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Abstract 

Starting from humble beginnings, the use of financial options has substantially 

increased as an important financial tool for both speculation and hedging over the last 

50 years. This chapter discusses both the theoretical and practical applications of 

financial options and related models. While the content is somewhat technical, we 

provide illustrations of their applications in simple settings. We address particular 

stylised features of option pricing models. 
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3.1 Introduction 

The basic idea regarding financial options has been around for a long-time. The 

Greeks appear to have been the first to use options to speculate on the price of olive 

harvests (Abraham, 2019). Recounting the material in Mackay’s memoirs of 1841, 
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Extraordinary Popular Delusions and the Madness of Crowds, Thompson (2007) 

indicates that following the 17th century Holland tulip market crash: “The provisions, 

in effect, converted the futures prices in the original contracts to exercise prices in 

option contracts. The corresponding option price paid to the planters was only later 

determined. In particular, after over a year of political negotiation, the legislature of 

Haarlem, the centre of the tulip-contract trade during the "mania," determined the 

compensation to the sellers to be only 3½% of the contract price for those contracts 

made between November 30, 1636 and the spring of 1637.” Financial options are 

traded on many exchanges including the Chicago Board Options Exchange and 

Euronext. The number of option contracts traded worldwide has grown exponentially. 

In 2019, 15.23 billion option contracts were traded compared to 9.42 billion in 2013.1 

During February 2021, up to 3 trillion dollars equity options by volume were traded in 

notional value on U.S. option exchanges. Options are use both to manage financial risk 

and speculate, although forwards and foreign currency borrowing/lending are 

preferred compared to currency options when firms hedge their exposures (Joseph, 

2000).  

This chapter discusses the components of financial options. We distinguish 

between their use for speculation and for hedging underlying exposure. We also 

provide illustrations of their use in different settings. We first begin with interest 

rates as it is important feature of option contracts. 

3.2 Interest rate and discounted cash flow 

 This section discusses the basic approaches to compound interest rates and the 

concept of present value of a cash flow. Both concepts are important components of 

option pricing models. 

3.2.1 Compound interest  

An interest rate is the fee for using money and can be expressed as the amount 

of interest due per period, as a proportion of the amount borrowed, normally in annual 

percentage terms. The interest rate is determined by the supply (lenders or savers) and 

                                            
1  https://www.statista.com/statistics/377025/global-futures-and-options-volume/ 
(Accessed February 15, 2021). More forwards and futures are traded than options over 
the same period. For example, worldwide 19.24 billion futures contracts were traded 
in 2019 compared to 12.13 billion in 2013 
(https://www.statista.com/statistics/377025/global-futures-and-options-volume/). 
Accessed February 15, 2021.   

https://www.statista.com/statistics/377025/global-futures-and-options-volume/
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demand (borrowers or investors) for money, although its level is also determined by 

macroeconomic policy.  

Compound interest arises by reinvesting the earnings of the additional interest 

on the principal, so that interest in the next period is earned based on the sum of the 

principal plus the first period and second period interest rates. The first formal 

documentation of compound of interest rate is by a Florentine merchant Francesco 

Balducci Pegolotti, in his book Pratica Della Mercatura in the 1340s, although the 

charging of interest rates is much earlier. For example, in Biblical history, the charging 

of interest rates was considered ungodly following specific instructions to the 

Hebrews.2 Pegolotti provides tables of the interest on 100 lire, for rates from 1% to 8%, 

for up to 20 years (Pegolotti, 1936). The important constant 𝑒𝑒 is discovered by Jacob 

Bernoulli while thinking about matters of continuous compound interest in 1683 

(Reichert, 2019). In the 19th century, modified linear Taylor approximation is used to 

compute the monthly payment formula by Persian merchants (Milanfar, 1996). 

To formally define the compound interest rate, suppose an investor receives a 

constant and discrete rate of interest ρ per unit of time. Denote 𝐵𝐵(𝑡𝑡) as the value of an 

investment in the bank at time 𝑡𝑡. Thus, for the next period, the value of this investment 

is equal to 

B(t + 1) = B(t)(1 + ρ)  

where the factor (1 + ρ) is the growth factor for one-unit time period. Similarly, for the 

second time period 

B(t + 2) = B(t + 1)(1 + ρ) = B(t)(1 + ρ)2. 

It is easy to prove by induction on h ∈ ℤ, that 

B(t + h) = B(t)(1 + ρ)h  

where the growth factor for time period h is (1 + ρ)h. Denote the interest rate for the 

time period h  as i(h) . Therefore, B(t + h) = B(t)(1 + i(h)) . One can calculate the 

interest paid to the investors as  

i(h) = (1 + ρ)h − 1.    

If the unit time is one year, ρ is also known as annual rate of return, annual yield or 

the annual rate of capital growth of the investment. Banks offer products with interest 

at more frequent intervals, for example, semi-annually, quarterly, or monthly. Denote 

                                            
2 “If you lend money to one of my people among you who is needy, do not treat it like 
a business deal; charge no interest.” Exodus 22:25–26. 
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𝑟𝑟 as the annual interest rate which has 𝑚𝑚 compounding periods in a year. The future 

value of the investment after 𝑛𝑛 years equals to 

B(t + n) = B(t) �1 + r
m
�
mn

 . 

Consider m →∞.  That is, interests are paid almost continuously and the interest is 

compounded continuously. Then,  

B(t + h) = lim
m→∞

B(t) �1 + r
m
�
mh

. Take the nature log on both sides, we obtain 

 ln�B(t + h)� = ln � lim
m→∞

B(t) �1 + r
m
�
mh
� 

= lim
m→∞

�ln�B(t)� + ln �1 +
r
m
�
mh
� 

= lim
m→∞

�ln�B(t)� + mhln �1 +
r
m
��. 

As m  gets larger, r
m

 gets smaller, so we could use the log approximation 

ln(1 + x)~x, and get 

ln�B(t + h)� = lim
m→∞

�ln�B(t)� + mh r
m
� = lim

m→∞
�ln�B(t)� + rh�  

and finally gives that the value of principle with continuous compounding interests is 

B(t + h) = B(t)erh.  

Similarly, as h → 0, ln(1 + x)~x and ex − 1~x ,  B(t+h)−B(t)
h

= B(t)
h
�erh − 1� ≈ rB(t)  

hence leads to the result  dB(t)
dt

= rB(t) , where 𝑟𝑟  is the continuously compounded 

interest rate. However, continuous compounding is the mathematical limit that only 

can be reach theoretically if one can calculate and reinvest interest, continuously. This 

is not possible in practice. The concept of continuously compounded interest is 

important in finance and is used extensively for pricing options, forwards and other 

derivatives. 

Both discrete interest rate 𝜌𝜌 and its continuously compounded equivalent rate 

𝑟𝑟, are assumed to be constant, as discussed before. In many cases, the interest rate is 

time dependent, also known as adjustable or floating rate, because it is based on an 

underlying benchmark interest rate or index that adjusts periodically with fluctuations 

in market conditions. Therefore, the change in value of an investment with a time 

dependent interest rate is dB(t)
dt

= r(t)B(t).   
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To solve this differential equation, one can rearrange the formula and 

integrating each side over the time interval [t, t + h]. This gives ∫ dB
B

B(t+h)
B(t) = ∫ r(s)dst+h

t .  

We can now produce the generalisable form of an investment with continuous 

compounded interest rate as B(t + h) = B(t)exp �∫ r(s)dst+h
t �. 

3.2.2 Discounted cash flow 

For any ℎ > 0, 𝐵𝐵(𝑡𝑡 + ℎ) is the future value of the present value 𝐵𝐵(𝑡𝑡), under the 

continuously compounded interest rate function 𝑟𝑟 , given as  B(t) = B(t +

h)exp �−∫ r(s)dst+h
t �.   For special cases where 𝑟𝑟  is constant, B(t) = B(t + h)e−rh =

B(t + h)(1 + ρ)−h.  

In finance, 𝑟𝑟 is also known as the discount rate. In general, the value of any asset 

is the present value of the expected cash flows from the asset. 

One way for an investor to raise capital is to sell bonds to the public. A bond is 

a fixed income instrument that pays bond holders a specific amount of interest, called 

the coupon payment, at regular intervals, and a final payment, called the face value (or 

par value or nominal value) of the bond, at maturity or its redemption date. Once a 

tradable bond has been issued, the bond holder is free to trade in the financial market 

and the market price of the bond reflects the interest rate and the level of risk attached 

to the bond issuer. Typical bonds are government issue bonds (also known as treasury 

bonds, treasuries or Gilts), local government bonds (known as municipal bonds), and 

corporate bonds. 

Assume a 𝑛𝑛  year maturity bond which pays coupons at rate of 𝑐𝑐/2  every 6 

months. At maturity, an investor will receive coupon 𝑐𝑐/2  plus the face value 𝐹𝐹 . 

Suppose that the annual redemption yield equals 𝜌𝜌, and the present value of the first 

coupon payment is c/2
(1+ρ)1/2 . In general, the present value at time of purchase of the kth 

coupon payment is c/2
(1+ρ)k/2. Therefore, the bond price, 𝑃𝑃 is the net present value of all 

future cash flows generated by the bond 𝑃𝑃 = ∑ c/2
(1+ρ)k/2

2n
k=1 + F

(1+ρ)n ,which is called the 

discounted cash flow formula for bond pricing. Applying the standard formula for the 

sum of a geometric series, we have, ∑ ar�(k−1)n
k=1 = a(1−r�n)

(1−r�)  where 𝑎𝑎 and 𝑟̂𝑟 are the first 

term in the series and the common ratio, respectively, and the bond pricing formula is 

reduced to P =
1
2c(1−(1+ρ)−n)

(1+ρ)1/2−1
+ F

(1+ρ)n.  
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The risk-free rate of return is the rate of return that can be obtained where the 

associated risk is considered to be zero. A risk-free return typically applies to the 

interest rate on government bonds, on the assumption that a government of a country 

cannot go bankrupt.  A treasury bond is an example of a risk-free investment. A bond 

holder is exposed to risk arising from changes in interest rates in the economy, if he 

sells the bond before the bond matures. There is general agreement that most investors 

are risk-averse. Thus, for risky investments, they require a return above the risk-free 

nominal interest rate. The differences between the return on the risky investment and 

the risk-free rate is known as the risk premium.  

Another way for an investor or firm to raise capital is to sell equity to the public 

in the form of shares, via what is called an initial public offering (IPO). In return for 

their investment, investors obtain dividend plus capital appreciation. Equities are 

generally much riskier than bonds and can be valued as the total present value of 

future dividend payments, that is  P = ∑ dn
(1+ρ)n

∞
n=1  ,where 𝜌𝜌 is the annual rate of return 

on a share and 𝑑𝑑𝑛𝑛  is the future annual dividend payment after 𝑛𝑛  years. 

Mathematically, a firm’s shares are equivalent to a bond with variable annual coupon 

payment 𝑑𝑑1,𝑑𝑑2, …. 

3.3 Basics of option pricing 

Assets are traded in officially regulated markets such as the London Stock 

Exchange, which regulates and organizes the trading of shares in public companies in 

the U.K. Other exchanges include the London International Financial Futures and 

Options Exchange (LIFFE) and the London Metal Exchange in U.K.3 According to 

Futures Industry Association, the National Stock Exchange of India Ltd (NSE) remains 

the world’s largest derivatives exchange in terms of number of contracts traded in 

2020 (The Economic Times, 2021). New York Stock Exchange (NYSE), Nasdaq, and 

Japan Exchange Group are the top 3 largest stock exchanges by value and volume of 

transactions (Statista, 2021).  

The main assets traded in these financial exchanges are: Financial Assets 

(shares, bonds, currencies), commodities, notional financial assets (interest rates, 

index numbers). All listed assets are risky in the sense that their market value 

fluctuates in unpredictable ways. Derivatives are a type of security which are 

                                            
3 LIFFE has undergone a series of takeovers. In 2014, it became part of Intercontinental Exchange and 
was renamed ICE Futures Europe (Scott, 2019). 
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associated with the above primary assets and derive their value from that of the 

underlying asset. These financial derivatives can be grouped under two main headings: 

futures and options. The existence of financial derivatives allows investors to exert 

some control over the risks inherently associated with the underlying asset.  

3.3.1 Futures  

A futures contract is a standardised agreement between a trader and a futures 

exchange either to buy or to sell an asset at a specified future time at a specified price. 

A trader agrees to buy a specified amount, known as contract size, of the underlying 

asset at a specified future date (the delivery date) for a specified price, called future 

price. The trader is then said to open a long contract or take a long position. 

Alternatively, the trader opens a short contract or take a short position when he/she 

agrees to sell a contract size of the underlying asset at a delivery date for the future 

price. The current market price of the asset is known as the spot price. A futures 

contract is the simplest example of a financial derivative. A forward contract is a non-

standardised contract between two parties to buy or sell an asset. If interest rates are 

certain then futures and forward prices are equal. 

Futures exchanges are responsible for organising and regulating the trading of 

standardised futures contracts. Across the world, the largest exchange, by volume of 

contracts, is the CME Group, which consists of Chicago Board of Trade (CBOT), 

Chicago Mercantile Exchange (CME), New York Mercantile Exchange (NYMEX), 

Commodity Exchange Inc. (COMEX), Kansas City Board of Trade (KCBT), and the 

NEX Group (Samuelsson, 2021).  

In practice, for every long contract opened with the exchange, there will be a 

counterbalancing short-opened contract, and vice-versa. However, the long and short 

parties make their contracts with the futures exchanges and are never in direct contact. 

The futures exchanges and the underlying assets of future contracts are ‘Real’ or 

‘Contingent’ depending on the physical holding of the underlying. In theory, it costs 

nothing to open a futures contract. In practice, the futures exchange charges a deposit 

known as the initial margin − usually between 5% to 20% of the value of underlying. 

Once a futures contract is opened, it can be closed at any time up to maturity, by the 

contract holder or by the exchange. A long (short) contract is closed by opening a short 

(long) contract, with the same delivery date and contract size. Most futures contracts 

are closed before the delivery date. Otherwise, the sellers or buyer holding the futures 
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contract at delivery date will have to exercise their rights under the contract, 

potentially receiving physical delivery of the contract. 

Denote the future price of one unit of underlying asset by 𝐹𝐹(𝑡𝑡,𝑇𝑇), at time 𝑡𝑡 for 

delivery at time 𝑇𝑇. Assuming an investor opens 𝑁𝑁 long (buy) contracts at time 𝑡𝑡0 and 

sells the contract later at time 𝑡𝑡 , the profit is �𝐹𝐹(𝑡𝑡,𝑇𝑇) − 𝐹𝐹(𝑡𝑡0,𝑇𝑇)�𝑁𝑁. Similarly, if an 

investor opens 𝑁𝑁 short (sell) contracts at time 𝑡𝑡0 and closes the short contract later at 

time 𝑡𝑡, the profit is �𝐹𝐹(𝑡𝑡0,𝑇𝑇) − 𝐹𝐹(𝑡𝑡,𝑇𝑇)�𝑁𝑁. The exchange keeps a daily record of every 

trader’s running profit or loss and the process of using the closing futures market 

prices, to calculate the running profit or loss. This process is known as marking-to-

market. The exchange may call for the losing party to make a margin payment, known 

as a margin call, if losses become too large, and the losing contract may be close by the 

exchange if no margin payments are received. 

Let 𝑆𝑆 =  𝑆𝑆(𝑡𝑡) denote the value of an asset at time 𝑡𝑡. In our case, 𝑆𝑆(𝑡𝑡) is usually 

either the price of a share or the value of a financial market traded index. Assuming a 

constant rate of return λ  earned by a non-dividend paying asset, the value of the 

standard simple futures price, 𝐹𝐹(𝑡𝑡,𝑇𝑇), is the present value at time 𝑡𝑡  to maturity 𝑇𝑇 

is F(t, T) = S(t) �1+ρ
1+λ

�
T−t

where ρ is the discrete risk-free interest rate. The continuous 

compounding forward rate  F(t, T) = S(t)e(r−λ)(T−t) , where 𝑟𝑟  is the continuously 

compounded risk-free interest rate. Using the no-arbitrage principle, this means that 

there is no opportunity to open simultaneous positions in different assets (or the same 

asset in different markets) without any initial cost or capital outlay that would 

guarantee a risk-free profit. Assume a strategy for the short party, when  F(t, T) >

S(t) �1+ρ
1+λ

�
T−t

. To make a profit, at time 𝑡𝑡 , investors can borrow 𝑆𝑆(𝑡𝑡)(1 + 𝜆𝜆)−(𝑇𝑇−𝑡𝑡)  at 

risk-free interest rate ρ to buy the asset with return λ. At the same time, this investor 

can open a short futures contract to deliver 𝑆𝑆(𝑡𝑡) amount of asset at price 𝐹𝐹(𝑡𝑡,𝑇𝑇) at the 

future time 𝑇𝑇 . At time 𝑇𝑇 , the asset worth 𝑆𝑆(𝑡𝑡), and the investor can deliver to the 

futures exchange receiving 𝐹𝐹(𝑡𝑡,𝑇𝑇) from the long party. Paying back the loan leaves a 

profit of  F(t, T) − S(t) �1+ρ
1+λ

�
T−t

 and leave an arbitrage opportunity to the short party. 

Similarly, assume a strategy for the long party, when F(t, T) < S(t) �1+ρ
1+λ

�
T−t

. At time t, 

the investor opens a long futures contract to buy 𝑆𝑆(𝑡𝑡) amount of asset at price 𝐹𝐹(𝑡𝑡,𝑇𝑇) 

at the future time 𝑇𝑇. Assume the investor sells 𝑆𝑆(𝑡𝑡)(1 + 𝜆𝜆)−(𝑇𝑇−𝑡𝑡) assets and saves in a 
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bank the risk-free interest return, which earns interest up to maturity. At time T, the 

investor withdraws the money from the bank and receives 𝑆𝑆(𝑡𝑡)(1 + 𝜆𝜆)−(𝑇𝑇−𝑡𝑡)(1 + 𝜌𝜌)𝑇𝑇−𝑡𝑡, 

then buys 𝑆𝑆(𝑡𝑡) amount of asset from the short party at a cost of  𝐹𝐹(𝑡𝑡,𝑇𝑇), leaving the 

profit of  S(t) �1+ρ
1+λ

�
T−t

− F(t, T).  The original 𝑆𝑆(𝑡𝑡)(1 + 𝜆𝜆)−(𝑇𝑇−𝑡𝑡)  assets are worth 𝑆𝑆(𝑡𝑡) 

today, which gives an arbitrage opportunity to the long party which is invalid with the 

no-arbitrage principle, and completes the proof. 

3.3.2 Options  

An option is a contract which provides the holder with the right, not obligation, 

to buy or sell an underlying asset at or before a pre-determined time (maturity date) 

in the future at a fixed price (strike price or exercise price). There are two basic types 

of options: the call option and the put option. The opening transaction on an option 

exchange can be either to sell the option, also known as writing an option, or to buy 

the option. Hence there are four option positions that may be opened, namely the long 

call, the short call, the long put and the short put as in Figure 3. 1. Each of these 

transactions will be discussed in detail below, for option contracts with finite lifetime 

and expirations. 

[Insert Figure 3. 1 about here] 

The owner of an option may trade the option in a secondary market, in either 

an over-the-counter transaction or on an option market exchange. The cash outlay on 

the options is called option premium; the risk of loss is limited to the premium. Each 

type of underlying asset gives rise to an option contract with a specific contract size. 

For example, a stock or equity option contract is usually for options of 1000 underlying 

shares. An American style option is one that can be exercised at any time up to an 

including to the expiry date, whereas a European style option is one that can only be 

exercised on the expiry date.  

A trader who expects an asset price to increase can buy a call option to purchase 

the asset at a fixed price at a later date, rather than purchase the asset now. The 

opening transaction on the option exchange is ‘buy to open’ one call option contract. 

The buying price of call option is often referred to as the call option premium. In 

purchasing this contract, investors are acquiring the right to buy the underlying 

derivative at any time before the expiry date with pre-determined exercise price. In 

general, if the market price of the underlying asset increases, then the market price of 

a call option on that asset will also increase. 
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A long call contract is different to a long futures contract. The long party to a 

futures contract is legally bound to buy the asset at the forward price agreed in the 

contract. The same as in the forward contract.  The long party to a call option contract 

has the right not the obligation to buy the asset at the agreed exercise price, i.e., the 

long party to an option contract may exercise the right to buy or may choose not to 

exercise. 

The long party to a call contract has three closing transactions available, as 

follows: 

• Exercise the option rights, i.e., buy the contract size of the underlying asset at 

the exercise price. 

• Trade on the option market. Opening a short call contract with the same 

exercise price and expiry date as the original long one. The option exchange 

considers the position to be closed with a short and a long contract of equal 

amounts. 

• Do nothing. The option contract expires on the expiry date and is worthless 

after the expiry date, the loss of the long party is the option premium paid to 

open the contract. 

Denote 𝐶𝐶 = 𝐶𝐶(𝑆𝑆, 𝑡𝑡) as the market price of a call option with underlying asset 

valuing 𝑆𝑆 = 𝑆𝑆(𝑡𝑡)  at time 𝑡𝑡.  Option price is 𝐶𝐶 ≥ 0  and 𝐶𝐶 ≤ 𝑆𝑆  because investors will 

never pay for the right to buy something more than they actually paid to buy it outright. 

The value of an option is the profit on the closing transaction. Denote the strike price 

as 𝐸𝐸 . When 𝑆𝑆 > 𝐸𝐸 , the payoff of a long call holder is 𝑆𝑆 − 𝐸𝐸 , by exercise the option 

paying 𝐸𝐸, and sell the asset at price 𝑆𝑆. When 𝑆𝑆 ≤ 𝐸𝐸, the option is worthless and should 

not be exercised. Therefore, the market price of the call option at expiry is  

C(S, T) = max(S − E, 0).                  (3.1) 

The net profit takes into consideration the premium that the long party paid up 

front is equal to 𝐶𝐶(𝑆𝑆,𝑇𝑇) −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆 − 𝐸𝐸, 0) −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Thus, in order to 

gain a profit from a long call contract, the underlying asset price must rise. Figure 3. 2 

illustrates the payoff and profit on a long call option at expiration.  

[Insert Figure 3. 2 about here] 

A trader who expects an asset price to decrease can sell, or “write”, a call option. 

The opening transaction is a call option contract. The seller of the contract is the short 

party to the contract and is said to have written the option and receives the premium 
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paid by the long party. If the long party is exercising the rights, the short party is 

obliged to sell the contract size at the exercise price. 

Having opened a short call contract, the short party may experience one of three 

possible closing transactions, as follows: 

• The contract is exercised, i.e., the long party exercises the right to buy, while the 

short party is obliged to sell at the exercise price. 

• Buy a long contract with the same exercise price and expiry date as the original 

short one. The option exchange considers the position to be closed with a long 

and a short contract, and the closing transaction is a buy contract. 

• Do nothing. The short party keeps the option premium received which is the 

ideal situation for the short party, if the long party does not exercise its rights. 

The short party of a call option is in the opposite position of the long party of 

the same call option, with payoffs at expiry date. That is,  𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆 − 𝐸𝐸, 0), profit equals 

to 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆 − 𝐸𝐸, 0). Thus, to profit from a short call contract, the underlying 

asset price must not rise, and the potential loss is unlimited. Figure 3. 3 illustrates the 

payoff and profit on a short call option at expiration.  

[Insert Figure 3. 3 about here] 

A trader who expects an asset price to decrease can buy a put option to sell the 

asset at a fixed price at a later date, rather than sell the asset now. Here the opening 

transaction is to buy (buy to open) a put option contract. The long party is buying the 

right to sell the contract size of the underlying asset at the exercise price at any time 

(American style assumed) before the expiry date. The market price of a put option will 

increase (decrease) when the price of the underlying share decreases (increases). 

Having opened a long put contract, there are three possible closing 

transactions: 

• Exercise the option, i.e., sell the contract size of the underlying asset at the 

exercise price. 

• Opening a short put contract with the same exercise price and expiry date as 

the original long one. The option exchange considers the position to be closed 

with a long and a short contract, and the transaction is closed. 

• Do Nothing. The option will be worthless after the expiry date, the loss of the 

long party is the option premium paid to open the contract. 

Denote 𝑃𝑃 = 𝑃𝑃(𝑆𝑆, 𝑡𝑡) as the market price of a call option with underlying asset 

valuing 𝑆𝑆 = 𝑆𝑆(𝑡𝑡) at time 𝑡𝑡. The put price increases as the underlying value decreases. 



 

13 
 

The option price 𝑃𝑃 ≥ 0 and 𝑃𝑃 ≤ 𝐸𝐸 because the put option is most valuable when asset 

is worthless, and investors can sell put option for 𝐸𝐸. The value of an option is the profit 

on the closing transaction. Denote the strike price as 𝐸𝐸. When 𝑆𝑆 ≤ 𝐸𝐸, the payoff of a 

long put holder is 𝐸𝐸 − 𝑆𝑆, by exercise the option receiving 𝐸𝐸, and buy the asset at price 

𝑆𝑆. When 𝑆𝑆 > 𝐸𝐸, the option is worthless and should not exercise. Therefore, the market 

price of the call option at expiry is  

P(S, T) = max(E − S, 0).                    (3.2) 

The net profit is the premium that long party paid up front equals to 𝑃𝑃(𝑆𝑆,𝑇𝑇) −

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸 − 𝑆𝑆, 0) −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . Thus, in order to profit from a long put 

contract, the underlying asset price must fall. Figure 3. 4 illustrates the payoff and 

profit on a long put option at expiration.  

[Insert Figure 3. 4 about here] 

A trader who expects an asset’s price to increase can sell, or “write”, a put 

option. The party who opens a short put contract is on the opposite side of the option 

transaction to the long put party, the opening transaction is to sell (sell to open) a put 

option contract. The short party receives the premium paid by the long party and in 

return is obliged to buy the contract size of the underlying asset at the exercise price, 

if called upon to do so by the long party. 

Having opened a short put contract, there are three possible closing 

transactions, as follows: 

• Be exercised against, i.e., the long party exercises the right to sell, while the 

short party is obliged to buy at the exercise price. 

• Buy a long contract with the same exercise price and expiry date as the original 

short one. The option exchange considers the position to be closed with a long 

and a short contract, and the closing transaction is a buy to close. 

• Do nothing. The short party keeps the option premium received which is the 

ideal situation for the short party, if the long party does not exercise his/her 

rights. 

The payoffs at expiry date 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸 − 𝑆𝑆, 0), profit equals to 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸 −

𝑆𝑆, 0). Thus, to profit from a short put contract, the underlying asset price must not fall, 

and the potential loss is unlimited.  Figure 3. 5 illustrates the payoff and profit on a 

short put option at expiration.  

[Insert Figure 3. 5 about here] 
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3.3.3 Put-Call Parity 

Assume that the underlying share X pays no dividends. At time 𝑡𝑡, investor A 

buys one share X costing 𝑆𝑆 =  𝑆𝑆(𝑡𝑡). At the same time, the investor writes one European 

style call option for underlying share with exercise price 𝐸𝐸, expiry time 𝑇𝑇. The income 

from the call option is 𝐶𝐶𝑒𝑒(𝑆𝑆, 𝑡𝑡). The total expenditure by investor A at time 𝑡𝑡 is 𝑆𝑆 −

 𝐶𝐶𝑒𝑒(𝑆𝑆, 𝑡𝑡). Assume that investor B invests 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) at time 𝑡𝑡 in the risk-free market, e.g., 

bank, and earns continuously compounded interest rate 𝑟𝑟. In addition, the investor 

writes one European style put option on share X with exercise price 𝐸𝐸 and expiry time 

𝑇𝑇. The income from the put option is 𝑃𝑃𝑒𝑒(𝑆𝑆, 𝑡𝑡). The total expenditure by the investor B 

at time t is 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)  −  𝑃𝑃𝑒𝑒(𝑆𝑆, 𝑡𝑡). 

The investors hold both investments until expiry time 𝑇𝑇, with 𝑆𝑆𝑇𝑇 = 𝑆𝑆(𝑇𝑇). The 

final value of investor A is 𝑆𝑆𝑇𝑇 − 𝐶𝐶𝑒𝑒(𝑆𝑆𝑇𝑇 ,𝑇𝑇) = 𝑆𝑆𝑇𝑇 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑇𝑇 − 𝐸𝐸, 0), and the final value for 

investor B is 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) − 𝑃𝑃𝑒𝑒(𝑆𝑆𝑇𝑇 , 𝑡𝑡) = 𝐸𝐸 −𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸 − 𝑆𝑆𝑇𝑇 , 0) . When 𝑆𝑆𝑇𝑇 ≤ 𝐸𝐸 , both 

investors have value equals to 𝑆𝑆𝑇𝑇. However, if 𝑆𝑆𝑇𝑇 > 𝐸𝐸, the value is 𝐸𝐸. That is, that the 

final value of investors A and B are identical, and these values are guaranteed and risk-

free. If two risk-free investments have the same final value at time 𝑇𝑇, then the no-

arbitrage principal implies and they must have the same value at all times 𝑡𝑡 <  𝑇𝑇. 

Otherwise, the investors can benefit from an arbitrage opportunity arising from selling 

the initially more expensive investment short, and buying the cheaper one. Thus, the 

expenditure at time 𝑡𝑡  are the same, 𝑆𝑆 −  𝐶𝐶𝑒𝑒(𝑆𝑆, 𝑡𝑡) = 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)  −  𝑃𝑃𝑒𝑒(𝑆𝑆, 𝑡𝑡) , or, as it is 

normally written, 

S + Pe(S, t) = Ee−r(T−t) + Ce(S, t).                           (3.3) 

This relationship between the prices of European style call and put option prices 

is known as the law of put-call parity, and the relationship holds only in the case where 

the underlying share does not pay a dividend. 

From the law of put-call parity, if 𝑃𝑃𝑒𝑒(S, t)  ≥ 0 , it follows that 𝐶𝐶𝑒𝑒(𝑆𝑆, 𝑡𝑡) ≥ 𝑆𝑆 −

𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) . Furthermore, since 𝐶𝐶𝑒𝑒(𝑆𝑆, 𝑡𝑡)  ≥ 0 , then  Ce(S, t) ≥ max�S − Ee−r(T−t), 0�. 

Similarly, Pe(S, t) ≥ max�Ee−r(T−t) − S, 0�.  

3.3.4 Speculation 

A hedge is a transaction undertaken by an investor to protect an exposure from 

adverse price movements. A speculator may undertake a similar transaction either to 

partially hedge or simply execute a derivative transaction without have an underlying 

exposure. In this sense, both a partial hedger and what we call a true speculator may 
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be betting on future price movements of the underlying asset. Partial hedging is 

common among firms. Indeed, there is some agreement in the literature that partial 

hedging is speculative (Géczy et al., 2007). Overtime, the idea of firms speculating on 

the direction of financial prices to hedge exposures has become more common in risk 

management settings. Indeed, the U.S. participants in the Jilling (1978) study were 

adamant that they do not speculate.4 However, more recently, Géczy et al. (2007) 

report that 40% of U.S. firms use derivatives for speculative purposes in the sense that 

they take a market view; at least 7% of them do so frequently. The finding that firms 

with exposure speculate has been reported for other countries (Hakkarainen et al., 

1998). Therefore, we consider speculation as an appropriate context to evaluate the 

role of option pricing. 

For options, investors gain profit when the underlying asset price falls and they 

hold a short call or a long put contract. Both option types may be used to hedge against 

falling prices of an asset. Similarly, investors gain profit when the underlying asset 

price rises and they hold a long call or a short put contract. These option types may be 

used to hedge against rising asset prices. More details are discussed in Section 3.7. 

A speculator may have a view about future price movement of the underlying 

asset. He/she may then invest in an option without having any underlying asset to 

protect. The profit/loss characteristics of the basic option types may be: long call, short 

call, long put and short put. 

Suppose the speculator is long on a call contract at time 𝑡𝑡0 with initial cost of 

α = C(S0, t0)  per option. At time period (𝑡𝑡0,𝑇𝑇] , the profit per option from 

trading the contract is C(S, t) − α  and expiry profit per option is 

max(S − E, 0) − α.                                           (3.4) 

The short party's profit is the long party's loss. Thus, opening a short call 

contract produces an initial income of α per option at time 𝑡𝑡0, the subsequent profit 

from trading the contract is α − 𝐶𝐶(𝑆𝑆, 𝑡𝑡) and the expiry profit per option is 

α − max(S − E, 0).                                            (3.5) 

                                            
4 Jilling (1978, p. 144) indicates that: "... more than 93 per cent of the respondents 

point out that they are not in business to "speculate" on foreign exchange movements 

...". 
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Suppose the speculator opens a long put option at time 𝑡𝑡0 with initial cost of β =

P(S0, t0)  per option. At time period (𝑡𝑡0,𝑇𝑇] , the profit per option from trading the 

contract is P(S, t) − β and at expiry time, the profit per option is 

max(E − S, 0) − β.                                              (3.6) 

Again, the short party's profit is the long party's loss. Thus, opening a short put 

contract produces an initial income of 𝛽𝛽 per option at time 𝑡𝑡0, the subsequent profit 

from trading the contract is 𝛽𝛽 − 𝑃𝑃(𝑆𝑆, 𝑡𝑡) and the expiry profit per option is 

β − max(E − S, 0).                                              (3.7) 

Many more interesting and complex speculative strategies can be designed to 

take advantage of various underlying price behaviour, such as long strangles, short 

strangles, long straddles, short straddles, butterflies, condors, ratio spreads, calendar 

spreads. The speculator can sustain consumption level by bearing more risks, adding 

liquidity to the market, and therefore promote an efficient market.   

3.4 Option pricing models 

Previous sections only give explicit formulae for the prices of call and put 

options at expiry time 𝑡𝑡 =  𝑇𝑇 , when 𝑆𝑆 = 𝑆𝑆(𝑇𝑇)  and C = max(S − E, 0) , P = max(E −

S, 0). At the present time 𝑡𝑡 , where 𝑡𝑡 <  𝑇𝑇 , the future expiry price 𝑆𝑆 =  𝑆𝑆(𝑇𝑇)  of the 

underlying asset is unknown and generally unpredictable. Therefore, to evaluate the 

current value of options, the first task is to model the asset price process.  

The Figure 3. 6 shows the FTSE100 daily index covering 20205. The FTSE100 

index has a sudden drop in March due to the COVID19 pandemic and a recovery 

afterwards. The detailed day-to-day behaviour is highly erratic and unpredictable. 

Financial prices of major exchanges exhibit random day-to-day price changes, 

especially at high frequency. Thus, some type of statistical model involving random 

day-to-day price movements would be appropriate for modelling the behaviour of this 

type of asset. 

[Insert Figure 3. 6 about here] 

Suppose that underlying asset price 𝑆𝑆(𝑇𝑇)  process is a random variable with 

probability density function 𝑓𝑓(∙) . In particular, since asset prices are essentially 

positive, ℙ(0 ≤ S(T) ≤ ∞) = ∫ f(x)dx∞

0 = 1. In general, if 𝑢𝑢 = 𝑢𝑢�𝑆𝑆(𝑇𝑇)� is any function 

                                            
5 Chart from www.londonstockexchange.com/ 
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of the expiry asset price 𝑆𝑆(𝑇𝑇), then the expected value of 𝑢𝑢 is 𝔼𝔼�u(∙)� ≔ ∫ u(x)f(x)dx∞

0 . 

This means that at expiry 𝑡𝑡 =  𝑇𝑇, the call option is equals to 

C�(T) = 𝔼𝔼�C(∙, T)� = � C(x, T)f(x)dx
∞

0
  

= � max(x − E, 0)f(x)dx
∞

0
                                                                                            

              = ∫ (x − E)f(x)dx∞

E   . The put option 

      P�(T) = 𝔼𝔼�P(∙, T)� = � P(x, T)f(x)dx
∞

0
                                                                        

                = � max(E − x, 0)f(x)dx
∞

0
 

                = � (E − x)f(x)dx
E

0
. 

Denote the present values by C �(𝑆𝑆, 𝑡𝑡)  and 𝑃𝑃 � (𝑆𝑆, 𝑡𝑡).  Therefore, the theoretical 

formulae of present values at time 𝑡𝑡 for option prices are 

          C �(S, t) = e−r(T−t)C�(T) = e−r(T−t) � (x − E)f(x)dx
∞

E
                                               (3.8) 

              P �(S, t) = e−r(T−t)P�(T) = e−r(T−t) ∫ (E − x)f(x)dxE
0 .                             (3.9) 

This section addresses the following three questions: 

1. What is a reasonable assumption to make about the probability density 𝑓𝑓(∙) of 

an asset price 𝑆𝑆(𝑇𝑇) at the option expiry time 𝑇𝑇? 

2. For a given 𝑓𝑓(∙), how to evaluate the integrals? 

3. Are the resulting formulae consistent with the no-arbitrage principle? 

3.4.1 Random walks and Brownian motion 

A random walk describes the process by which randomly moving objects 

wander away from where they started. The term random walk was first introduced by 

Karl Pearson (Pearson, 1905) and is often used to model shares prices in financial 

economics. The simplest random walk example is the 1-dimentional random walk on 

the integer number line, which starts at origin and moves forward or backwards at 

each step with equal probability. This moving patten can be used to describe the 

behaviour of a financial index over the time, similar to Figure 3.6. To compute a 

random walk model, denote the modelling value as 𝑊𝑊 =  𝑊𝑊(𝑡𝑡) over the time interval 

[𝑡𝑡0,𝑇𝑇]. Suppose 𝑊𝑊(𝑡𝑡0) = 𝑊𝑊0 has a known value at some initial time 𝑡𝑡0 and divide [𝑡𝑡0,𝑇𝑇] 
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into 𝑛𝑛 equal sub-intervals of width δt = T−t0
n

 . It is easy to get that t1 = t0 + δt, t2 = t0 +

2δt, … , tn = t0 + nδt = T.  

Suppose that at time 𝑡𝑡 =  𝑡𝑡1 , 𝑊𝑊1 = 𝑊𝑊(𝑡𝑡1) = 𝑊𝑊0 + 𝛿𝛿𝑊𝑊0  where the increment 

𝛿𝛿𝑊𝑊0 is chosen at random from a normal distribution. Similarly,   

W2 = W(t2) = W1 + δW1                                                                                                

W3 = W(t3) = W2 + δW2  

… 

             Wn = W(tn) = Wn−1 + δWn−1  

where the increments 𝛿𝛿𝑊𝑊1, 𝛿𝛿𝑊𝑊2, . . . , 𝛿𝛿𝑊𝑊𝑛𝑛−1 are chosen independently at random from 

the same normal distribution as 𝛿𝛿𝑊𝑊0 . The equations used to compute 

𝑊𝑊1,𝑊𝑊2, . . . ,𝑊𝑊𝑛𝑛 are known as a random walk model. It is easy to show that W(T) = W0 +

∑ δWi
n−1
i=0 .  

Theorem 3. 1 

Under the assumptions above, 𝑊𝑊(𝑇𝑇) is normally distributed, with expect value 

𝑊𝑊0 + 𝑛𝑛𝔼𝔼(𝛿𝛿𝛿𝛿) and variance 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛿𝛿𝛿𝛿). 

Proof: 

Since the sequence of random numbers 𝛿𝛿𝑊𝑊0, 𝛿𝛿𝑊𝑊1, 𝛿𝛿𝑊𝑊2, . . . , 𝛿𝛿𝑊𝑊𝑛𝑛−1  are 

independent and normally distributed, ∑ 𝛿𝛿𝑊𝑊𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0 , and hence 𝑊𝑊(𝑇𝑇)  are normally 

distribution random variables. The expected value of the random variable is equal to  

 𝔼𝔼�𝑊𝑊(𝑇𝑇)� = 𝔼𝔼�𝑊𝑊0 + �𝛿𝛿𝑊𝑊𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

� 

= 𝑊𝑊0 + �𝔼𝔼(𝛿𝛿𝑊𝑊𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

) 

= 𝑊𝑊0 + �𝔼𝔼(𝛿𝛿𝛿𝛿
𝑛𝑛−1

𝑖𝑖=0

)                                                                                                              

              = 𝑊𝑊0 + 𝑛𝑛𝑛𝑛(𝛿𝛿𝛿𝛿)  

with variance 

 Var�W(T)� = Var�W0 + �δWi

n−1

i=0

� 

= � Var(δWi)
n−1

i=0
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= � Var(δW)
n−1

i=0

                                                                                                                  

              =  nVar(δW)  

which completes the proof. 

While simple random walk is a discrete space (integers) and time model, 

Brownian Motion is a continuous space time model, which is motivated by the simple 

random walk. The Brownian motion is a mathematical model used to describe the 

random fluctuations of particles. It was named after the Scottish botanist Robert 

Brown (1773-1858) who first discovered in 1827 that chaotic movements of pollen are 

suspended in water. The Brownian motion was wildly used by physicists to describe 

the diffusion movements of particles, in particular, by Albert Einstein (Einstein, 1905). 

Louis Bachelier, the father of modern option pricing theory, use the Brownian motion 

for the first time to pricing of options in his PhD thesis (Bachelier, 1900). In 

mathematics, the Brownian motion is also known as the Wiener process in honour of 

American mathematician Norbert Wiener (1894-1964), which is a real value 

continuous-time stochastic process. 

The stochastic process 𝑊𝑊 is called Wiener process if the following conditions 

hold: 

1. 𝑊𝑊(𝑡𝑡0) = 0. 

2. 𝑊𝑊 has stationary, independent increments: for every 𝑡𝑡 > 0, future increments 

𝑊𝑊(𝑡𝑡 + 𝑠𝑠) −𝑊𝑊(𝑡𝑡) are independent of the past. 

3. 𝑊𝑊  has Gaussian increments: increment 𝑊𝑊(𝑡𝑡 + 𝑠𝑠) −𝑊𝑊(𝑡𝑡)  is normally 

distributed with mean 0 and variance 𝑠𝑠. 

4. 𝑊𝑊 has continuous paths: the function 𝑊𝑊(𝑡𝑡) is continuous in 𝑡𝑡. 

The standardized Wiener process, usually denoted by 𝑋𝑋, is the special Wiener 

process satisfies 

δX = √δt𝒩𝒩(0,1)                                          (3.10) 

with solution 

X(T) = �T − t0𝒩𝒩(0,1).                                            (3.11) 

Define 𝒩𝒩 to be the cumulative distribution function for the standard normal 

probability density 𝒩𝒩(0,1) with mean 0 and variance 1, then 

𝒩𝒩(𝑥𝑥) = ℙ(𝑧𝑧 ≤ 𝑥𝑥) = 1
√2𝜋𝜋

∫ 𝑒𝑒−𝑡𝑡2/2𝑥𝑥
−∞ 𝑑𝑑𝑑𝑑                                          (3.12) 

with its derivative 
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𝒩𝒩′(x) = e−x
2/2

√2π
 .                                             (3.13) 

And hence the general Wiener process may be written as 

𝛿𝛿𝛿𝛿 = 𝜇𝜇𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎𝜎𝜎                                             (3.14) 

with solution 

W(T) = W0 + μ(T − t0) + σX(T).                                          (3.15) 

3.4.2 Binomial model 

The binomial option pricing model uses an iterative procedure. Assuming in 

any one time period, the underlying asset value can move to one of two possible prices, 

up or down. Figure 3. 7 shows the general formulation of a two-period stock price path 

process, which follows a Binomial model. For a multi-periods model, 𝑆𝑆(𝑇𝑇) follows a 

binomial distribution, which is a simple 1-dimentional random walk. The initial stock 

price at 𝑡𝑡 = 0 equals to 𝑆𝑆0, at the first time period 𝑡𝑡 = 1, price moves up to 𝑢𝑢𝑆𝑆0 with 

probability 𝑝𝑝 and moves down to 𝑑𝑑𝑆𝑆0 with probability 1 − 𝑝𝑝. When 𝑡𝑡 ≥ 2, stock price 

moves up by 𝑢𝑢 with probability 𝑝𝑝 and moves down by 𝑑𝑑 with probability 1 − 𝑝𝑝. One 

can easily observe the stock price path with combinations of ‘up, down’ and ‘down, up’ 

leads to the same final price 𝑢𝑢𝑢𝑢𝑆𝑆0 with probability 2𝑝𝑝(1 − 𝑝𝑝). 

[Insert Figure 3. 7 about here] 

The major advantage of the binomial option pricing model is that it is 

mathematically simple, when calculating the option value along the range of possible 

paths for each period. The basic method of valuing the binomial option model is by 

creating a replicating portfolio until the option expires. Assume that an investor 

borrows capital 𝐵𝐵  from a bank at a rate of 𝜌𝜌  per period, to buy Δ0  units of the 

underlying asset at 𝑡𝑡 = 0, in order to replicate the payoffs of a call option. Note that 

𝑑𝑑 < (1 + 𝜌𝜌) < 𝑢𝑢 to ensure no arbitrage opportunity. At 𝑡𝑡 = 1,  𝐶𝐶𝑢𝑢 is the value of the call 

option if the underlying asset increases in value to 𝑢𝑢𝑆𝑆0. 𝐶𝐶𝑑𝑑 is the value of the call option 

if the underlying asset’s value decreases to 𝑑𝑑𝑆𝑆0. The payoffs of a call option equal to 

corresponding replicating portfolio 

          Cu = Δ0uS0 − B(1 + ρ)                                                                                                              

             Cd = Δ0dS0 − B(1 + ρ).   

Solve the equations and can obtain that 

            Δ0 =
Cu − Cd

uS0 − dS0
                                                                                                                   (3.16) 
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            B = uCd−dCu
(1+ρ)(u−d) .                                                                                                         (3.17)     

                              (3.9) 

The valuation for a multiperiod process can be proceed iteratively from the final 

period to the current time 𝑡𝑡 = 0, composed of delta shares of the underlying asset, 

ignoring risk-free borrowing. So, the option value at current time is 

C �(S, 0) = C = Δ0S0 + B 

=
Cu − Cd

uS0 − dS0
S0 +

uCd − dCu
(1 + ρ)(u − d) 

=
1

(1 + ρ) �
(1 + ρ) − d

u − d
Cu +

u − (1 + ρ)
u − d

Cd�                                                      

              = 1
(1+ρ)

[qCu + (1 − q)Cd]                                                                       (3.18) 

where 𝑞𝑞 = (1+𝜌𝜌)−𝑑𝑑
𝑢𝑢−𝑑𝑑

 is the probability that the stock goes up to 𝐶𝐶𝑢𝑢 under the risk-neutral 

assumption. 

For illustrative purposes, consider a call option with strike price 100 and 

expiration two time periods ahead. The current value of the underlying stock price is 

100, for each period. The price has 50% chance of moving up by 10% and 50% chance 

of moving down by 10%. That is, 𝑢𝑢 = 1.1,𝑑𝑑 = 0.9,  shown in Figure 3. 8. Assume 

interest rate is 𝜌𝜌=5%, at the end of the second period. The call option will only be 

exercised if the underlying stock price increases in both periods with value 

21(= 121 − 100). 

[Insert Figure 3. 8 about here] 

Consider the top end nodes when 𝑆𝑆1 = 110 at 𝑡𝑡 = 1. The replicating portfolios 

with pricing up or down at 𝑡𝑡 = 2 are  (121 × Δ) − 1.05 × B = 21  and (99 × Δ) −

1.05 × B = 0. 

Solving the equations, the units of the underlying asset are  Δ = 21−0
121−99

= 0.955  

and  B = − 90 . 

If the stock price is 110 at 𝑡𝑡 = 1, borrowing 90 capital from the risk-free market 

and buying on 0.955 share of the stock will give the same cash flows as buying the call. 

The value of the call option at 𝑡𝑡 = 1 is 110 × Δ + B = 15.  

The other leg of the tree is: 



 

22 
 

Δ = 0−0
99−81

= 0   with 𝐵𝐵 = 0.  At 𝑡𝑡 = 1  if the stock price is 90, then the call is 

worthless. Moving back to the one period earlier and create a replicating portfolio at 

𝑡𝑡 = 0 are 

(110 × Δ) − 1.05 × B = 15                                                                                              

             (90 × Δ) − 1.05 × B = 0.     

Solving the equations generates Δ = 0.75 and 𝐵𝐵 = − 64.286. The value of the 

call option at 𝑡𝑡 = 0 equals to 100 × Δ + B = 10.714 .  

The binomial model provides insight into numerical methods to determine 

option value under the assumption of no-arbitrage principle with discreate time 

model. The value of an option reflects expectations at a future date and is determined 

by the current price of the asset deriving from the value of the replicating portfolio. If 

the replicate portfolio costs less than the corresponding call option in the market, an 

investor could sell the call and buy the replicating portfolio at the same time, with a 

guaranteed risk-free profit. A rational market will move accordingly, and call option 

will reduce to the level of the replicating portfolio, to be consistent with the no-

arbitrage principle. The value of a call option increases as the time to maturity, asset 

price volatility (𝑢𝑢 and 𝑑𝑑), and interest rate increase. 

Although the methodology of evaluating option pricing with binomial model 

avoid the integral calculation and is more intuitive, it requires a large number of inputs 

to calculate the expected future prices recursively at each node, which means it is 

especially computational expensive in the multiperiod models. Assume that as the 

time periods in the binomial model get shorter, the price changes become smaller and 

infinitesimally approaching zero. The option pricing models could be evaluated while 

underlying asset with a continuous price process. The chapter will not discuss the case 

under the assumption of price changes staying large with shorter period, i.e., a jump 

price process. 

3.4.3 Black-Scholes Model 

The Black-Scholes and Black-Scholes-Merton model provide a closed form-

theoretical estimate of the value of a option using a small number of inputs, (Black and 

Scholes, 1973; Merton, 1973). Merton and Scholes received the 1997 Nobel Memorial 

Prize in Economic Sciences for their breakthrough work that separates the option from 

the risk of the underlying security using the risk neutral dynamic. Black–Scholes 

model underpin similar assumptions as the binomial model, while binomial model 
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assumes discrete time process and the underlying approximately follows a binomial 

distribution. Black–Scholes model assumes a continuous process underlying, while 

the binomial distribution approaches the lognormal distribution. The value estimated 

from binomial model converges on the Black–Scholes formula value as the number of 

periods 𝑛𝑛  increases and goes to infinity. The most significant contribution of the 

Black–Scholes pricing is the formula depends only on the market observable inputs.  

3.4.3.1 Stochastic differential equations 
Recall that in ordinary calculus, for a differentiable function 𝑊𝑊 = 𝑓𝑓(𝑡𝑡), there is 

no difference between a differential and an increment for the independent variable, 

i.e., 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿. However, the differential of the dependent variable, i.e., 𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑑𝑑, is 

not equal to the increment for 𝑊𝑊 

 δW = f(t + δt) − f(t)  

= f′(t)δt +
1
2

f′′(η)(δt)2                                                                                               

              = dW + 𝒪𝒪(δt2)  

where 𝒪𝒪(𝛿𝛿𝑡𝑡2) is a term which is no greater than the multiple of |𝛿𝛿𝑡𝑡|2. However, 

𝑑𝑑𝑑𝑑 ≈ 𝛿𝛿𝛿𝛿 if 𝛿𝛿𝛿𝛿 is infinitesimally small. In the case where increments and differentials 

are stochastic and 𝛿𝛿𝛿𝛿 is infinitesimally small, define 

dt = δt, dX = δX, dW = δW                                           (3.19) 

where 𝑋𝑋  denote the standardized Wiener process. For more discussion of 

stochastic calculus in an economic context, see Merton (1975), and Fischer (1975). 

Denote 𝑆𝑆 =  𝑆𝑆(𝑡𝑡) as the value of an asset at time 𝑡𝑡, 𝑑𝑑𝑑𝑑 as the change in value 

over the next infinitesimal time interval 𝑑𝑑𝑑𝑑, and 𝑑𝑑𝑑𝑑/𝑆𝑆 is the corresponding relative 

change in value over this time interval 𝑑𝑑𝑑𝑑. Relative change 𝑑𝑑𝑑𝑑/𝑆𝑆 is a financially more 

meaningful quantity to model than the absolute change 𝑑𝑑𝑑𝑑 and suppose asset prices 

satisfy the following stochastic differential equation 
dS
S

= μdt + σdX,   S(t0) = S0                                         (3.20) 

where 𝜇𝜇  and 𝜎𝜎  are constants. If 𝑆𝑆 satisfies the above stochastic differential 

equation, then it is said to follow a geometric Brownian motion. The parameters 𝜇𝜇 and 

𝜎𝜎 are usually known as the drift and the volatility of the asset price respectively. 

To solve the above equation and determine the probability density for the 

random variable 𝑆𝑆, the first step is to integrate both sides over the interval [𝑡𝑡0,𝑇𝑇] and 

obtain 
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∫ 𝑑𝑑𝑑𝑑
𝑆𝑆

𝑇𝑇
𝑡𝑡0

= 𝜇𝜇(𝑇𝑇 − 𝑡𝑡0) + 𝜎𝜎𝜎𝜎(𝑇𝑇).  

It is tempting to suppose that 

d�ln(S)�
dS

=
1
S

                                                                                                             (3.21) 

in which case gives the result of the integral 

∫ dS
S

T
t0

= ∫ d�ln(S)� =T
t0

ln(S)|t0
T = ln �S(T)

S0
�.  

However, for a stochastic variable, 𝑆𝑆  the above results do not hold. In 

particular, for a stochastic variable 𝑆𝑆, d�ln(S)� ≠ dS
S

 .  

One should apply Itô's lemma (Itô, 1944; 1951) to solve the stochastic 

differential equation. Itô's lemma is the chain rule for stochastic calculus and is an 

identity used to calculate the differential of a function that depends on a stochastic 

variable (a stochastic process). Assume that the asset price variable 𝑆𝑆 is described by 

the stochastic differential equation 

dS = A(S, t)dX + B(S, t)dt.                                          (3.22) 

To calculate the differential of a function 

U = f(S, t)                                               (3.23) 

where 𝑓𝑓(∙) is some given function, 𝑋𝑋 is the standard Wiener process and 𝐴𝐴,𝐵𝐵 are given 

functions. Ito's lemma states how 𝑑𝑑𝑑𝑑  is related to 𝑑𝑑𝑑𝑑  and 𝑑𝑑𝑑𝑑 . In other words, it 

determined the stochastic differential equation that is satisfied by 𝑈𝑈.  

Lemma 3. 1 

Itô's lemma states that  

dU = ∂U
∂S

dS + ∂U
∂t

dt + 1
2
∂2U
∂S2

A2dt.                                          (3.24) 

The first two terms on the right-hand side of Lemma 3. 1 are just what one 

would expect from ordinary non-stochastic calculus. The third term is new and arises 

only when 𝑆𝑆 is a stochastic variable. 𝑆𝑆, therefore satisfies an ordinary non-stochastic 

differential equation if and only if 𝐴𝐴 ≡ 0. Substituting 𝑑𝑑𝑑𝑑  and obtain the stochastic 

differential equation that 𝑈𝑈 satisfies as 

dU = ∂U
∂S

AdX + �∂U
∂S

B + ∂U
∂t

+ 1
2
∂2U
∂S2

A2� dt.                       (3.25) 

This solution plays a key role in the Black-Scholes option price derivation. This 

section provides a sketch of proof by expanding a Taylor series without getting into too 

much of details of the limit of a sequence of random variables. 
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Proof:  

The Taylor expansion gives 

δU = f(S + dS, t + dt) − f(S, t)                                                                                       

= fSdS + ftdt + 1
2

(fSSdS2 + 2fStdSdt + fttdt2 + ⋯ )                    (3.26) 

where subscripts denote partial differentiation with respect to 𝑆𝑆  or 𝑡𝑡 . As 𝑑𝑑𝑑𝑑 → 0 so 

𝛿𝛿𝛿𝛿 → 𝑑𝑑𝑑𝑑; that is, 𝑑𝑑𝑑𝑑 is the dominant contribution to 𝛿𝛿𝛿𝛿 when 𝑑𝑑𝑑𝑑 is small. Define 𝑑𝑑𝑑𝑑 

informally as the sum of dominant random term with zero mean in 𝛿𝛿𝛿𝛿 as 𝑑𝑑𝑑𝑑 → 0 and 

dominant non-random term in 𝛿𝛿𝛿𝛿 as 𝑑𝑑𝑑𝑑 → 0 which have both a random and a non-

random component. Then, exam each term in the Taylor expansion of 𝛿𝛿𝛿𝛿 

1. Substitute 𝑑𝑑𝑑𝑑 into the first two terms  

fSdS + ftdt = fS(AdX + Bdt) + ftdt  

To simplify the notation, dX = 𝒩𝒩(0, dt) = √dt𝒩𝒩(0,1) = z√dt , where z  is a 

standardized normal random variable, with 𝔼𝔼(z) = 0 and 𝔼𝔼(z2) = 1. Therefore, 

dS = Az√dt + Bdt, and  

fSdS + ftdt = fSAz√dt + (BfS + ft)dt.  

Since 𝔼𝔼(𝑧𝑧) = 0, 𝑓𝑓𝑆𝑆𝐴𝐴𝐴𝐴√𝑑𝑑𝑑𝑑 is a random variable with zero mean and (𝐵𝐵𝑓𝑓𝑆𝑆 + 𝑓𝑓𝑡𝑡)𝑑𝑑𝑑𝑑 

is a non-random term. 

2. The third term is 

fSSdS2 = fSS�Az√dt + Bdt�
2

= fSS�A2z2dt + 2ABz(dt)3/2 + B2dt2� 

As dt → 0 , terms with higher order dt  negligible. Hence fSSdS2 ≈ fSSA2z2dt . 

This random term has a non-zero expected value 𝔼𝔼(fSSdS2) ≈ fSSA2𝔼𝔼(z2)dt =

fSSA2𝑑𝑑𝑑𝑑. 

3. The fourth term is 

             2fStdSdt = 2fSt�Az√dt + Bdt�dt = 2fSt�Az(dt)3/2 + B2dt2�  

 is also negligible as 𝑑𝑑𝑑𝑑 → 0. 

4. The fifth term on the right Taylor expansion 𝛿𝛿𝛿𝛿, 𝑓𝑓𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡2 negligible as 𝑑𝑑𝑑𝑑 → 0. 

Hence ignoring the negligible terms, as 𝑑𝑑𝑑𝑑 → 0, 

δU ≈ fSdS + ftdt + 1
2

fSSA2dt  

That is 

dU = fSdS + ftdt +
1
2

fSSA2dt                                                                                            
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             = ∂U
∂S

(AdX + Bdt) + ∂U
∂t

dt + 1
2
∂2U
∂S2

A2dt  

which completes the proof. 

3.4.3.2 Log-normal distribution 
Consider the question in the previous subsection where 𝑆𝑆 follows the geometric 

Brownian motion. So, 𝐴𝐴(𝑆𝑆, 𝑡𝑡) = 𝜎𝜎𝜎𝜎 and 𝐵𝐵(𝑆𝑆, 𝑡𝑡) = 𝜇𝜇𝜇𝜇. Assume the function 𝑈𝑈 = 𝑙𝑙𝑙𝑙(S), 

and easily get 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝑆𝑆

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑆𝑆2

= − 1
𝑆𝑆2

  

and hence Itô's lemma yields 

d�ln(S)� ≡ dU =
dS
S

+ 0 +
1
2
�−

1
S2
� (σS)2dt                                                               

           = dS
S
− σ2

2
dt  

which provides the correct expression for 𝑑𝑑�𝑙𝑙𝑙𝑙(𝑆𝑆)�  in the case where S follows a 

geometric random walk. Taking the integration gives 

    �
dS
S

T

t0
= � d�ln(S)�

T

t0
+
σ2

2
� dt
T

t0
     

= �ln(S)�
t0

T
+
σ2

2
(T − t0)                                                                            

              = ln �S(T)
S0
� + σ2

2
(T − t0).  

Therefore,  

∫ dS
S

T
t0

= μ(T− t0) + σX(T) = ln �S(T)
S0
� + σ2

2
(T − t0)  

rearranging and we get 

ln�
S(T)

S0
� = �μ −

σ2

2
� (T − t0) + σX(T)                                                                          

          ln�S(T)� = ln(S0) + �μ − σ2

2
� (T − t0) + σX(T)   

where the standardised Winer process 𝑋𝑋(𝑇𝑇) = �𝑇𝑇 − 𝑡𝑡0𝒩𝒩(0,1). Therefore, 𝑙𝑙𝑙𝑙�𝑆𝑆(𝑇𝑇)� is 

normally distributed with 

𝔼𝔼�ln�S(T)�� = ln(S0) + �μ − σ2

2
� (T − t0)                         (3.27) 

and 

Var�ln�S(T)�� = σ2(T − t0).                           (3.28) 

If the logarithm of a random variable is normally distributed, then we say that 

the variable itself is log-normally distributed. Equivalently, whereas the probability 
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density function for 𝑙𝑙𝑙𝑙�𝑆𝑆(𝑇𝑇)� is given by the normal distribution. Assume that 𝑆𝑆 = 𝑒𝑒𝑍𝑍, 

then denote 

Z~𝒩𝒩(μ,σ2) ⟹ S = eZ~ℒ𝒩𝒩(μ,σ2).  

Therefore 

        Z = ln(S0) + �μ −
σ2

2
� (T − t0)

+ σX(T)~𝒩𝒩�ln(S0) + �μ −
σ2

2
� (T − t0),σ2(T − t0)� 

              S = eZ~ℒ𝒩𝒩 �ln(S0) + �μ − σ2

2
� (T − t0),σ2(T − t0)�.  

The probability density function of 𝑍𝑍~𝒩𝒩(𝜇𝜇,𝜎𝜎2) is 𝑓𝑓𝑍𝑍(𝑧𝑧) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
(𝑧𝑧−𝜇𝜇)2

2𝜎𝜎2 , and the 

probability density function of the log-normal distribution ℒ𝒩𝒩 �𝑙𝑙𝑙𝑙(𝑆𝑆0) + �𝜇𝜇 − σ2

2
� (𝑇𝑇 −

𝑡𝑡0),𝜎𝜎2(𝑇𝑇 − 𝑡𝑡0)�, given 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙𝑙𝑙 = 1

𝑆𝑆
, is 

fS(S) = fZ(lnS) �dz
dS
� = 1

Sσ�2π(T−t0)
e− 

�ln� SS0
�−�μ−σ

2
2 �(T−t0)�

2
 

2σ2(T−t0)  .
               (3.29) 

In finance, a reasonable assumption regarding the underlying asset price is that 𝑆𝑆(𝑇𝑇) 

follows a log-normal distribution. Given that 𝔼𝔼[𝑒𝑒𝑍𝑍] = 𝑒𝑒𝔼𝔼[𝑍𝑍]+12𝑉𝑉𝑉𝑉𝑉𝑉[𝑍𝑍], 𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆] = 𝔼𝔼[𝑆𝑆2] −

𝔼𝔼[𝑆𝑆]2 = 𝔼𝔼[𝑒𝑒2𝑍𝑍]− 𝔼𝔼[𝑒𝑒𝑍𝑍]2 , and 𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆(𝑇𝑇1),𝑆𝑆(𝑇𝑇2)] = 𝔼𝔼[𝑆𝑆(𝑇𝑇1), 𝑆𝑆(𝑇𝑇2)] − 𝔼𝔼[𝑆𝑆(𝑇𝑇1)]𝔼𝔼[𝑆𝑆(𝑇𝑇2)] , 

the solution 𝑆𝑆(𝑇𝑇) is a log-normally distributed random variable with expected value, 

variance and covariance given by  

          𝔼𝔼[S(T)] = 𝔼𝔼�eln�S(T)�� = eln(S0)+�μ−σ
2

2 �T+
1
2σ

2T = S0eμT 

          Var[S(T)] = e2�ln(S0)+�μ−σ
2

2 �T+
1
2σ

2T�+2σ2T − S02e2μT = S02e2μT�eσ2T − 1� 

          Cov[S(T1), S(T2)] =  𝔼𝔼 �S0e�μ−
σ2
2 �T1+σX(T1)S0e�μ−

σ2
2 �T2+σX(T2)� − S0eμT1S0eμT2  

           = S02eμ(T1+T2) − 0.5σ2T1 − 0.5σ2T2𝔼𝔼�eσX(T1)+σX(T2)� − S02eμ(T1+T2) 

= S02eμ(T1+T2)  − 0.5σ2T1 − 0.5σ2T2𝔼𝔼�e2σX(T2)�𝔼𝔼�eσ�X(T1)−X(T2)�� − S02eμ(T1+T2) 

= S02eμ(T1+T2)  − 0.5σ2T1 − 0.5σ2T2e0+
1
2�4σ

2T2�e0+
1
2σ

2(T1−T2) − S02eμ(T1+T2) 

 = S02eμ(T1+T2)+σ2T2 − S02eμ(T1+T2) = S02eμ(T1+T2)�eσ2T2 − 1�. 
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3.4.3.3 Expected values of option prices at expiry 
In the beginning of this section, we derived the expected value of a call option 

at the expiry time 𝑇𝑇, given that 𝑓𝑓(∙) is the probability density function for the share 

price 𝑆𝑆(𝑇𝑇) at maturity 

C �(T) = � max(x − E)f(x)dx
∞

0
= � xf(x)dx

∞

E
− E� f(x)dx

∞

E
                     

               P �(T) = ∫ max(E − x)f(x)dx∞

0 = E∫ f(x)dxE
0 − ∫ xf(x)dxE

0  .  

Assume that 𝑆𝑆(𝑇𝑇)  follows the geometric random walk with a log-normal density 

function given in the previous sub section f(x) = 1
xσ�2π(T−t0)

e− �ln
(x/S0)−λ(T−t0)�

2

2σ2(T−t0)   

where λ = 𝜇𝜇 − σ2

2
. To evaluate 𝐶𝐶 �(𝑇𝑇)and 𝑃𝑃 � (𝑇𝑇), the key is to solve the integrals in the 

equation. Recall the cumulative distribution function of the standard normal 

distribution 𝒩𝒩(𝑥𝑥) = 1
√2𝜋𝜋

∫ 𝑒𝑒−𝑡𝑡2/2𝑥𝑥
−∞ 𝑑𝑑𝑑𝑑 . Due to the symmetrical shape of the normal 

density about its mean value 0 ,  ℙ(𝑧𝑧 ≤ −𝑥𝑥) = ℙ(𝑧𝑧 ≥ 𝑥𝑥) = 1 − ℙ(𝑧𝑧 ≤ 𝑥𝑥),  hence 

𝒩𝒩(−𝑥𝑥) = 1 −𝒩𝒩(𝑥𝑥). The following two lemmas aim to calculate the integrals in the 

formulae of share price at maturity. 

Lemma 3. 2 

If 𝑓𝑓(∙) denotes the log-normal density, then 

∫ f(x)dx∞

E =  𝒩𝒩(δ2),∫ f(x)dxE
0 =  𝒩𝒩(−δ2)                 (3.30) 

where  

𝛿𝛿2 =
𝑙𝑙𝑙𝑙(𝑆𝑆0/𝐸𝐸)+�𝜇𝜇−12𝜎𝜎

2�(𝑇𝑇−𝑡𝑡0)

𝜎𝜎�𝑇𝑇−𝑡𝑡0
.                        (3.31) 

Proof:    

� f(x)dx
∞

E
= ℙ�E ≤ S(T)� 

= ℙ�lnE ≤ ln�S(T)�� 

= ℙ�
𝑙𝑙𝑙𝑙(𝐸𝐸/𝑆𝑆0) − 𝜆𝜆(𝑇𝑇 − 𝑡𝑡0)

𝜎𝜎�𝑇𝑇 − 𝑡𝑡0
≤ 𝑧𝑧�                                                       

              = ℙ(−𝛿𝛿2 ≤ 𝑧𝑧) = ℙ(𝑧𝑧 ≤ 𝛿𝛿2) =  𝒩𝒩(𝛿𝛿2)   

where λ = 𝜇𝜇 − σ2

2
 and 𝑧𝑧 denotes the standardised normal variable, which proves the 

first half of the lemma. For the second half, use the following relationship 

∫ f(x)dxE
0 + ∫ f(x)dx∞

E = ∫ f(x)dx∞

0 = 1  
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and obtain 

∫ f(x)dxE
0 = 1 −𝒩𝒩(δ2) = 𝒩𝒩(−δ2)  

which completes the proof. 

Lemma 3. 3 

If 𝑓𝑓(∙) denotes the log-normal density, then 

∫ xf(x)dx∞

E = S0eμ(T−t0)𝒩𝒩(δ1),∫ xf(x)dxE
0 = S0eμ(T−t0)𝒩𝒩(−δ1)     (3.32) 

where  

             δ1 = δ2 + σ�T − t0 =
ln(S0/E) + �μ + 1

2σ
2� (T − t0)

σ�T − t0
                                       (3.33) 

                δ2 =
ln(S0/E)+�μ−12σ

2�(T−t0)

σ�T−t0
 .                          (3.34) 

Proof:    

∫ xf(x)dx∞

E = 1
σ�2π(T−t0)∫ e− 

�ln� xS0
�−�μ+12σ

2�(T−t0)�
2

2σ2(T−t0) dx.∞

E     

Denote λ = 𝜇𝜇 − σ2

2
 and changing the variable of integration to  

z = ln(x/S0)−λ(T−t0)
σ�T−t0

.  

Rearranging the formula and denote 𝑥𝑥 = 𝑆𝑆0𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆(𝑇𝑇 − 𝑡𝑡0) + 𝑧𝑧𝑧𝑧�𝑇𝑇 − 𝑡𝑡0� .  

Taking the derivative of 𝑥𝑥, we then get 𝑑𝑑𝑑𝑑 = 𝑆𝑆0𝜎𝜎�𝑇𝑇 − 𝑡𝑡0𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆(𝑇𝑇 − 𝑡𝑡0) + 𝑧𝑧𝑧𝑧�𝑇𝑇 − 𝑡𝑡0�𝑑𝑑𝑑𝑑. 

Consider the limit, when 𝑥𝑥 = 𝐸𝐸, 

z =
ln(E/S0) − λ(T − t0)

σ�T − t0
= −δ2                                                                             

and 𝑧𝑧 → ∞ as 𝑥𝑥 → ∞. Therefore, changing the variable to 𝑧𝑧 

� xf(x)dx
∞

E
=

1
σ�2π(T − t0)

� e− z
2

2 S0σ�T − t0eλ(T−t0)+zσ�T−t0dz
∞

−δ2
 

=
S0
√2π

� e− z
2

2 +λ(T−t0)+zσ�T−t0dz
∞

−δ2
 

=
S0
√2π

� e−
1
2�z−σ�T−t0�

2
+μ(T−t0)dz

∞

−δ2
 

=
S0eμ(T−t0)

√2π
� e−

1
2�z−σ�T−t0�

2

dz
∞

−δ2
. 
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Change the variable from z to 𝑤𝑤 = 𝑧𝑧 − 𝜎𝜎�𝑇𝑇 − 𝑡𝑡0, and 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑. Now the lower 

limit 𝑧𝑧 = −𝛿𝛿2 = −(𝛿𝛿2 − 𝜎𝜎�𝑇𝑇 − 𝑡𝑡0) = −𝛿𝛿1. 

� xf(x)dx
∞

E
=

S0eμ(T−t0)

√2π
� e−

1
2w

2
dw

∞

−δ1
 

= S0eμ(T−t0)�1 −𝒩𝒩(−δ1)�                                                                

              = S0eμ(T−t0)𝒩𝒩(δ1)  

which proves the first half of the lemma. 

The second half using the relationship below gives, 

∫ xf(x)dxE
0 + ∫ xf(x)dx∞

E = ∫ xf(x)dx∞

0   

when 𝐸𝐸 → 0 , so −𝑙𝑙𝑙𝑙𝑙𝑙 → +∞ . Consequently, 𝛿𝛿1 → +∞ , thus lim
𝐸𝐸 →0

𝒩𝒩(𝛿𝛿1) = 1 . 

Therefore,  

∫ xf(x)dx∞

0 = S0eμ(T−t0)  Hence, ∫ xf(x)dxE
0 = S0eμ(T−t0) − S0eμ(T−t0)N(δ1) 

= S0eμ(T−t0)�1 −𝒩𝒩(δ1)� 

= S0eμ(T−t0)𝒩𝒩(−δ1) 

which completes the proof. 

Using Lemma 3. 2 and Lemma 3. 3, the expected values of call and put options 

at expiry 𝑡𝑡 = 𝑇𝑇 are 

            C �(T) = S0eμ(T−t0)𝒩𝒩(δ1) − E𝒩𝒩(δ2)                                                                             (3.35) 

           P �(T) = E𝒩𝒩(−δ2) − S0eμ(T−t0)𝒩𝒩(−δ1).                                                (3.36) 

The following theorem define the present values at time 𝑡𝑡 < 𝑇𝑇 of the expected 

expiry values 𝐶𝐶 �(𝑇𝑇) and 𝑃𝑃 � (𝑇𝑇), denoted as 𝐶̂𝐶(𝑆𝑆, 𝑡𝑡) and 𝑃𝑃�(𝑆𝑆, 𝑡𝑡). 

Theorem 3. 2 

At 𝑡𝑡 < 𝑇𝑇, the present values of call and put options are 

          C�(S, t) = �S𝒩𝒩(δ1) − Ee−μ(T−t)𝒩𝒩(δ2)� e(μ−r)(T−t)                                                    (3.37) 

           P�(S, t) = �Ee−μ(T−t)𝒩𝒩(−δ2) − S𝒩𝒩(−δ1)� e(μ−r)(T−t)         (3.38) 

where 

           δ1 =
ln(S/E) + �μ + 1

2σ
2� (T − t)

σ√T − t
                                                                               (3.39) 

            δ2 =
ln(S/E)+�μ−12σ

2�(T−t)

σ√T−t
= δ1 − σ√T − t                                        (3.40) 

where 𝑟𝑟 represents the continuously compounded risk-free interest rate.  
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It is easy to observe that the results in Theorem 3. 2 violate the non-arbitrage 

principle and the put-call parity condition. However, the structure is correct and needs 

a minor adjustment to produce option prices formulae that are consistent with the no-

arbitrage principle. We will consider this issue more closely in the next section. 

3.4.3.4 The Black-Scholes partial differential equation 
The first satisfactory theory of option pricing was published by Black and 

Scholes (1973). The theory indicates that option prices must satisfy a given partial 

differential equation known as the Black-Scholes equation. The main assumptions and 

notation used for deriving this equation are: 

• Options are of European style. 

• The underlying asset price 𝑆𝑆 =  𝑆𝑆(𝑡𝑡) follows the geometric random walk and 

follows log-normally distributed. 

• 𝑟𝑟 denotes the continuously compounded risk-free interest rate per unit time, 

assumed to be the same rate for borrowing and lending and constant over the 

lifetime of any option. 

• The no-arbitrage principle holds. 

• All assets may be sold short and no penalties on short selling. 

• Continuous trading is allowed with respect to both time and asset amount. 

• The underlying asset does not pay a dividend. 

• No transaction costs or taxes. 

All other symbols (𝐸𝐸, 𝑟𝑟, 𝜇𝜇,𝜎𝜎,𝑇𝑇)  have the meaning previously defined, in 

particular, denote the theoretically correct call and put option prices as 

C = C(S, t) = C(S, t; E, r, … , T)  

P = P(S, t) = P(S, t; E, r, … , T).  

Use 𝑉𝑉 = 𝑉𝑉(𝑆𝑆, 𝑡𝑡) to denote both call and put option prices. At time 𝑡𝑡, open a portfolio 

consists of −Δ units of option of the underlying asset. (If Δ < 0 then the asset is held 

long, the opening transaction of an investor is a buy; if Δ > 0 then the asset is held 

short, the opening transaction of an investor is a sell). The value of this portfolio Π at 

the initial time t is 

Π(S, t) = V(S, t) − ΔS.                                     (3.41) 

The change in the value of this portfolio 𝑑𝑑Π can be derived using Itô's lemma 

(Lemma 3. 1) as 

dΠ =
∂Π
∂S

dS +
∂Π
∂t

dt +
1
2
σ2S2

∂2Π
∂S2

dt                                                                       
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                      = �∂V
∂S
− Δ� dS + ∂V

∂t
dt + 1

2
σ2S2 ∂

2V
∂S2

dt.  

Note that the above expression for 𝑑𝑑Π  follows the assumption that the 

underlying asset does not pay a dividend. If dividend is paid then it would need to be 

taken into account when determining the increase in value of the portfolio (see Section 

3.5.1). Observe that in the above expression, for 𝑑𝑑Π , all partial derivatives are 

evaluated at time 𝑡𝑡 and asset price 𝑆𝑆 =  𝑆𝑆(𝑡𝑡). All terms in this expression are known at 

time 𝑡𝑡 , apart from the differential 𝑑𝑑𝑑𝑑 , which is a random quantity. However, this 

random term to 𝑑𝑑Π can be removed by choosing 

Δ = ∂V
∂S

.                (3.42) 

This choice is perfectly possible since 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is evaluated at time 𝑡𝑡  and hence is 

known at the time when the portfolio is opened. Therefore, the change in value of the 

portfolio is  dΠ = ∂V
∂t

dt + 1
2
σ2S2 ∂

2V
∂S2

dt  which is completely determined at time 𝑡𝑡  and 

hence, is a risk-free increase over the time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑].  

An alternative risk-free use for the initial amount 𝛱𝛱(𝑆𝑆, 𝑡𝑡) is to invest at the 

market-risk free rate 𝑟𝑟 and the investment will increase by 𝛱𝛱(𝑆𝑆, 𝑡𝑡)𝑟𝑟𝑟𝑟𝑟𝑟 over the time 

interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑]. According to the no-arbitrage principle, two alternative risk-free 

investments produce the same income, hence 
∂V
∂t

dt + 1
2
σ2S2 ∂

2V
∂S2

dt = Π(S, t)rdt = �V − ∂V
∂S

S� rdt . 

Cancelling out 𝑑𝑑𝑑𝑑, we have the Black-Scholes partial differential equation as 
1
2
σ2S2 ∂

2V
∂S2

+ rS ∂V
∂S

+ ∂V
∂t
−  rV = 0.            (3.43) 

Therefore, the theoretical prices of the call and put options must be the solutions to 

the Black-Scholes partial differential equation. Finally, we can define the Black-

Scholes differential operator ℒ = 1
2
σ2S2 ∂2

∂S2
+ rS ∂

∂S
+ ∂

∂t
−  r.  

3.4.3.5 No-Arbitrage Argument and Boundary conditions 
No-arbitrage argument for the Black-Scholes equation only holds for European 

style options (see section below for the American style option). Suppose that 𝛱𝛱𝛱𝛱𝛱𝛱𝛱𝛱 <

𝑑𝑑𝑑𝑑, an investor can gain risk-free profit by doing the following: 

• At time 𝑡𝑡, borrow Π from the bank and pay risk-free rate 𝑟𝑟. Then, use the capital 

to buy portfolio. 

• At time 𝑡𝑡 + 𝑑𝑑𝑑𝑑, sell the portfolio and receive 𝛱𝛱 + 𝑑𝑑𝑑𝑑; repay back 𝛱𝛱 + 𝛱𝛱𝛱𝛱𝛱𝛱𝛱𝛱 to the 

bank. 
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The instantaneous profit is 𝑑𝑑Π − Π𝑟𝑟𝑟𝑟𝑟𝑟 > 0 which contradicts the non-arbitrage 

principle. Now suppose Πrdt > 𝑑𝑑Π, the investor can gain risk-free profit by doing the 

following: 

• At time 𝑡𝑡, short the portfolio with income Π; invest the fund at the risk-free 

market at rate 𝑟𝑟. 

• At time 𝑡𝑡 + 𝑑𝑑𝑑𝑑, sell the investment and receive 𝛱𝛱 + 𝛱𝛱𝛱𝛱𝛱𝛱𝛱𝛱; buy back the portfolio 

for Π + 𝑑𝑑Π. 

The instantaneous profit is Π𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑Π > 0  which contradicts the non-arbitrage 

principle. Thus, we proved Π𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑Π. 

Similarly, as any other regular partial differential equation, the Black-Scholes 

equation has an infinite number of possible solutions. One shall specify a domain and 

boundary condition to determine a unique solution. 

Consider a call option, where 𝑉𝑉 = 𝐶𝐶 = 𝐶𝐶(𝑆𝑆, 𝑡𝑡) . At 𝑡𝑡 = 𝑇𝑇 , 𝐶𝐶(𝑆𝑆,𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆 −

𝐸𝐸, 0) ; at 𝑆𝑆 = 0,  𝐶𝐶(0, 𝑡𝑡) = 0 ; at 𝑆𝑆 = ∞,  using the put-call parity and given that 

lim
𝑆𝑆 →∞

𝑃𝑃(𝑆𝑆, 𝑡𝑡) = 0, 𝐶𝐶(𝑆𝑆,𝑇𝑇) → 𝑆𝑆 − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) as 𝑆𝑆 → ∞. Simplify the results  

lim
S →∞

C(S,t)
S

= 1  

Lemma 3. 4 

The value of call option price 𝐶𝐶(𝑆𝑆, 𝑡𝑡)  is the solution to the Black-Scholes 

equation 
1
2
σ2S2 ∂

2C
∂S2

+ rS ∂C
∂S

+ ∂C
∂t
−  rC = 0                (3.44) 

which satisfies the boundary conditions 

C(0, t) = 0, C(S, T) = max(S − E, 0), lim
S →∞

C(S,t)
S

= 1           (3.45) 

on the domain 0 < 𝑆𝑆 < ∞, 𝑡𝑡 < 𝑇𝑇. 

Similarly, the value and the boundary conditions of a put option can be found 

using put-call parity. 

Lemma 3. 5 

The value of put option price 𝑃𝑃(𝑆𝑆, 𝑡𝑡)  is the solution to the Black-Scholes 

equation 
1
2
σ2S2 ∂

2P
∂S2

+ rS ∂P
∂S

+ ∂P
∂t
− rP = 0             (3.46) 

which satisfies the boundary conditions 

P(0, t) = Ee−r(T−t), P(S, T) = max(E − S, 0), lim
S →∞

P(S, t) = 0          (3.47) 
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on the domain 0 < 𝑆𝑆 < ∞, 𝑡𝑡 < 𝑇𝑇. 

3.4.3.6 Black-Scholes Formulae for Option Pricing 
We now need to check whether the present value formulae for the option values 

formula 𝐶̂𝐶(𝑆𝑆, 𝑡𝑡) and 𝑃𝑃�(𝑆𝑆, 𝑡𝑡) given in Theorem 3. 2 are consistent with Black–Scholes. 

To examine this, we first collect some technical results which we put together in the 

end. 

Lemma 3. 6 

With respect to the notation in Theorem 3. 2 

S𝒩𝒩′(δ1) = Ee−μ(T−t0)𝒩𝒩′(δ2).   

Proof: 

δ1 − δ2 = σ√T − t and δ1 + δ2 = 2 �ln(S/E)+μ(T−t)
σ√T−t

�. Hence 

  (δ1−δ2)(δ1+δ2)
2

= ln(S/E) + μ(T − t).  

Therefore, 𝑒𝑒𝑒𝑒𝑒𝑒 �1
2
𝛿𝛿12 −

1
2
𝛿𝛿22� = 𝑆𝑆

𝐸𝐸
𝑒𝑒𝑒𝑒𝑒𝑒�𝜇𝜇(𝑇𝑇 − 𝑡𝑡)� , re-arranging the formula and 

obtain 𝐸𝐸𝑒𝑒−𝜇𝜇(𝑇𝑇−𝑡𝑡)𝑒𝑒−
1
2𝛿𝛿2

2
= 𝑆𝑆𝑒𝑒−

1
2𝛿𝛿1

2
. Recall that 𝒩𝒩′(𝑥𝑥) = 1

√2π
𝑒𝑒−𝑥𝑥2/2 , which proves the 

lemma. 

Lemma 3. 7 

With respect to the notation in Theorem 3. 2 

∂C�
∂S

= e(μ−r)(T−t)𝒩𝒩(δ1) 

∂2C�
∂S2

=
e(μ−r)(T−t)𝒩𝒩′(δ1)

Sσ√T − t
                                                                                                       

          ∂C
�

∂t
= −Se(μ−r)(T−t) �σ𝒩𝒩

′(δ1)
2√T−t

− μ𝒩𝒩(δ1)� + rC� .  

Proof: 

Recall that 𝐶̂𝐶(𝑆𝑆, 𝑡𝑡) = �𝑆𝑆𝒩𝒩(𝛿𝛿1) − 𝐸𝐸𝑒𝑒−𝜇𝜇(𝑇𝑇−𝑡𝑡0)𝒩𝒩(𝛿𝛿2)� 𝑒𝑒(𝜇𝜇−𝑟𝑟)(𝑇𝑇−𝑡𝑡), thus 

∂C�

∂S
= e(μ−r)(T−t)(𝒩𝒩(δ1) + S𝒩𝒩′(δ1) ∂δ1

∂S
− Ee−μ(T−t0)𝒩𝒩′(δ2) ∂δ2

∂S
)  

with Itô's lemma (Lemma 3. 1), it becomes 
∂C�

∂S
= e(μ−r)(T−t)(𝒩𝒩(δ1) + S𝒩𝒩′(δ1) ∂

∂S
(δ1 − δ2)).   

However, 𝛿𝛿1 − 𝛿𝛿2 = 𝜎𝜎√𝑇𝑇 − 𝑡𝑡 does not depend on 𝑆𝑆, therefore, 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛿𝛿1 − 𝛿𝛿2) = 0, 

which proves the first equation in the lemma. Differentiating with respect to 𝑆𝑆 gives 
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∂2C�

∂S2
= e(μ−r)(T−t)𝒩𝒩′(δ1) ∂δ1

∂S
 .  

Recall that 𝛿𝛿1 =
𝑙𝑙𝑙𝑙(𝑆𝑆/𝐸𝐸)+�𝜇𝜇+12𝜎𝜎

2�(𝑇𝑇−𝑡𝑡)

𝜎𝜎√𝑇𝑇−𝑡𝑡
, thus 𝜕𝜕𝛿𝛿1

𝜕𝜕𝜕𝜕
= 1

𝜎𝜎𝜎𝜎√𝑇𝑇−𝑡𝑡
, which proves the second 

formula. Differentiating 𝐶̂𝐶 with respect to 𝑡𝑡, 

     
∂C�
∂t

= e(μ−r)(T−t) �S𝒩𝒩′(δ1)
∂δ1
∂t

− Ee−μ(T−t0)𝒩𝒩′(δ2)
∂δ2
∂t

− μEe−μ(T−t0)𝒩𝒩(δ2)�

− (μ − r)C�  

= e(μ−r)(T−t) �S𝒩𝒩′(δ1)
∂
∂t

(δ1 − δ2) − μEe−μ(T−t0)𝒩𝒩(δ2)� − (μ − r)C� . 

Here, 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛿𝛿1 − 𝛿𝛿2) = − 𝜎𝜎
2√𝑇𝑇−𝑡𝑡

. Multiple 𝜇𝜇 to both sides of the present value formula 𝐶̂𝐶 

then rearrange as 𝜇𝜇𝜇𝜇𝑒𝑒−𝜇𝜇(𝑇𝑇−𝑡𝑡0)𝒩𝒩(𝛿𝛿2) = 𝜇𝜇𝜇𝜇𝒩𝒩(𝛿𝛿1)𝑒𝑒(𝜇𝜇−𝑟𝑟)(𝑇𝑇−𝑡𝑡) − 𝜇𝜇𝐶̂𝐶 , which proves the 

final formula. 

Theorem 3. 3 

𝐶̂𝐶(𝑆𝑆, 𝑡𝑡) satisfies the partial differential equation  

ℒ𝐶̂𝐶 = (𝑟𝑟 − 𝜇𝜇)𝑆𝑆 𝜕𝜕𝐶̂𝐶
𝜕𝜕𝜕𝜕

  

where ℒ = 1
2
σ2S2 ∂2

∂S2
+ rS ∂

∂S
+ ∂

∂t
−  r is the Black-Scholes differential operator. 

Proof: 

Applying Lemma 3. 7 

    ℒC� =
1
2
σ2S2

∂2C�
∂S2

+ rS
∂C�
∂S

+
∂C�
∂t
−  rC�  

   =
1
2
σ2S2

e(μ−r)(T−t)𝒩𝒩′(δ1)
Sσ√T − t

+ rSe(μ−r)(T−t)𝒩𝒩(δ1)

+ �−Se(μ−r)(T−t) �
σ 𝒩𝒩′(δ1)

2√T − t
− μ𝒩𝒩(δ1)� + rC�� − rC�                         

   = (r − μ)Se(μ−r)(T−t)𝒩𝒩(δ1)                                

              = (r − μ)S ∂C�

∂S
  

which proves the theorem. 

Hence, by endorsing the assumptions of the Black–Scholes theory we can 

conclude that the present value formulae 𝐶̂𝐶(𝑆𝑆, 𝑡𝑡) and 𝑃𝑃�(𝑆𝑆, 𝑡𝑡) do not constitute valid 

option prices, as they do not satisfy the Black–Scholes equation. This is not surprising, 

since 𝐶̂𝐶(𝑆𝑆, 𝑡𝑡)  and 𝑃𝑃�(𝑆𝑆, 𝑡𝑡)  violate put-call parity which is a consequence of the no-
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arbitrage principle. However, substituting 𝜇𝜇 = 𝑟𝑟 , then obtain the alternative 

expression of the call option 𝐶𝐶(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆𝒩𝒩(𝑑𝑑1) − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡0)𝒩𝒩(𝑑𝑑2) , where 𝑑𝑑1,𝑑𝑑2 

correspond to 𝛿𝛿1, 𝛿𝛿2 . The new expressions for call and put satisfy Black-Scholes 

differential equation ℒ𝐶̂𝐶 = 0 and ℒ𝑃𝑃� = 0. 

The alternated expression 𝐶𝐶(𝑆𝑆, 𝑡𝑡) would result if the drift of the share price's 

geometric random walk is the same as the continuously compounded risk-free interest 

rate 𝑟𝑟, i.e., risk-neutral geometric random walk. This is simply an algebraic fact that 

𝐶𝐶(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆𝒩𝒩(𝑑𝑑1) − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡0)𝒩𝒩(𝑑𝑑2)  satisfies the Black-Scholes equation, but not 

assuming the drift 𝜇𝜇 is the same as the interest rate 𝑟𝑟. The Black-Scholes option pricing 

formula is derived by solving the Black-Scholes partial differential equation, subject to 

the boundary and terminal conditions. 

Theorem 3. 4 

The Black-Scholes option pricing formulae are 

            C(S, t) = S𝒩𝒩(d1) − Ee−r(T−t)𝒩𝒩(d2)                                                                         (3.48) 

            P(S, t) = Ee−r(T−t)𝒩𝒩(−d2) − S𝒩𝒩(−d1)                                                                  (3.49) 

where 

d1 =
ln(S/E)+�r+12σ

2�(T−t0)

σ�T−t0
                (3.50) 

d2 =
ln(S/E)+�r−12σ

2�(T−t0)

σ�T−t0
                 (3.51) 

with the boundary conditions 𝐶𝐶(0, 𝑡𝑡) = 0,𝐶𝐶(𝑆𝑆,𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆 − 𝐸𝐸, 0), 𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆 →∞

𝐶𝐶(𝑆𝑆,𝑡𝑡)
𝑆𝑆

= 1  on 

the domain 0 < 𝑆𝑆 < ∞, 𝑡𝑡 < 𝑇𝑇. 

Theorem 3. 4 states that the correct option pricing formulae are the present 

values of the expected expiry values that would be obtained if the underlying asset 

price followed the risk-neutral geometric random walk. Black-Scholes option prices do 

not depend on the drift 𝜇𝜇 of the actual random walk followed by the asset price 𝑆𝑆. 

Some useful results can be obtained by substituting 𝜇𝜇 = 𝑟𝑟  in the results of 

Lemma 3. 6 and Lemma 3. 7: 

      S𝒩𝒩′(d1) = Ee−r(T−t0)𝒩𝒩′(d2)                                                                                      (3.52) 

      
∂C
∂S

= 𝒩𝒩(d1)                                                                                                                       (3.53) 

      
∂2C
∂S2

=
𝒩𝒩′(d1)
Sσ√T − t

                                                                                                               (3.54) 
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             ∂C
∂t

= −S�σ 𝒩𝒩′(d1)
2√T−t

− r𝒩𝒩(d1)� + rC.                                           (3.55) 

The fair value of an option is the present value of the expected payoff at expiry 

under a risk-neutral random walk for the underlying. The fact that it is the risk-neutral 

random walk that matters, is due to using a perfect hedge, or delta hedging strategy 

(see Section 3.7). 

3.5 Limitations and extensions of option pricing models 

The Black-Scholes model derive the value of options that can be exercised only 

at maturity and underlying assets do not pay dividends. In addition, options are 

estimated based on the assumption that underlying asset value does not change due to 

exercising the option. In practice, there are various extensions have been developed 

including allowing dividend payment and early exercise. This section provides 

adjustments to the Black-Scholes model and will consider some of the extensions of 

the options pricing. 

3.5.1 Treatment of Dividends 

The derivation of the Black-Scholes equation in the previous section assumes 

that the underlying share does not pay a dividend. However, in practice, the majority 

of quoted shares pay dividends, usually twice a year. Denote 𝑡𝑡𝑑𝑑 as the time at the close 

of business immediately prior to the ex-dividend date, i.e., ex-dividend time. Officially 

registered shareholders at close of business prior to the ex-dividend date are entitled 

to receive the next dividend payment. Shareholders who purchase these shares after 

closing time do not receive the dividend. Immediately after the close of business prior 

to the ex-dividend date, the share price drops by an amount equal to the dividend per 

share. If this drop did not occur, then there might be an arbitrage opportunity 

involving buying the share at time 𝑡𝑡𝑑𝑑 − 𝜖𝜖 (thereby, at least in theory, establishing a 

right to receive the dividend) and selling the share at time 𝑡𝑡𝑑𝑑 + 𝜖𝜖. Consequently, call 

options become less valuable and put options become more valuable with higher 

expected dividend payments. This section will derive the option value when the 

European assumption is retained, and dividend paid discrete or continuously.  

Denote the closing share price as Sd = lim
t→td−0

S(t) and 𝑑𝑑𝑦𝑦 as the dividend yield 

(𝑑𝑑𝑦𝑦 = Dividends/Current value of the asset), so the share price is discontinuous at 𝑡𝑡 =

𝑡𝑡𝑑𝑑 and must drop by the same amount as the dividend payment 𝑑𝑑𝑦𝑦𝑆𝑆𝑑𝑑. In other words, 
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lim
t→td+0

S(t) = �1 − dy�Sd. Let 𝑉𝑉𝑑𝑑 = 𝑉𝑉𝑑𝑑(𝑆𝑆, 𝑡𝑡) denote the price of an option, 𝐶𝐶𝑦𝑦 = 𝐶𝐶𝑦𝑦(𝑆𝑆, 𝑡𝑡) 

for call option and 𝑃𝑃𝑦𝑦 = 𝑃𝑃𝑦𝑦(𝑆𝑆, 𝑡𝑡) for a put option.  The owner of an option on a share 

has no entitlement to receive dividends. The value of the option must not be 

discontinuous across the dividend payment time, even though the underlying stock 

price vary due to the dividend payment. Otherwise, there will be an arbitrage 

opportunity at time 𝑡𝑡𝑑𝑑. Thus, the price of the option should be unaffected by a dividend 

and should be continuous at time 𝑡𝑡 = 𝑡𝑡𝑑𝑑, lim
t→td−0

V(S, t) = lim
t→td+0

V(S, t). 

Assume that 𝑡𝑡 ≥ 𝑡𝑡𝑑𝑑 and that there is no other ex-dividend time in the lifetime 

of the option and the option price equals the standard non-dividend Black-Scholes 

formula 𝑉𝑉(𝑆𝑆, 𝑡𝑡) as previously derived. As 𝑡𝑡 → 𝑡𝑡𝑑𝑑 − 0, so, 𝑆𝑆 → 𝑆𝑆𝑑𝑑 and as  𝑡𝑡 → 𝑡𝑡𝑑𝑑 + 0, so 

𝑆𝑆 → �1 − 𝑑𝑑𝑦𝑦�𝑆𝑆𝑑𝑑. The continuity requirements require that the value of option while 𝑡𝑡 <

𝑡𝑡𝑑𝑑  as, 𝑉𝑉 ��1 − 𝑑𝑑𝑦𝑦�𝑆𝑆, 𝑡𝑡� . Thus, the value of an option 𝑉𝑉𝑑𝑑  with a discrete dividend 

underlying share is Vy(S, t) = �V ��1 − dy�S, t� , t < td
V(S, t), t ≥ td

 .  

Theorem 3. 5 

The Black-Scholes option pricing formulae with a discrete dividend yield 𝑑𝑑𝑦𝑦 

paid at time 𝑡𝑡 (𝑡𝑡 < 𝑡𝑡𝑑𝑑) are 

          Cy(S, t) = �1 − dy�S𝒩𝒩(d1) − Ee−r(T−t)𝒩𝒩(d2)                                                          (3.56) 

            Py(S, t) = Ee−r(T−t)𝒩𝒩(−d2) − �1 − dy�S𝒩𝒩(−d1)                  (3.57) 

with 

d1 =
ln��1−dy�S/E�+�r+12σ

2�(T−t0)

σ�T−t0
            (3.58) 

d2 =
ln��1−dy�S/E�+�r−12σ

2�(T−t0)

σ�T−t0
.              (3.59) 

In the non-dividend case, the law of put-call parity states S + P(S, t) = C(S, t) +

Ee−r(T−t) . 

The above is an algebraic identity which holds for all values of 𝑆𝑆 >  0 . In 

particular, if we replace the symbol 𝑆𝑆 by the symbol �1 − 𝑑𝑑𝑦𝑦�𝑆𝑆, we obtain 

�1 − dy�S + P ��1 − dy�S, t� = C�(1 − λ)S, t� + Ee−r(T−t).  

Therefore, the put-call parity law for the discrete dividend case, when 𝑡𝑡 < 𝑡𝑡𝑑𝑑, is  

�1 − dy�S + Py(S, t) = Cy(S, t) + Ee−r(T−t),           (3.60) 



 

39 
 

and when 𝑡𝑡 ≥ 𝑡𝑡𝑑𝑑 

S + Py(S, t) = Cy(S, t) + Ee−r(T−t).            (3.61) 

Similarly, multiple dividend payments at times 𝑡𝑡1, 𝑡𝑡2, …  can be derived by 

subtracting the discounted value of each dividend payment from the stock price. 

However, for stocks with stable dividend pay-out patterns, continuous payment 

provides decent approximations to observe option prices. 

The main application of the continuous dividend payment is to the pricing of 

options on indices. For example, the FTSE100 index is constructed from the 100 

largest companies by market capitalization in the U.K. Most of these companies pay a 

dividend twice a year. Assumes that there are about 50 working weeks in the year then, 

on average, four FTSE100 companies will be paying a dividend in any given week. 

Continuous payment of dividend is a reasonable assumption to model the indices with 

frequent dividend pay-out patterns and can be modelled as follows: Suppose that the 

underlying asset pays dividends at a constant rate 𝐷𝐷𝑦𝑦, also known as dividend yield. 

Thus, if 𝑆𝑆 is the price of one unit of the underlying asset, then over the next time instant 

𝑑𝑑𝑑𝑑 the dividend received are 𝐷𝐷𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆.  

Assume that the asset price follows the geometric random walk dS = μSdt +

σSdX − DySdt = �μ − Dy�Sdt + σSdX.  Proceeding in the same fashion as in the 

derivation of the Black-Scholes partial differential equation to construct a portfolio 

𝛱𝛱(𝑆𝑆, 𝑡𝑡) = 𝑉𝑉𝑐𝑐(𝑆𝑆, 𝑡𝑡) − Δ𝑆𝑆 , where 𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑐𝑐(𝑆𝑆, 𝑡𝑡) is the price of the option (𝐶𝐶𝑐𝑐 = 𝐶𝐶𝑐𝑐(𝑆𝑆, 𝑡𝑡) for 

call option, and 𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐(𝑆𝑆, 𝑡𝑡) for put option) for the underlying asset with continuous 

dividend yield 𝐷𝐷𝑦𝑦. Hence, the increase in value of the portfolio over the next time 

instant is 

dΠ = dVc − Δ�dS + DySdt� = �∂Vc
∂t

+ 1
2
σ2S2 ∂

2Vc
∂S2

�dt + ∂Vc
∂S

dS − ΔdS − ΔDySdt.  

If invest the portfolio 𝛱𝛱 in a risk-free market, the return over the next time 

instant equals to (𝑉𝑉𝑐𝑐 − Δ𝑆𝑆)𝑟𝑟dt . Pick Δ = 𝜕𝜕𝑉𝑉𝑐𝑐
𝜕𝜕𝜕𝜕

. Then in order to make the portfolio 

instantaneously risk-free and on comparing this investment 

dΠ = �∂Vc
∂t

+ 1
2
σ2S2 ∂

2Vc
∂S2

�dt − ΔDySdt = r(Vc − ΔS)dt  

and finally leads to the following equation 
1
2
σ2S2 ∂

2Vc
∂S2

+ �r − Dy�S ∂Vc
∂S

+ ∂Vc
∂t
− rVc = 0.  

Change of dependent variables Vc to V�, where Vc(S, t) = e−Dy(T−t)V�(S, t). 
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 𝑉𝑉�  satisfies the standard Black-Scholes equation with 𝑟𝑟 replaced by 𝑟𝑟–𝐷𝐷𝑦𝑦. 𝑉𝑉 can then 

be determined by the reduction to the heat equation technique for finding the value of 

the option, and conclude Vc(S, t) = V�e−Dy(T−t)S, t�.  

Theorem 3. 6 

The Black-Scholes option pricing formulae with a continuous dividend yield 𝐷𝐷𝑦𝑦 

are 

       Cc(S, t) = e−Dy(T−t)S𝒩𝒩(d1) − Ee−r(T−t)𝒩𝒩(d2)                                                             (3.62) 

      Pc(S, t) = Ee−r(T−t)𝒩𝒩(−d2) − e−Dy(T−t)S𝒩𝒩(−d1)                                                        (3.63) 

with 

d1 =
ln(S/E)+�r−Dy+

1
2σ

2�(T−t0)

σ�T−t0
            (3.64) 

d2 =
ln(S/E)+�r−Dy−

1
2σ

2�(T−t0)

σ�T−t0
.            (3.65) 

The relationship of non-dividend law of put-call parity S + P(S, t) = C(S, t) + Ee−r(T−t)  

and with 𝑆𝑆  replaced by 𝑒𝑒−𝐷𝐷𝑦𝑦(𝑇𝑇−𝑡𝑡)𝑆𝑆 , can obtain e−Dy(T−t)S + P�e−Dy(T−t)S, t� =

C�e−Dy(T−t)S, t� + Ee−r(T−t). Hence, the option prices 𝑃𝑃𝑐𝑐 and 𝐶𝐶𝑐𝑐 satisfy the modified put-

call parity law 

e−Dy(T−t)S + Pc(S, t) = Cc(S, t) + Ee−r(T−t).           (3.66) 

3.5.2 Early exercise 

The option pricing model discussed in the previous sections are designed to 

value options that can be exercised only at expiration. The American style option is 

more flexible than the European style option, which can be exercised at any time up to 

and including to the expiry date. Most options that we encounter in practice, especially 

option contracts, trade on futures exchanges and are mainly American style.  

Unlike Black-Scholes formulae provide closed form solution to European 

options, the American option consider the specific path that the stock price follows. 

This makes it more difficult to value the American style option. However, European 

style option can be treated as a special case of the American-style options. For this 

reason, if there are both American and European style options available on the same 

underlying asset, investors would expect to pay more for the American style options 

for the possibility of early exercise, Ca ≥ Ce and Pa ≥ Pe , where the subscript 𝑒𝑒 

represents the European style option and 𝑎𝑎  represents the American style option. 

From no-arbitrage opportunity principle, 𝐶𝐶𝑎𝑎(𝑆𝑆, 𝑡𝑡) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆 − 𝐸𝐸, 0). Otherwise, an 
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investor may buy one call option costing 𝐶𝐶𝑎𝑎 and immediately exercise the options at 

exercise price 𝐸𝐸.  Afterwards, the investor may sell the share in the market at price 𝑆𝑆, 

and earn profit 𝑆𝑆 − 𝐸𝐸 − 𝐶𝐶𝑎𝑎 ≥ 0. Similarly, 𝑃𝑃𝑎𝑎(𝑆𝑆, 𝑡𝑡) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸 − 𝑆𝑆, 0).  

Owners of an American style call option can close their position by sell the 

option with income 𝐶𝐶𝑎𝑎(𝑆𝑆, 𝑡𝑡), or exercise the option with income 𝑆𝑆 − 𝐸𝐸. Therefore, the 

investor can earn more from trading, than from the exercising the call options on this 

occasion. Nevertheless, the only circumstances which generate the same income are 

when 𝑆𝑆 ≥ 𝐸𝐸 and 𝐶𝐶𝑎𝑎(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆 − 𝐸𝐸.  

However, if 𝑆𝑆 ≥ 𝐸𝐸 when 𝑡𝑡 < 𝑇𝑇 

Ca(S, t) ≥ Ce(S, t) 

≥ max�S − Ee−r(T−t), 0�, from put-call parity 

= S − Ee−r(T−t) > S − E , 

which means 𝐶𝐶𝑎𝑎(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆 − 𝐸𝐸 does not hold for 𝑡𝑡 < 𝑇𝑇. Therefore, early exercise of an 

American style call options is never desirable. The apparent flexibility of being able to 

exercise the American style call option at any time before expiry date is an illusion. The 

only rational action is to exercise the option on expiration. Thus, American style call 

option is basically a European style call option, that is 

Ca = Ce                (3.67) 

An investor of an American style put option can close their position by sell the 

option with income 𝑃𝑃𝑎𝑎(𝑆𝑆, 𝑡𝑡), or exercise the option with income 𝐸𝐸 − 𝑆𝑆. Therefore, an 

investor can earn more from trading than from exercising put options. The only 

circumstances which generate the same income are when 𝑆𝑆 ≤ 𝐸𝐸 and Pa(S, t) = E − S 

Pa(S, t) ≥ Pe(S, t) 

≥ max�𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) − 𝑆𝑆, 0�, from put-call parity. 

It is possible for 𝑃𝑃𝑎𝑎(𝑆𝑆, 𝑡𝑡) = 𝐸𝐸 − 𝑆𝑆 to occur. Thus, early exercise of the American style 

put option may be possible in practice, and  

Pa ≥ Pe                                (3.68) 

Hence, early exercise will only be done by an investor holding a portfolio with a stock 

and put combination. The investor needs to also consider the transaction costs 

associated with making the decision of early exercise: selling the put will incur 

transaction cost while exercise option only involves delivery. Corresponding to the 

non-dividend payment put-call parity is 

       S + Pa(S, t) ≥ S + Pe(S, t)                                                                                           (3.69) 
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                      =er(T−t) + Ce(S, t) 

                       = Ee−r(T−t) + Ca(S, t).  

However, American option produces path dependence in the option price, make 

it difficult to derive a closed-form solution for the valuation problem and need to 

involve techniques from numerical analysis such as Monte Carlo simulation. 

3.5.3 Impact of exercise on underlying asset value 

The assumption that the underlying asset value is uncorrelated with the 

exercising option price may not be true. If the exercise of call options issued by a 

specific firm but not the exchanges, known as warrants, a firm is obligated to issue new 

stock which bring new cash flows into the firm. Exercise warrants cause dilution of the 

stocks and affects the stock price. The Black-Scholes model can be modified to price 

the value of warrants with adjustment for dilution to the stock price  

Dilution-adjusted S = SnS+WnW
nS+nW

 . 

In the above equation, 𝑆𝑆  represents the current value of the stock while 𝑛𝑛𝑆𝑆  is the 

number of outstanding shares, and 𝑊𝑊  represents the value of warrants. 𝑛𝑛𝑊𝑊  is the 

number of outstanding warrants. The sum of 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑊𝑊𝑛𝑛𝑊𝑊 reflects the market value of 

equity, when additional warrants are exercised, the number of outstanding shares 

increases. The reduction in stock value causes the call option value to be reduced. One 

can assume an initial value for the warrants and re-estimate the warrants’ value until 

there is convergence. 

3.5.4 Extensions of option pricing 

Standard call or put options are often referred to as vanilla options. There is a 

huge range of more specialized options beyond these standard options, collectively 

known as exotic options. Moreover, the options encounter in financial markets take 

more complicated forms and are often on real assets rather than financial assets.  

One of the more popular types of exotic option is capped or barrier option. 

Consider a simple call option with strike price 𝐾𝐾1.  In theory, the underlying asset 

prices can go up infinitely. Thus, there is no upper limit on the profit of a call option. 

In a capped call option, the investors are entitled to profits up to a specified amount 

but not above it. Assume that asset price capped at 𝐾𝐾2 and the payoff of call option is 

[0,𝐾𝐾2  −  𝐾𝐾1]. Note that if the underlying asset price reaches 𝐾𝐾2 at any time during the 

option's life, the option will be exercised immediately. The asset price afterwards will 

not matter. The value of a capped call is always lower than the value of the same call 
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without the cap and can be estimated as the difference of the values of call options with 

strike price 𝐾𝐾1 and 𝐾𝐾2. 

Capped calls are part of a family of options called barrier options. There are 

eight different types of barrier option exist, namely: 

� Up
Down

  and � In
Out

  barrier �Call
Put

 

In addition, investors can open a long contract (buy) or a short contract (sell) 

of any type of barrier options. Consider a down-and-in barrier put option where an 

investor prepares to bear the risks associated with normal levels of market volatility, 

but also need some protection against larger falls in the asset price: 

1. The option has no rights unless the underlying asset price falls to a 

prescribed amount which is lower than the current asset price. This amount is known 

as the down barrier price. 

2. If the asset price falls to or crossed the down barrier price, then the option 

acquires the same rights as a standard European style put option. That is the option 

rights are knocked in at the barrier. A knock-in option has no value until the 

underlying reaches a certain price. 

A barrier option has a significantly cheaper price than the standard put option 

but can still give the same protection as a standard put option against large drop in 

asset price. A barrier option is often used by portfolio managers to hedge against 

losses on a long position. It is important to note that if the underlying asset drop below 

the barrier at any time during the option's life, the option is knocked in, and will 

remain there until expiration. Similarly, an up-and-out barrier put option has the 

following terms. 

1. The option has the same rights as a vanilla European style put option 

unless the underlying asset price rises to a prescribed amount which is higher than the 

current asset price. This prescribed price amount is known as the up-barrier price. 

2. If the asset price rises to or crosses the barrier, then the option rights are 

cancelled. In this case, we say that the option rights are knocked out at the barrier.  

Knock-out options expire worthless if the underlying asset reaches a certain 

price at any time during the option’s life. This limits the profits for the holders and 

losses for the writer.  In the case of a call (put) option, the knockout price is usually set 

below (above) the exercise price, and this option is called a down-and-out call (an up-

and-out put) option. This type of option would provide the immediate protection of a 
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put option with a cheaper price than a vanilla option, while there is a chance of being 

knocked out of the option which would make it worthless. 

For a given barrier price, a given choice of call (put) option type and a given 

selection of up/down type there will be one option type that knocks in at the barrier 

and one that knocks out at the barrier. In such cases, 

(In barrier option price) + (Out barrier option price) = Vanilla option price. This 

condition is usually known as in-out parity. The sketch of the proof may consider an 

investor who owns both the in-barrier option, and the out-barrier option. If the barrier 

is crossed, then the in option is cancelled and the out option has the same rights as 

vanilla option. The two-barrier option together equals to a vanilla option. On the other 

hand, if the barrier has been crossed, then the in option has acquired the same rights 

as vanilla option and the out option has no value; again, the two-barrier option 

together equals to a vanilla option. Hence, owning one in and one out-barrier options, 

gives an investor exactly the same rights as owning a vanilla option in both 

circumstances. Therefore, the sum of the out-barrier option prices must always equal 

to the price of the corresponding vanilla option. 

Another popular type of options are compound options for which values derived 

from other options are not from underlying assets. Compound options are options that 

give an investor  the right—not obligation—to buy another option at a specific price on 

or by a specific date. Those options can take any of four types: a call on a call (CoC), a 

call on a put (CoP or caput option), a put on a put (PoP), and a put on a call (PoC).  

The holder of a compound call (CoC or CoP) option needs to pay the seller of 

the underlying option a premium, known as back fee, if they wish to exercise the 

option, called the overlying option. The compound option gives the investor some 

exposure to the put (or call) option now, but without the cost of paying for a long-term 

option right now. On the other hand, the premium is more expensive than a simple 

put (or call) option if they exercise the initial call option and receive the put (or call). 

PoP or PoC provide the right to sell a put or call as the underlying. These types of 

options are commonly used in foreign exchange and fixed-income markets, where 

investors can benefit from large leverage and cheaper initial investment.  

In a simple vanilla option, the uncertainty is from the price of the underlying 

asset. Rainbow option is an option exposed to two or more sources of uncertainty. 

More generally, rainbow options are multi-asset options which take various other 

forms, and payoff depends on the assets sorted by their performance at maturity. This 
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process is called best-of (worst-of) which only pays the best (respectively worst) 

performing asset of the basket. Rainbow options are often used to value natural 

resource deposits. For example, an undeveloped oil reserve is exposed to two sources 

of uncertainty – price of oil and quantity of oil in the reserve. 

A Bermudan option is an option where the buyer has the right to exercise at a 

set (always discretely spaced) number of times. This is intermediate between a 

European option—which allows exercise at a single time, namely expiry and an 

American option, which allows exercise at any time (the name is jocular: Bermuda, a 

British overseas territory, is somewhat American and somewhat European—in terms 

of both option style and physical location—but is nearer to American in terms of both). 

For example, a typical Bermudian swaption might confer the opportunity to enter into 

an interest rate swap. The option holder might decide to enter into the swap at the first 

exercise date (and so enter into, say, a ten-year swap) or defer and have the 

opportunity to enter in six months (and so enter a nine-year and six-month swap). 

Most exotic interest rate options are of Bermudan style. 

3.6 Volatility 

Theoretically, Black-Scholes option prices depend on the primary random 

variables 𝑆𝑆, 𝑡𝑡 the parameters 𝐸𝐸, 𝑟𝑟,σ,𝑇𝑇. If dividends are involved, then the additional 

parameters 𝑡𝑡𝑑𝑑 ,𝑑𝑑𝑦𝑦 𝑜𝑜𝑜𝑜 𝐷𝐷𝑦𝑦 are necessary. At any given time 𝑡𝑡, the values of all variables 

and parameters are known and can be obtained directly from the financial news media, 

or other sources. The volatility parameter σ is not directly observed. There are two 

approaches to estimating the variance (volatility) σ2, of the continuously compounded 

rate of return on the stock 𝑑𝑑𝑑𝑑
𝑆𝑆

. One approach uses the historical time series data for the 

asset price 𝑆𝑆 to compute σ which gives the so-called historic volatility σ𝐻𝐻, in terms of 

the standard deviation. The second approach takes the current market price of an 

option and determines what value σ should take in order for the theoretical price to 

match the market price. This parameter is called the implied standard deviation or 

implied volatility σ�. 

3.6.1 Historic volatility 

A fundamental assumption underlying the Black-Scholes theory is that the 

underlying asset price 𝑆𝑆  follows a geometric random walk with log-normally 

distributed. In particular,  

ln � S(t)
S(t0)� = �μ − Dy −

1
2
σ2� (t − t0) + σ�t − t0𝒩𝒩(0,1).  
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Denote η = μ − Dy −
1
2
σ2 and set t0 = t − 1 

ln � S(t)
S(t−1)� = η + σ𝒩𝒩(0,1).  

Thus, for a sequence of closing prices of the asset 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛 on 𝑛𝑛 successive days, the 

unit of time is one day. Then daily return 𝑦𝑦𝑖𝑖 is yi = ln �Si+1
Si
� = η + σzi, i = 1,2, … n − 1  

where 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1 is an arbitrary sequence of independent random numbers from 

the standard normal population 𝒩𝒩(0,1). 

According to the ordinary least square theory, the best estimate for η is the 

mean of the daily return 𝑦𝑦�, 

η ≈ y� =
∑ yin−1
i=1

n − 1
  

=
1

n − 1
�ln �

S2
S1
� + ln �

S3
S2
� + ⋯+ ln �

Sn
Sn−1

�� =
1

n − 1
ln �

S2S3 … Sn
S1S2 … Sn−1

� 

                  = 1
n−1

ln �Sn
S1
�.               (3.70) 

Similarly, the best estimate for σ is the standard deviation of the continuously 

compounded daily return, which is the daily historic volatility σ𝐻𝐻 

σ2 ≈ σH =
∑ (yi − y�)n−1
i=1

2

n − 2
                                                                                               

              = n−1
n−2

� 1
n−1

∑ yi2n−1
i=1 − y�2�.                       (3.71) 

Here σ𝐻𝐻  is measuring in days-1/2. Assuming 252 trading days, the corresponding 

annualised mean return is 252𝑦𝑦�, while the historic volatility is √252σ𝐻𝐻 in years-1/2. 

3.6.2 Implied Volatility 

Using the historic volatility to produce theoretical Black-Scholes option prices 

can be inconsistent with observed option prices. With given market option price, 

Black-Scholes equation can be inverted and produce estimate of volatility. Suppose 

that the market price of a certain call option is 𝐶𝐶0. The implied volatility 𝜎𝜎� for this call 

option is the solution to the non-linear equation C(S, t; E, r,σ�, T) = C0, where 𝑆𝑆, 𝑡𝑡,𝐸𝐸, 𝑟𝑟,𝑇𝑇 

are all assumed to be known and the underlying asset does not pay a dividend. If 

dividends are involved, then the appropriate function 𝐶𝐶𝑑𝑑 or 𝐶𝐶𝑐𝑐 must be used to replace 

𝐶𝐶. Similarly, one can compute an implied volatility from the market price of a put 

option. The implied volatility is the particular value of the volatility that forces the 
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theoretical option price to exactly match its market price, and both 𝐶𝐶 and 𝑃𝑃 increase 

monotonically with respect to 𝜎𝜎�. However, the equation cannot be solved analytically 

with closed form solutions and must be solved by numerical methods or 

approximation techniques. 

Because the only unobserved variable in the traded option price is volatility, 

Black-Scholes is more appropriately treated as an equation to determine the 

estimation of the underlying spot price volatility. In the foreign exchange market, the 

dealers’ metric for the exercise price are the delta and implied volatility when trading 

an option. The volatility smile is implied the volatility patterns of the option with same 

underlying asset, and with same maturity but different deltas. 

Implied volatility can be used to predict future volatility. Market makers can 

use econometric volatility predictor such as in GARCH models (see Bollerslev, 1986) 

to capture volatility or to calculate value at risk (VaR). Using GARCH to estimate 

expected volatility is a flexible approach as the estimation can be performed under 

different distributional assumptions. Several studies propose using (weighted) 

averages of past implied volatilities to capture implied volatility. Moreover, in practice, 

implied volatilities derived from in, at and out-of-the-money options differ; implied 

volatilities from at-the-money options are better predictors than deep out-of-the-

money and deep in-of-the-money options. 

In theory, implied volatilities calculated from call or put options should be the 

same, using the Black-Scholes model. If there is a difference, then there is an 

indication of mispricing, either that the market has placed too high a price on the put 

or too low a price on the call, or perhaps a combination of both. The Black-Scholes 

model also has a significant weakness, by assuming that the return distribution is 

normal. In reality, returns are not normally distributed particularly at high frequency. 

That is, the Black-Scholes model fails to capture the volatility clustering and fat-

tailedness which are stylized features of returns. Heston (1993) develops a closed-form 

solution for stochastic volatility with application to Black-Scholes. Specifically, 

Heston’s (1993) model contains a volatility parameter which increases with the degree 

of kurtosis in returns, thereby providing a better fit to the data compared to the Black-

Scholes model. Using the analytical approach of Drăgulescu and Yakovenko (2002) for 

computing the probability density function for the Heston model, Daniel et al. (2005) 

show that the Heston model outperforms the Black-Scholes model, particularly at 
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higher data frequency. Even so, the Heston model does not provide the best fit to the 

data. 

3.7 Hedging strategy 

3.7.1 Hedging 

Derivatives, including options, may be used to protect an exposure against 

adverse price movements (or volatilities) of the underlying asset. Hedging is a risk 

management strategy to limit risk and protecting the value of the underlying financial 

assets or liabilities. Consider the simplest approach to protect an existing shareholding 

using a long put option. This strategy is known as the protective put strategy. The 

combined value of these investment 𝑉𝑉 = 𝑉𝑉(𝑆𝑆, 𝑡𝑡) is V(S, t) = S + P(S, t).  

If 𝑆𝑆 decreases then 𝑃𝑃(𝑆𝑆, 𝑡𝑡) will increase reversely, and the investor hoping the 

combined value 𝑉𝑉(𝑆𝑆, 𝑡𝑡)  will not fluctuate very much. However, only at the time of 

expiry, the investor definitely knows investment value. Denote 𝑆𝑆 = 𝑆𝑆(𝑇𝑇)  the share 

price at the expiry time then, V(S, T) = S + P(S, T) = S + max(E − S, 0)  = �E,    S ≤ E
S,    E < S . 

Thus, no matter how small 𝑆𝑆 may become, the total value at expiry will not fall below 

the exercise price 𝐸𝐸, which offsets the risks. 

3.7.2 Delta-Neutral hedging 

Assume a European style option with the use of the Black-Scholes formulae.  

Shares in an individual firm can be hedged either by buying a number of underlying 

equity put options (hedging with long puts) or by writing call options (hedging with 

short calls). A combination of long puts and short calls is also possible. If a portfolio 

includes shares in a variety of different companies then the value of this investment 

may be highly correlated with an index number, and thus this portfolio of shares may 

be hedged using index options. 

Suppose an investor wishes to hedge 𝑁𝑁 shares by buying a certain number, 𝑛𝑛, of 

put options. Denote the value of this portfolio at any time 𝑡𝑡 as Π(S, t) = nP(S, t) + NS. 

Similar, assume the stock 𝑆𝑆 follows a geometric Brownian motion.  The portfolio value 

change is dΠ(S, t) = ∂Π
∂S

dS + ∂Π
∂t

dt + 1
2
σ2S2 ∂

2Π
∂S2

dt.  

The random component in 𝑑𝑑Π can be eliminated if we set ∂Π
∂S

= 0. The quantity 

of ∂Π
∂S

 is called the delta of the portfolio, while the portfolio satisfies called a delta 

neutral portfolio. A delta neutral portfolio is instantaneously risk-free and its value Π 
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is insensitive to small changes in the underlying share price S. Therefore, a good 

hedging strategy is to construct a portfolio that is delta-neutral ∂Π
∂S

= n ∂P
∂S

+ N = 0 . 

Thus, the delta neutral portfolio requires the number of options 𝑛𝑛 should satisfy 

n = − N
∂P
∂S

 .                 (3.72) 

Here, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is put option deltas. If dividends are involved, then 𝑃𝑃  shall be 

substituted as 𝑃𝑃𝑑𝑑 or 𝑃𝑃𝑐𝑐 for the option price.  

Suppose an investor wishes to hedge 𝑁𝑁  shares of stock by writing a certain 

number, 𝑚𝑚, of call options. Denote the value of this portfolio at any time 𝑡𝑡 as Π(S, t) =

−mC(S, t) + NS . Clearly ∂Π
∂S

= −m ∂C
∂S

+ N = 0, so that a delta neutral portfolio requires 

the number of options 𝑚𝑚 should satisfy 

m = N
∂C
∂S

.                 (3.73) 

Here 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the call option delta. If dividends are involved, then 𝐶𝐶 shall be substituted 

as 𝐶𝐶𝑑𝑑 or 𝐶𝐶𝑐𝑐 for the option price. 

Suppose an investor wish to hedge 𝑁𝑁 shares of stock by buying 𝑛𝑛 put options 

and writing 𝑚𝑚 call options. Denote the value of this portfolio at any time 𝑡𝑡 as Π(S, t) =

nP(S, t) − mC(S, t) + NS. Clearly, ∂Π
∂S

= n ∂P
∂S
− m ∂C

∂S
+ N so that a delta neutral portfolio 

requires the number of 𝑛𝑛 and 𝑚𝑚 should satisfy 

n ∂P
∂S
− m ∂C

∂S
+ N = 0             (3.74) 

There is no unique solution for 𝑛𝑛 and 𝑚𝑚. Investors may wish to arrange for the income 

initially generated by writing the call options to approximately cover the cost of buying 

the put option. If dividends are involved than 𝑃𝑃 shall be substituted as 𝑃𝑃𝑑𝑑 or 𝑃𝑃𝑐𝑐 for the 

put option price, and 𝐶𝐶 shall be substituted as 𝐶𝐶𝑑𝑑 or 𝐶𝐶𝑐𝑐 for the call option price. As is 

derived in Section 3.4.3.6, the option deltas ∂C
∂S

= 𝒩𝒩(d1)  and  

∂P
∂S

= −𝒩𝒩(−d1) = 𝒩𝒩(d1) − 1. 

As a result of the put-call parity, 1 + ∂P
∂S

= ∂C
∂S

. The put option delta is always negative, 

so the number of options 𝑛𝑛 is positive. 
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If dividends are paid discretely then the option deltas will differ from results 

above only if 𝑡𝑡 < 𝑡𝑡𝑑𝑑. In this case, recall that Vd(S, t) = V ��1 − dy�S, t� ,   t < td. Hence 

the chain rule gives ∂Vd
∂S

(S, t) = �1 − dy�
∂V
∂S
��1 − dy�S, t�.  

Therefore, the option deltas with discrete dividend are  ∂Cd
∂S

= �1 − dy�𝒩𝒩(d1) 

and ∂Pd
∂S

= −�1 − dy�𝒩𝒩(−d1) = �1 − dy�(𝒩𝒩(d1) − 1), where 𝑑𝑑1 need to be evaluated by 

substitute 𝑆𝑆 with �1 − 𝑑𝑑𝑦𝑦�𝑆𝑆. Therefore, the put-call parity gives 1 − dy + ∂Pd
∂S

= ∂Cd
∂S

 .  

On the other hand, recall the continuous dividend Vc(S, t) = V�e−Dy(T−t)S, t�. 

Appling the chain rule and have  ∂Vc
∂S

(S, t) = e−Dy(T−t) ∂V
∂S
�e−Dy(T−t)S, t�.  Therefore, the 

option deltas with continuous dividend are  ∂Cd
∂S

= e−Dy(T−t)𝒩𝒩(d1)  and    ∂Pd
∂S

=

−e−Dy(T−t)𝒩𝒩(−d1) = e−Dy(T−t)(𝒩𝒩(d1) − 1).  

Therefore, the put-call parity gives 

e−Dy(T−t) + ∂Pc
∂S

= ∂Cc
∂S

 .             (3.75) 

3.7.3 Dynamic hedging 

Delta-hedging is not a perfect hedge if you do not hedge continuously. While a 

linear approximation to the option value can be obtained, convexity implies that 

second-order derivatives matter, such that the delta hedge is more effective for smaller 

price changes. The option delta is itself a function of 𝑡𝑡. Hence, the ideal value of 𝑛𝑛 (or 

𝑚𝑚) is determined as a function of 𝑡𝑡. Thus, in order to maintain a delta neutral portfolio, 

𝑛𝑛 (𝑚𝑚) needs to be recalculated over the time which implies buying or selling option 

contracts. This is known as rebalancing the portfolio. Delta neutral hedging with 

regular rebalancing is known as dynamic hedging.  

For delta hedging with long puts, if the underlying asset price rises, then 

additional put contracts will need to be purchased. If the asset price falls, then put 

contracts already owned may be sold. Because dealers routinely dynamically hedge 

their option positions, this means that they do not bet on the direction of the 

underlying. Instead, they are betting on the direction of volatility. 

3.8 Conclusion 

The chapter provided a detailed account of financial options and their 

applications for speculative and hedging strategies under different economic 

conditions. We show how various analytical solutions can be derived using the Black-
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Scholes approach. We also provide extensions on the standard option pricing model. 

Financial options have become common place both for speculative and hedging 

purposes. We emphasise differences between the American and European style 

options and the conditions under when early exercise of an American style option is 

likely to be profitable. We show how many of the components of financial options are 

derived and how they relate to pricing under different economic conditions.  
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Figure 3. 1: The four options opening positions 
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Figure 3. 2: Payoff from long a call option 
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Figure 3. 3: Payoff from short a call option 
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Figure 3. 4: Payoff from long a put option 
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Figure 3. 5: Payoff from short a put option 
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Figure 3. 6: FTSE100 index in 2020 
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Figure 3. 7: General formulation for Binomial price path 
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Figure 3. 8: Binomial Call option example 
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	3.1 Introduction
	The basic idea regarding financial options has been around for a long-time. The Greeks appear to have been the first to use options to speculate on the price of olive harvests (Abraham, 2019). Recounting the material in Mackay’s memoirs of 1841, Extraordinary Popular Delusions and the Madness of Crowds, Thompson (2007) indicates that following the 17th century Holland tulip market crash: “The provisions, in effect, converted the futures prices in the original contracts to exercise prices in option contracts. The corresponding option price paid to the planters was only later determined. In particular, after over a year of political negotiation, the legislature of Haarlem, the centre of the tulip-contract trade during the "mania," determined the compensation to the sellers to be only 3½% of the contract price for those contracts made between November 30, 1636 and the spring of 1637.” Financial options are traded on many exchanges including the Chicago Board Options Exchange and Euronext. The number of option contracts traded worldwide has grown exponentially. In 2019, 15.23 billion option contracts were traded compared to 9.42 billion in 2013. During February 2021, up to 3 trillion dollars equity options by volume were traded in notional value on U.S. option exchanges. Options are use both to manage financial risk and speculate, although forwards and foreign currency borrowing/lending are preferred compared to currency options when firms hedge their exposures (Joseph, 2000). 
	This chapter discusses the components of financial options. We distinguish between their use for speculation and for hedging underlying exposure. We also provide illustrations of their use in different settings. We first begin with interest rates as it is important feature of option contracts.
	3.2 Interest rate and discounted cash flow
	 This section discusses the basic approaches to compound interest rates and the concept of present value of a cash flow. Both concepts are important components of option pricing models.
	3.2.1 Compound interest 

	An interest rate is the fee for using money and can be expressed as the amount of interest due per period, as a proportion of the amount borrowed, normally in annual percentage terms. The interest rate is determined by the supply (lenders or savers) and demand (borrowers or investors) for money, although its level is also determined by macroeconomic policy. 
	Compound interest arises by reinvesting the earnings of the additional interest on the principal, so that interest in the next period is earned based on the sum of the principal plus the first period and second period interest rates. The first formal documentation of compound of interest rate is by a Florentine merchant Francesco Balducci Pegolotti, in his book Pratica Della Mercatura in the 1340s, although the charging of interest rates is much earlier. For example, in Biblical history, the charging of interest rates was considered ungodly following specific instructions to the Hebrews. Pegolotti provides tables of the interest on 100 lire, for rates from 1% to 8%, for up to 20 years (Pegolotti, 1936). The important constant 𝑒 is discovered by Jacob Bernoulli while thinking about matters of continuous compound interest in 1683 (Reichert, 2019). In the 19th century, modified linear Taylor approximation is used to compute the monthly payment formula by Persian merchants (Milanfar, 1996).
	To formally define the compound interest rate, suppose an investor receives a constant and discrete rate of interest ρ per unit of time. Denote 𝐵(𝑡) as the value of an investment in the bank at time 𝑡. Thus, for the next period, the value of this investment is equal to
	Bt+1=Bt1+ρ 
	where the factor 1+ρ is the growth factor for one-unit time period. Similarly, for the second time period
	Bt+2=Bt+11+ρ=Bt1+ρ2.
	It is easy to prove by induction on h∈ℤ, that
	Bt+h=Bt1+ρh 
	where the growth factor for time period h is 1+ρh. Denote the interest rate for the time period h as ih. Therefore, Bt+h=Bt(1+ih). One can calculate the interest paid to the investors as 
	ih=1+ρh−1.   
	If the unit time is one year, ρ is also known as annual rate of return, annual yield or the annual rate of capital growth of the investment. Banks offer products with interest at more frequent intervals, for example, semi-annually, quarterly, or monthly. Denote 𝑟 as the annual interest rate which has 𝑚 compounding periods in a year. The future value of the investment after 𝑛 years equals to
	Bt+n=Bt1+rmmn .
	Consider m→∞.  That is, interests are paid almost continuously and the interest is compounded continuously. Then, 
	Bt+h=limm→∞Bt1+rmmh. Take the nature log on both sides, we obtain
	 lnBt+h=lnlimm→∞Bt1+rmmh=limm→∞lnBt+ln1+rmmh=limm→∞lnBt+mhln1+rm.
	As m gets larger, rm gets smaller, so we could use the log approximation ln1+x~x, and get
	lnBt+h=limm→∞lnBt+mhrm=limm→∞lnBt+rh 
	and finally gives that the value of principle with continuous compounding interests is
	Bt+h=Bterh. 
	Similarly, as h →0, ln1+x~x and ex−1~x ,  Bt+h−Bth=Btherh−1≈rBt 
	hence leads to the result dBtdt=rBt, where 𝑟 is the continuously compounded interest rate. However, continuous compounding is the mathematical limit that only can be reach theoretically if one can calculate and reinvest interest, continuously. This is not possible in practice. The concept of continuously compounded interest is important in finance and is used extensively for pricing options, forwards and other derivatives.
	Both discrete interest rate 𝜌 and its continuously compounded equivalent rate 𝑟, are assumed to be constant, as discussed before. In many cases, the interest rate is time dependent, also known as adjustable or floating rate, because it is based on an underlying benchmark interest rate or index that adjusts periodically with fluctuations in market conditions. Therefore, the change in value of an investment with a time dependent interest rate is dBtdt=r(t)Bt.  
	To solve this differential equation, one can rearrange the formula and integrating each side over the time interval [t,t+h]. This gives BtBt+hdBB=tt+hrsds. 
	We can now produce the generalisable form of an investment with continuous compounded interest rate as Bt+h=Btexptt+hrsds.
	3.2.2 Discounted cash flow

	For any ℎ>0, 𝐵𝑡+ℎ is the future value of the present value 𝐵𝑡, under the continuously compounded interest rate function 𝑟, given as Bt=Bt+hexp−tt+hrsds.  For special cases where 𝑟 is constant, Bt=Bt+he−rh=Bt+h1+ρ−h. 
	In finance, 𝑟 is also known as the discount rate. In general, the value of any asset is the present value of the expected cash flows from the asset.
	One way for an investor to raise capital is to sell bonds to the public. A bond is a fixed income instrument that pays bond holders a specific amount of interest, called the coupon payment, at regular intervals, and a final payment, called the face value (or par value or nominal value) of the bond, at maturity or its redemption date. Once a tradable bond has been issued, the bond holder is free to trade in the financial market and the market price of the bond reflects the interest rate and the level of risk attached to the bond issuer. Typical bonds are government issue bonds (also known as treasury bonds, treasuries or Gilts), local government bonds (known as municipal bonds), and corporate bonds.
	Assume a 𝑛 year maturity bond which pays coupons at rate of 𝑐/2 every 6 months. At maturity, an investor will receive coupon 𝑐/2 plus the face value 𝐹. Suppose that the annual redemption yield equals 𝜌, and the present value of the first coupon payment is c/21+ρ1/2 . In general, the present value at time of purchase of the kth coupon payment is c/21+ρk/2. Therefore, the bond price, 𝑃 is the net present value of all future cash flows generated by the bond 𝑃=k=12nc/21+ρk/2+F1+ρn ,which is called the discounted cash flow formula for bond pricing. Applying the standard formula for the sum of a geometric series, we have, k=1nark−1=a1−rn1−r where 𝑎 and 𝑟 are the first term in the series and the common ratio, respectively, and the bond pricing formula is reduced to P=12c1−1+ρ−n1+ρ1/2−1+F1+ρn. 
	The risk-free rate of return is the rate of return that can be obtained where the associated risk is considered to be zero. A risk-free return typically applies to the interest rate on government bonds, on the assumption that a government of a country cannot go bankrupt.  A treasury bond is an example of a risk-free investment. A bond holder is exposed to risk arising from changes in interest rates in the economy, if he sells the bond before the bond matures. There is general agreement that most investors are risk-averse. Thus, for risky investments, they require a return above the risk-free nominal interest rate. The differences between the return on the risky investment and the risk-free rate is known as the risk premium. 
	Another way for an investor or firm to raise capital is to sell equity to the public in the form of shares, via what is called an initial public offering (IPO). In return for their investment, investors obtain dividend plus capital appreciation. Equities are generally much riskier than bonds and can be valued as the total present value of future dividend payments, that is  P=n=1∞dn1+ρn ,where 𝜌 is the annual rate of return on a share and 𝑑𝑛 is the future annual dividend payment after 𝑛 years. Mathematically, a firm’s shares are equivalent to a bond with variable annual coupon payment 𝑑1,𝑑2,….
	3.3 Basics of option pricing
	Assets are traded in officially regulated markets such as the London Stock Exchange, which regulates and organizes the trading of shares in public companies in the U.K. Other exchanges include the London International Financial Futures and Options Exchange (LIFFE) and the London Metal Exchange in U.K. According to Futures Industry Association, the National Stock Exchange of India Ltd (NSE) remains the world’s largest derivatives exchange in terms of number of contracts traded in 2020 (The Economic Times, 2021). New York Stock Exchange (NYSE), Nasdaq, and Japan Exchange Group are the top 3 largest stock exchanges by value and volume of transactions (Statista, 2021). 
	The main assets traded in these financial exchanges are: Financial Assets (shares, bonds, currencies), commodities, notional financial assets (interest rates, index numbers). All listed assets are risky in the sense that their market value fluctuates in unpredictable ways. Derivatives are a type of security which are associated with the above primary assets and derive their value from that of the underlying asset. These financial derivatives can be grouped under two main headings: futures and options. The existence of financial derivatives allows investors to exert some control over the risks inherently associated with the underlying asset. 
	3.3.1 Futures 

	A futures contract is a standardised agreement between a trader and a futures exchange either to buy or to sell an asset at a specified future time at a specified price. A trader agrees to buy a specified amount, known as contract size, of the underlying asset at a specified future date (the delivery date) for a specified price, called future price. The trader is then said to open a long contract or take a long position. Alternatively, the trader opens a short contract or take a short position when he/she agrees to sell a contract size of the underlying asset at a delivery date for the future price. The current market price of the asset is known as the spot price. A futures contract is the simplest example of a financial derivative. A forward contract is a non-standardised contract between two parties to buy or sell an asset. If interest rates are certain then futures and forward prices are equal.
	Futures exchanges are responsible for organising and regulating the trading of standardised futures contracts. Across the world, the largest exchange, by volume of contracts, is the CME Group, which consists of Chicago Board of Trade (CBOT), Chicago Mercantile Exchange (CME), New York Mercantile Exchange (NYMEX), Commodity Exchange Inc. (COMEX), Kansas City Board of Trade (KCBT), and the NEX Group (Samuelsson, 2021). 
	In practice, for every long contract opened with the exchange, there will be a counterbalancing short-opened contract, and vice-versa. However, the long and short parties make their contracts with the futures exchanges and are never in direct contact. The futures exchanges and the underlying assets of future contracts are ‘Real’ or ‘Contingent’ depending on the physical holding of the underlying. In theory, it costs nothing to open a futures contract. In practice, the futures exchange charges a deposit known as the initial margin − usually between 5% to 20% of the value of underlying. Once a futures contract is opened, it can be closed at any time up to maturity, by the contract holder or by the exchange. A long (short) contract is closed by opening a short (long) contract, with the same delivery date and contract size. Most futures contracts are closed before the delivery date. Otherwise, the sellers or buyer holding the futures contract at delivery date will have to exercise their rights under the contract, potentially receiving physical delivery of the contract.
	Denote the future price of one unit of underlying asset by 𝐹𝑡,𝑇, at time 𝑡 for delivery at time 𝑇. Assuming an investor opens 𝑁 long (buy) contracts at time 𝑡0 and sells the contract later at time 𝑡, the profit is 𝐹𝑡,𝑇−𝐹𝑡0,𝑇𝑁. Similarly, if an investor opens 𝑁 short (sell) contracts at time 𝑡0 and closes the short contract later at time 𝑡, the profit is 𝐹𝑡0,𝑇−𝐹𝑡,𝑇𝑁. The exchange keeps a daily record of every trader’s running profit or loss and the process of using the closing futures market prices, to calculate the running profit or loss. This process is known as marking-to-market. The exchange may call for the losing party to make a margin payment, known as a margin call, if losses become too large, and the losing contract may be close by the exchange if no margin payments are received.
	Let 𝑆 = 𝑆(𝑡) denote the value of an asset at time 𝑡. In our case, 𝑆(𝑡) is usually either the price of a share or the value of a financial market traded index. Assuming a constant rate of return λ earned by a non-dividend paying asset, the value of the standard simple futures price, 𝐹𝑡,𝑇, is the present value at time 𝑡 to maturity 𝑇 is Ft,T=St1+ρ1+λT−twhere ρ is the discrete risk-free interest rate. The continuous compounding forward rate Ft,T=Ste(r−λ)T−t, where 𝑟 is the continuously compounded risk-free interest rate. Using the no-arbitrage principle, this means that there is no opportunity to open simultaneous positions in different assets (or the same asset in different markets) without any initial cost or capital outlay that would guarantee a risk-free profit. Assume a strategy for the short party, when Ft,T>St1+ρ1+λT−t. To make a profit, at time 𝑡, investors can borrow 𝑆𝑡1+𝜆−𝑇−𝑡 at risk-free interest rate ρ to buy the asset with return λ. At the same time, this investor can open a short futures contract to deliver 𝑆𝑡 amount of asset at price 𝐹𝑡,𝑇 at the future time 𝑇. At time 𝑇, the asset worth 𝑆𝑡, and the investor can deliver to the futures exchange receiving 𝐹𝑡,𝑇 from the long party. Paying back the loan leaves a profit of  Ft,T−St1+ρ1+λT−t and leave an arbitrage opportunity to the short party. Similarly, assume a strategy for the long party, when Ft,T<St1+ρ1+λT−t. At time t, the investor opens a long futures contract to buy 𝑆𝑡 amount of asset at price 𝐹𝑡,𝑇 at the future time 𝑇. Assume the investor sells 𝑆𝑡1+𝜆−𝑇−𝑡 assets and saves in a bank the risk-free interest return, which earns interest up to maturity. At time T, the investor withdraws the money from the bank and receives 𝑆𝑡1+𝜆−𝑇−𝑡1+𝜌𝑇−𝑡, then buys 𝑆𝑡 amount of asset from the short party at a cost of  𝐹𝑡,𝑇, leaving the profit of St1+ρ1+λT−t−Ft,T. The original 𝑆𝑡1+𝜆−𝑇−𝑡 assets are worth 𝑆𝑡 today, which gives an arbitrage opportunity to the long party which is invalid with the no-arbitrage principle, and completes the proof.
	3.3.2 Options 

	An option is a contract which provides the holder with the right, not obligation, to buy or sell an underlying asset at or before a pre-determined time (maturity date) in the future at a fixed price (strike price or exercise price). There are two basic types of options: the call option and the put option. The opening transaction on an option exchange can be either to sell the option, also known as writing an option, or to buy the option. Hence there are four option positions that may be opened, namely the long call, the short call, the long put and the short put as in Figure 3. 1. Each of these transactions will be discussed in detail below, for option contracts with finite lifetime and expirations.
	[Insert Figure 3. 1 about here]
	The owner of an option may trade the option in a secondary market, in either an over-the-counter transaction or on an option market exchange. The cash outlay on the options is called option premium; the risk of loss is limited to the premium. Each type of underlying asset gives rise to an option contract with a specific contract size. For example, a stock or equity option contract is usually for options of 1000 underlying shares. An American style option is one that can be exercised at any time up to an including to the expiry date, whereas a European style option is one that can only be exercised on the expiry date. 
	A trader who expects an asset price to increase can buy a call option to purchase the asset at a fixed price at a later date, rather than purchase the asset now. The opening transaction on the option exchange is ‘buy to open’ one call option contract. The buying price of call option is often referred to as the call option premium. In purchasing this contract, investors are acquiring the right to buy the underlying derivative at any time before the expiry date with pre-determined exercise price. In general, if the market price of the underlying asset increases, then the market price of a call option on that asset will also increase.
	A long call contract is different to a long futures contract. The long party to a futures contract is legally bound to buy the asset at the forward price agreed in the contract. The same as in the forward contract.  The long party to a call option contract has the right not the obligation to buy the asset at the agreed exercise price, i.e., the long party to an option contract may exercise the right to buy or may choose not to exercise.
	The long party to a call contract has three closing transactions available, as follows:
	 Exercise the option rights, i.e., buy the contract size of the underlying asset at the exercise price.
	 Trade on the option market. Opening a short call contract with the same exercise price and expiry date as the original long one. The option exchange considers the position to be closed with a short and a long contract of equal amounts.
	 Do nothing. The option contract expires on the expiry date and is worthless after the expiry date, the loss of the long party is the option premium paid to open the contract.
	Denote 𝐶=𝐶𝑆,𝑡 as the market price of a call option with underlying asset valuing 𝑆=𝑆𝑡 at time 𝑡. Option price is 𝐶≥0 and 𝐶≤𝑆 because investors will never pay for the right to buy something more than they actually paid to buy it outright. The value of an option is the profit on the closing transaction. Denote the strike price as 𝐸. When 𝑆>𝐸, the payoff of a long call holder is 𝑆−𝐸, by exercise the option paying 𝐸, and sell the asset at price 𝑆. When 𝑆≤𝐸, the option is worthless and should not be exercised. Therefore, the market price of the call option at expiry is 
	CS,T=maxS−E,0.                  (3.1)
	The net profit takes into consideration the premium that the long party paid up front is equal to 𝐶𝑆,𝑇− 𝑝𝑟𝑒𝑚𝑖𝑢𝑚=𝑚𝑎𝑥𝑆−𝐸,0− 𝑝𝑟𝑒𝑚𝑖𝑢𝑚. Thus, in order to gain a profit from a long call contract, the underlying asset price must rise. Figure 3. 2 illustrates the payoff and profit on a long call option at expiration. 
	[Insert Figure 3. 2 about here]
	A trader who expects an asset price to decrease can sell, or “write”, a call option. The opening transaction is a call option contract. The seller of the contract is the short party to the contract and is said to have written the option and receives the premium paid by the long party. If the long party is exercising the rights, the short party is obliged to sell the contract size at the exercise price.
	Having opened a short call contract, the short party may experience one of three possible closing transactions, as follows:
	 The contract is exercised, i.e., the long party exercises the right to buy, while the short party is obliged to sell at the exercise price.
	 Buy a long contract with the same exercise price and expiry date as the original short one. The option exchange considers the position to be closed with a long and a short contract, and the closing transaction is a buy contract.
	 Do nothing. The short party keeps the option premium received which is the ideal situation for the short party, if the long party does not exercise its rights.
	The short party of a call option is in the opposite position of the long party of the same call option, with payoffs at expiry date. That is,  𝑚𝑖𝑛𝑆−𝐸,0, profit equals to 𝑝𝑟𝑒𝑚𝑖𝑢𝑚−𝑚𝑖𝑛𝑆−𝐸,0. Thus, to profit from a short call contract, the underlying asset price must not rise, and the potential loss is unlimited. Figure 3. 3 illustrates the payoff and profit on a short call option at expiration. 
	[Insert Figure 3. 3 about here]
	A trader who expects an asset price to decrease can buy a put option to sell the asset at a fixed price at a later date, rather than sell the asset now. Here the opening transaction is to buy (buy to open) a put option contract. The long party is buying the right to sell the contract size of the underlying asset at the exercise price at any time (American style assumed) before the expiry date. The market price of a put option will increase (decrease) when the price of the underlying share decreases (increases).
	Having opened a long put contract, there are three possible closing transactions:
	 Exercise the option, i.e., sell the contract size of the underlying asset at the exercise price.
	 Opening a short put contract with the same exercise price and expiry date as the original long one. The option exchange considers the position to be closed with a long and a short contract, and the transaction is closed.
	 Do Nothing. The option will be worthless after the expiry date, the loss of the long party is the option premium paid to open the contract.
	Denote 𝑃=𝑃𝑆,𝑡 as the market price of a call option with underlying asset valuing 𝑆=𝑆𝑡 at time 𝑡. The put price increases as the underlying value decreases. The option price 𝑃≥0 and 𝑃≤𝐸 because the put option is most valuable when asset is worthless, and investors can sell put option for 𝐸. The value of an option is the profit on the closing transaction. Denote the strike price as 𝐸. When 𝑆≤𝐸, the payoff of a long put holder is 𝐸−𝑆, by exercise the option receiving 𝐸, and buy the asset at price 𝑆. When 𝑆>𝐸, the option is worthless and should not exercise. Therefore, the market price of the call option at expiry is 
	PS,T=maxE−S,0.                    (3.2)
	The net profit is the premium that long party paid up front equals to 𝑃𝑆,𝑇− 𝑝𝑟𝑒𝑚𝑖𝑢𝑚=𝑚𝑎𝑥𝐸−𝑆,0− 𝑝𝑟𝑒𝑚𝑖𝑢𝑚. Thus, in order to profit from a long put contract, the underlying asset price must fall. Figure 3. 4 illustrates the payoff and profit on a long put option at expiration. 
	[Insert Figure 3. 4 about here]
	A trader who expects an asset’s price to increase can sell, or “write”, a put option. The party who opens a short put contract is on the opposite side of the option transaction to the long put party, the opening transaction is to sell (sell to open) a put option contract. The short party receives the premium paid by the long party and in return is obliged to buy the contract size of the underlying asset at the exercise price, if called upon to do so by the long party.
	Having opened a short put contract, there are three possible closing transactions, as follows:
	 Be exercised against, i.e., the long party exercises the right to sell, while the short party is obliged to buy at the exercise price.
	 Buy a long contract with the same exercise price and expiry date as the original short one. The option exchange considers the position to be closed with a long and a short contract, and the closing transaction is a buy to close.
	 Do nothing. The short party keeps the option premium received which is the ideal situation for the short party, if the long party does not exercise his/her rights.
	The payoffs at expiry date 𝑚𝑖𝑛𝐸−𝑆,0, profit equals to 𝑝𝑟𝑒𝑚𝑖𝑢𝑚−𝑚𝑖𝑛𝐸−𝑆,0. Thus, to profit from a short put contract, the underlying asset price must not fall, and the potential loss is unlimited.  Figure 3. 5 illustrates the payoff and profit on a short put option at expiration. 
	[Insert Figure 3. 5 about here]
	3.3.3 Put-Call Parity

	Assume that the underlying share X pays no dividends. At time 𝑡, investor A buys one share X costing 𝑆 = 𝑆(𝑡). At the same time, the investor writes one European style call option for underlying share with exercise price 𝐸, expiry time 𝑇. The income from the call option is 𝐶𝑒𝑆,𝑡. The total expenditure by investor A at time 𝑡 is 𝑆 − 𝐶𝑒𝑆,𝑡. Assume that investor B invests 𝐸𝑒−𝑟𝑇−𝑡 at time 𝑡 in the risk-free market, e.g., bank, and earns continuously compounded interest rate 𝑟. In addition, the investor writes one European style put option on share X with exercise price 𝐸 and expiry time 𝑇. The income from the put option is 𝑃𝑒𝑆,𝑡. The total expenditure by the investor B at time t is 𝐸𝑒−𝑟𝑇−𝑡 − 𝑃𝑒𝑆,𝑡.
	The investors hold both investments until expiry time 𝑇, with 𝑆𝑇=𝑆𝑇. The final value of investor A is 𝑆𝑇−𝐶𝑒𝑆𝑇,𝑇=𝑆𝑇−𝑚𝑎𝑥𝑆𝑇−𝐸,0, and the final value for investor B is 𝐸𝑒−𝑟𝑇−𝑡𝑒𝑟𝑇−𝑡−𝑃𝑒𝑆𝑇,𝑡=𝐸−𝑚𝑎𝑥𝐸−𝑆𝑇,0. When 𝑆𝑇≤𝐸, both investors have value equals to 𝑆𝑇. However, if 𝑆𝑇>𝐸, the value is 𝐸. That is, that the final value of investors A and B are identical, and these values are guaranteed and risk-free. If two risk-free investments have the same final value at time 𝑇, then the no-arbitrage principal implies and they must have the same value at all times 𝑡< 𝑇. Otherwise, the investors can benefit from an arbitrage opportunity arising from selling the initially more expensive investment short, and buying the cheaper one. Thus, the expenditure at time 𝑡 are the same, 𝑆 − 𝐶𝑒𝑆,𝑡=𝐸𝑒−𝑟𝑇−𝑡 − 𝑃𝑒𝑆,𝑡, or, as it is normally written,
	S+PeS,t=Ee−rT−t+CeS,t.                           (3.3)
	This relationship between the prices of European style call and put option prices is known as the law of put-call parity, and the relationship holds only in the case where the underlying share does not pay a dividend.
	From the law of put-call parity, if 𝑃𝑒S,t ≥0, it follows that 𝐶𝑒𝑆,𝑡≥𝑆−𝐸𝑒−𝑟𝑇−𝑡. Furthermore, since 𝐶𝑒𝑆,𝑡 ≥0, then CeS,t≥maxS−Ee−rT−t,0. Similarly, PeS,t≥maxEe−rT−t−S,0. 
	3.3.4 Speculation

	A hedge is a transaction undertaken by an investor to protect an exposure from adverse price movements. A speculator may undertake a similar transaction either to partially hedge or simply execute a derivative transaction without have an underlying exposure. In this sense, both a partial hedger and what we call a true speculator may be betting on future price movements of the underlying asset. Partial hedging is common among firms. Indeed, there is some agreement in the literature that partial hedging is speculative (Géczy et al., 2007). Overtime, the idea of firms speculating on the direction of financial prices to hedge exposures has become more common in risk management settings. Indeed, the U.S. participants in the Jilling (1978) study were adamant that they do not speculate. However, more recently, Géczy et al. (2007) report that 40% of U.S. firms use derivatives for speculative purposes in the sense that they take a market view; at least 7% of them do so frequently. The finding that firms with exposure speculate has been reported for other countries (Hakkarainen et al., 1998). Therefore, we consider speculation as an appropriate context to evaluate the role of option pricing.
	For options, investors gain profit when the underlying asset price falls and they hold a short call or a long put contract. Both option types may be used to hedge against falling prices of an asset. Similarly, investors gain profit when the underlying asset price rises and they hold a long call or a short put contract. These option types may be used to hedge against rising asset prices. More details are discussed in Section 3.7.
	A speculator may have a view about future price movement of the underlying asset. He/she may then invest in an option without having any underlying asset to protect. The profit/loss characteristics of the basic option types may be: long call, short call, long put and short put.
	Suppose the speculator is long on a call contract at time 𝑡0 with initial cost of
	α=CS0,t0 per option. At time period 𝑡0,𝑇, the profit per option from trading the contract is CS,t−α  and expiry profit per option is
	maxS−E,0−α.                                           (3.4)
	The short party's profit is the long party's loss. Thus, opening a short call contract produces an initial income of α per option at time 𝑡0, the subsequent profit from trading the contract is α −𝐶𝑆,𝑡 and the expiry profit per option is
	α−maxS−E,0.                                            (3.5)
	Suppose the speculator opens a long put option at time 𝑡0 with initial cost of β=PS0,t0 per option. At time period 𝑡0,𝑇, the profit per option from trading the contract is PS,t−β and at expiry time, the profit per option is
	maxE−S,0−β.                                              (3.6)
	Again, the short party's profit is the long party's loss. Thus, opening a short put contract produces an initial income of 𝛽 per option at time 𝑡0, the subsequent profit from trading the contract is 𝛽 −𝑃𝑆,𝑡 and the expiry profit per option is
	β−maxE−S,0.                                              (3.7)
	Many more interesting and complex speculative strategies can be designed to take advantage of various underlying price behaviour, such as long strangles, short strangles, long straddles, short straddles, butterflies, condors, ratio spreads, calendar spreads. The speculator can sustain consumption level by bearing more risks, adding liquidity to the market, and therefore promote an efficient market.  
	3.4 Option pricing models
	Previous sections only give explicit formulae for the prices of call and put options at expiry time 𝑡 = 𝑇, when 𝑆=𝑆(𝑇) and C=maxS−E,0, P=max(E−S,0). At the present time 𝑡, where 𝑡 < 𝑇, the future expiry price 𝑆 = 𝑆(𝑇) of the underlying asset is unknown and generally unpredictable. Therefore, to evaluate the current value of options, the first task is to model the asset price process. 
	The Figure 3. 6 shows the FTSE100 daily index covering 2020. The FTSE100 index has a sudden drop in March due to the COVID19 pandemic and a recovery afterwards. The detailed day-to-day behaviour is highly erratic and unpredictable. Financial prices of major exchanges exhibit random day-to-day price changes, especially at high frequency. Thus, some type of statistical model involving random day-to-day price movements would be appropriate for modelling the behaviour of this type of asset.
	[Insert Figure 3. 6 about here]
	Suppose that underlying asset price 𝑆(𝑇) process is a random variable with probability density function 𝑓(∙). In particular, since asset prices are essentially positive, ℙ0≤ST≤∞=0∞fxdx=1. In general, if 𝑢=𝑢𝑆𝑇 is any function of the expiry asset price 𝑆𝑇, then the expected value of 𝑢 is 𝔼u∙≔0∞uxfxdx. This means that at expiry 𝑡 = 𝑇, the call option is equals to
	CT=𝔼C∙,T=0∞Cx,Tfxdx =0∞maxx−E,0fxdx                                                                                                         =E∞x−Efxdx  . The put option
	      PT=𝔼P∙,T=0∞Px,Tfxdx                                                                                       =0∞maxE−x,0fxdx                =0EE−xfxdx.
	Denote the present values by C 𝑆,𝑡 and 𝑃 𝑆,𝑡. Therefore, the theoretical formulae of present values at time 𝑡 for option prices are
	          C S,t=e−rT−tCT=e−rT−tE∞x−Efxdx                                               (3.8)              P S,t=e−rT−tPT=e−rT−t0EE−xfxdx.                             (3.9)
	This section addresses the following three questions:
	1. What is a reasonable assumption to make about the probability density 𝑓(∙) of an asset price 𝑆(𝑇) at the option expiry time 𝑇?
	2. For a given 𝑓(∙), how to evaluate the integrals?
	3. Are the resulting formulae consistent with the no-arbitrage principle?
	3.4.1 Random walks and Brownian motion

	A random walk describes the process by which randomly moving objects wander away from where they started. The term random walk was first introduced by Karl Pearson (Pearson, 1905) and is often used to model shares prices in financial economics. The simplest random walk example is the 1-dimentional random walk on the integer number line, which starts at origin and moves forward or backwards at each step with equal probability. This moving patten can be used to describe the behaviour of a financial index over the time, similar to Figure 3.6. To compute a random walk model, denote the modelling value as 𝑊 = 𝑊(𝑡) over the time interval 𝑡0,𝑇. Suppose 𝑊𝑡0=𝑊0 has a known value at some initial time 𝑡0 and divide 𝑡0,𝑇 into 𝑛 equal sub-intervals of width δt=T−t0n . It is easy to get that t1=t0+δt,t2=t0+2δt,…,tn=t0+nδt=T. 
	Suppose that at time 𝑡 = 𝑡1, 𝑊1=𝑊𝑡1=𝑊0+𝛿𝑊0 where the increment 𝛿𝑊0 is chosen at random from a normal distribution. Similarly,  
	W2=Wt2=W1+δW1                                                                                               W3=Wt3=W2+δW2 …             Wn=Wtn=Wn−1+δWn−1 
	where the increments 𝛿𝑊1,𝛿𝑊2,...,𝛿𝑊𝑛−1 are chosen independently at random from the same normal distribution as 𝛿𝑊0. The equations used to compute 𝑊1,𝑊2,...,𝑊𝑛 are known as a random walk model. It is easy to show that WT=W0+i=0n−1δWi. 
	Theorem 3. 1
	Under the assumptions above, 𝑊𝑇 is normally distributed, with expect value 𝑊0+𝑛𝔼𝛿𝑊 and variance 𝑛𝑉𝑎𝑟𝛿𝑊.
	Proof:
	Since the sequence of random numbers 𝛿𝑊0,𝛿𝑊1,𝛿𝑊2,...,𝛿𝑊𝑛−1 are independent and normally distributed, 𝑖=0𝑛−1𝛿𝑊𝑖, and hence 𝑊𝑇 are normally distribution random variables. The expected value of the random variable is equal to 
	 𝔼𝑊𝑇=𝔼𝑊0+𝑖=0𝑛−1𝛿𝑊𝑖=𝑊0+𝑖=0𝑛−1𝔼(𝛿𝑊𝑖)=𝑊0+𝑖=0𝑛−1𝔼(𝛿𝑊)                                                                                                                           =𝑊0+𝑛𝔼𝛿𝑊 
	with variance
	 VarWT=VarW0+i=0n−1δWi=i=0n−1VarδWi=i=0n−1VarδW                                                                                                                               = nVarδW 
	which completes the proof.
	While simple random walk is a discrete space (integers) and time model, Brownian Motion is a continuous space time model, which is motivated by the simple random walk. The Brownian motion is a mathematical model used to describe the random fluctuations of particles. It was named after the Scottish botanist Robert Brown (1773-1858) who first discovered in 1827 that chaotic movements of pollen are suspended in water. The Brownian motion was wildly used by physicists to describe the diffusion movements of particles, in particular, by Albert Einstein (Einstein, 1905). Louis Bachelier, the father of modern option pricing theory, use the Brownian motion for the first time to pricing of options in his PhD thesis (Bachelier, 1900). In mathematics, the Brownian motion is also known as the Wiener process in honour of American mathematician Norbert Wiener (1894-1964), which is a real value continuous-time stochastic process.
	The stochastic process 𝑊 is called Wiener process if the following conditions hold:
	1. 𝑊𝑡0=0.
	2. 𝑊 has stationary, independent increments: for every 𝑡>0, future increments 𝑊𝑡+𝑠−𝑊𝑡 are independent of the past.
	3. 𝑊 has Gaussian increments: increment 𝑊𝑡+𝑠−𝑊𝑡 is normally distributed with mean 0 and variance 𝑠.
	4. 𝑊 has continuous paths: the function 𝑊𝑡 is continuous in 𝑡.
	The standardized Wiener process, usually denoted by 𝑋, is the special Wiener process satisfies
	δX=δt𝒩0,1                                          (3.10)
	with solution
	XT=T−t0𝒩0,1.                                            (3.11)
	Define 𝒩 to be the cumulative distribution function for the standard normal probability density 𝒩0,1 with mean 0 and variance 1, then
	𝒩𝑥=ℙ𝑧≤𝑥=12𝜋−∞𝑥𝑒−𝑡2/2𝑑𝑡                                          (3.12)
	with its derivative
	𝒩′x=e−x2/22π .                                             (3.13)
	And hence the general Wiener process may be written as
	𝛿𝑊=𝜇𝛿𝑡+𝜎𝛿𝑋                                             (3.14)
	with solution
	WT=W0+μT−t0+σXT.                                          (3.15)
	3.4.2 Binomial model

	The binomial option pricing model uses an iterative procedure. Assuming in any one time period, the underlying asset value can move to one of two possible prices, up or down. Figure 3. 7 shows the general formulation of a two-period stock price path process, which follows a Binomial model. For a multi-periods model, 𝑆𝑇 follows a binomial distribution, which is a simple 1-dimentional random walk. The initial stock price at 𝑡=0 equals to 𝑆0, at the first time period 𝑡=1, price moves up to 𝑢𝑆0 with probability 𝑝 and moves down to 𝑑𝑆0 with probability 1−𝑝. When 𝑡≥2, stock price moves up by 𝑢 with probability 𝑝 and moves down by 𝑑 with probability 1−𝑝. One can easily observe the stock price path with combinations of ‘up, down’ and ‘down, up’ leads to the same final price 𝑢𝑑𝑆0 with probability 2𝑝(1−𝑝).
	[Insert Figure 3. 7 about here]
	The major advantage of the binomial option pricing model is that it is mathematically simple, when calculating the option value along the range of possible paths for each period. The basic method of valuing the binomial option model is by creating a replicating portfolio until the option expires. Assume that an investor borrows capital 𝐵 from a bank at a rate of 𝜌 per period, to buy Δ0 units of the underlying asset at 𝑡=0, in order to replicate the payoffs of a call option. Note that 𝑑<(1+𝜌)<𝑢 to ensure no arbitrage opportunity. At 𝑡=1,  𝐶𝑢 is the value of the call option if the underlying asset increases in value to 𝑢𝑆0. 𝐶𝑑 is the value of the call option if the underlying asset’s value decreases to 𝑑𝑆0. The payoffs of a call option equal to corresponding replicating portfolio
	          Cu=Δ0uS0−B1+ρ                                                                                                                          Cd=Δ0dS0−B1+ρ.  
	Solve the equations and can obtain that
	            Δ0=Cu−CduS0−dS0                                                                                                                   (3.16)            B=uCd−dCu1+ρu−d.                                                                                                         (3.17)                                   (3.9)
	The valuation for a multiperiod process can be proceed iteratively from the final period to the current time 𝑡=0, composed of delta shares of the underlying asset, ignoring risk-free borrowing. So, the option value at current time is
	C S,0=C=Δ0S0+B=Cu−CduS0−dS0S0+uCd−dCu1+ρu−d=11+ρ1+ρ−du−dCu+u−1+ρu−dCd                                                                   =11+ρqCu+1−qCd                                                                       (3.18)
	where 𝑞=1+𝜌−𝑑𝑢−𝑑 is the probability that the stock goes up to 𝐶𝑢 under the risk-neutral assumption.
	For illustrative purposes, consider a call option with strike price 100 and expiration two time periods ahead. The current value of the underlying stock price is 100, for each period. The price has 50% chance of moving up by 10% and 50% chance of moving down by 10%. That is, 𝑢=1.1, 𝑑=0.9, shown in Figure 3. 8. Assume interest rate is 𝜌=5%, at the end of the second period. The call option will only be exercised if the underlying stock price increases in both periods with value 21=121−100.
	[Insert Figure 3. 8 about here]
	Consider the top end nodes when 𝑆1=110 at 𝑡=1. The replicating portfolios with pricing up or down at 𝑡=2 are  121×Δ−1.05×B=21  and 99×Δ−1.05×B=0.
	Solving the equations, the units of the underlying asset are  Δ=21−0121−99=0.955  and  B=− 90 .
	If the stock price is 110 at 𝑡=1, borrowing 90 capital from the risk-free market and buying on 0.955 share of the stock will give the same cash flows as buying the call. The value of the call option at 𝑡=1 is 110×Δ+B=15. 
	The other leg of the tree is:
	Δ=0−099−81=0  with 𝐵=0. At 𝑡=1 if the stock price is 90, then the call is worthless. Moving back to the one period earlier and create a replicating portfolio at 𝑡=0 are
	110×Δ−1.05×B=15                                                                                                          90×Δ−1.05×B=0.    
	Solving the equations generates Δ=0.75 and 𝐵=− 64.286. The value of the call option at 𝑡=0 equals to 100×Δ+B=10.714 . 
	The binomial model provides insight into numerical methods to determine option value under the assumption of no-arbitrage principle with discreate time model. The value of an option reflects expectations at a future date and is determined by the current price of the asset deriving from the value of the replicating portfolio. If the replicate portfolio costs less than the corresponding call option in the market, an investor could sell the call and buy the replicating portfolio at the same time, with a guaranteed risk-free profit. A rational market will move accordingly, and call option will reduce to the level of the replicating portfolio, to be consistent with the no-arbitrage principle. The value of a call option increases as the time to maturity, asset price volatility (𝑢 and 𝑑), and interest rate increase.
	Although the methodology of evaluating option pricing with binomial model avoid the integral calculation and is more intuitive, it requires a large number of inputs to calculate the expected future prices recursively at each node, which means it is especially computational expensive in the multiperiod models. Assume that as the time periods in the binomial model get shorter, the price changes become smaller and infinitesimally approaching zero. The option pricing models could be evaluated while underlying asset with a continuous price process. The chapter will not discuss the case under the assumption of price changes staying large with shorter period, i.e., a jump price process.
	3.4.3 Black-Scholes Model

	The Black-Scholes and Black-Scholes-Merton model provide a closed form-theoretical estimate of the value of a option using a small number of inputs, (Black and Scholes, 1973; Merton, 1973). Merton and Scholes received the 1997 Nobel Memorial Prize in Economic Sciences for their breakthrough work that separates the option from the risk of the underlying security using the risk neutral dynamic. Black–Scholes model underpin similar assumptions as the binomial model, while binomial model assumes discrete time process and the underlying approximately follows a binomial distribution. Black–Scholes model assumes a continuous process underlying, while the binomial distribution approaches the lognormal distribution. The value estimated from binomial model converges on the Black–Scholes formula value as the number of periods 𝑛 increases and goes to infinity. The most significant contribution of the Black–Scholes pricing is the formula depends only on the market observable inputs. 
	3.4.3.1 Stochastic differential equations

	Recall that in ordinary calculus, for a differentiable function 𝑊=𝑓𝑡, there is no difference between a differential and an increment for the independent variable, i.e., 𝑑𝑡=𝛿𝑡. However, the differential of the dependent variable, i.e., 𝑑𝑊=𝑓′𝑡𝑑𝑡, is not equal to the increment for 𝑊
	 δW=ft+δt−ft =f′tδt+12f′′ηδt2                                                                                                           =dW+𝒪δt2 
	where 𝒪𝛿𝑡2 is a term which is no greater than the multiple of |𝛿𝑡|2. However, 𝑑𝑊≈𝛿𝑊 if 𝛿𝑡 is infinitesimally small. In the case where increments and differentials are stochastic and 𝛿𝑡 is infinitesimally small, define
	dt=δt, dX=δX, dW=δW                                           (3.19)
	where 𝑋 denote the standardized Wiener process. For more discussion of stochastic calculus in an economic context, see Merton (1975), and Fischer (1975).
	Denote 𝑆 = 𝑆(𝑡) as the value of an asset at time 𝑡, 𝑑𝑆 as the change in value over the next infinitesimal time interval 𝑑𝑡, and 𝑑𝑆/𝑆 is the corresponding relative change in value over this time interval 𝑑𝑡. Relative change 𝑑𝑆/𝑆 is a financially more meaningful quantity to model than the absolute change 𝑑𝑆 and suppose asset prices satisfy the following stochastic differential equation
	dSS=μdt+σdX,   St0=S0                                         (3.20)
	where 𝜇 and 𝜎 are constants. If 𝑆 satisfies the above stochastic differential equation, then it is said to follow a geometric Brownian motion. The parameters 𝜇 and 𝜎 are usually known as the drift and the volatility of the asset price respectively.
	To solve the above equation and determine the probability density for the random variable 𝑆, the first step is to integrate both sides over the interval 𝑡0,𝑇 and obtain
	𝑡0𝑇𝑑𝑆𝑆=𝜇𝑇−𝑡0+𝜎𝑋𝑇. 
	It is tempting to suppose that
	dlnSdS=1S                                                                                                             (3.21)
	in which case gives the result of the integral
	t0TdSS=t0TdlnS=lnSt0T=lnSTS0. 
	However, for a stochastic variable, 𝑆 the above results do not hold. In particular, for a stochastic variable 𝑆, dlnS≠dSS . 
	One should apply Itô's lemma (Itô, 1944; 1951) to solve the stochastic differential equation. Itô's lemma is the chain rule for stochastic calculus and is an identity used to calculate the differential of a function that depends on a stochastic variable (a stochastic process). Assume that the asset price variable 𝑆 is described by the stochastic differential equation
	dS=AS,tdX+BS,tdt.                                          (3.22)
	To calculate the differential of a function
	U=fS,t                                               (3.23)
	where 𝑓(∙) is some given function, 𝑋 is the standard Wiener process and 𝐴, 𝐵 are given functions. Ito's lemma states how 𝑑𝑈 is related to 𝑑𝑆 and 𝑑𝑡. In other words, it determined the stochastic differential equation that is satisfied by 𝑈. 
	Lemma 3. 1
	Itô's lemma states that 
	dU=∂U∂SdS+∂U∂tdt+12∂2U∂S2A2dt.                                          (3.24)
	The first two terms on the right-hand side of Lemma 3. 1 are just what one would expect from ordinary non-stochastic calculus. The third term is new and arises only when 𝑆 is a stochastic variable. 𝑆, therefore satisfies an ordinary non-stochastic differential equation if and only if 𝐴 ( 0. Substituting 𝑑𝑆 and obtain the stochastic differential equation that 𝑈 satisfies as
	dU=∂U∂SAdX+∂U∂SB+∂U∂t+12∂2U∂S2A2dt.                       (3.25)
	This solution plays a key role in the Black-Scholes option price derivation. This section provides a sketch of proof by expanding a Taylor series without getting into too much of details of the limit of a sequence of random variables.
	Proof: 
	The Taylor expansion gives
	δU=fS+dS,t+dt−fS,t                                                                                      =fSdS+ftdt+12fSSdS2+2fStdSdt+fttdt2+…                    (3.26)
	where subscripts denote partial differentiation with respect to 𝑆 or 𝑡. As 𝑑𝑡→0 so 𝛿𝑈→𝑑𝑈; that is, 𝑑𝑈 is the dominant contribution to 𝛿𝑈 when 𝑑𝑡 is small. Define 𝑑𝑈 informally as the sum of dominant random term with zero mean in 𝛿𝑈 as 𝑑𝑡→0 and dominant non-random term in 𝛿𝑈 as 𝑑𝑡→0 which have both a random and a non-random component. Then, exam each term in the Taylor expansion of 𝛿𝑈
	1. Substitute 𝑑𝑆 into the first two terms 
	fSdS+ftdt=fSAdX+Bdt+ftdt 
	To simplify the notation, dX=𝒩0,dt=dt𝒩0,1=zdt, where z is a standardized normal random variable, with 𝔼z=0 and 𝔼z2=1. Therefore, dS=Azdt+Bdt, and 
	fSdS+ftdt=fSAzdt+BfS+ftdt. 
	Since 𝔼𝑧=0, 𝑓𝑆𝐴𝑧𝑑𝑡 is a random variable with zero mean and 𝐵𝑓𝑆+𝑓𝑡𝑑𝑡 is a non-random term.
	2. The third term is
	fSSdS2=fSSAzdt+Bdt2=fSSA2z2dt+2ABzdt3/2+B2dt2
	As dt →0, terms with higher order dt negligible. Hence fSSdS2≈fSSA2z2dt. This random term has a non-zero expected value 𝔼fSSdS2≈fSSA2𝔼z2dt=fSSA2𝑑𝑡.
	3. The fourth term is
	             2fStdSdt=2fStAzdt+Bdtdt=2fStAzdt3/2+B2dt2 
	 is also negligible as 𝑑𝑡 →0.
	4. The fifth term on the right Taylor expansion 𝛿𝑈, 𝑓𝑡𝑡𝑑𝑡2 negligible as 𝑑𝑡 →0.
	Hence ignoring the negligible terms, as 𝑑𝑡 →0,
	δU≈fSdS+ftdt+12fSSA2dt 
	That is
	dU=fSdS+ftdt+12fSSA2dt                                                                                                        =∂U∂SAdX+Bdt+∂U∂tdt+12∂2U∂S2A2dt 
	which completes the proof.
	3.4.3.2 Log-normal distribution

	Consider the question in the previous subsection where 𝑆 follows the geometric Brownian motion. So, 𝐴𝑆,𝑡=𝜎𝑆 and 𝐵𝑆,𝑡=𝜇𝑆. Assume the function 𝑈=𝑙𝑛S, and easily get
	𝜕𝑈𝜕𝑆=1𝑆,  𝜕𝑈𝜕𝑡=0,  𝜕2𝑈𝜕𝑆2=−1𝑆2 
	and hence Itô's lemma yields
	dlnS≡dU=dSS+0+12−1S2σS2dt                                                                         =dSS−σ22dt 
	which provides the correct expression for 𝑑𝑙𝑛𝑆 in the case where S follows a geometric random walk. Taking the integration gives
	    t0TdSS=t0TdlnS+σ22t0Tdt     =lnSt0T+σ22T−t0                                                                                         =lnSTS0+σ22T−t0. 
	Therefore, 
	t0TdSS=μT−t0+σXT=lnSTS0+σ22T−t0 
	rearranging and we get
	lnSTS0=μ−σ22T−t0+σXT                                                                                   lnST=lnS0+μ−σ22T−t0+σXT  
	where the standardised Winer process 𝑋𝑇=𝑇−𝑡0𝒩0,1. Therefore, 𝑙𝑛𝑆𝑇 is normally distributed with
	𝔼lnST=lnS0+μ−σ22T−t0                         (3.27)
	and
	VarlnST=σ2T−t0.                           (3.28)
	If the logarithm of a random variable is normally distributed, then we say that the variable itself is log-normally distributed. Equivalently, whereas the probability density function for 𝑙𝑛𝑆𝑇 is given by the normal distribution. Assume that 𝑆=𝑒𝑍, then denote
	Z~𝒩μ,σ2⟹S=eZ~ℒ𝒩μ,σ2. 
	Therefore
	        Z=lnS0+μ−σ22T−t0+σXT~𝒩lnS0+μ−σ22T−t0,σ2T−t0              S=eZ~ℒ𝒩lnS0+μ−σ22T−t0,σ2T−t0. 
	The probability density function of 𝑍~𝒩𝜇,𝜎2 is 𝑓𝑍𝑧=1𝜎2𝜋𝑒−𝑧−𝜇22𝜎2, and the probability density function of the log-normal distribution ℒ𝒩𝑙𝑛𝑆0+𝜇−σ22𝑇−𝑡0,𝜎2𝑇−𝑡0, given 𝑑𝑧𝑑𝑆=𝑑𝑑𝑆𝑙𝑛𝑆=1𝑆, is
	fSS=fZlnSdzdS=1Sσ2πT−t0e− lnSS0−μ−σ22T−t02 2σ2T−t0 .               (3.29)
	In finance, a reasonable assumption regarding the underlying asset price is that 𝑆𝑇 follows a log-normal distribution. Given that 𝔼𝑒𝑍=𝑒𝔼𝑍+12𝑉𝑎𝑟𝑍, 𝑉𝑎𝑟𝑆=𝔼𝑆2−𝔼𝑆2=𝔼𝑒2𝑍−𝔼𝑒𝑍2, and 𝐶𝑜𝑣𝑆𝑇1,𝑆𝑇2=𝔼𝑆𝑇1,𝑆𝑇2−𝔼𝑆𝑇1𝔼𝑆𝑇2, the solution 𝑆𝑇 is a log-normally distributed random variable with expected value, variance and covariance given by 
	          𝔼ST=𝔼elnST=elnS0+μ−σ22T+12σ2T=S0eμT          VarST=e2lnS0+μ−σ22T+12σ2T+2σ2T−S02e2μT=S02e2μTeσ2T−1          CovST1,ST2= 𝔼S0eμ−σ22T1+σXT1S0eμ−σ22T2+σXT2−S0eμT1S0eμT2           =S02eμT1+T2 − 0.5σ2T1 − 0.5σ2T2𝔼eσXT1+σXT2−S02eμT1+T2=S02eμT1+T2  − 0.5σ2T1 − 0.5σ2T2𝔼e2σXT2𝔼eσXT1−XT2−S02eμT1+T2=S02eμT1+T2  − 0.5σ2T1 − 0.5σ2T2e0+124σ2T2e0+12σ2T1−T2−S02eμT1+T2 =S02eμT1+T2+σ2T2−S02eμT1+T2=S02eμT1+T2eσ2T2−1.
	3.4.3.3 Expected values of option prices at expiry

	In the beginning of this section, we derived the expected value of a call option at the expiry time 𝑇, given that 𝑓∙ is the probability density function for the share price 𝑆(𝑇) at maturity
	C T=0∞maxx−Efxdx=E∞xfxdx−EE∞fxdx                                   P T=0∞maxE−xfxdx=E0Efxdx−0Exfxdx . 
	Assume that 𝑆(𝑇) follows the geometric random walk with a log-normal density function given in the previous sub section fx=1xσ2πT−t0e− lnx/S0−λT−t022σ2T−t0 
	where λ=𝜇−σ22. To evaluate 𝐶 (𝑇)and 𝑃 (𝑇), the key is to solve the integrals in the equation. Recall the cumulative distribution function of the standard normal distribution 𝒩𝑥=12𝜋−∞𝑥𝑒−𝑡2/2𝑑𝑡. Due to the symmetrical shape of the normal density about its mean value 0,  ℙ𝑧≤−𝑥=ℙ𝑧≥𝑥=1−ℙ𝑧≤𝑥, hence 𝒩−𝑥=1−𝒩𝑥. The following two lemmas aim to calculate the integrals in the formulae of share price at maturity.
	Lemma 3. 2
	If 𝑓∙ denotes the log-normal density, then
	E∞fxdx= 𝒩δ2, 0Efxdx= 𝒩−δ2                 (3.30)
	where 
	𝛿2=𝑙𝑛𝑆0/𝐸+𝜇−12𝜎2𝑇−𝑡0𝜎𝑇−𝑡0.                        (3.31)
	Proof:   
	E∞fxdx=ℙE≤ST=ℙlnE≤lnST=ℙ𝑙𝑛𝐸/𝑆0−𝜆𝑇−𝑡0𝜎𝑇−𝑡0≤𝑧                                                                    =ℙ−𝛿2≤𝑧=ℙ𝑧≤𝛿2= 𝒩𝛿2  
	where λ=𝜇−σ22 and 𝑧 denotes the standardised normal variable, which proves the first half of the lemma. For the second half, use the following relationship
	0Efxdx+E∞fxdx=0∞fxdx=1 
	and obtain
	0Efxdx=1−𝒩δ2=𝒩−δ2 
	which completes the proof.
	Lemma 3. 3
	If 𝑓∙ denotes the log-normal density, then
	E∞xfxdx=S0eμT−t0𝒩δ1,0Exfxdx=S0eμT−t0𝒩−δ1     (3.32)
	where 
	             δ1=δ2+σT−t0=lnS0/E+μ+12σ2T−t0σT−t0                                       (3.33)                δ2=lnS0/E+μ−12σ2T−t0σT−t0 .                          (3.34)
	Proof:   
	E∞xfxdx=1σ2πT−t0E∞e− lnxS0−μ+12σ2T−t022σ2T−t0dx.   
	Denote λ=𝜇−σ22 and changing the variable of integration to 
	z=lnx/S0−λT−t0σT−t0. 
	Rearranging the formula and denote 𝑥=𝑆0𝑒𝑥𝑝𝜆𝑇−𝑡0+𝑧𝜎𝑇−𝑡0.  Taking the derivative of 𝑥, we then get 𝑑𝑥=𝑆0𝜎𝑇−𝑡0𝑒𝑥𝑝𝜆𝑇−𝑡0+𝑧𝜎𝑇−𝑡0𝑑𝑧. Consider the limit, when 𝑥=𝐸,
	z=lnE/S0−λT−t0σT−t0=−δ2                                                                            
	and 𝑧→∞ as 𝑥→∞. Therefore, changing the variable to 𝑧
	E∞xfxdx=1σ2πT−t0−δ2∞e− z22S0σT−t0eλT−t0+zσT−t0dz=S02π−δ2∞e− z22+λT−t0+zσT−t0dz=S02π−δ2∞e−12z−σT−t02+μT−t0dz=S0eμT−t02π−δ2∞e−12z−σT−t02dz.
	Change the variable from z to 𝑤=𝑧−𝜎𝑇−𝑡0, and 𝑑𝑤=𝑑𝑧. Now the lower limit 𝑧=−𝛿2=−(𝛿2−𝜎𝑇−𝑡0)=−𝛿1.
	E∞xfxdx=S0eμT−t02π−δ1∞e−12w2dw=S0eμT−t01−𝒩−δ1                                                                             =S0eμT−t0𝒩δ1 
	which proves the first half of the lemma.
	The second half using the relationship below gives,
	0Exfxdx+E∞xfxdx=0∞xfxdx 
	when 𝐸 →0, so −𝑙𝑛𝐸 →+∞. Consequently, 𝛿1→+∞, thus lim𝐸 →0𝒩𝛿1=1. Therefore, 
	0∞xfxdx=S0eμT−t0 Hence,0Exfxdx=S0eμT−t0−S0eμT−t0Nδ1=S0eμT−t01−𝒩δ1=S0eμT−t0𝒩−δ1
	which completes the proof.
	Using Lemma 3. 2 and Lemma 3. 3, the expected values of call and put options at expiry 𝑡=𝑇 are
	            C T=S0eμT−t0𝒩δ1−E𝒩δ2                                                                             (3.35)           P T=E𝒩−δ2−S0eμT−t0𝒩−δ1.                                                (3.36)
	The following theorem define the present values at time 𝑡<𝑇 of the expected expiry values 𝐶 𝑇 and 𝑃 𝑇, denoted as 𝐶𝑆,𝑡 and 𝑃𝑆,𝑡.
	Theorem 3. 2
	At 𝑡<𝑇, the present values of call and put options are
	          CS,t=S𝒩δ1−Ee−μT−t𝒩δ2eμ−rT−t                                                    (3.37)           PS,t=Ee−μT−t𝒩−δ2−S𝒩−δ1eμ−rT−t         (3.38)
	where           δ1=lnS/E+μ+12σ2T−tσT−t                                                                               (3.39)            δ2=lnS/E+μ−12σ2T−tσT−t=δ1−σT−t                                        (3.40)
	where 𝑟 represents the continuously compounded risk-free interest rate. 
	It is easy to observe that the results in Theorem 3. 2 violate the non-arbitrage principle and the put-call parity condition. However, the structure is correct and needs a minor adjustment to produce option prices formulae that are consistent with the no-arbitrage principle. We will consider this issue more closely in the next section.
	3.4.3.4 The Black-Scholes partial differential equation

	The first satisfactory theory of option pricing was published by Black and Scholes (1973). The theory indicates that option prices must satisfy a given partial differential equation known as the Black-Scholes equation. The main assumptions and notation used for deriving this equation are:
	 Options are of European style.
	 The underlying asset price 𝑆 = 𝑆(𝑡) follows the geometric random walk and follows log-normally distributed.
	 𝑟 denotes the continuously compounded risk-free interest rate per unit time, assumed to be the same rate for borrowing and lending and constant over the lifetime of any option.
	 The no-arbitrage principle holds.
	 All assets may be sold short and no penalties on short selling.
	 Continuous trading is allowed with respect to both time and asset amount.
	 The underlying asset does not pay a dividend.
	 No transaction costs or taxes.
	All other symbols 𝐸,𝑟,𝜇,𝜎,𝑇 have the meaning previously defined, in particular, denote the theoretically correct call and put option prices as
	C=CS,t=CS,t;E,r,…,T 
	P=PS,t=PS,t;E,r,…,T. 
	Use 𝑉=𝑉𝑆,𝑡 to denote both call and put option prices. At time 𝑡, open a portfolio consists of −Δ units of option of the underlying asset. (If Δ<0 then the asset is held long, the opening transaction of an investor is a buy; if Δ>0 then the asset is held short, the opening transaction of an investor is a sell). The value of this portfolio Π at the initial time t is
	ΠS,t=VS,t−ΔS.                                     (3.41)
	The change in the value of this portfolio 𝑑Π can be derived using Itô's lemma (Lemma 3. 1) as
	dΠ=∂Π∂SdS+∂Π∂tdt+12σ2S2∂2Π∂S2dt                                                                                            =∂V∂S−ΔdS+∂V∂tdt+12σ2S2∂2V∂S2dt. 
	Note that the above expression for 𝑑Π follows the assumption that the underlying asset does not pay a dividend. If dividend is paid then it would need to be taken into account when determining the increase in value of the portfolio (see Section 3.5.1). Observe that in the above expression, for 𝑑Π, all partial derivatives are evaluated at time 𝑡 and asset price 𝑆 = 𝑆𝑡. All terms in this expression are known at time 𝑡, apart from the differential 𝑑𝑆, which is a random quantity. However, this random term to 𝑑Π can be removed by choosing
	Δ=∂V∂S.                (3.42)
	This choice is perfectly possible since 𝜕𝑉𝜕𝑆 is evaluated at time 𝑡 and hence is known at the time when the portfolio is opened. Therefore, the change in value of the portfolio is  dΠ=∂V∂tdt+12σ2S2∂2V∂S2dt which is completely determined at time 𝑡 and hence, is a risk-free increase over the time interval [𝑡,𝑡+𝑑𝑡]. 
	An alternative risk-free use for the initial amount 𝛱(𝑆,𝑡) is to invest at the market-risk free rate 𝑟 and the investment will increase by 𝛱(𝑆,𝑡)𝑟𝑑𝑡 over the time interval [𝑡,𝑡+𝑑𝑡]. According to the no-arbitrage principle, two alternative risk-free investments produce the same income, hence
	∂V∂tdt+12σ2S2∂2V∂S2dt=ΠS,trdt=V−∂V∂SSrdt .
	Cancelling out 𝑑𝑡, we have the Black-Scholes partial differential equation as
	12σ2S2∂2V∂S2+rS∂V∂S+∂V∂t− rV=0.            (3.43)
	Therefore, the theoretical prices of the call and put options must be the solutions to the Black-Scholes partial differential equation. Finally, we can define the Black-Scholes differential operator ℒ=12σ2S2∂2∂S2+rS∂∂S+∂∂t− r. 
	3.4.3.5 No-Arbitrage Argument and Boundary conditions

	No-arbitrage argument for the Black-Scholes equation only holds for European style options (see section below for the American style option). Suppose that 𝛱𝑟𝑑𝑡<𝑑𝛱, an investor can gain risk-free profit by doing the following:
	 At time 𝑡, borrow Π from the bank and pay risk-free rate 𝑟. Then, use the capital to buy portfolio.
	 At time 𝑡+𝑑𝑡, sell the portfolio and receive 𝛱+𝑑𝛱; repay back 𝛱+𝛱𝑟𝑑𝑡 to the bank.
	The instantaneous profit is 𝑑Π−Π𝑟𝑑𝑡>0 which contradicts the non-arbitrage principle. Now suppose Πrdt>𝑑Π, the investor can gain risk-free profit by doing the following:
	 At time 𝑡, short the portfolio with income Π; invest the fund at the risk-free market at rate 𝑟.
	 At time 𝑡+𝑑𝑡, sell the investment and receive 𝛱+𝛱𝑟𝑑𝑡; buy back the portfolio for Π+𝑑Π.
	The instantaneous profit is Π𝑟𝑑𝑡−𝑑Π>0 which contradicts the non-arbitrage principle. Thus, we proved Π𝑟𝑑𝑡=𝑑Π.
	Similarly, as any other regular partial differential equation, the Black-Scholes equation has an infinite number of possible solutions. One shall specify a domain and boundary condition to determine a unique solution.
	Consider a call option, where 𝑉=𝐶=𝐶𝑆,𝑡. At 𝑡=𝑇, 𝐶𝑆,𝑇=𝑚𝑎𝑥𝑆−𝐸,0; at 𝑆=0, 𝐶0,𝑡=0; at 𝑆=∞, using the put-call parity and given that lim𝑆 →∞𝑃𝑆,𝑡=0, 𝐶𝑆,𝑇→𝑆−𝐸𝑒−𝑟𝑇−𝑡 as 𝑆 →∞. Simplify the results 
	limS →∞CS,tS=1 
	Lemma 3. 4
	The value of call option price 𝐶𝑆,𝑡 is the solution to the Black-Scholes equation
	12σ2S2∂2C∂S2+rS∂C∂S+∂C∂t− rC=0                (3.44)
	which satisfies the boundary conditions
	C0,t=0, CS,T=maxS−E,0, limS →∞CS,tS=1           (3.45)
	on the domain 0<𝑆<∞, 𝑡<𝑇.
	Similarly, the value and the boundary conditions of a put option can be found using put-call parity.
	Lemma 3. 5
	The value of put option price 𝑃𝑆,𝑡 is the solution to the Black-Scholes equation
	12σ2S2∂2P∂S2+rS∂P∂S+∂P∂t−rP=0             (3.46)
	which satisfies the boundary conditions
	P0,t=Ee−rT−t,PS,T=maxE−S,0,limS →∞PS,t=0          (3.47)
	on the domain 0<𝑆<∞, 𝑡<𝑇.
	3.4.3.6 Black-Scholes Formulae for Option Pricing

	We now need to check whether the present value formulae for the option values formula 𝐶𝑆,𝑡 and 𝑃𝑆,𝑡 given in Theorem 3. 2 are consistent with Black–Scholes. To examine this, we first collect some technical results which we put together in the end.
	Lemma 3. 6
	With respect to the notation in Theorem 3. 2
	S𝒩′δ1=Ee−μT−t0𝒩′δ2.  
	Proof:
	δ1−δ2=σT−t and δ1+δ2=2lnS/E+μT−tσT−t. Hence
	  δ1−δ2δ1+δ22=lnS/E+μT−t. 
	Therefore, 𝑒𝑥𝑝12𝛿12−12𝛿22=𝑆𝐸𝑒𝑥𝑝𝜇𝑇−𝑡, re-arranging the formula and obtain 𝐸𝑒−𝜇𝑇−𝑡𝑒−12𝛿22=𝑆𝑒−12𝛿12. Recall that 𝒩′𝑥=12π𝑒−𝑥2/2, which proves the lemma.
	Lemma 3. 7
	With respect to the notation in Theorem 3. 2
	∂C∂S=eμ−rT−t𝒩δ1∂2C∂S2=eμ−rT−t𝒩′δ1SσT−t                                                                                                                ∂C∂t=−Seμ−rT−tσ𝒩′δ12T−t−μ𝒩δ1+rC. 
	Proof:
	Recall that 𝐶𝑆,𝑡=𝑆𝒩𝛿1−𝐸𝑒−𝜇𝑇−𝑡0𝒩𝛿2𝑒𝜇−𝑟𝑇−𝑡, thus
	∂C∂S=eμ−rT−t(𝒩δ1+S𝒩′δ1∂δ1∂S−Ee−μT−t0𝒩′δ2∂δ2∂S) 
	with Itô's lemma (Lemma 3. 1), it becomes
	∂C∂S=eμ−rT−t(𝒩δ1+S𝒩′δ1∂∂Sδ1−δ2).  
	However, 𝛿1−𝛿2=𝜎𝑇−𝑡 does not depend on 𝑆, therefore, 𝜕𝜕𝑆𝛿1−𝛿2=0, which proves the first equation in the lemma. Differentiating with respect to 𝑆 gives
	∂2C∂S2=eμ−rT−t𝒩′δ1∂δ1∂S . 
	Recall that 𝛿1=𝑙𝑛𝑆/𝐸+𝜇+12𝜎2𝑇−𝑡𝜎𝑇−𝑡, thus 𝜕𝛿1𝜕𝑆=1𝜎𝑆𝑇−𝑡, which proves the second formula. Differentiating 𝐶 with respect to 𝑡,
	     ∂C∂t=eμ−rT−tS𝒩′δ1∂δ1∂t−Ee−μT−t0𝒩′δ2∂δ2∂t−μEe−μT−t0𝒩δ2−μ−rC=eμ−rT−tS𝒩′δ1∂∂tδ1−δ2−μEe−μT−t0𝒩δ2−μ−rC. Here, 𝜕𝜕𝑡𝛿1−𝛿2=−𝜎2𝑇−𝑡. Multiple 𝜇 to both sides of the present value formula 𝐶 then rearrange as 𝜇𝐸𝑒−𝜇𝑇−𝑡0𝒩𝛿2=𝜇𝑆𝒩𝛿1𝑒𝜇−𝑟𝑇−𝑡−𝜇𝐶, which proves the final formula.
	Theorem 3. 3
	𝐶𝑆,𝑡 satisfies the partial differential equation 
	ℒ𝐶=𝑟−𝜇𝑆𝜕𝐶𝜕𝑆 
	where ℒ=12σ2S2∂2∂S2+rS∂∂S+∂∂t− r is the Black-Scholes differential operator.
	Proof:
	Applying Lemma 3. 7
	    ℒC=12σ2S2∂2C∂S2+rS∂C∂S+∂C∂t− rC   =12σ2S2eμ−rT−t𝒩′δ1SσT−t+rSeμ−rT−t𝒩δ1+−Seμ−rT−tσ 𝒩′δ12T−t−μ𝒩δ1+rC−rC                          =r−μSeμ−rT−t𝒩δ1                                             =r−μS∂C∂S 
	which proves the theorem.
	Hence, by endorsing the assumptions of the Black–Scholes theory we can conclude that the present value formulae 𝐶𝑆,𝑡 and 𝑃𝑆,𝑡 do not constitute valid option prices, as they do not satisfy the Black–Scholes equation. This is not surprising, since 𝐶𝑆,𝑡 and 𝑃𝑆,𝑡 violate put-call parity which is a consequence of the no-arbitrage principle. However, substituting 𝜇=𝑟, then obtain the alternative expression of the call option 𝐶𝑆,𝑡=𝑆𝒩𝑑1−𝐸𝑒−𝑟𝑇−𝑡0𝒩𝑑2, where 𝑑1,𝑑2 correspond to 𝛿1,𝛿2. The new expressions for call and put satisfy Black-Scholes differential equation ℒ𝐶=0 and ℒ𝑃=0.
	The alternated expression 𝐶𝑆,𝑡 would result if the drift of the share price's geometric random walk is the same as the continuously compounded risk-free interest rate 𝑟, i.e., risk-neutral geometric random walk. This is simply an algebraic fact that 𝐶𝑆,𝑡=𝑆𝒩𝑑1−𝐸𝑒−𝑟𝑇−𝑡0𝒩𝑑2 satisfies the Black-Scholes equation, but not assuming the drift 𝜇 is the same as the interest rate 𝑟. The Black-Scholes option pricing formula is derived by solving the Black-Scholes partial differential equation, subject to the boundary and terminal conditions.
	Theorem 3. 4
	The Black-Scholes option pricing formulae are
	            CS,t=S𝒩d1−Ee−rT−t𝒩d2                                                                         (3.48)            PS,t=Ee−rT−t𝒩−d2−S𝒩−d1                                                                  (3.49)where
	d1=lnS/E+r+12σ2T−t0σT−t0                (3.50)
	d2=lnS/E+r−12σ2T−t0σT−t0                 (3.51)
	with the boundary conditions 𝐶0,𝑡=0, 𝐶𝑆,𝑇=𝑚𝑎𝑥𝑆−𝐸,0, 𝑙𝑖𝑚𝑆 →∞𝐶𝑆,𝑡𝑆=1 on the domain 0<𝑆<∞, 𝑡<𝑇.
	Theorem 3. 4 states that the correct option pricing formulae are the present values of the expected expiry values that would be obtained if the underlying asset price followed the risk-neutral geometric random walk. Black-Scholes option prices do not depend on the drift 𝜇 of the actual random walk followed by the asset price 𝑆.
	Some useful results can be obtained by substituting 𝜇=𝑟 in the results of Lemma 3. 6 and Lemma 3. 7:
	      S𝒩′d1=Ee−rT−t0𝒩′d2                                                                                      (3.52)      ∂C∂S=𝒩d1                                                                                                                       (3.53)      ∂2C∂S2=𝒩′d1SσT−t                                                                                                               (3.54)             ∂C∂t=−Sσ 𝒩′d12T−t−r𝒩d1+rC.                                           (3.55)
	The fair value of an option is the present value of the expected payoff at expiry under a risk-neutral random walk for the underlying. The fact that it is the risk-neutral random walk that matters, is due to using a perfect hedge, or delta hedging strategy (see Section 3.7).
	3.5 Limitations and extensions of option pricing models
	The Black-Scholes model derive the value of options that can be exercised only at maturity and underlying assets do not pay dividends. In addition, options are estimated based on the assumption that underlying asset value does not change due to exercising the option. In practice, there are various extensions have been developed including allowing dividend payment and early exercise. This section provides adjustments to the Black-Scholes model and will consider some of the extensions of the options pricing.
	3.5.1 Treatment of Dividends

	The derivation of the Black-Scholes equation in the previous section assumes that the underlying share does not pay a dividend. However, in practice, the majority of quoted shares pay dividends, usually twice a year. Denote 𝑡𝑑 as the time at the close of business immediately prior to the ex-dividend date, i.e., ex-dividend time. Officially registered shareholders at close of business prior to the ex-dividend date are entitled to receive the next dividend payment. Shareholders who purchase these shares after closing time do not receive the dividend. Immediately after the close of business prior to the ex-dividend date, the share price drops by an amount equal to the dividend per share. If this drop did not occur, then there might be an arbitrage opportunity involving buying the share at time 𝑡𝑑−𝜖 (thereby, at least in theory, establishing a right to receive the dividend) and selling the share at time 𝑡𝑑+𝜖. Consequently, call options become less valuable and put options become more valuable with higher expected dividend payments. This section will derive the option value when the European assumption is retained, and dividend paid discrete or continuously. 
	Denote the closing share price as Sd=limt→td−0St and 𝑑𝑦 as the dividend yield (𝑑𝑦 = Dividends/Current value of the asset), so the share price is discontinuous at 𝑡=𝑡𝑑 and must drop by the same amount as the dividend payment 𝑑𝑦𝑆𝑑. In other words,
	limt→td+0St=1−dySd. Let 𝑉𝑑=𝑉𝑑𝑆,𝑡 denote the price of an option, 𝐶𝑦=𝐶𝑦𝑆,𝑡 for call option and 𝑃𝑦=𝑃𝑦𝑆,𝑡 for a put option.  The owner of an option on a share has no entitlement to receive dividends. The value of the option must not be discontinuous across the dividend payment time, even though the underlying stock price vary due to the dividend payment. Otherwise, there will be an arbitrage opportunity at time 𝑡𝑑. Thus, the price of the option should be unaffected by a dividend and should be continuous at time 𝑡=𝑡𝑑, limt→td−0VS,t=limt→td+0VS,t.
	Assume that 𝑡≥𝑡𝑑 and that there is no other ex-dividend time in the lifetime of the option and the option price equals the standard non-dividend Black-Scholes formula 𝑉𝑆,𝑡 as previously derived. As 𝑡→𝑡𝑑−0, so, 𝑆→𝑆𝑑 and as  𝑡→𝑡𝑑+0, so 𝑆→1−𝑑𝑦𝑆𝑑. The continuity requirements require that the value of option while 𝑡<𝑡𝑑 as, 𝑉1−𝑑𝑦𝑆,𝑡. Thus, the value of an option 𝑉𝑑 with a discrete dividend underlying share is VyS,t=V1−dyS,t, t<tdVS,t, t≥td . 
	Theorem 3. 5
	The Black-Scholes option pricing formulae with a discrete dividend yield 𝑑𝑦 paid at time 𝑡 (𝑡<𝑡𝑑) are
	          CyS,t=1−dyS𝒩d1−Ee−rT−t𝒩d2                                                          (3.56)            PyS,t=Ee−rT−t𝒩−d2−1−dyS𝒩−d1                  (3.57)
	with
	d1=ln1−dyS/E+r+12σ2T−t0σT−t0            (3.58)
	d2=ln1−dyS/E+r−12σ2T−t0σT−t0.              (3.59)
	In the non-dividend case, the law of put-call parity states S+PS,t=CS,t+Ee−rT−t .
	The above is an algebraic identity which holds for all values of 𝑆 > 0. In particular, if we replace the symbol 𝑆 by the symbol 1−𝑑𝑦𝑆, we obtain
	1−dyS+P1−dyS,t=C1−λS,t+Ee−rT−t. 
	Therefore, the put-call parity law for the discrete dividend case, when 𝑡<𝑡𝑑, is 
	1−dyS+PyS,t=CyS,t+Ee−rT−t,           (3.60)
	and when 𝑡≥𝑡𝑑
	S+PyS,t=CyS,t+Ee−rT−t.            (3.61)
	Similarly, multiple dividend payments at times 𝑡1,𝑡2,… can be derived by subtracting the discounted value of each dividend payment from the stock price. However, for stocks with stable dividend pay-out patterns, continuous payment provides decent approximations to observe option prices.
	The main application of the continuous dividend payment is to the pricing of options on indices. For example, the FTSE100 index is constructed from the 100 largest companies by market capitalization in the U.K. Most of these companies pay a dividend twice a year. Assumes that there are about 50 working weeks in the year then, on average, four FTSE100 companies will be paying a dividend in any given week. Continuous payment of dividend is a reasonable assumption to model the indices with frequent dividend pay-out patterns and can be modelled as follows: Suppose that the underlying asset pays dividends at a constant rate 𝐷𝑦, also known as dividend yield. Thus, if 𝑆 is the price of one unit of the underlying asset, then over the next time instant 𝑑𝑡 the dividend received are 𝐷𝑦𝑆𝑑𝑡. 
	Assume that the asset price follows the geometric random walk dS=μSdt+σSdX−DySdt=μ−DySdt+σSdX. Proceeding in the same fashion as in the derivation of the Black-Scholes partial differential equation to construct a portfolio 𝛱𝑆,𝑡=𝑉𝑐𝑆,𝑡−Δ𝑆 , where 𝑉𝑐=𝑉𝑐𝑆,𝑡 is the price of the option (𝐶𝑐=𝐶𝑐𝑆,𝑡 for call option, and 𝑃𝑐=𝑃𝑐𝑆,𝑡 for put option) for the underlying asset with continuous dividend yield 𝐷𝑦. Hence, the increase in value of the portfolio over the next time instant is
	dΠ=dVc−ΔdS+DySdt=∂Vc∂t+12σ2S2∂2Vc∂S2dt+∂Vc∂SdS−ΔdS−ΔDySdt. 
	If invest the portfolio 𝛱 in a risk-free market, the return over the next time instant equals to (𝑉𝑐−Δ𝑆)𝑟dt. Pick Δ=𝜕𝑉𝑐𝜕𝑆. Then in order to make the portfolio instantaneously risk-free and on comparing this investment
	dΠ=∂Vc∂t+12σ2S2∂2Vc∂S2dt−ΔDySdt=r(Vc−ΔS)dt 
	and finally leads to the following equation
	12σ2S2∂2Vc∂S2+r−DyS∂Vc∂S+∂Vc∂t−rVc=0. 
	Change of dependent variables Vc to V, where VcS,t=e−DyT−tVS,t.
	 𝑉 satisfies the standard Black-Scholes equation with 𝑟 replaced by 𝑟–𝐷𝑦. 𝑉 can then be determined by the reduction to the heat equation technique for finding the value of the option, and conclude VcS,t=Ve−DyT−tS,t. 
	Theorem 3. 6
	The Black-Scholes option pricing formulae with a continuous dividend yield 𝐷𝑦 are
	       CcS,t=e−DyT−tS𝒩d1−Ee−rT−t𝒩d2                                                             (3.62)      PcS,t=Ee−rT−t𝒩−d2−e−DyT−tS𝒩−d1                                                        (3.63)with
	d1=lnS/E+r−Dy+12σ2T−t0σT−t0            (3.64)
	d2=lnS/E+r−Dy−12σ2T−t0σT−t0.            (3.65)
	The relationship of non-dividend law of put-call parity S+PS,t=CS,t+Ee−rT−t 
	and with 𝑆 replaced by 𝑒−𝐷𝑦𝑇−𝑡𝑆, can obtaine−DyT−tS+Pe−DyT−tS,t=Ce−DyT−tS,t+Ee−rT−t. Hence, the option prices 𝑃𝑐 and 𝐶𝑐 satisfy the modified put-call parity law
	e−DyT−tS+PcS,t=CcS,t+Ee−rT−t.           (3.66)
	3.5.2 Early exercise

	The option pricing model discussed in the previous sections are designed to value options that can be exercised only at expiration. The American style option is more flexible than the European style option, which can be exercised at any time up to and including to the expiry date. Most options that we encounter in practice, especially option contracts, trade on futures exchanges and are mainly American style. 
	Unlike Black-Scholes formulae provide closed form solution to European options, the American option consider the specific path that the stock price follows. This makes it more difficult to value the American style option. However, European style option can be treated as a special case of the American-style options. For this reason, if there are both American and European style options available on the same underlying asset, investors would expect to pay more for the American style options for the possibility of early exercise, Ca≥Ce and Pa≥Pe, where the subscript 𝑒 represents the European style option and 𝑎 represents the American style option. From no-arbitrage opportunity principle,𝐶𝑎𝑆,𝑡≥𝑚𝑎𝑥𝑆−𝐸,0.Otherwise, an investor may buy one call option costing 𝐶𝑎 and immediately exercise the options at exercise price 𝐸.  Afterwards, the investor may sell the share in the market at price 𝑆, and earn profit 𝑆−𝐸−𝐶𝑎≥0. Similarly, 𝑃𝑎𝑆,𝑡≥𝑚𝑎𝑥𝐸−𝑆,0. 
	Owners of an American style call option can close their position by sell the option with income 𝐶𝑎𝑆,𝑡, or exercise the option with income 𝑆−𝐸. Therefore, the investor can earn more from trading, than from the exercising the call options on this occasion. Nevertheless, the only circumstances which generate the same income are when 𝑆≥𝐸 and 𝐶𝑎𝑆,𝑡=𝑆−𝐸. 
	However, if 𝑆≥𝐸 when 𝑡<𝑇
	CaS,t≥CeS,t≥maxS−Ee−rT−t,0, from put-call parity=S−Ee−rT−t>S−E ,which means 𝐶𝑎𝑆,𝑡=𝑆−𝐸 does not hold for 𝑡<𝑇. Therefore, early exercise of an American style call options is never desirable. The apparent flexibility of being able to exercise the American style call option at any time before expiry date is an illusion. The only rational action is to exercise the option on expiration. Thus, American style call option is basically a European style call option, that is
	Ca=Ce                (3.67)
	An investor of an American style put option can close their position by sell the option with income 𝑃𝑎𝑆,𝑡, or exercise the option with income 𝐸−𝑆. Therefore, an investor can earn more from trading than from exercising put options. The only circumstances which generate the same income are when 𝑆≤𝐸 and PaS,t=E−S
	PaS,t≥PeS,t≥max𝐸𝑒−𝑟𝑇−𝑡−𝑆,0, from put-call parity.It is possible for 𝑃𝑎𝑆,𝑡=𝐸−𝑆 to occur. Thus, early exercise of the American style put option may be possible in practice, and 
	Pa≥Pe                                (3.68)
	Hence, early exercise will only be done by an investor holding a portfolio with a stock and put combination. The investor needs to also consider the transaction costs associated with making the decision of early exercise: selling the put will incur transaction cost while exercise option only involves delivery. Corresponding to the non-dividend payment put-call parity is
	       S+PaS,t≥S+PeS,t                                                                                           3.69
	                      =erT−t+CeS,t
	                       =Ee−rT−t+CaS,t. 
	However, American option produces path dependence in the option price, make it difficult to derive a closed-form solution for the valuation problem and need to involve techniques from numerical analysis such as Monte Carlo simulation.
	3.5.3 Impact of exercise on underlying asset value

	The assumption that the underlying asset value is uncorrelated with the exercising option price may not be true. If the exercise of call options issued by a specific firm but not the exchanges, known as warrants, a firm is obligated to issue new stock which bring new cash flows into the firm. Exercise warrants cause dilution of the stocks and affects the stock price. The Black-Scholes model can be modified to price the value of warrants with adjustment for dilution to the stock price 
	Dilution-adjusted S=SnS+WnWnS+nW .
	In the above equation, 𝑆 represents the current value of the stock while 𝑛𝑆 is the number of outstanding shares, and 𝑊 represents the value of warrants. 𝑛𝑊 is the number of outstanding warrants. The sum of 𝑆𝑛𝑆+𝑊𝑛𝑊 reflects the market value of equity, when additional warrants are exercised, the number of outstanding shares increases. The reduction in stock value causes the call option value to be reduced. One can assume an initial value for the warrants and re-estimate the warrants’ value until there is convergence.
	3.5.4 Extensions of option pricing

	Standard call or put options are often referred to as vanilla options. There is a huge range of more specialized options beyond these standard options, collectively known as exotic options. Moreover, the options encounter in financial markets take more complicated forms and are often on real assets rather than financial assets. 
	One of the more popular types of exotic option is capped or barrier option. Consider a simple call option with strike price 𝐾1.  In theory, the underlying asset prices can go up infinitely. Thus, there is no upper limit on the profit of a call option. In a capped call option, the investors are entitled to profits up to a specified amount but not above it. Assume that asset price capped at 𝐾2 and the payoff of call option is 0,𝐾2 − 𝐾1. Note that if the underlying asset price reaches 𝐾2 at any time during the option's life, the option will be exercised immediately. The asset price afterwards will not matter. The value of a capped call is always lower than the value of the same call without the cap and can be estimated as the difference of the values of call options with strike price 𝐾1 and 𝐾2.
	Capped calls are part of a family of options called barrier options. There are eight different types of barrier option exist, namely:
	UpDown  and InOut  barrier CallPut
	In addition, investors can open a long contract (buy) or a short contract (sell) of any type of barrier options. Consider a down-and-in barrier put option where an investor prepares to bear the risks associated with normal levels of market volatility, but also need some protection against larger falls in the asset price:
	1. The option has no rights unless the underlying asset price falls to a prescribed amount which is lower than the current asset price. This amount is known as the down barrier price.
	2. If the asset price falls to or crossed the down barrier price, then the option acquires the same rights as a standard European style put option. That is the option rights are knocked in at the barrier. A knock-in option has no value until the underlying reaches a certain price.
	A barrier option has a significantly cheaper price than the standard put option but can still give the same protection as a standard put option against large drop in asset price. A barrier option is often used by portfolio managers to hedge against losses on a long position. It is important to note that if the underlying asset drop below the barrier at any time during the option's life, the option is knocked in, and will remain there until expiration. Similarly, an up-and-out barrier put option has the following terms.
	1. The option has the same rights as a vanilla European style put option unless the underlying asset price rises to a prescribed amount which is higher than the current asset price. This prescribed price amount is known as the up-barrier price.
	2. If the asset price rises to or crosses the barrier, then the option rights are cancelled. In this case, we say that the option rights are knocked out at the barrier. 
	Knock-out options expire worthless if the underlying asset reaches a certain price at any time during the option’s life. This limits the profits for the holders and losses for the writer.  In the case of a call (put) option, the knockout price is usually set below (above) the exercise price, and this option is called a down-and-out call (an up-and-out put) option. This type of option would provide the immediate protection of a put option with a cheaper price than a vanilla option, while there is a chance of being knocked out of the option which would make it worthless.
	For a given barrier price, a given choice of call (put) option type and a given selection of up/down type there will be one option type that knocks in at the barrier and one that knocks out at the barrier. In such cases,
	(In barrier option price) + (Out barrier option price) = Vanilla option price. This condition is usually known as in-out parity. The sketch of the proof may consider an investor who owns both the in-barrier option, and the out-barrier option. If the barrier is crossed, then the in option is cancelled and the out option has the same rights as vanilla option. The two-barrier option together equals to a vanilla option. On the other hand, if the barrier has been crossed, then the in option has acquired the same rights as vanilla option and the out option has no value; again, the two-barrier option together equals to a vanilla option. Hence, owning one in and one out-barrier options, gives an investor exactly the same rights as owning a vanilla option in both circumstances. Therefore, the sum of the out-barrier option prices must always equal to the price of the corresponding vanilla option.
	Another popular type of options are compound options for which values derived from other options are not from underlying assets. Compound options are options that give an investor  the right—not obligation—to buy another option at a specific price on or by a specific date. Those options can take any of four types: a call on a call (CoC), a call on a put (CoP or caput option), a put on a put (PoP), and a put on a call (PoC). 
	The holder of a compound call (CoC or CoP) option needs to pay the seller of the underlying option a premium, known as back fee, if they wish to exercise the option, called the overlying option. The compound option gives the investor some exposure to the put (or call) option now, but without the cost of paying for a long-term option right now. On the other hand, the premium is more expensive than a simple put (or call) option if they exercise the initial call option and receive the put (or call). PoP or PoC provide the right to sell a put or call as the underlying. These types of options are commonly used in foreign exchange and fixed-income markets, where investors can benefit from large leverage and cheaper initial investment. 
	In a simple vanilla option, the uncertainty is from the price of the underlying asset. Rainbow option is an option exposed to two or more sources of uncertainty. More generally, rainbow options are multi-asset options which take various other forms, and payoff depends on the assets sorted by their performance at maturity. This process is called best-of (worst-of) which only pays the best (respectively worst) performing asset of the basket. Rainbow options are often used to value natural resource deposits. For example, an undeveloped oil reserve is exposed to two sources of uncertainty – price of oil and quantity of oil in the reserve.
	A Bermudan option is an option where the buyer has the right to exercise at a set (always discretely spaced) number of times. This is intermediate between a European option—which allows exercise at a single time, namely expiry and an American option, which allows exercise at any time (the name is jocular: Bermuda, a British overseas territory, is somewhat American and somewhat European—in terms of both option style and physical location—but is nearer to American in terms of both). For example, a typical Bermudian swaption might confer the opportunity to enter into an interest rate swap. The option holder might decide to enter into the swap at the first exercise date (and so enter into, say, a ten-year swap) or defer and have the opportunity to enter in six months (and so enter a nine-year and six-month swap). Most exotic interest rate options are of Bermudan style.
	3.6 Volatility
	Theoretically, Black-Scholes option prices depend on the primary random variables 𝑆, 𝑡 the parameters 𝐸, 𝑟, σ, 𝑇. If dividends are involved, then the additional parameters 𝑡𝑑,𝑑𝑦 𝑜𝑟 𝐷𝑦 are necessary. At any given time 𝑡, the values of all variables and parameters are known and can be obtained directly from the financial news media, or other sources. The volatility parameter σ is not directly observed. There are two approaches to estimating the variance (volatility) σ2, of the continuously compounded rate of return on the stock 𝑑𝑆𝑆. One approach uses the historical time series data for the asset price 𝑆 to compute σ which gives the so-called historic volatility σ𝐻, in terms of the standard deviation. The second approach takes the current market price of an option and determines what value σ should take in order for the theoretical price to match the market price. This parameter is called the implied standard deviation or implied volatility σ.
	3.6.1 Historic volatility

	A fundamental assumption underlying the Black-Scholes theory is that the underlying asset price 𝑆 follows a geometric random walk with log-normally distributed. In particular, 
	lnStSt0=μ−Dy−12σ2t−t0+σt−t0𝒩0,1. 
	Denote η=μ−Dy−12σ2 and set t0=t−1
	lnStSt−1=η+σ𝒩0,1. 
	Thus, for a sequence of closing prices of the asset 𝑆1,𝑆2,…,𝑆𝑛 on 𝑛 successive days, the unit of time is one day. Then daily return 𝑦𝑖 is yi=lnSi+1Si=η+σzi,  i=1,2,…n−1 
	where 𝑧1,𝑧2,…,𝑧𝑛−1 is an arbitrary sequence of independent random numbers from the standard normal population 𝒩0,1.
	According to the ordinary least square theory, the best estimate for η is the mean of the daily return 𝑦,
	η≈y=i=1n−1yin−1 =1n−1lnS2S1+lnS3S2+…+lnSnSn−1=1n−1lnS2S3…SnS1S2…Sn−1                  =1n−1lnSnS1.               (3.70)
	Similarly, the best estimate for σ is the standard deviation of the continuously compounded daily return, which is the daily historic volatility σ𝐻
	σ2≈σH=i=1n−1yi−y2n−2                                                                                                            =n−1n−21n−1i=1n−1yi2−y2.                       (3.71)
	Here σ𝐻 is measuring in days-1/2. Assuming 252 trading days, the corresponding annualised mean return is 252𝑦, while the historic volatility is 252σ𝐻 in years-1/2.
	3.6.2 Implied Volatility

	Using the historic volatility to produce theoretical Black-Scholes option prices can be inconsistent with observed option prices. With given market option price, Black-Scholes equation can be inverted and produce estimate of volatility. Suppose that the market price of a certain call option is 𝐶0. The implied volatility 𝜎 for this call option is the solution to the non-linear equation CS,t;E,r,σ,T=C0, where 𝑆,𝑡,𝐸,𝑟,𝑇 are all assumed to be known and the underlying asset does not pay a dividend. If dividends are involved, then the appropriate function 𝐶𝑑 or 𝐶𝑐 must be used to replace 𝐶. Similarly, one can compute an implied volatility from the market price of a put option. The implied volatility is the particular value of the volatility that forces the theoretical option price to exactly match its market price, and both 𝐶 and 𝑃 increase monotonically with respect to 𝜎. However, the equation cannot be solved analytically with closed form solutions and must be solved by numerical methods or approximation techniques.
	Because the only unobserved variable in the traded option price is volatility, Black-Scholes is more appropriately treated as an equation to determine the estimation of the underlying spot price volatility. In the foreign exchange market, the dealers’ metric for the exercise price are the delta and implied volatility when trading an option. The volatility smile is implied the volatility patterns of the option with same underlying asset, and with same maturity but different deltas.
	Implied volatility can be used to predict future volatility. Market makers can use econometric volatility predictor such as in GARCH models (see Bollerslev, 1986) to capture volatility or to calculate value at risk (VaR). Using GARCH to estimate expected volatility is a flexible approach as the estimation can be performed under different distributional assumptions. Several studies propose using (weighted) averages of past implied volatilities to capture implied volatility. Moreover, in practice, implied volatilities derived from in, at and out-of-the-money options differ; implied volatilities from at-the-money options are better predictors than deep out-of-the-money and deep in-of-the-money options.
	In theory, implied volatilities calculated from call or put options should be the same, using the Black-Scholes model. If there is a difference, then there is an indication of mispricing, either that the market has placed too high a price on the put or too low a price on the call, or perhaps a combination of both. The Black-Scholes model also has a significant weakness, by assuming that the return distribution is normal. In reality, returns are not normally distributed particularly at high frequency. That is, the Black-Scholes model fails to capture the volatility clustering and fat-tailedness which are stylized features of returns. Heston (1993) develops a closed-form solution for stochastic volatility with application to Black-Scholes. Specifically, Heston’s (1993) model contains a volatility parameter which increases with the degree of kurtosis in returns, thereby providing a better fit to the data compared to the Black-Scholes model. Using the analytical approach of Drăgulescu and Yakovenko (2002) for computing the probability density function for the Heston model, Daniel et al. (2005) show that the Heston model outperforms the Black-Scholes model, particularly at higher data frequency. Even so, the Heston model does not provide the best fit to the data.
	3.7 Hedging strategy
	3.7.1 Hedging

	Derivatives, including options, may be used to protect an exposure against adverse price movements (or volatilities) of the underlying asset. Hedging is a risk management strategy to limit risk and protecting the value of the underlying financial assets or liabilities. Consider the simplest approach to protect an existing shareholding using a long put option. This strategy is known as the protective put strategy. The combined value of these investment 𝑉=𝑉𝑆,𝑡 is VS,t=S+PS,t. 
	If 𝑆 decreases then 𝑃𝑆,𝑡 will increase reversely, and the investor hoping the combined value 𝑉𝑆,𝑡 will not fluctuate very much. However, only at the time of expiry, the investor definitely knows investment value. Denote 𝑆=𝑆𝑇 the share price at the expiry time then, VS,T=S+PS,T=S+maxE−S,0 =E,    S≤ES,    E<S. Thus, no matter how small 𝑆 may become, the total value at expiry will not fall below the exercise price 𝐸, which offsets the risks.
	3.7.2 Delta-Neutral hedging

	Assume a European style option with the use of the Black-Scholes formulae.  Shares in an individual firm can be hedged either by buying a number of underlying equity put options (hedging with long puts) or by writing call options (hedging with short calls). A combination of long puts and short calls is also possible. If a portfolio includes shares in a variety of different companies then the value of this investment may be highly correlated with an index number, and thus this portfolio of shares may be hedged using index options.
	Suppose an investor wishes to hedge 𝑁 shares by buying a certain number, 𝑛, of put options. Denote the value of this portfolio at any time 𝑡 as ΠS,t=nPS,t+NS. Similar, assume the stock 𝑆 follows a geometric Brownian motion.  The portfolio value change is dΠS,t=∂Π∂SdS+∂Π∂tdt+12σ2S2∂2Π∂S2dt. 
	The random component in 𝑑Π can be eliminated if we set ∂Π∂S=0. The quantity of ∂Π∂S is called the delta of the portfolio, while the portfolio satisfies called a delta neutral portfolio. A delta neutral portfolio is instantaneously risk-free and its value Π is insensitive to small changes in the underlying share price S. Therefore, a good hedging strategy is to construct a portfolio that is delta-neutral ∂Π∂S=n∂P∂S+N=0 .
	Thus, the delta neutral portfolio requires the number of options 𝑛 should satisfy
	n=−N∂P∂S .                 (3.72)
	Here, 𝜕𝑃𝜕𝑆 is put option deltas. If dividends are involved, then 𝑃 shall be substituted as 𝑃𝑑 or 𝑃𝑐 for the option price. 
	Suppose an investor wishes to hedge 𝑁 shares of stock by writing a certain number, 𝑚, of call options. Denote the value of this portfolio at any time 𝑡 as ΠS,t=−mCS,t+NS . Clearly ∂Π∂S=−m∂C∂S+N=0, so that a delta neutral portfolio requires the number of options 𝑚 should satisfy
	m=N∂C∂S.                 (3.73)
	Here 𝜕𝐶𝜕𝑆 is the call option delta. If dividends are involved, then 𝐶 shall be substituted as 𝐶𝑑 or 𝐶𝑐 for the option price.
	Suppose an investor wish to hedge 𝑁 shares of stock by buying 𝑛 put options and writing 𝑚 call options. Denote the value of this portfolio at any time 𝑡 as ΠS,t=nPS,t−mCS,t+NS. Clearly, ∂Π∂S=n∂P∂S−m∂C∂S+N so that a delta neutral portfolio requires the number of 𝑛 and 𝑚 should satisfy
	n∂P∂S−m∂C∂S+N=0             (3.74)
	There is no unique solution for 𝑛 and 𝑚. Investors may wish to arrange for the income initially generated by writing the call options to approximately cover the cost of buying the put option. If dividends are involved than 𝑃 shall be substituted as 𝑃𝑑 or 𝑃𝑐 for the put option price, and 𝐶 shall be substituted as 𝐶𝑑 or 𝐶𝑐 for the call option price. As is derived in Section 3.4.3.6, the option deltas ∂C∂S=𝒩d1 and ∂P∂S=−𝒩−d1=𝒩d1−1.
	As a result of the put-call parity, 1+∂P∂S=∂C∂S. The put option delta is always negative, so the number of options 𝑛 is positive.
	If dividends are paid discretely then the option deltas will differ from results above only if 𝑡<𝑡𝑑. In this case, recall that VdS,t=V1−dyS,t,   t<td. Hence the chain rule gives ∂Vd∂SS,t=1−dy∂V∂S1−dyS,t. 
	Therefore, the option deltas with discrete dividend are ∂Cd∂S=1−dy𝒩d1 and ∂Pd∂S=−1−dy𝒩−d1=1−dy𝒩d1−1, where 𝑑1 need to be evaluated by substitute 𝑆 with 1−𝑑𝑦𝑆. Therefore, the put-call parity gives 1−dy+∂Pd∂S=∂Cd∂S . 
	On the other hand, recall the continuous dividend VcS,t=Ve−DyT−tS,t. Appling the chain rule and have  ∂Vc∂SS,t=e−DyT−t∂V∂Se−DyT−tS,t.  Therefore, the option deltas with continuous dividend are ∂Cd∂S=e−DyT−t𝒩d1  and    ∂Pd∂S=−e−DyT−t𝒩−d1=e−DyT−t𝒩d1−1. 
	Therefore, the put-call parity gives
	e−DyT−t+∂Pc∂S=∂Cc∂S .             (3.75)
	3.7.3 Dynamic hedging

	Delta-hedging is not a perfect hedge if you do not hedge continuously. While a linear approximation to the option value can be obtained, convexity implies that second-order derivatives matter, such that the delta hedge is more effective for smaller price changes. The option delta is itself a function of 𝑡. Hence, the ideal value of 𝑛 (or 𝑚) is determined as a function of 𝑡. Thus, in order to maintain a delta neutral portfolio, 𝑛 (𝑚) needs to be recalculated over the time which implies buying or selling option contracts. This is known as rebalancing the portfolio. Delta neutral hedging with regular rebalancing is known as dynamic hedging. 
	For delta hedging with long puts, if the underlying asset price rises, then additional put contracts will need to be purchased. If the asset price falls, then put contracts already owned may be sold. Because dealers routinely dynamically hedge their option positions, this means that they do not bet on the direction of the underlying. Instead, they are betting on the direction of volatility.
	3.8 Conclusion

	The chapter provided a detailed account of financial options and their applications for speculative and hedging strategies under different economic conditions. We show how various analytical solutions can be derived using the Black-Scholes approach. We also provide extensions on the standard option pricing model. Financial options have become common place both for speculative and hedging purposes. We emphasise differences between the American and European style options and the conditions under when early exercise of an American style option is likely to be profitable. We show how many of the components of financial options are derived and how they relate to pricing under different economic conditions. 
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