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Abstract
This paper analyses US sea level data using long memory and fractional integration methods. Specifically, monthly data 
for 41 US stations covering the period from January 1950 to December 2018 are examined. Fractional integration methods 
suggest that all series exhibit orders of integration in the interval (0, 1), which implies long-range dependence with positive 
values of the differencing parameter; further, significant positive time trends are found in the case of 29 stations located on 
the East Coast and the Gulf of Mexico, and negative ones in the case of four stations on the North West Coast, but none for 
the remaining 8 on the West Coast. The highest degree of persistence is found for the West Coast stations and the lowest for 
the East Coast ones. Thus, in the event of shocks, more decisive action is required in the case of West Coast stations for the 
series to revert to their original trend.

Article Highlights

•	 This paper analyses US sea level data using fractional integration.
•	 All series exhibit long-range dependence.
•	 Significant positive time trends are found in the East Coast and the Gulf of Mexico.
•	 Negative ones in the North West Coast.
•	 The highest degree of persistence is found for the West Coast and the lowest for the East Coast.
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Introduction

In the last few decades, considerable efforts have been made 
to gain a deeper understanding of the effects of global cli-
matic variations on the sea level, which is essential to pre-
vent potential coastal flood hazards and mitigate their socio-
economic and environmental consequences. Of particular 
interest are the Assessment Reports of the Intergovernmental 
Panel on Climate Change (IPCC). The empirical evidence 

from the First Assessment Report (FAR) published in 1990 
to the most recent IPCC work (Oppenheimer 2019) indicates 
that there has been a global mean sea level (GMSL) rise of 
1.0–2.0 mm year–1 during the twentieth century, which is 
much larger than in the previous two centuries (Warrick and 
Oerlemans 1990), and in the last two millennia as a whole 
(IPCC 2014: 4). In particular, the GMSL rise estimated from 
tide gauge data is of 1.5 [1.1–1.9] mm year–1, with an accel-
eration range of [− 0.002–0.019] over the period 1902–2010, 
while the revised estimate from satellite altimetry data is 
3.16 [2.79–3.53] mm year–1, with an acceleration of 0.084 
[0.059–0.090] mm year–1 over 1993–2015 (see Church et al. 
2013; WCRP Global Sea Level Budget Group 2018; Oppen-
heimer et al. 2019).

However, this increase has not been uniform around the 
world. In particular, in the case of the US, there are impor-
tant differences between the Eastern and Western coastline. 
The National Oceanic and Atmospheric Administration 
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(NOAA), in its technical report NOS CO-OPS 053 (Zervas 
2009) examined the linear mean sea level trends in 128 sta-
tions located on the US Atlantic and Pacific coasts, Alaska 
and the Gulf of Mexico, among other areas. According to 
this report, the upward trend in the regional sea level for the 
majority of the East coast stations implies a rate of increase 
above the twentieth century GMSL rise of 1.7 mm year–1, 
the highest value (6.05 mm year–1) being estimated for the 
Chesapeake Bay Bridge Tunnel station. By contrast, in the 
case of the West coast, the increase is around or below the 
GMSL rise of 1.7 mm year–1. The highest regional sea levels 
increases have been observed in Louisiana, Eastern Texas 
and the stretch from Virginia to New Jersey, which can be 
explained by Gulf Stream variations, land subsidence and 
tectonic movements (Zervas 2009; Sweet et al. 2017).

Future scenarios for the sea level rise are based on emis-
sions and the associated risks. It is expected that GMSL 
will continue increasing during the twenty-first century 
with mean values of 0.43 m [0.29–0.59], 0.55 [0.39–0.72] 
and 0.84 [0.61–1.10] for the Representative Concentration 
Pathway models (RCP)2.6, RCP4.5 and RCP8.5, respec-
tively. Sweet et al. (2017) updated the future scenarios for 
the GMSL rise presented in Parris et al. (2012), and speci-
fied six possible 2100 scenarios ranging from 0.3 m (Low) 
to 2.5 m (Extreme). More specifically, in the Intermediate-
High (1.5-m GMSL rise) scenario, the (high-low) increase 
would be 0.4–0.7 m (higher than the GMSL rise) for the US 
East Coast and 0.2–0.3 m (higher than the GMSL rise) for 
the West Coast.

All the available empirical evidence suggests a continuing 
upward trend in the sea level despite possible future reduc-
tions of anthropogenic emissions, which since 1970 have 
been the key factor determining ocean warming (Church 
et al. 2001; Oppenheimer et al. 2019). Hence, it is vital to 
gain further insights into this issue that can contribute to an 
effective decision-making and design of government poli-
cies. For this purpose, given the long-memory property char-
acterising most geophysical and climatological time series—
see, e.g., Percival et al. 2001; Gil-Alana, 2006, 2015, 2017; 
Ercan et al. 2013; Bunde 2017; Yuan et al. 2013, 2019), 
this paper applies a fractional integration approach to obtain 
new findings on sea level trends for different tide gauge sta-
tions on the US coastline. The layout of the paper is the 
following: Sect. 2 provides a brief review of the relevant 
literature; Sect. 3 describes the data and the methodology; 
Sect. 4 presents the empirical results; Sect. 5 offers some 
concluding remarks.

Literature Review

The analysis of sea level trends provides useful information 
about its variability in the past, present and future. Multiple 
factors can drive global and regional sea level changes such 
as atmospheric and ocean warming, tectonic dynamics or 
anthropogenic forces. In particular, recent studies point to 
ocean-thermal expansion, glaciers and the Greenland and 
Antarctic ice sheets and terrestrial water store, as the main 
factors behind the GMSL rise during the twentieth century 
and in the present (Warrick and Oerlemans 1990; Church 
et al. 2013; Church and Gregory 2019; Oppenheimer et al. 
2019). There is an ongoing debate about the possible ‘accel-
eration-deceleration’ (Church and White 2006; Woodworth 
et al. 2009; Houston and Dean 2011; Boon 2012; Jevrejeva 
et al. 2014; Visser et al. 2015; Boon and Mitchell 2015; Wat-
son 2016; etc.) or the 'intrinsic/natural-anthropogenic’ nature 
of sea level changes (Jevrejeva et al. 2009; Lennartz and 
Bunde, 2012; Becker et al. 2014; Dangendorf et al. 2014, 
2015; Slangen et al. 2016; Marcos et al. 2016; etc.); on the 
whole, it appears that anthropogenic factors have been the 
main cause of the sea level rise since 1970 (Oppenheimer 
et al. 2019).

Sea level variability is a complex issue that should be ana-
lysed carefully given the limitations of tide gauge and satel-
lite altimetry data and the variety of applicable statistical 
techniques. The most common approach is trend analysis. 
Comprehensive surveys are provided by Mudelsee (2010), 
Chandler and Scott (2011) and Visser et al. (2015), who 
classify existing studies as using parametric, nonparamet-
ric or stochastic trend models, respectively.1 Regarding this 
last approach, stochastic long-memory processes appear to 
be the most appropriate for geophysical/climate time series, 
since these tend to exhibit long-run dependence (LRD) or 
temporal correlations (Beran, 1994; Percival et al. 2001; 
Gil-Alana, 2006; Ercan et al. 2013; Graves et al. 2017). 
Such models range from those proposed by Hurst (1951) 
in hydrology, and later by Mandelbrot (1967) and Mandel-
brot and Van Ness (1968) for self-similarity and the fractal 
dimension, to the AutoRegressive Fractionally Integrated 
Moving Average (ARFIMA) model of Granger and Joyeux 
(1980), and its subsequent extensions.

Long-memory models have been widely used for climate 
variables such as temperature (Bloomfield, 1992; Caballero 
et al. 2002; Franzke, 2012; Gil-Alana, 2005, 2008, 2018), 
but less for sea level data. In particular, there is very lim-
ited evidence concerning US tide gauge records. Jiang and 
Plotnick (1998) were the first to carry out fractal analysis 

1  Other papers estimating sea-level rise are Dangendorf et al. (2017), 
Kulp and Strauss (2019), Restrepo et  al. (2021) and Zemunik et  al. 
(2021).
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using US coastline data with a continental dimension; apply-
ing the divider method (Mandelbrot 1982), they found more 
complexity in terms of the fractal dimension for the Atlan-
tic coast, and also a significant correlation with latitudes, 
less complexity characterising lower latitudes. The fractal 
dimension ranges for Atlantic and Pacific shorelines are 
[1.0–1.70] and [1.0–1.27], respectively; in particular, Chesa-
peake Bay, the St. Johns River of Florida, and the Florida 
Keys, in the Atlantic coast, exhibit most complexity. Barbosa 
et al. (2008) considered 16 North Atlantic stations; employ-
ing three statistical approaches (parametric stationary tests, 
wavelet analysis and Generalized Least Squares (GLS)), they 
found LRD in all cases except Newlyn; in particular, they 
detected high persistence for Portland, Boston, Newport and 
New York that might reflect local/regional differences, as in 
the case of Chesapeake Bay (Kiptopeke, Hampton), which is 
characterised by subsidence and tectonic movements. How-
ever, according to Koop (2013), the rate of US mid-Atlantic 
sea level rise is within its historical variability.

In another recent study, Dangendorf et al. (2014) investi-
gated sea level changes using 60 monthly average tide gauge 
records around the world. Their results from the Detrended 
Fluctuation Analysis-DFA2-(Kantelhardt et al. 2001) show, 
for all records, a LRD up to 35 years, which suggests the 
importance of the internal behaviour to understand sea level 
changes. By contrast, Becker et al. (2014) concluded that 
global and regional sea level changes are strongly driven by 
anthropogenic forces, in particular, in the case of New York, 
Baltimore and San Diego. Finally, Royston et al. (2018) 
addressed the issue of residual noise when estimating linear 
trends, and showed that it is coloured but non-AR(1) in the 
majority of cases, the AR(1) model being more appropriate 
for shorter series (Bos et al. 2014). The inclusion of climate 
indices in the regression does not affect the choice of noise 
model: for San Francisco and Seattle, the preferred noise 
models are ARFIMA specifications, with a trend coefficient 
(including climate indices) of 2.37 and 2.71, respectively, 
while for Honolulu, the preferred model is the Generalized 
Gauss Markov (GGM) noise model, with an estimated trend 
coefficient of 1.29. The study by Royston et al. (2018) is the 
closest to ours, since we also consider long-range depend-
ence models based on fractional integration and estimate the 
time trend coefficients allowing the errors to be fractionally 
integrated.

Data and Methodology

We examine monthly tide gauge data over the period from 
January 1950 to December 2018 (828 observations per 
series) for 41 US stations located along most of its coast-
line. Specifically, we use the "Revised Local Reference 
(RLR)" data set from the Permanent Service for Mean Sea 

Level-PSMSL-(Holgate et al. 2013; PSMSL 2019); this 
includes some series which were originally annual but have 
been converted into monthly.

The fractional integration approach we use is more gen-
eral than others such as ARMA/ARIMA models since it 
does not restrict the difference parameter to take an integer 
value. The standard approach estimates a linear time trend 
in the following regression model:

where a significant slope coefficient β implies the presence 
of a trend (positive or negative, depending on the sign of the 
coefficient). However, this set-up implicitly assumes that the 
error term, xt is integrated of order 0 or I(0)0.22 This implies 
not only that it must be covariance-stationary, but also that 
the infinite sum of its autocovariances must be finite. This 
property is satisfied by the classical ARMA-type of models. 
If it is not, for example if the data display a high degree of 
persistence, first differences are then taken, on the assump-
tion that xt is integrated of order 1 or I(1). Thus, xt is speci-
fied such that (1 – B)xt = ut, where B is the backshift operator 
(Bxt = xt-1) and ut is I(0). However, as already mentioned in 
Sect. 2, it is well known that many time series, especially 
climatological ones, are neither I(0) nor I(1) but I(d) where 
d is a fractional value. This is approach taken in the present 
study.

Specifically, we estimate the time trend coefficient β and 
the fractional differencing parameter d (along with the other 
parameters) in the following regression model:

where yt is the observed time series; α and β are unknown 
coefficients, namely the intercept (constant) and the linear 
time trend coefficient; xt stands for the regression errors, 
assumed to be I(d), which implies that ut is I(0); moreover, 
given the possible seasonality of the monthly data analysed, 
a seasonal (monthly) AR(1) process is assumed for the I(0) 
disturbances ut, where ρ is the seasonality indicator.

Note that for the specific case where d in (2) is not an 
integer value, the following Binomial expansion can be used 
for (1 – B)d:

and thus

(1)yt = � + �t + xt

(2)yt = � + �t + xt, (1 − B)dxt = ut, ut = �ut−12 + �t

(1 − B)d =

∞
∑

j=0

(

d

j

)

(−1)
jBj = 1 − dB +

d(d − 1)

2
B2 −… ,

2  For instance, in the classical Mann–Kendall trend test, the data 
should have no serial correlation, which is an even stronger asusmp-
tion that I(0).
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so that the second equation in (2) can be expressed as:

(1 − B)dxt = xt − dxt−1 +
d(d − 1)

2
xt−2 −… ,

xt = dxt−1 −
d(d − 1)

2
xt−2 +⋯ + ut

In this context, if d is a fractional value, xt depends on all 
its past history and the higher the value of d is, the higher the 
level of dependence between the observations is. Moreover, 
if d = 0, xt exhibits short memory or I(0) (in our case fol-
lowing a seasonal AR(1) process), while d > 0 implies long 
memory, and a high level of time dependence in the data 
(Table 1).

Table 1   Time series examined 
and abbreviations

Series Name % of observed data

10_SF 10_SAN FRANCISCO 100.00%
12_NY 12_NEW YORK (THE BATTERY) 98.79%
112_FEB 112_FERNANDINA BEACH 96.13%
127_STT 127_SEATLE 99.87%
135_PHI 135_PHILADELPHIA (PIER 9 N) 97.46%
148_BAL 148_BALTIMORE 99.63%
155_HON 155_HONOLULU 100.00%
158_SDG 158_SAN DIEGO (QUARANTINE STATION) 98.065
180_ATL 180_ATLANTIC CITY 92.14%
183_POR 183_PORTLAND (MAINE) 99.63%
188_KW 188_KEY WEST 98.79%
225_KET 225_KETCHIKAN 98.42%
234_CHA 234_CHARLESTON I 100.00%
235_BOS 235_BOSTON 98.67%
245_LA 245_LOS ANGELES 98.67%
246_PEN 246_PENSACOLA 98.06%
256_JOL 256_LA JOLLA (SCRIPPS PIER) 97.34%
265_AST 265_ASTORIA (TONGUE POINT) 100.00%
311_ANN 311_ANNAPOLIS (NAVAL ACADEMY) 95.04%
332_EAST 332_EASTPORT 91.66%
351_NEW 351_NEWPORT 98.55%
360_WAS 360_WASHINGTON DC 97.82%
366_SAN 366_SANDY HOOK 97.82%
367_WOO 367_WOODS HOLE (OCEAN. INST.) 93.23%
378_CRES 378_CRESCENT CITY 98.43%
384_FRI 384_FRIDAY HARBOR (OCEAN. LABS.) 97.82%
385_NEA 385_NEAH BAY 97.34%
395_FOR 395_FORT PULASKI 98.55%
396_WIL 396_WILMINGTON 98.18%
405_JUN 405_JUNEAU 100.00%
412_SOL 412_SOLOMONS ISLAND (BIOL. LAB.) 95.29%
426_SIT 426_SITKA 99.39%
428_CED 428_CEDAR KEY II 94.44%
429_NL 429_NEW LONDON 95.89%
437_ALA 437_ALAMEDA (NAVAL AIR STATION) 99.27%
445_YAK 445_YAKUTAT​ 95.89%
497_ISA 497_PORT ISABEL 96.01%
508_LUIS 508_PORT SAN LUIS 94.20%
519_MON 519_MONTAUK 91.42%
520_PET 520_ST. PETERSBURG​ 99.87%
526_GRA​ 526_GRAND ISLE 95.41%
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For the estimation of the parameters in Eq. (2), we use a 
Whittle function in the frequency domain following the test-
ing approach of Robinson (1994). This method has several 
advantages compared with other methods. First, it allows to 
test any real value of d, including those outside the station-
ary region (d ≥ 0.5), without any need for the prior differen-
tiation of the series required by most standard procedures. 
Secondly, the limit distribution is standard normal, unlike 
in the case of unit root methods when Monte Carlo simula-
tions have to be carried out to examine the distribution of 
the tests. In addition, this limit distribution is not affected by 
the inclusion of deterministic terms or by the specification 
of the error term (see Gil-Alana and Robinson (1997) for a 
description of the version of the tests of Robinson (1994) 
used in this application).

Results

Table 2 displays the estimated values of d from Eq. (2) under 
three different assumptions:

	 i.	 no deterministic components, i.e., imposing α = β = 0
	 ii.	 a constant only, i.e., with β = 0
	 iii.	 a constant and a linear time trend

Along with the estimated values of d, which are a meas-
ure of persistence, we also report their 95% confidence 
bands, which correspond exactly to the band of non-rejection 
values calculated as in Robinson (1994); the coefficients in 
bold are those from our preferred specification, which has 
been selected on the basis of the statistical significance of 
the deterministic terms; these are also reported in Table 3 
together with the estimated α (constant), β (time trend coef-
ficient) and ρ (seasonality). Note that the two first equations 
in (2) can be expressed as

where ỹt = (1 − L)dyt ; 1̃t = (1 − L)d1 , and t̃t = (1 − L)dt , 
and noting that ut is I(0) by assumption, standard t-tests 
apply here.

It can be seen from Table 2 that significant time trends 
are found in 29 cases out of 41; of those, only in four cases 
(Neah Bay, Juneau, Sitka and Yakutat) the trend is nega-
tive, being otherwise positive, with the estimated coefficient 
ranging from 0.158 (Portland Maine) to 0.745 (Grand Isle). 
The four stations with a negative trend are located on the 
North West coast, whilst those with a positive trend (25) 
are located on the East coast and the Gulf of Mexico; the 
12 stations with an insignificant trend are all on the West 
coast (see Table 4 and Fig. 1). This evidence confirms the 

ỹt = 𝛼1̃t + 𝛽 t̃t + ut,

important role played by geographical location in the deter-
mination of the sea level.

All the estimated values of d are in the interval (0, 1) 
and range between 0.29 (Annapolis, Naval Academy) and 

Table 2   Estimates of d in the model given by equation (*)

The values in parenthesis are the 95% confidence band of the non-
rejection values of d; those in bold are the estimates for the preferred 
model specification

Series No deterministic 
terms

An intercept An intercept and 
a linear time 
trend

10_SF 0.99 (0.94, 1.04) 0.58 (0.51, 0.66) 0.58 (0.51, 0.66)
12_NY 0.98 (0.93, 1.03) 0.40 (0.34, 0.47) 0.38 (0.31, 0.47)
112_FEB 0.96 (0.91, 1.02) 0.33 (0.26, 0.41) 0.32 (0.24, 0.42)
127_STT 0.97 (0.93, 1.03) 0.42 (0.35, 0.52) 0.42 (0.34, 0.52)
135_PHI 0.97 (0.92, 1.03) 0.39 (0.32, 0.46) 0.37 (0.30, 0.46)
148_BAL 0.97 (0.92, 1.03) 0.32 (0.26, 0.40) 0.30 (0.22, 0.38)
155_HON 0.99 (0.94, 1.04) 0.74 (0.66, 0.83) 0.74 (0.66, 0.83)
158_SDG 1.00 (0.95, 1.05) 0.73 (0.66, 0.83) 0.73 (0.66, 0.83)
180_ATL 0.98 (0.93, 1.03) 0.37 (0.33, 0.43) 0.33 (0.26, 0.41)
183_POR 0.99 (0.94, 1.04) 0.39 (0.34, 0.45) 0.38 (0.33, 0.45)
188_KW 0.99 (0.94, 1.04) 0.39 (0.32, 0.49) 0.39 (0.29, 0.49)
225_KET 0.99 (0.94, 1.05) 0.40 (0.30, 0.51) 0.40 (0.30, 0.51)
234_CHA 0.98 (0.93, 1.04) 0.37 (0.30, 0.45) 0.36 (0.28, 0.46)
235_BOS 0.98 (0.94, 1.04) 0.38 (0.33, 0.43) 0.34 (0.28, 0.41)
245_LA 1.00 (0.95, 1.05) 0.69 (0.60, 0.78) 0.69 (0.60, 0.78)
246_PEN 0.97 (0.92, 1.02) 0.47 (0.39, 0.56) 0.47 (0.39, 0.56)
256_JOL 1.00 (0.95, 1.05) 0.75 (0.66, 0.85) 0.75 (0.66, 0.85)
265_AST 0.96 (0.91, 1.02) 0.44 (0.35, 0.53) 0.44 (0.35, 0.53)
311_ANN 0.97 (0.92, 1.03) 0.33 (0.27, 0.40) 0.29 (0.22, 0.38)
332_EAST 0.99 (0.95, 1.04) 0.34 (0.31, 0.38) 0.30 (0.27, 0.35)
351_NEW 0.99 (0.94, 1.03) 0.39 (0.34, 0.46) 0.36 (0.29, 0.45)
360_WAS 0.96 (0.92, 1.02) 0.37 (0.31, 0.44) 0.36 (0.27, 0.44)
366_SAN 0.98 (0.93, 1.03) 0.38 (0.33, 0.44) 0.34 (0.27, 0.42)
367_WOO 0.98 (0.94, 1.04) 0.39 (0.34, 0.46) 0.36 (0.29, 0.44)
378_CRES 0.97 (0.93, 1.03) 0.45 (0.37, 0.54) 0.45 (0.37, 0.54)
384_FRI 0.97 (0.93, 1.03) 0.43 (0.35, 0.53) 0.43 (0.35, 0.53)
385_NEA 0.97 (0.92, 1.03) 0.37 (0.28, 0.47) 0.36 (0.26, 0.47)
395_FOR 0.98 (0.93, 1.04) 0.37 (0.30, 0.45) 0.36 (0.28, 0.46)
396_WIL 0.98 (0.93, 1.04) 0.42 (0.36, 0.51) 0.42 (0.35, 0.52)
405_JUN 0.99 (0.94, 1.05) 0.54 (0.49, 0.61) 0.47 (0.39, 0.57)
412_SOL 0.97 (0.93, 1.03) 0.33 (0.28, 0.39) 0.28 (0.22, 0.37)
426_SIT 1.00 (0.95, 1.06) 0.43 (0.35, 0.54) 0.41 (0.32, 0.53)
428_CED 0.97 (0.92, 1.03) 0.38 (0.31, 0.46) 0.36 (0.29, 0.46)
429_NL 0.98 (0.94, 1.04) 0.37 (0.32, 0.43) 0.33 (0.27, 0.41)
437_ALA 0.99 (0.94, 1.04) 0.60 (0.53, 0.68) 0.60 (0.53, 0.68)
445_YAK 0.99 (0.94, 1.05) 0.46 (0.40, 0.54) 0.40 (0.32, 0.50)
497_ISA 0.96 (0.91, 1.02) 0.40 (0.34, 0.48) 0.39 (0.32, 0.47)
508_LUIS 0.99 (0.95, 1.05) 0.64 (0.56, 0.72) 0.64 (0.56, 0.72)
519_MON 0.98 (0.93, 1.03) 0.38 (0.33, 0.44) 0.33 (0.27, 0.41)
520_PET 0.98 (0.93, 1.03) 0.41 (0.33, 0.50) 0.40 (0.32, 0.50)
526_GRA​ 0.96 (0.91, 1.02) 0.49 (0.44, 0.56) 0.46 (0.39, 0.55)
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Table 3   Estimated coefficients 
for the selected models

The values in parenthesis in the third and fourth columns refer to the corresponding t-values; values higher 
than 1.64 indicate significance of the estimated coefficients

Series d β0 β1 Month AR1

10_SF 0.58 (0.51, 0.66) 6968.52 (180.66) – 0.299
12_NY 0.38 (0.31, 0.47) 6912.04 (229.39) 0.295 (4.50) 0.401
112_FEB 0.32 (0.24, 0.42) 7120.09 (196.89) 0.232 (3.09) 0.631
127_STT 0.42 (0.34, 0.52) 7054.24 (187.79) – 0.321
135_PHI 0.37 (0.30, 0.46) 6834.76 (186.85) 0.312 (3.96) 0.421
148_BAL 0.30 (0.22, 0.38) 6958.76 (249.17) 0.281 (4.92) 0.648
155_HON 0.74 (0.66, 0.83) 6994.76 (190.57) – 0.263
158_SDG 0.73 (0.66, 0.83) 6930.84 (168.67) – 0.544
180_ATL 0.33 (0.26, 0.41) 6898.44 (273.34) 0.396 (7.54) 0.430
183_POR 0.38 (0.33, 0.45) 7036.76 (360.68) 0.158 (3.72) 0.126
188_KW 0.39 (0.29, 0.49) 7071.00 (235.41) 0.235 (3.55) 0.645
225_KET 0.40 (0.30, 0.51) 7043.24 (208.50) – 0.399
234_CHA 0.36 (0.28, 0.46) 6948.46 (192.78) 0.301 (3.92) 0.565
235_BOS 0.34 (0.28, 0.41) 7011.35 (387.37) 0.241 (6.33) 0.147
245_LA 0.69 (0.60, 0.78) 6964.45 (177.70) – 0.522
246_PEN 0.47 (0.39, 0.56) 6985.20 (158.20) 0.230 (2.07) 0.615
256_JOL 0.75 (0.66, 0.85) 6903.54 (163.29) – 0.525
265_AST 0.44 (0.35, 0.53) 6968.30 (152.90) – 0.399
311_ANN 0.29 (0.22, 0.38) 6885.08 (268.55) 0.325 (6.21) 0.663
332_EAST 0.30 (0.27, 0.35) 6957.11 (581.35) 0.180 (7.37) 0.112
351_NEW 0.36 (0.29, 0.45) 6998.48 (345.11) 0.259 (5.99) 0.365
360_WAS 0.36 (0.27, 0.44) 6829.83 (180.31) 0.327 (4.05) 0.415
366_SAN 0.34 (0.27, 0.42) 6940.46 (273.27) 0.365 (6.84) 0.407
367_WOO 0.36 (0.29, 0.44) 6917.40 (355.40) 0.278 (6.70) 0.360
378_CRES 0.45 (0.37, 0.54) 7087.58 (199.54) – 0.353
384_FRI 0.43 (0.35, 0.53) 7030.04 (213.89) – 0.316
385_NEA 0.36 (0.26, 0.47) 7073.09 (170.64) − 0.175 (− 1.98) 0.472
395_FOR 0.36 (0.28, 0.46) 6990.50 (180.06) 0.318 (3.84) 0.586
396_WIL 0.42 (0.35, 0.52) 6988.23 (186.49) 0.297 (3.45) 0.313
405_JUN 0.47 (0.39, 0.57) 7132.96 (137.97) − 1.027 (− 7.88) 0.224
412_SOL 0.28 (0.22, 0.37) 6978.77 (306.59) 0.348 (7.53) 0.612
426_SIT 0.41 (0.32, 0.53) 7037.94 (159.46) − 0.172 (− 1.72) 0.436
428_CED 0.36 (0.29, 0.46) 6934.56 (230.15) 0.212 (3.29) 0.700
429_NL 0.33 (0.27, 0.41) 6949.22 (356.43) 0.254 (6.26) 0.394
437_ALA 0.60 (0.53, 0.68) 7001.56 (178.94) – 0.273
445_YAK 0.40 (0.32, 0.50) 7025.33 (152.11) − 0.684 (− 6.63) 0.447
497_ISA 0.39 (0.32, 0.47) 6934.30 (185.98) 0.354 (4.31) 0.616
508_LUIS 0.64 (0.56, 0.72) 6969.98 (180.63) – 0.506
519_MON 0.33 (0.27, 0.41) 6992.81 (365.32) 0.302 (7.61) 0.380
520_PET 0.40 (0.32, 0.50) 7005.62 (228.36) 0.256 (3.75) 0.667
526_GRA​ 0.46 (0.39, 0.55) 6735.09 (155.02) 0.745 (6.95) 0.620
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0.75 (La Jolla, Scripps Piers), which confirms that the series 
are fractionally integrated and supports the hypothesis of 
long-memory behaviour. The series can be divided into three 
categories according to their degree of persistence: those 
with values of d in the range (0, 0,5), that is, covariance-sta-
tionary series; those with values around 0.5, on the boundary 
between stationarity and non-stationarity; a third group with 
values in the interval [0.5, 1), which implies non-stationary 
mean-reverting behaviour (see Table 5 and Fig. 2).

It can be seen that 22 stations are in the first category with 
a low degree of persistence, and virtually all of them are 
located on the East coast; for 12 stations the estimated value 
of d implies that they belong to the intermediate category, and 
these are all located on the Gulf of Mexico or the West coast; 
7 stations are in the non-stationary range (d ≥ 0.5), all them on 
the West coast, and since the estimated value of d is in all cases 
significantly below 1 mean-reversion occurs, with the effects 

of shocks dying away in the long run. The estimated degree of 
persistence is an important piece of information which reveals 
that, following a shock, the speed of the dynamic adjustment 
towards the initial equilibrium level is highest in the case of the 
East coast stations and lowest for some West coast and Gulf 
of Mexico stations, whilst it is in the middle of the estimated 
range for some other West coast ones. The implication is that 
intervention to restore the equilibrium level is most needed on 
the West coast and the Gulf of Mexico.

Conclusions

This paper examines US sea level data for a set of 41 stations 
chosen on the basis of data availability and covering most 
of the US coastline. A fractional integration framework is 
applied to test for the presence of trends and the degree of 
persistence. The results indicate that all series are fraction-
ally integrated, since their differencing parameter is esti-
mated to lie in the interval (0, 1). More specifically, there 
is evidence of long-memory stationarity (i.e., 0 < d < 0.5) 
for 22 stations, most of them located on the East coast; for 
12 stations the order of integration is around 0.5, and for 
7 (all located on the West coast) there is evidence of non-
stationary mean-reverting patterns (0.5 ≤ d < 1).

There are significant time trends in 29 out of the 41 cases 
examined (positive in 25 cases and negative in 4). The sta-
tions with a positive trend are located on the East coast and 
the Gulf of Mexico, while the four with a negative trend 
(Neah Bay, Juneau, Sitka and Yakutat) are located on the 
North West coast. These findings imply that there is a clear 
rise in the US sea level only in the case the East coast and 
the Gulf of Mexico, and therefore the authorities should 
focus on those to address the issue of an increasing sea level. 
This conclusion is also corroborated by the estimated degree 
of persistence, which is higher for the West coast stations, 
suggesting that the effects of shocks will be more long-lived 
in their case.

Future work could extend the analysis of this paper. For 
example, the possibility of nonlinear (time) trends would 
be worth investigating since fractional integration is inti-
mately related with non-linearities and possible breaks in 
the data (Granger and Hyung, 2004; Ohanissian et al. 2008; 
etc.). In addition, an alternative modelling approach could 
be used allowing for fractional or persistent cycles since long 
memory is a property of the data not necessarily limited to 
processes with the singularity or pole in the spectrum occur-
ring at the zero frequency.

Table 4   Classification based on the time trend coefficient

Significant negative time 
trend

Insignificant
time trend

Significant positive 
time trend

405_JUN (− 1.027) 10_SF 183_POR (0.158)
445_YAK (− 0.684) 127_STT 332_EAST (0.180)
385_NEA (− 0.175) 155_HON 428_CED (0.212)
426_SIT (− 0.172) 158_SDG 246_PEN (0.230)

225_KET 112_FEB (0.232)
245_LA 188_KW (0.235)
256_JOL 235_BOS (0.241)
265_AST 429_NL (0.254)
378_CRES 520_PET (0.256)
384_FRI 351_NEW (0.259)
437_ALA 367_WOO (0.278)
508_LUIS 148_BAL (0.281)

12_NY (0.295)
396_WIL (0.297)
234_CHA (0.301)
519_MON (0.302)
135_PHI (0.312)
395_FOR (0.318)
311_ANN (0.325)
360_WAS (0.327)
412_SOL (0.348)
497_ISA (0.354)
366_SAN (0.365)
180_ATL (0.396)
526_GRA​ (0.745)
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Fig. 1   Time trend coefficients. Summary of data extracted from Table 4

Fig. 2   Degree of persistence. Summary of data extracted from Table 5
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