with an average Opt.Gap still 

above 100%. For the remaining 38 instances, the average BFS improves (i.e. increases) by approximately 

3.79%. Finally, the average Opt.Gap again in those 38 instances drops from 18.49% to 14.64%. 

5.7 Comparison of the FDOR method with Party’s actual meeting plan 

In order to testify the solution quality of the proposed FDOR method further, we scrutinize the real-life 

instance 70C40D. We were able to obtain the political party’s realized meetings prior to the general election 

of June 2015 in Turkey. The party started its campaign 40 days before the election day; the party leader 

held meetings in a total of 70 cities and towns with repeated meetings in several of them. In the light of 

these meetings, we created our large size instance 70C40D. We compare the total benefit value implied by 

the party’s actual meeting plan to the BFS found by FDOR. In order to make a fair comparison, we also 

define a “Reward-Only” scenario where we ignore the traveling costs and relax the following three 

constraints in our assumptions. (i) The first constraint was forcing the politician to hold at least one meeting 

every day. However, in the actual meeting schedule of the party there were two meeting-free days. (ii) The 

second one was forcing the politician to end the campaign at the campaign base. We relaxed this constraint 

since the actual campaign of the party back in June 2015 had not been completed in Ankara. (iii) The last 

one was forcing the politician to return to the campaign base frequently. We lifted this constraint as well. 
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Table 7.   The results of setting initial values of RSP to optimal values of FDOR 

PE.I 

Instances 

 
RSP 

(original) 

RSP with FDOR solution as 

the initial solution 

 

PE.II 

Instances 

 
RSP 

(original) 

RSP with FDOR solution as 

the initial solution 

BFS 
Opt.Gap 

(%) 

CPU 

(s) 
BFS 

Opt.Gap 

(%) 

CPU 

(s) 

 

BFS 
Opt.Gap 

(%) 

CPU 

(s) 
  BFS 

Opt.Gap 

(%) 

CPU 

(s) 

6C2D 7110 0.0 0.1 7110 0.0 0.3 
 
20C5D 25118 0.0 239.2 25118 0.0 255.0 

6C3D 8181 0.0 0.1 8181 0.0 0.5 
 
20C7D 27523 0.0 1995.9 27523 0.0 2118.4 

7C2D 9629 0.0 0.2 9629 0.0 0.5 
 
30C5D 16635 0.0 709.9 16635 0.0 885.1 

7C4D 11597 0.0 0.4 11597 0.0 0.6 
 
30C7D 18855 0.0 28216.8 18855 0.0 27959.7 

9C3D 10939 0.0 0.5 10939 0.0 1.3 
 
30C10D 21251 5.9 86400.0 22464 3.9 86400.0 

9C4D 11668 0.0 1.3 11668 0.0 1.5 
 
40C7D 32811 2.0 86400.0 32788 2.2 86400.0 

12C5D 14575 0.0 6.0 14575 0.0 6.8 
 
40C10D 37851 3.8 86400.0 37641 4.4 86400.0 

15C7D 17240 0.0 551.3 17240 0.0 572.5 
 
50C7D 32829 1.6 86400.0 33352 0.0 82875.1 

15C10D 18759 0.0 30458.5 18759 0.0 20630.7 
 
50C10D 38098 11.8 86400.0 42202 10.5 86400.0 

21C7D 19138 0.0 6705.3 19138 0.0 5311.0 
 
50C15D 44098 35.6 86400.0 41922 48.3 86400.0 

21C10D 21904 6.8 86400.0 21684 6.7 86400.0 
 
60C7D 40480 2.5 86400.0 39793 4.4 86400.0 

30C7D 29427 0.0 20670.3 29427 0.0 14071.7 
 
60C10D 48270 7.0 86400.0 48354 6.5 86400.0 

30C10D 35013 5.9 86400.0 35197 5.7 86400.0 
 
60C20D 50559 80.1 86400.0 62869 44.3 86400.0 

40C7D 30086 4.0 86400.0 30122 0.0 77160.8 
 
70C10D 42474 13.9 86400.0 40240 20.2 86400.0 

40C10D 36409 12.6 86400.0 34763 17.8 86400.0 
 
70C20D 43705 112.3 86400.0 51364 80.8 86400.0 

51C7D 41087 9.9 86400.0 41442 7.8 86400.0 
 
70C30D − − − 57092 167.6 86400.0 

51C10D 45667 22.3 86400.0 46971 19.5 86400.0 
 
80C10D 40808 22.2 86400.0 41773 19.4 86400.0 

51C30D 47279 186.7 86400.0 59895 100.0 86400.0 
 

80C20D 50777 75.1 86400.0 55206 88.6 86400.0 

70C15D   86400.0 46818 66.1 86400.0 
 

80C30D − − − 58008 153.4 86400.0 

70C40D   86400.0 58408 170.1 86400.0 
 

80C40D − − − 62576 196.1 86400.0 

93C30D   86400.0 68174 96.4 86400.0 
 

Average 
a 36008 22.0   37535 19.6  

93C40D   86400.0 73595 108.1 86400.0  LE 
Instances 

      

Average 
a 23094 13.8  23797 8.8  

 

39C7D 22361 4.7 86400.0 22782 2.7 86400.0 

       
 

39C10D 26774 18.5 86400.0 27481 15.3 86400.0 

a  The average objective values and gaps have been calculated 

 for the pool of only those instances in which GRUOBI is able 

 to find a BFS. 

39C14D 30214 57.5 86400.0 32496 47.5 86400.0 

Average 26450  26.9  27586 21.8  

       

 

Table 8 below shows the details of FDOR and the original model solutions alongside the actual plan. 

Accordingly, GUROBI is not able to find an optimal solution even at the end of three days. However, the 

best feasible solution returned by GUROBI bears a net benefit that is about 90% greater than the net benefit 

accrued by the end of the actual campaign plan of the party. In the actual plan there are three meetings in 

İstanbul, Ankara, and Mersin each, two meetings in İzmir, and one meeting in each of the remaining cities. 

However, the best feasible solution prescribes three meetings in each of İstanbul, Ankara, İzmir, and 

Mersin, two meetings in the majority of midsize cities such as Adana, Balıkesir, Bursa, Hatay, Konya, etc., 

and one meeting in the rest. The results highlight a massive advantage of solving the RSP for the 

maximization of the net benefit obtained from an election campaign that spans an extended period. 
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Table 8.  FDOR method vs Party’s actual meeting plan in the real-life instance 70C40D 

  Solution Value Opt.Gap (%) # of Meetings CPU time 

 
RSP 

LB =   46,640 

UB = 117,427 
60.3 75 

259,200 s 

(3 days) 

 FDOR 58,408  96 22.26 s 

 Party’s Plan 24,534  77 n/a 

R
ew

ar
d

-

O
n

ly
 

RSP 
LB =   68,399 

UB = 106,802 
56.1 65 

259,200 s 

(3 days) 

FDOR 94,044  102 34.15 s 

Party’s Plan  64,124  77 n/a 

In the Reward-Only scenario of the problem under study, both the original formulation and FDOR 

outperform the party’s actual plan. Considering the number of meetings as a performance measure, the 

solution obtained by FDOR holds 19 more meetings than the party’s plan. This difference is more 

pronounced in the Reward-Only scenario where the number of meetings held in the FDOR solution 

surpasses that number in the party’s plan by 25. Note that in both cases the objective value which we are 

able to obtain in less than 35 seconds using FDOR is far superior to the objective value implied by the 

party’s plan. These performance merits hint the success of the proposed matheuristic method FDOR in 

scheduling and routing an election campaign. 

6. Conclusions and future work 

In this paper we introduce a novel logistical problem which we call the Roaming Salesman Problem (RSP). 

It can be classified as a multi-period version of the prize-collecting traveling salesman problem with 

dynamic profits, repeated visits to certain customer nodes, varying depot nodes, and three types of time 

restricted tours. The salesperson in the problem whom we designate as the campaigner can stay overnight 

in any arbitrary city to resume his/her daily tour there the next morning. This extraordinary feature adds 

another level of complexity to the model of the problem. We propose an innovative MILP formulation 

followed by an efficient two-phase matheuristic approach consisting of two primary components: a city 

selection phase and a route generation phase. The proposed matheuristic, coined as Finding Daily Optimal 

Routes (FDOR), decomposes the original MILP formulation into as many subproblems as the number of 

days in the planning horizon. Each subproblem depends on how frequently the campaign base is to be 

visited throughout the campaign duration. This decomposition strategy generates the next period’s route 

without the need to track the route of each day, which in turn reduces the computational complexity of the 

problem greatly. We rigorously tested three city selection approaches coupled with the associated parameter 

calibration experiments. Computational results suggest that FDOR provides promising solutions in 

remarkably short computing times.  
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Our work on this new problem can be extended in many directions. The decomposition scheme in our 

proposed FDOR method can be adapted to other hard combinatorial problems that are rather difficult to 

tackle otherwise. A relevant topic is the incorporation of the meetings of a rival party into the calculation 

of the rewards. The accommodation cost and the weekday of the meetings can also be considered in the 

calculation of rewards. Time windows constraints can be introduced to keep track of the time of the day 

and the departure schedules of coaches and planes. Moreover, alternative formulations can be investigated 

so as to improve the solution quality of the MILP model. For instance, connectivity constraints can be 

introduced and separation of violated inequalities can be implemented in a branch-and-cut 

algorithm. Finally, hybrid metaheuristics can be developed which would capitalize on FDOR to start at a 

high-quality initial solution.  
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