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Abstract

The fourth industrial revolution introduces new technological innovations and amplifies the importance of some existing technologies such as
Artificial Intelligence (Al), Internet of Things (IoT), and Blockchain, amongst others. Digital Twin (DT) has emerged as one of the most prominent
technologies of this era and has caught the attention of the industry, academia, and governments. However, the realisation of the full potential of
DT is challenged by the lack of standard terminologies and practices, amongst others. This is reflected in the state-of-the-art in DT architectures,
which indicates that there is no widely accepted DT framework. Literature on DT architecture is dominated by application- and/or technology-
specific architectures with components and connectors that not only vary extensively but are named differently. The use of different terminologies
for components could hinder the ability to identify commonality in frameworks and makes it difficult for new entrants in the field to find guidance.
Also, literature does not clarify on the connection between the requirements and the components of a DT architecture. To address these problems,
this paper proposes a requirement-driven, technology-agnostic DT architecture that consists of standard components that can be traceable to the
definitions, requirements, and mandatory functionalities of DT captured in existing literature. The architecture can be applied to various fields and
uses cases, based on their respective needs. The paper aims at providing guidance for developing digital twin architectures for a flexible spectrum

of applications.
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1. Introduction

Although there are several definitions of Digital Twin (DT)
in literature [9, 28, 12, 32], none has been officially endorsed.
This study will adopt the definition of DT by van der Valk et
al. [34], who described a DT as “a virtual construct that rep-
resents a physical counterpart, integrates several data inputs
with the aim of data handling, data storing, and data process-
ing, and provides an automatic, bi-directional data linkage be-
tween a virtual world and a physical one. Synchronization is
crucial to the Digital Twin to display any changes in the state
of the physical object. Additionally, a Digital Twin must com-
ply with data governance rules and must provide interoperabil-
ity with other systems”. This definition encapsulates most of
the mandatory characteristics of a DT that have been noted in
literature, such as synchronization, bi-directional communica-
tion, control, anomaly detection and diagnostic, optimization
[12, 20, 32]. These attributes differentiate a DT from other dig-
ital forms, such as Digital Model and Digital Shadow; the dif-
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ference can be described in terms of the data exchange between
digital forms and their physical counterparts [12]. For example,
a Digital Model exchanges data with its physical counterpart
manually in both directions; while for a Digital shadow, the data
exchange is automated from the physical to the virtual counter-
part, but manual from the virtual to the physical counterpart.
In contrast, a DT has an automated bidirectional data exchange
between its virtual and physical entities.

Typically, a DT acquires data from its real-world entity, and
manipulates the data to provide services, which have the po-
tential of improving its real-world counterpart, as well as itself.
In order to improve or effectively reflect the behaviour of its
real-world entity, a DT should have the capability to automate
data acquisition [6], and this should be a fundamental element
of a DT architecture [33]. Given that a DT acquires data from
multiple sources, including offline data sources (e.g. databases,
stored data, external data, maintenance logs, etc.), there is an
emerging case for semi-manual data acquisition [34].
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However, there are no practical approaches for implement-
ing data acquisition and this has been identified as (1) one of
the major challenges of realising DT and (2) a source of cost
increase in DT development (Dittmann et al. [6]). These au-
thors suggest that this stems from the absence of guidance on
the framework for developing DT architectures. This may hin-
der the rapid development and adoption of DT, given that there
is no standardization or a uniform description of DT architec-
tural components. Steindl et al. [31] report that the application
of DTs to various domains and at different stages in the lifecy-
cle of their real-world entities is testament to the lack of a clear
definition of the capabilities and concepts of DT. The authors
argue that this results in case study-driven, varying interpreta-
tions of DT and lack of templates for DT architectures. There-
fore, agreeing on DT components and data analysis techniques
is paramount to advancing DT technology [24].

To address the aforementioned gap, this paper will undertake
the following steps. Firstly, it will review literature on existing
DT architectures and match the architectures to the mandatory
functionalities of DT identified in literature. Secondly, it will
describe the requirements in terms of attributes that distinguish
a DT from other digital forms. Finally, the study will make a
connection between the requirements and components of a DT
to propose a requirement-driven DT architecture. The architec-
ture consists of standard components that can be traceable to
the definitions, requirements, and *mandatory’ functionalities
of a DT, derived from existing literature. In order to achieve
the above-stated objectives, this paper will seek to answer the
following questions: (1) What are the requirements and manda-
tory functionalities of a DT? (2) How can these requirements
and functionalities form a basis for developing a domain- and
technology-agnostic DT architecture?

The rest of the paper is structured as follows: Related litera-
ture is presented in Section 2. Section 3 presents the proposed
architecture. Discussion on aligning DT requirements to DT ar-
chitectural components is covered in Section 4. The conclusion
and further developments follow in Section 5.

2. State of the Art

This section will cover various contributions in literature on
DT architecture, and that will be followed by a brief discussion
on the research gap identified.

2.1. Existing Architectures

Lee et al. [13] develop 5C, a cyber physical system architec-
ture for Industry 4.0-based manufacturing system, which pro-
vides plug and play smart connection, offers smart analytics for
subsystem health, enables DT models for components and ma-
chines, supports decision-making using cognition, and achieves
resilience using self-configuration.

Alam and El Saddik [1] work on a DT architecture called
C2PS (cloud-based cyber-physical systems) extends SC archi-
tecture by employing cloud technology in the cyber, cognition
and configuration levels. The key contribution of C2PS is that

every physical entity is associated with a cloud-hosted cyber
entity, such that two entities can establish peer-to-peer (P2P)
connections via direct physical connection or via indirect cloud-
based DT connections.

A five-layered architecture is proposed by Josifovska et al.
[11] as part of the framework for developing DTs of CPS. The
framework consists of the Physical Entity, Virtual Entity, Data
Management, and Service Platforms.

Borangiu et al. [3] present a four-layered architecture in
which every layer on top of the physical system is a DT Layer.
The four layers of the architecture are the data acquisition and
transmission twins, virtual twins of subprocesses, predictive
twins, and decision-making twins.

Souza et al. [30] propose an Industrial Internet of Things-
(IToT)-based DT architecture, which consists of Internal Server
Layer and IIoT Gateway Layers. The internal server is the com-
puter system that runs the DT and simulations, while the IIoT
Gateway is the channel for communication between the DT and
its physical twin.

Ghita et al. [8] develop a three-layered DT architecture,
which consists of industrial, application, and communication
layers. The industrial layer represents the physical system, the
application layer focuses on digital components of the archi-
tecture and their features, and the communication layer is con-
cerned with the interaction between the DT and the physical
system.

Nwogu et al. [22] present a symbiotic simulation system-
based architecture for digital twin. The DT Layer of the archi-
tecture consists of data acquisition, analytics, scenario manager,
optimisation and symbiotic simulation modules (SSM). The use
of SSM and MQTT make the architecture technology-specific.

Redelinghuys et al. [25] study a six-layer architecture for
DT that allows for hardware from various vendors to be used in
both the physical and digital worlds. According to the authors,
the architecture was inspired by Lee et al. [13] and consists of
a physical twin in Layers 1 and 2. Layer 3 is a vendor-neutral
communication medium, which acts as the local data repository
for collecting the sensor data from a controller in Layer 2. IoT
gateway or data-to-information converter is in Layer 4; while
Layers 5 and 6 consist of a cloud repository, and emulation and
simulation tools, respectively.

In one of the most recent DT architectures, Vrabic et al. [36]
offer an intelligent agent-based architecture for resilient digital
twin in manufacturing. The architecture employs engineering
resilience principles to improve the digital twin’s ability to rep-
resent its real-world entity.

Farsi et al. [7] describe a DT architecture for product life-
cycle cost (LCC) estimation, which synchronizes between the
physical and digital worlds using an ontology-based approach.
The DT architecture aims at supporting the reduction in product
cost and improving product efficiency.

In order to optimize the productivity of Controlled Environ-
ment Agriculture (CEA), Chaux et al. [4] propose a three-layer
DT architecture, which consists of the physical asset, the digital
twin, and an intelligent layer. The DT architecture was aimed at
building a DT that has the capability for bi-directional commu-
nication, in which a simulation model is used to optimize pro-
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Table 1. Features of available DT architectures from the literature.

Reference Sync. Bi-Dir. Info Diagnostic

Control Predictive/Prescr. Monitoring Optimization

Alam and El Saddik [1]
Borangiu et al. [3]
Chaux et al. [4]
Farsi et al. [7]

Ghita et al. [8] .

Josifovska et al. [11] °

Lee et al. [13]

Lui et al. [16]
Mourtzi et al. [19]
Nwogu at al. [22]

Redelinghuys et al. [25]
Souza et al. [30]
Steindl et al. [31] °
Vrabic et al. [36]

ductivity. The plan for future work on the architecture includes
optimising crop treatment and climate control strategy using the
simulation models from the DT.

Mourtzis et al. [19] develop a DT architecture for Fused De-
composition Modelling (FDM), which uses common process
data to support engineers in performing online and offline sim-
ulation. The idea of the framework is to integrate a DT and
Augmented Reality (AR) for quality improvement of 3D parts
and reduction in human-related error resulting from incorrect
machine setup.

2.2. Research Gap

Table 1 matches the reviewed DT architectures to the core
functionalities of DT identified in literature. The table shows
that majority of the architectures did not completely align with
the functionalities of DT, probably since most contributions are
domain- and use case-specific. The vast majority of the archi-
tectures discussed above is not only case-driven, but varies ex-
tensively in terms of their respective components. Going by the
definition of DT adopted by this study, it can be argued that
some of the DT architectures may not meet the requirements of
fully fledged DTs.

3. Digital Twin Requirements

According to several studies [17, 12, 32, 20], there is a set of
core attributes that differentiate a DT from other digital forms.
These include, in no particular order, synchronization, learning
and adaptability, bidirectional information flow, monitoring ca-
pability, predictive and prescriptive capabilities, and optimiza-
tion. These will be described in the following section.

3.1. Synchronization

The synchronisation attribute allows a DT to be dynamic
enough to reflect the state of its real-world twin at all times.

If such an alignment is guaranteed, any evaluation that is car-
ried out in real-time can be considered reliable; for instance,
the comparison of two production policies. The challenge with
the ability of a DT to achieve synchronisation is that the state
of a physical entity changes quickly over time, and optimisa-
tion activities could be referred to system states that differ from
the current one [23]. To avert this, a continuously synchronised
parent model can be maintained, from which many child mod-
els can be generated and run when required [10].

3.2. Learning and Adaptation

Most physical systems are dynamic and change with a high
frequency (e.g., flexible manufacturing systems); hence, the
digital constructs need to be able to adapt to always represent
the physical system. Types of adaptation may include: (1) adap-
tation of the model structure, which refers to the logical layout
and material flows; those can be either generated or adapted
from a previously available model. (2) the tuning of the model
level of detail refers to the possibility to exclude from the digi-
tal representation the components that do not significantly con-
tribute to estimating the performance of the system, with re-
spect to a particular goal [18]. (3) the adjustment of model pa-
rameters to reflect the current conditions.

3.3. Bi-directional Information Flow

In accordance with the definition by Kritzinger et al. [12],
a DT can be called as such if information flow is not only
from a real-world entity to a digital system, but also vice versa.
Accordingly, decisions that are taken within a digital system
(e.g., optimization of a production schedule), will be applied
to the corresponding real-world entity, automatically through
a control system (e.g., an actuator). Bidirectional communica-
tion from a DT to a Physical Twin may not always be used to
control the Physical Twin, rather it could represent additional
inspection or data collection activities [35].
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3.4. Monitoring Capabilities

Thanks to a real-time information flow from a physical sys-
tem, a DT can monitor the condition of its physical twin in real-
time. For instance, a machine tool vibration data can be elabo-
rated and used to produce the health score of a resource in use,
in real-time. Damjanovic-Behrendt and Behrendt [5] propose
monitoring services that divide the system into micro-services
or smaller applications, which enable a DT to monitor the var-
ious aspects of its Physical Twin, such as tracing, performance
metrics, alerting (i.e. providing the capability to detect and iso-
late problems) and dashboard services.

3.5. Predictive and Prescriptive Capabilities

A DT may include digital models that enable forward-
looking analyses. For instance, the real-time state of a manufac-
turing system can feed a Discrete Event Simulation Model, used
to estimate the end-of-the-day production performance starting
from current conditions and the expected number of orders. By
coupling the predictive capabilities with the bi-directional in-
formation flow, it may be stated that a DT has also prescriptive
capabilities, since it can use the knowledge acquired in forward-
looking scenarios to generate actionable commands in a real
system.

3.6. Optimization

A DT-based optimisation system offers a rapid identification
of optimal solutions [15]. The possibility of evaluating scenar-
ios that are not yet applied in the real system means that a DT
is enabled to search for an optimal configuration of real system
settings. For instance, a scheduling plan may be investigated in
search of a plan that minimizes the number of resources in use,
and consecutively, the energy consumption, with the aim of in-
creasing the sustainability score of the company. Among others,
Leng et al. [15] propose a DT-driven joint optimisation solution
to optimise the utilisation and efficiency of a warehouse product
service system (PSS).

4. DT Requirement-driven Architecture

Based on the requirements and characteristics of a DT iden-
tified in literature and in Section 3, this study proposes a
requirement-driven DT architecture, as shown in Figure 1. Ta-
ble 2 shows the connection between DT requirements and the
components of the proposed architecture, which has three ma-
jor parts, namely: (1) the physical twin, (2) the communication
or integration medium, and (3) the digital twin system.

4.1. Physical Twin

The physical twin (PT) is the real-world physical or per-
ceived system, for instance, a manufacturing system or an air-
port process, which is dynamically connected with the DT via
a communication or integration medium.

4.2. Communication or Integration Medium

The communication or integration medium of a DT is typi-
cally implemented using communication protocols with the ca-
pability of providing a bi-directional communication between
the PT and DT. A bi-directional data flow distinguishes a
DT from other digital forms such as a, digital model, digital
shadow, etc. [12]. The requirements of a use case, including
the type of data to be transferred, determine the type of devices
used and the communication strategy and protocols that apply.
Such protocols vary extensively and are not the focus of this

paper.
4.3. Digital Twin System

The DT system consists of the Data Acquisition Module,
Data Analytics Module, Database Module, Simulation Module,
Scenario Manager, Optimisation Module, and Controls Mod-
ule.

4.3.1. Data Acquisition Module

To improve the real-world entity it is representing or effec-
tively reflect its behavior, a DT should have the capability to au-
tomate data acquisition [6]; hence, the Data Acquisition Mod-
ule is one of the most crucial components of a DT [33]. The
data exchange between a DT and its PT can be volatile (e.g.,
real-time sensors transmitting the parts location, activity times-
tamps in a manufacturing facility, movement of passenger in an
airport, etc.) or static (e.g., list of manufacturing equipment, list
of airlines or number/location of check-in desks) [5]. The data
requirements of a DT drive the implementation of the Data Ac-
quisition Module, which can be implemented as a web service,
web application [26, 21] or mobile application [23].

4.3.2. Data Analytics Module

The Data Analytics Module is the engine of a DT, which
applies various analytics techniques to provide the mecha-
nism to manage, fuse and process the vastly heterogeneous
data acquired by the DT System. Analytics techniques such as
streaming process, time-series-based, batch-oriented, and secu-
rity analytics processing, etc., offer feedback mechanisms for
decision-making and control of the Physical Twin, as well as
provide results that become input to simulation and visualisa-
tion [5]. Also, simulation outputs can be analysed using data
analytics techniques.

4.3.3. Database Module (DB)

The Database Module encompasses the internal repository
or any form of data storage mechanism that houses the data
model of a DT. The DB can be cloud-based and this offers ben-
efits such as accessibility, scalability, processing power and ef-
ficiency in data transfer [29, 1]. A local-based DB may be used
for the security of sensitive data, but a hybrid approach consist-
ing of a combination of local and offsite DB (e.g., cloud, Edge,
Fog, Mainframe) may be employed in practice [35]. For in-
stance, for use cases involving safety critical or personal sensi-
tive data, the data can be pre-processed by an Edge Computing-
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Fig. 1. Exemplary DT architecture.

Table 2. Connection between the DT requirements and the components of the
proposed architecture.

Requirements Components

Synchronization Scenario Manager; Database
Module

Learning Simulation Module; Database

Module

Bi-directional
Flow

Information ~ Sensors; Integration Module

(Controllers); Actuators

Monitoring Capabilities Data Acquisition Module; Data

Analytics Module

Predictive/Prescriptive Capa-
bilities

Data Acquisition Module; Data
Analytics Module; Database
Module; Simulation Module

Optimization Optimization Engine; Scenario

Manager; Simulation Module

based system to stripe out the sensitive data before loading it to
the cloud system. Edge Computing-based system also provides
resilience to a Cloud System performance issue or failure.

4.3.4. Scenario Manager

The Scenario Manager carries out what-if analyses based on
the outcome of data analytics and/or simulation experimenta-
tion. It can control the running of simulation experimentation
in order to meet the objective of the experimentation [23]. For
instance, by monitoring the production performance over a cer-
tain amount of time, the scenario manager may decide to launch
forward looking simulation models to evaluate the performance
of different policies under the current set of parameters.

4.3.5. Simulation Module

Depending on the requirements, the simulation module can
be implemented using either discrete event, agent-based, sys-
tem dynamics (i.e., continuous simulation), or hybrid simula-

tion [27]. As discussed in the Data Analytics Section, input
to or output from simulation can support data analytics and/or
predictive analytics. The use of simulation models in a DT im-
plementation provides additional advantage when its updated
parameters reflect the behaviour of an instance of the Physical
Twin, and this makes these simulation models useful for of-
fering additional insights to support decision-making, predict-
ing anomalies or future failures [35]. This is especially true for
symbiotic simulation models (SSM) because of their ability to
interact with physical systems using near real-time or real-time
data [2]. SSM differs from non-SSM with its ability to read data
at run-time and response according to the current state of the
physical system it is representing [23]. Nwogu et al. [22] in-
clude SSM within a DT architecture and suggest that SSM can
be used to (1) detect anomalies, (2) validate the models in or-
der to identify the most accurate representation, (3) forecast the
system behaviour, and (4) control the physical system.

4.3.6. Optimisation Module

Thanks to the capability to fuse disparate data and synchro-
nise with a real-world entity, a DT is able to optimise a system
along its entire lifecycle, which includes its design, develop-
ment, operate and retire stages [14]. Depending on the require-
ments of a use case, the DT Optimisation Module, in collabo-
ration with the Scenario Manager, may use the output of other
DT components (e.g., Data Analytics, Simulation) to improve
the performance of its real-world counterpart. This may result
in automated control via an actuator or manual control via a
user, of the Physical Twin, in which its parameters are modified
based on the outcome of the optimisation [23].

4.3.7. Control Module

Once the simulation-optimization cycles are concluded, the
scenario manager can collect results and covert them into a set
of instructions for the physical system. This set of instructions
is analysed by the Control Module, to verify if the action is still
applicable to the real-world system and feasible within the rest
of the production epoch, in case of a manufacturing system.
Once verified, the controls are passed to the actuators, which
control the Physical Twin automatically; this is made possible
by bidirectional communication between the DT and its Physi-
cal Twin [34], and differentiates a DT from other digital forms
[12]. Controls from a DT to a Physical Twin can also be exerted
manually by a decision-maker or user [34].

5. Conclusions and Further Developments

Several studies have proposed DT architectures that are
largely domain- and technology-specific. Although the use
cases, applications, and domains may vary, the components of
the architectures and the naming of the components differ sig-
nificantly. As a consequence, it is difficult to identify common-
alities in components and this may hinder the re-usability of
DT architectures. In this work, a connection is made between
the core requirements of a DT and the components of the pro-
posed architecture. These components are named using stan-
dard descriptions that depict their functionalities. This makes
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it easier to apply them to a wide spectrum of applications and
use cases. By matching the components of the architecture to
the core DT requirements, this paper contributes to the further
exploration and standardisation of DT architectures. Also, this
work contributes to clarifying the widespread misconception on
what constitutes a Digital Twin. This work is affected by several
limitations, such as the relationship between the DT require-
ments and their implementation within an existing information
system, additional requirements that may arise from specific
manufacturing or service systems, amongst others. Future work
should investigate these limitations, as well as validate the suit-
ability and viability of the proposed architecture by applying it
to various use cases.
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