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Abstract: As failures of rolling bearings lead to major failures in rotating machines, recent vibration-

based rolling bearing fault diagnosis techniques are focused on obtaining useful fault features from 

the huge collection of raw data. However, too many features reduce the classification accuracy and 

increase the computation time. This paper proposes an effective feature selection technique based 

on intrinsic dimension estimation of compressively sampled vibration signals. First, compressive 

sampling (CS) is used to get compressed measurements from the collected raw vibration signals. 

Then, a global dimension estimator, the geodesic minimal spanning tree (GMST), is employed to 

compute the minimal number of features needed to represent efficiently the compressively sampled 

signals. Finally, a feature selection process, combining the stochastic proximity embedding (SPE) 

and the neighbourhood component analysis (NCA), is used to select fewer features for bearing fault 

diagnosis. With regression analysis-based predictive modelling technique and the multinomial lo-

gistic regression (MLR) classifier, the selected features are assessed in two case studies of rolling 

bearings vibration signals under different working loads. The experimental results demonstrate that 

the proposed method can successfully select fewer features, with which the MLR-based trained 

model achieves high classification accuracy and significantly reduced computation times compared 

to published research. 

Keywords: vibration-based condition monitoring; rolling bearing fault diagnosis; compressive sam-

pling (CS); feature selection; multinomial logistic regression (MLR) 

 

1. Introduction 

Rolling bearings are critical components of the entire system of rotating machines 

and play a crucial role in retaining motion between motionless and moving parts. Failure 

of rolling bearing is one of the key problems in rotating machines that may lead to major 

catastrophes in machines [1]. It has previously been observed that approximately 40–90% 

of rotating machines failures are related to bearing faults [2]. Therefore, in most manufac-

turing procedures, rolling bearings need to be monitored to avoid machine failures. Nu-

merous techniques can be used for machine condition monitoring such as vibration mon-

itoring, electric motor current monitoring, acoustic emission monitoring, etc. Of these, vi-

bration-based condition monitoring has been extensively utilized and has become a 

widely approved method [3]. As presented in Figure 1, a roller bearing is comprised of 

some components containing the inner race, the outer race, the rolling elements, and the 

cage [4]. Bearings faults can happen for several reasons such as fatigue, incorrect lubrica-

tion, contamination, corrosion, etc. [5]. In practice, faults in rolling bearings produce a 

series of impulses that repeat periodically at a rate named the bearing fundamental defect 
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frequency (BFDF), which usually depends on the site of the faults, the geometry of the 

bearing, and the shaft speed, as displayed in Figure 2 [6]. 

 

Figure 1. A typical roller bearing [4]. 

 

Figure 2. Rolling element bearing geometry [6]. 

Based on the damaged component, the BFDFs are categorized into four groups: (i) 

bearing pass frequency of the inner race (BPFI), (ii) bearing pass frequency of the outer 

race (BPFO), (iii) ball spin frequency (BSF), and (iv) fundamental train frequency (FTF), 

which are connected to the defect at the outer race, the inner race, the rolling element, and 

the cage [7]. These frequencies could be described using the following equations: 

                                     BPFI =  
𝑁𝑏𝑆𝑠ℎ

2
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𝑑𝑏

𝐷𝑝
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                                     BSF =  
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                                     FTF =  
𝑆𝑠ℎ
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𝑑𝑏

𝐷𝑝
𝑐𝑜𝑠𝜑)  (4) 

Here, 𝑁𝑏 represents the number of rolling elements, 𝑆𝑠ℎ represents the shaft speed, 

𝑑𝑏 is the rolling element diameter, 𝐷𝑝 is the pitch diameter, and 𝜑 represents the angle 

of the load from the radial plane. It has previously been observed that the frequency of 

the obtained vibration signal specifies the cause of the fault, and the amplitude shows the 

fault severity. 

In vibration-based machine fault diagnosis practice, we handle a huge gathering of 

vibration signals obtained from several sources in the machines and some background 

noises. Consequently, it is challenging to use the raw vibration signals directly for fault 

diagnosis. Much of the current literature on vibration-based fault diagnosis pays particu-

lar attention to introducing methods capable of obtaining useful information, usually 

called features, from the raw vibration signals, which can be successfully used to classify 
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the health condition of the machine. Automatic vibration-based condition monitoring em-

ploys machine learning classifiers to classify the vibration signal with its correct health 

condition type using the obtained features as inputs. Various techniques have been intro-

duced for vibration signal analysis that can be utilized to obtain useful features from the 

raw vibration data. These include time-domain methods, frequency-domain methods, 

and time-frequency domain methods. 

Numerous studies have examined many statistical techniques and some other cut-

ting-edge methods to extract features from vibration signals in the time domain. For in-

stance, McCormick and Nandi conducted several investigations to classify the condition 

of a small rotating machine using many statistical parameters such as mean and variance 

estimated from the time series of vibration signals, which are then applied as inputs to 

multi-layer perceptron and radial basis function neural networks [8]. Jack and Nandi in-

troduced a genetic algorithm (GA) to select the most significant input features to artificial 

neural networks (ANN) from a large group of statistical estimates in machine condition 

monitoring situations [9]. In the same vein, Jack and Nandi attempted to improve the 

overall generalisation performance of support vector machines (SVMs) and ANNs tech-

niques in two-class fault/no-fault recognition by applying a GA-based feature selection 

process [10]. In [11] a neural network technique for automated fault diagnosis of rolling 

element bearing using vibration data was proposed. First, the authors examined ten time-

domain features including peak value (Pv), root mean square (RMS), standard deviation 

(SD), Kurtosis value (Kv), Crest Factor (CrF), Clearance Factor (ClF), Impulse Factor (IF), 

Shape Factor (ShF), Weibull negative log-likelihood (Wnl), and normal negative likeli-

hood as inputs to ANN. Then only Kurtosis and normal negative likelihood are used as 

input features to ANN. The results showed that the ANN with Kurtosis and negative nor-

mal likelihood performed fault diagnosis with the same accuracy as the ANN with the 

ten-time domain features that were examined first. Furthermore, Prieto et al. presented a 

technique for bearing fault detection using statistical time-domain features and ANN. In 

this technique, several time-domain-based features including, mean, maximum value, 

RMS, SD, variance, ShF, CrF, latitude Factor, IF, Kv, and normalized fifth and sixth mo-

ments were computed from the acquired vibration signals [12]. 

Previous research has established that frequency domain methods can divulge infor-

mation based on frequency characteristics that are not certain to be observed in the time 

domain. Various frequency domain methods have been extensively used for vibration sig-

nals analysis in the context of bearing fault classification. For example, McCormick and 

Nandi examined the application of ANN for rotating shaft’s fault diagnosis using mo-

ments of vibration time series as input features. These features were compared with fea-

tures computed using the fast Fourier transform (FFT) as a suitable choice for real-time 

implementation [13]. Li et al. introduced a method for motor-bearing fault detection using 

frequency domain vibration signals and ANN [14]. In this method, the acquired vibration 

signals in the time domain were converted into the frequency domain using the FFT 

method. Then, the converted vibration signals in the frequency domain are used as inputs 

to train the ANN. Zeng and Wang proposed a framework for machine fault classification 

that comprises data acquisition, data processing, feature extraction, fault clustering, and 

fault assignment [15]. In this framework, the acquired vibration was transformed into the 

frequency domain using the FFT. Dhamande and Chaudhari proposed a method for bear-

ing fault diagnosis based on statistical feature extraction in the time and frequency domain 

and ANN [16]. In this method, many statistical parameters of the vibration data were 

computed in the time domain including mean, SD, variance, RMS, the absolute maximum 

of the vibration signal, skewness, kurtosis, CrF, and a combination of them. Additionally, 

in the frequency domain, several statistical parameters were estimated including the 

mean, the variance, the third moment, the fourth moment, the grand mean, SD concerning 

the grand moment, as well as the third and fourth moments concerning the grand mean 

[16]. Similarly, Helmi and Forouzantabar proposed a technique for rolling bearing fault 

detection of electric motor applying time domain and frequency domain features with the 
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adaptive neuro-fuzzy interface system (ANFIS) network [17]. In this technique, 15 time-

domain features such as mean SD, IF, and skewness were computed. Then, the frequency 

spectrums were obtained using FFT, and 13 frequency-domain features such as mean, fre-

quency centre, and kurtosis were computed [17]. 

Moreover, data from several studies suggest that the time-frequency domain meth-

ods have been introduced to deal with nonstationary waveform signals, which are very 

common when machine failures happen. The literature on machines fault diagnosis has 

highlighted several time frequency methods that are employed to transform the vibration 

signals in the time domain into the time-frequency domain. For instance, Wang and Chen 

investigated the sensitivity of three time-frequency domain methods, namely, short-time 

Fourier transform (STFT), wavelet analysis (WA), and pseudo Wigner–Ville distribution 

(PWVD) for a rotating machine’s fault diagnosis [18]. In [19], the authors presented a fea-

ture extraction methodology that is based on empirical mode decomposition (EMD) en-

ergy entropy for rolling element bearings fault diagnosis. In this methodology, a mathe-

matical analysis process to select the most significant intrinsic mode functions (IMFs) was 

introduced. Then, the selected features were applied as inputs to train an ANN-based 

model, which is used to classify bearings faults. Furthermore, Djebala et al. presented a 

denoising technique based on discrete wavelet analysis of the acquired vibration signals 

for bearing fault detection [20]. In [21], a deep learning-based approach for bearing fault 

diagnosis is proposed. In this approach, the acquired signals were preprocessed using 

STFT to generate a spectrum matrix. Then sub-patterns were generated from the spectrum 

matrix and used to obtain the optimized deep learning structure, the large memory stor-

age retrieval (LAMSTAR) neural network for bearing fault diagnosis. Furthermore, Im-

movilli et al. introduced a technique for the detection of generalized-roughness bearing 

fault using the spectral-kurtosis energy of vibration or current signals [22]. Lei and col-

leagues presented an improved kurtogram method for fault diagnosis of rolling element 

bearings. In this method, the wavelet packet transform (WPT) was used as the filter of the 

kurtogram method to overcome the limitations of the original kurtogram [23]. Recently, 

Hongwei et al. proposed a method for rolling element bearing fault diagnosis based on 

Fuzzy C-means (FCM) clustering of vibration images that were obtained using EMD-

PWVD [24]. In this method, first, the acquired vibration signals with different fault de-

grees were converted into contour time-frequency images by using the EMD-PWVD tech-

nique. Then, the obtained vibration images were divided into sections and their energy 

distributions values were used as image features. Furthermore, in [25], the authors pre-

sented a method for rotating machinery fault diagnosis using time frequency domain fea-

tures and CNN knowledge transfer. 

On the other hand, despite the various techniques described above, which are used 

to process and examine vibration signals in the time domain, the frequency domain, and 

the time frequency domain, various studies have proposed other methods that can reduce 

the computational complexity and enhance fault classification accuracy. Of these, numer-

ous methods have been introduced for learning subspace features from the raw vibration 

signals in rotating machine fault diagnosis. For instance, in [26], a method is proposed for 

incipient failures in large-size low-speed rolling bearings using the multiscale principal 

component analysis (MSPCA) and the ensemble empirical mode decomposition (EEMD). 

Guo et al. introduced a feature extraction approach for rolling element bearing fault diag-

nosis using the envelope extraction and the independent component analysis (ICA) tech-

nique [27]. In [28], the authors evaluated the use of the principal component analysis 

(PCA) technique and NN performance for bearing fault diagnosis. In their experiments, 

the vibration signals were preprocessed using detrended-fluctuation analysis (DFA) and 

rescaled-range analysis (RSA) techniques. Additionally, Dong et al. introduced a tech-

nique for bearing fault diagnosis using kernel PCA (KPCA) and an optimized k-nearest 

neighbour model [29]. In this technique, first, the original vibration signals were decom-

posed using local mean decomposition (LMD). Then, the entropy values of product func-

tions that represent the input features were computed utilizing the Shannon method. The 
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KPCA was used to reduce the dimension of the original features needed to train the k-

nearest neighbour model [29]. 

Additionally, data from several studies demonstrate that the use of feature selection 

techniques will reduce the computational cost and might remove irrelevant and redun-

dant features and accordingly may improve learning performance [1]. Feature selection 

techniques can be grouped into filter models (e.g., Fisher score, Relief and Relief-F algo-

rithms), wrapped models (e.g., Genetic algorithm), and embedded models (e.g., LASSO 

and elastic net). Numerous studies have investigated the application of feature selection 

methods in the context of vibration-based bearings fault diagnosis. For example, Haroun 

et al. introduced a feature selection method for bearing fault detection and diagnosis using 

a self-organizing map (SOM) [30]. In this method, the authors, employed multiple meth-

ods from the time domain, frequency domain, and time-frequency domains to extract fea-

tures. Then, Relief-F and minimum redundancy maximum relevance (mRMR) were used 

to select the optimal features from the extracted features. With these selected features, the 

SOM was applied to classify the bearing’s health condition [30]. Furthermore, a method 

for machinery fault diagnosis using redefined dimensionless indicators (RDIs) and 

mRMR was introduced [31]. In this method, first, the original vibration signals were pre-

processed using variation mode decomposition to construct multiple RDIs. Then, the 

mRMR technique was employed to select several important RDIs. Finally, with these se-

lected RDIs, a grid support vector machine (SVM) was used to carry out the identification 

of machinery faults. In [32], the authors proposed a methodology for bearing fault diag-

nosis of induction motors using a genetic algorithm (GA) and machine learning classifiers. 

In this methodology, first, some statistical features were obtained from the raw signals. 

Then, the GA was employed to select the most important features. Finally, with the se-

lected features, three different classification algorithms namely, k-nearest neighbour 

(KNN), decision tree (DT), and random forest (RF) were trained to accomplish the classi-

fication task. 

Furthermore, recent advances in dimensionality reduction methods have aided the 

investigation of the compressive sampling (CS) technique [33]. Several researchers have 

used CS to reduce the dimensionality of the original vibration signals for rolling bearing 

fault classification. For instance, Wong et al. examined the effects of CS on bearing fault 

classification [34]. In this investigation, the authors resampled the originally collected vi-

bration signals using a random Bernoulli matrix to match the compressive sampling pro-

cess. Then, sample entropy-based features were obtained from both the normalized raw 

vibration signals and the reconstructed signals. Finally, the SVM was trained using the 

obtained features to accomplish the fault classification task [34]. Tang et al. proposed a CS 

framework of characteristics harmonics to detect bearing faults [34]. In this method, the 

characteristics harmonics were obtained from sparse measurements via a compressive 

matching pursuit technique during the procedure of incomplete reconstruction [35]. 

Moreover, Xinpeng et al. introduced a bearing fault detection technique using CS and 

matching pursuit (MP) reconstruction algorithm [36]. In [4], a method for bearing fault 

classification from highly compressed measurements is proposed. In this method, CS was 

used to produce highly compressed measurements of the original bearing vibration sig-

nals. Then, a deep neural network (DNN) based on sparse autoencoder (SAE) was utilized 

to learn overcomplete sparse representations of the compressed measurements, which 

were used for the classification of bearing fault using the Softmax layer. Moreover, Ahmed 

and Nandi proposed a three-stage method for rolling bearings fault diagnosis using CS 

and subspace learning techniques [37]. In this method, the CS technique was employed to 

obtain compressively sampled vibration signals from the original vibration signals. Then, 

a multistep feature learning algorithm using PCA, linear discriminant analysis (LDA), and 

canonical correlation analysis (CCA) was used to obtain fewer features from the compres-

sively sampled signals [37]. In [38], a framework for bearing fault classification using CS 

and feature ranking is proposed. Then, the authors used the CS process to produce com-
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pressively sampled signals from the raw vibration signals using two compressible repre-

sentations of vibration signals, namely, Fourier transform-based coefficients and thresh-

old Wavelet transform-based coefficients. Then, various feature ranking procedures were 

used to select fewer features from the compressively sampled signals. Finally, three clas-

sifiers were evaluated for the classification of bearing faults using these selected features. 

The issue of collecting a large amount of vibration data for machine fault diagnosis 

has attracted considerable attention as it requires large storage to be stored and time to be 

processed. Existing research has highlighted various techniques for vibration signal anal-

ysis that can be applied to obtain useful features from the originally collected vibration 

data. However, the number of obtained features could be a contributing factor to the per-

formance of these techniques in terms of classification accuracy and computational time, 

which are particularly important in the real implementation of fault diagnosis techniques. 

This study aims to contribute to this growing area of research by investigating the follow-

ing: 1. A method that can reduce the high dimensionality of the raw vibration data to a 

fewer number of features capable of achieving high fault classification accuracy and 

highly reduced computational time, 2. The CS is an appropriate mechanism to compress 

the original high dimensional vibration data and then further reduce the dimension of the 

compressed vibration data to a far fewer number of features that satisfactorily represent 

the health condition of rolling bearings, and 3. The multinomial logistic regression (MLR) 

algorithm is a possible classifier to deal with the bearing’s fault classification task using 

the fewer selected features. 

To accomplish high classification accuracy and highly reduced computation time, 

this paper proposes a new methodology for bearing fault classification based on intrinsic 

dimension estimation-based feature selection and multinomial logistic regression using 

compressively sampled vibration signals. In the methodology, the input vibration signals 

are resampled using CS to reduce the high-dimensional samples of the originally collected 

vibration data. Then, to further reduce the number of features of the compressively sam-

pled vibration signals to far fewer features that can sufficiently represent the health con-

dition of rolling bearings consequently achieve high classification accuracy and highly 

reduced computation time, a feature selection procedure based on intrinsic dimension es-

timation, stochastic proximity embedding (SPE), and neighbourhood component analysis 

(NCA) is applied. Finally, to perform the bearing’s fault classification task, the fewer se-

lected features are applied as inputs to a multinomial logistic regression (MLR) classifica-

tion algorithm. The contributions of this paper are as follows: 

1. The proposed method produces far fewer features that can represent the health con-

dition of bearings. This study accomplishes high classification accuracies and highly 

reduced computational time with regression analysis-based predictive modelling 

technique, namely the multinomial logistic regression (MLR) classifier using the 

fewer selected features as inputs. 

2. A dimensionality reduction process has been proposed, which comprises (1) data 

compression using CS and (2) intrinsic dimension estimation-based feature selection 

process, which includes (a) SPE-based feature selection that utilizes a self-organizing 

iterative scheme to embed the compressed data dimension into a further lower di-

mension, and (b) the non-parametric NCA-based feature selection that maximizes 

the stochastic variant of the leave-one-out nearest neighbour score to achieve the best 

classification accuracy on the training set. This ensures selecting fewer features from 

the high dimensional data capable to achieve high classification accuracy and a re-

duced computational time. 

3. We studied the impact of values of two parameters within the data compression and 

feature selection process used in the proposed method, namely the compressive sam-

pling rates and the NCA tolerance values on the number of the selected features and 

the fault classification accuracy. 

4. Two fault classification case studies of rolling element bearings vibration signals un-

der different working loads are used to evaluate the proposed method. 
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5. Compared to recently published classification results from the literature on the same 

vibration-bearing datasets used in this study, our proposed method achieves high 

classification accuracy and highly reduced computation time, which suggests that 

our proposed methodology could be used in actual applications of vibration-based 

machine fault diagnosis. 

The remainder of this paper is organized as follows. Section 2 describes the proposed 

framework. Section 3 is devoted to descriptions of the experimental study used to validate 

the proposed framework and presents comparison results. Finally, Section 4 offers some 

conclusions. 

2. The Proposed Method 

The methodological approach taken in this study is a mixed methodology based on 

vibration data compression, feature selection based on intrinsic dimension estimation, 

and regression analysis-based predictive modelling techniques. The proposed method au-

tomatically learns and selects far fewer features from compressively sampled vibration 

signals, which can be used as inputs to a classifier for bearing fault detection and classifi-

cation. The key objective of the proposed method is to achieve high fault classification 

accuracy while highly reducing the computation time. The flow chart of the proposed 

method is presented in Figure 3. First, the compressive sampling (CS) mechanism was 

employed to compress the acquired vibration data. Then, a feature selection procedure 

based on intrinsic dimension estimation, stochastic proximity embedding (SPE), and 

neighbourhood component analysis (NCA) was utilized to estimate and further reduce 

the dimensionality of the compressively sampled data. Finally, with these reduced fea-

tures, a classifier was used to classify the bearing’s health condition, namely, the multino-

mial logistic regression (MLR) algorithm was employed to perform the classification task. 

The following subsections discuss the proposed method in more detail. 

 

Figure 3. The proposed method. 

2.1. Vibration Data Compression Using CS 

To reduce the high dimensional of the collected vibration data, the proposed method 

uses the CS mechanism to obtain compressively sampled vibration signals from the orig-

inal signals. The central principle of the CS is that a finite-dimensional signal having 

sparse or compressible representations can be reconstructed from a small number of linear 

measurements much lower than measurements based on the Nyquist sampling rate {xe 

“Nyquist sampling rate”}. Machine vibration signal has compressible representations in 

several domains such as in the frequency domain using FFT {xe “frequency domain”}. 

Therefore, in recent times, there has been a growing interest in the application of CS in 

machine fault diagnosis {xe “fault diagnosis”}. There are many benefits of CS in vibration-

based bearing fault diagnosis, e.g., reducing the high dimension of the acquired vibration 
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data, reducing computation time required to analyze the collected data, reducing data 

transmission cost in the cases where it is essential to send the collected data from remote 

places, e.g., fault diagnosis of offshore wind turbines. 

The successful implementation of the CS mechanism is based on two fundamental 

concepts: (i) the sparsity of the targeted signal, and (ii) the measurements matrix that ful-

fils the minimal data information loss, which is usually called the restricted isometry 

property {xe “restricted isometry property”} (RIP) [39]. Briefly, we describe the CS mech-

anism as follows. 

Let x∈ 𝑅𝑛 𝑥 1 be the originally collected time-indexed signal. With an identified spar-

sifying transform {xe “sparsifying transform”} matrix 𝜓 𝜖 𝑅𝑛 𝑥 𝑛 where the columns rep-

resent the basis elements {𝜓𝑖}𝑖=1
𝑛 , the signal x can be described as follows, 

𝑥 =  ∑𝜓𝑖

𝑛

𝑖=1

𝑠𝑖 (5) 

or, 

𝑥 =  𝜓𝑠 (6) 

Here, 𝑠 represents a 𝑛 ∗ 1 column vector of coefficients. In case the basis 𝜓 gener-

ates q-sparse representations of the signal 𝑥 then 𝑥 of length 𝑛 can be signified with 

𝑞 <<  𝑛 nonzero coefficients. Consequently, Equation (5) can be rewritten as follows, 

𝑥 =  ∑𝜓𝑛𝑖

𝑞

𝑖=1

𝑠𝑛𝑖 (7) 

Here, 𝑛𝑖 represents the index of the basic elements and the coefficients correspond-

ing to the 𝑞 nonzero elements. Accordingly, 𝑠 𝜖 𝑅𝑛 𝑥 1 represents a vector column with 𝑞 

nonzero elements and characterizes the sparse representation {xe “sparse representation”} 

vector of the signal 𝑥. Consistent with the CS mechanism, with 𝑚 <<  𝑛 projections of 

the vector 𝑥, measurement vectors {∅𝑗}𝑗=1
𝑚 , and the sparse representations 𝑠, the com-

pressed measurements of the signal 𝑥 can be obtained using the following equation, 

𝑦 = ∅𝜓𝑠 =  𝜃𝑠 (8) 

Here, 𝑦  is a 𝑚 ∗ 1  column vector of the compressed measurements and 𝜃 =

 ∅𝜓 represents the measurement matrix. Figure 4 shows an illustration of the CS frame-

work that can be used to produce the single measurement vector of the compressed meas-

urements 𝑦. According to the CS theory, the original signal 𝑥 can be reconstructed from 

the compressed measurements 𝑦 by applying a recovery algorithm. This can be com-

pleted by first recovering the sparse representation vector 𝑠 and then employing the in-

verse of the sparsifying transform {xe “sparsifying transform”} 𝜓 to recover 𝑥. One of the 

solutions to be used to recover the sparse representations 𝑠 ∈ 𝑅𝑛 from its compressed 

measurement vector  𝑦 ∈ 𝑅𝑚  is the 𝑙0  minimization technique, which searches for a 

sparse vector consistent with the measured data 𝑦 = 𝜃𝑠 such that, 

𝑠̂ = arg min
z

‖𝑠‖0 such that 𝜃𝑠 = 𝑦 (9) 

 

Figure 4. Single measurement vector compressive sampling framework [37]. 
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Moreover, the convex optimization ‖. ‖1 can also be employed in place of ‖. ‖0, such 

that, 

𝑠̂ = arg min
z

‖𝑠‖1 such that 𝜃𝑠 = 𝑦 (10) 

In case the measurement matrix 𝜃 satisfies the {xe “Restricted Isometry Property”} 

RIP, the sparse representation 𝑠 can be reconstructed by solving the convex program in 

Equation (10). The matrix 𝜃 satisfies the rth restricted isometry property {xe “Restricted 

Isometry Property”} (RIP) if there exists a 𝛿𝑟 ≪ 1, such that 

(1 − 𝛿𝑟)‖𝑠‖𝑙2
2  ≤  ‖𝜃s‖𝑙2

2  ≤ (1 + 𝛿𝑟)‖𝑠‖𝑙2
2  (11) 

In our case, the collected vibration data is a collection of signals, which can be repre-

sented as a matrix of sparse vectors 𝑌, such that, 

𝑌 =  ӨS (12) 

where 𝑌 ∈ 𝑅𝑚 𝑥 𝐿, 𝐿 is the number of observations and 𝑚 is the number of compressed 

measurements, Ө ∈ 𝑅𝑚 𝑥 𝑛 represents a dictionary, and 𝑆 ∈ 𝑅𝑛 𝑥 𝐿 is a sparse representa-

tion {xe “sparse representation”} matrix. Therefore, multiple measurement vector com-

pressive sampling {xe “Compressive Sampling”} is used in our proposed method. 

Our proposed method is intended to learn directly from the compressed vibration 

signals. To obtain the compressively sampled signals from the collected vibration dataset 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝐿} ∈ 𝑅𝑛 , first, the {xe “Fast Fourier Transform”} FFT, which commonly 

provides a sparse basis for vibration signals, is employed to produce the sparse represen-

tation (𝑆 ∈ 𝑅𝑛𝑥𝐿) that comprises only a small number 𝑞 ≪ 𝑛  of nonzero coefficients. The 

FFT algorithm calculates the 𝑛-point complex discrete Fourier transform (DFT) of the sig-

nal 𝑋. In this study, we utilise the magnitude of the DFT to get S. Then, a random matrix 

with i.i.d Gaussian entries matrix, which satisfies the RIP, is used as the measurement 

matrix  Ө ∈ 𝑅𝑚𝑥𝑛 [40]. Finally, a compressed sampling rate (α) is used to produce the 

compressively sampled signals 𝑌 ∈ 𝑅𝑚𝑥𝐿, where m represents the number of compressed 

signal elements and given by 𝑚 =  𝛼 ∗ 𝑛. This compression process is summarized in Al-

gorithm 1 below: 

Algorithm 1 Vibration data compression using CS 

1. Input: vibration dataset 𝑋 ∈ 𝑅𝑛 𝑥 𝐿; measurement matrix Ө ∈ 𝑅𝑚𝑥𝑛; and compressive 

sampling rate 𝛼  

2. Output: compressively sampled vibration signals 𝑌 ∈ 𝑅𝑚 𝑥 𝐿 

3. Produce the sparse representations 𝑆 of X: 𝑎𝑏𝑠 (𝐹𝐹𝑇(𝑋)) → 𝑆 ∈ 𝑅𝑛 𝑥 𝐿 

4. Project 𝑆 into Ө with compressed sampling rate 𝛼 to obtain compressively sampled 

signals 𝑌 ∈ 𝑅𝑚 𝑥 𝐿 

2.2. Feature Selection Process 

Based on CS theory, the compressively sampled signals (𝑌) have sufficient infor-

mation to reconstruct successfully the originally collected vibration signals. Nevertheless, 

the dimensions of these compressively sampled vibration signals might be further re-

duced to attain more reduction in the computational cost while achieving high classifica-

tion accuracy. Accordingly, our proposed method offers a feature selection process to 

learn and select fewer features from the compressively sampled signals (𝑌) to achieve su-

perior classification accuracy and reduced computation costs. The feature selection pro-

cess starts by identifying the minimal number of features required to represent the com-

pressively sampled vibration signals 𝑌, using a global dimension estimator, namely the 

geodesic minimal spanning tree (GMST). The GMST calculates the geodesic graph G from 

which the intrinsic dimension (d) is projected by calculating multiple minima spanning 

trees (MSTs) in which each data sample 𝑥𝑖 is linked to its k nearest neighbours [41], such 

that, 
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𝑑(Y) = 𝑚𝑖𝑛 ∑𝐷𝐸𝑢𝑐𝑙

𝑒∈𝑇

 (13) 

Here, T signifies the set of all the subtrees of G, e is an edge in T, and 𝐷𝐸𝑢𝑐𝑙 is the 

Euclidean distance of e. Then, with the computed minimal number of features d, where d 

< m, the SPE technique is employed to convert the compressively sampled data (Y) into a 

reduced-dimensionality space of significant representation (Z ∈ 𝑅𝑑 𝑥 𝐿). 

The SPE is a nonlinear approach that has many benefits such as being simple to im-

plement, very fast, scales linearly with the size of the data in both time and memory, and 

is relatively insensitive to missing data [42]. Thus, it was decided that SPE is an appropri-

ate method to use for this investigation. The SPE utilizes a self-organizing iterative scheme 

to embed m-dimensional data into d dimensions, such that the geodesic distances in the 

original m dimensions are preserved in the embedded d dimension. Briefly, we describe 

the simplified SPE procedure as follows [43]: 

1. Initialize the coordinates 𝑦𝑖. Select an initial learning rate 𝛽. 

2. Select a pair of points, 𝑖,  and  𝑗 , at random, and calculate their distance:  𝑑𝑖𝑗 =

 ‖𝑦𝑖 − 𝑦𝑗‖. If  𝑑𝑖𝑗  ≠ 𝑟𝑖𝑗 (𝑟𝑖𝑗 is the distance of the corresponding proximity), update 

the coordinates 𝑦𝑖 and 𝑦𝑗 using the following equations, 

 𝑦𝑖 ← 𝑦𝑖 +  𝛽
1

2
 
𝑟𝑖𝑗 −  𝑑𝑖𝑗

 𝑑𝑖𝑗 + 𝜐
 (𝑦𝑖 − 𝑦𝑗) (14) 

and 

𝑦𝑗 ← 𝑦𝑗 +  𝛽
1

2
 
𝑟𝑖𝑗 −  𝑑𝑖𝑗

 𝑑𝑖𝑗 + 𝜐
 (𝑦𝑗 − 𝑦𝑖) (15) 

Here, 𝜐 is a small number to avoid division by zero. For a given number of iterations, this 

step will be repeated for several steps and 𝛽 will be reduced by a recommended decre-

ment 𝛿𝛽. Finally, to obtain far fewer selected features in the feature selection process step, 

our proposed method uses the NCA technique to automatically selects a subset from the 

SPE-based learned features by converting Z ∈ 𝑅𝑑 𝑥 𝐿  into Q ∈ 𝑅𝑓 𝑥 𝐿  where 𝑓 < 𝑑 . 

Briefly, we describe the NCA feature selection as follows: 

Let 𝑍 = {(𝑧1, 𝑐1), … , (𝑧𝑖 , 𝑐𝑖), … , (𝑧𝐿, 𝑐𝐿} be a training set samples with d-dimension and 

𝑐𝑖 ∈ {1,… , 𝐶} is the matching class label. The NCA searches for a weighting vector 𝑤 that 

uses to select a feature subset. In this method, first, the weighted distance between two 

samples 𝑧𝑖 and𝑧𝑗 can be computed using the following equation, 

𝐷𝑤(𝑧𝑖 , 𝑧𝑗) = ∑𝑤𝑟
2|𝑧𝑖𝑙 − 𝑧𝑗𝑙|

𝑑

𝑟=1

  (16) 

Here, 𝑤𝑟  is a weight-related to the r-th feature. Then, the strategy is to maximize the 

leave-one-out classification accuracy on the training set. The reference point is defined by 

a probability distribution. In our case, the probability of 𝑧𝑖  chooses 𝑧𝑗  as its reference 

point such that, 

𝑝𝑖𝑗 = {

𝑘(𝐷𝑤(𝑧𝑖 , 𝑧𝑗))

∑ 𝑘(𝐷𝑤(𝑧𝑖 , 𝑧𝑗))𝑘≠𝑖

, if 𝑖 ≠ 𝑗

0, if 𝑖 =  𝑗 

  (17) 

Here, 𝑘 (𝐷𝑤(𝑧𝑖 , 𝑧𝑗)) = exp (−(𝐷𝑤(𝑧𝑖, 𝑧𝑗) )/𝜎) is a kernel function and 𝜎 is an input pa-

rameter that represents the kernel width. The probability of correct classification of 𝑦𝑖 can 

be computed using the following equation, 

𝑝𝑖 = ∑𝑐𝑖𝑗𝑝𝑖𝑗

𝑗

  (18) 



Entropy 2022, 24, 511 11 of 28 
 

 

Here, 

𝑐𝑖𝑗 = {
 1 if 𝑐𝑖 = 𝑐𝑗

 0 otherwise 
 (19) 

This process of NCA is summarized in Algorithm 2 below [44]: 

Algorithm 2 NCA Feature Selection 

1. Input: 

Z ∈ 𝑅𝑑 𝑥 𝐿;  γ: initial step length; σ: kernel width; ℷ: regularisation parameter; and 𝜂: 

small positive constant.   

2. Initialization: 𝑤[0] = (1, 1, … , 1), 𝜖(0) = −∞, 𝑡 = 0. 

3. Repeat 

4. 𝑓𝑜𝑟 𝑖 = 1,… , 𝐿  𝑑𝑜 
5. Compute 𝑝𝑖𝑗  and 𝑝𝑖 using 𝑤(𝑡) according to (2) and (3) 

6. 𝑓𝑜𝑟 𝑟 = 1,… , 𝑑   𝑑𝑜 

7. ∇_𝑟 = 2(1/𝜎(𝑝𝑖 ∑ 𝑝𝑖𝑗|𝑧𝑖𝑟 − 𝑧𝑗𝑟| − ∑ 𝑐𝑖𝑗|𝑧𝑖𝑟 − 𝑧𝑗𝑟|) − ℷ)𝑤𝑟
(𝑡)

𝑗𝑗≠𝑖  

8. t = t + 1 

9. 𝑤(𝑡) = 𝑤(𝑡−1) +  γ∆ 
10. 𝜖(𝑡) = 𝜉(𝑤(𝑡−1)) 
11. if 𝜖(𝑡) > 𝜖(𝑡−1) then γ = 1.01 γ  

12. else 

13. γ = 0.4γ 
14. until |𝜖(𝑡) − 𝜖(𝑡−1)| < 𝜂 

15. 𝑤 = 𝑤𝑡 
16. Return 𝑤 

To select the most important features based on features weights, the criteria are based 

on a threshold value (Thr), which can be computed as follows: 

𝑇ℎ𝑟 = τ max (w)  (20) 

Here τ is the tolerance value. 

2.3. Regression Analysis-Based Predictive Modelling Using MLR 

Regression analysis can be used as a predictive modelling method as it defines the 

relationship between a dependent variable and one or more independent descriptive var-

iables. There are many types of regression analysis methods such as linear regression, 

polynomial regression, logistic regression, etc. Of these, logistic regression (LR) is one of 

the most used methods in many machine learning applications. The LR is usually utilized 

for binary classification, i.e., the class labels c has only two values, e.g., (Fault, Normal). 

Briefly, we describe the LR as follows: 

Let a training data 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝐿} with 𝑓-dimension produced in the feature se-

lection step of our proposed method. The LR is a probabilistic discriminative model that 

learns 𝑃(𝑐|𝑄) directly from the training data where 𝑐𝑖 ∈ {0, 1}, such that, 

P(c = 1|q) = ℎ1(q) = g(−𝜃𝑇h) = 1/(1 + 𝑒−𝜃𝑇𝑞)  (21) 

Here g(−𝜃𝑇h) is the logistic function, which is also called the sigmoid function. 

Since ∑𝑃(𝐶) = 1, we can compute P(c = 0|Q) as follows: 

P(c = 0|q) = ℎ0(q) = 1 −  P(c = 1|q) = 1 − (1/(1 + 𝑒−𝜃𝑇𝑞))  (22) 

The likelihood of the parameters of L training examples can be computed using the 

following equation, 

L(θ) =  ∏((𝑔(𝜃𝑇𝑞𝑖))𝑐(𝑖)(1 − 𝑔(𝜃𝑇𝑞𝑖))1−𝑐(𝑖)

𝐿

𝑖=1

  (23) 
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Here θ = [θ0, θ1, … , θ𝑖] represents the parameters of the model. Nevertheless, the 

log-likelihood is widely utilised and, consequently, Equation (23) and can be updated as 

Equation (24), such that 

log L(θ) =  ∑log (((𝑔(𝜃𝑇𝑞𝑖))𝑐(𝑖)(1 − 𝑔(𝜃𝑇𝑞𝑖))1−𝑐(𝑖))

𝐿

𝑖=1

  (24) 

To avoid overfitting a regularisation term, 𝜆 is added to the log-likelihood function, 

such that 

log L(θ) =  ∑log (𝑃(𝑐𝑖 = 𝑐𝑘|𝑞
𝑖; 𝜃 )) −

𝜆

2
‖𝜃‖2  

𝐿

𝑖=1

 (25) 

The MLR classifier, which also goes with the name SoftMax regression in ANN, gen-

eralizes the LR to a multi-class classification problem with multi-labels 𝑐(𝑖)  ∈ {1, … , 𝐾}, 

such that 

 ℎ𝜃(𝑞) = =  

[
 
 
 
 
 
𝑃(𝑐 = 1|𝑞; 𝜃)

𝑃(𝑐 = 2|𝑞; 𝜃)
.
.
.

𝑃(𝑐 = 𝐾|𝑞; 𝜃)]
 
 
 
 
 

 = 
1

∑ exp(𝜃(𝑗)𝑇𝑞)𝐾
𝑗=1

 

[
 
 
 
 
 
 𝑒

𝜃(1)𝑇𝑞

𝑒𝜃(2)𝑇𝑞

.

.

.

𝑒𝜃(𝐾)𝑇𝑞]
 
 
 
 
 
 

  (26) 

Here,  𝜃(1), 𝜃(2), … , 𝜃(𝐾)  represent the parameters of the multinomial logistic regres-

sion model. In this study, we are dealing with a multiclassification problem, so MLR is 

employed to perform the classification task in our proposed method. 

3. Experimental Study 

Two fault classification case studies of rolling element bearings using vibration sig-

nals are presented to evaluate the proposed method. 

3.1. First Case Study 

The vibration dataset used in this case study is acquired from experiments on a test 

rig that simulates running roller bearings’ environment. In these experiments, several in-

terchangeable faulty roller bearings are inserted in the test rig to symbolize the type of 

faults that can normally happen in roller bearings. As shown in Figure 5, the test rig to 

collect the vibration dataset of bearings contains a 12V DC electric motor driving the shaft 

via a flexible coupling. The shaft was supported by two blocks of Plummer bearing, where 

several damaged bearings were inserted. Two accelerometers were used to measure the 

vibration signals in both the horizontal and vertical planes. The output from the accel-

erometers was fed back over a charge amplifier to a Loughborough Sound Images DSP32 

ADC card with a low-pass filter using a cut-off of 18 kHz. The sampling rate was 48 kHz. 

Six health conditions of roller bearings have been recorded with two normal conditions 

{XE “normal conditions”}, i.e., brand new condition (NO) and worn yet undamaged con-

dition (NW), and four faulty conditions {XE “faulty condition”} with, inner race fault {XE 

“inner race fault”} (IR), an outer race fault {XE “outer race fault”} (OR), rolling element 

fault {XE “rolling element fault”} (RE), and cage fault (CA). Table 1 explains the corre-

sponding characteristics of these bearing health conditions [4]. 
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Figure 5. The test rig used to collect the vibration data of bearings of the first case study [4]. 

The data was recorded using 16 different speeds within 25–75 rev/s. In each speed, 

ten time series were recorded for each condition, i.e., 160 examples per condition. This 

resulted in a total of 960 examples with 6000 data points each. Figure 6 illustrates some 

typical time series plots for the six different conditions. 

 

Figure 6. Typical time domain vibration signals for the six different conditions [4]. 

Table 1. The characteristics of bearings’ health conditions in the obtained bearing dataset. 

Condition Characteristic 

NO The bearing was brand new and in perfect condition. 

NW The bearing was in service for some time but in good condition. 

IR Inner race fault. This fault was created by cutting a small groove in the raceway of the inner race.  

OR Outer race fault. This fault was created by cutting a small groove in the raceway of the outer race. 

RE 
Roller element fault. This fault was created by using an electrical etcher to mark the surface of the balls, 

simulating corrosion. 
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CA 
Cage fault. This fault was created by removing the plastic cage from one of the bearings, cutting away 

a section of the cage so that two of the balls were not held in a regular space and had freedom to move.  

To apply our proposed method in this case study, first, we randomly selected 50% of 

the total observations for training, and the remaining 50% is employed for testing the 

trained model. Then, we computed the compressively sampled vibration signal from the 

high dimensional data X which has 6000 time samples for each of its 960 observations. As 

described in algorithm 1, the FFT basis was used as the sparse representation of each sig-

nal in X. After, the CS framework with different sampling rates (α) (0.1, 0.2, and 0.3) using 

a random Gaussian matrix was used to produce the compressed measurements. 

To estimate and reduce further the dimensionality of the compressively sampled sig-

nals, first, we computed the intrinsic dimension (d) using the GMST technique. Then, the 

process combining the SPE and NCA techniques was performed to learn and select far 

fewer features from the compressively sampled vibration signals. The compressively sam-

pled vibration signals were transformed into further reduced dimensions using the de-

fined intrinsic dimension and the SPE method. Then, a regularized NCA based on feature 

weights and a relative threshold was employed to select far fewer features with f-dimen-

sion from the SPE-based selected features with d-dimension where f < d. We computed the 

best regularization parameter (𝜆) value that corresponds to the minimum average loss to 

be used in fitting the NCA model on all the reduced dimension data. The final selected 

features were computed using the feature weights of the NCA model and a relative 

threshold. The stochastic gradient descent (SGD) solver was used for estimating feature 

weights. Two tolerance values (0.01 and 0.02) were tested in this case study for computing 

the threshold values used in the feature selection process. Figure 7 shows an example of 

the average loss values versus 𝜆 values. Figure 8 presents an example of the selected fea-

tures and their corresponding weights. Moreover, Table 2 shows examples of the com-

puted values of the average intrinsic dimension, the dimension of the NCA-based selected 

features, least loss, and best 𝜆 values taken from 10 trials. 

The first benefit of the proposed method is to obtain far fewer features from the ac-

quired vibration signals to be successfully used for rolling bearing fault diagnosis and 

consequently reduce the computational cost. Therefore, the first set of analyses examined 

the impact of the tolerance values and the compressive sampling rates on the number of 

the selected features using our proposed method. As shown in Table 2, the average least 

losses were slightly reduced from 0.014 to 0.013; 0.013 to 0.009; and from 0.013 to 0.010 

using the tolerance value of 0.01 in place of 0.02. Furthermore, with a 0.02 tolerance value, 

the computed average best lambda value for NCA remained the same for all the compres-

sive sampling rates (with 𝜆 = 0.003), while for the tolerance value of 0.01, the value 𝜆 =

0.004 achieved for the sampling rate of α = 0.3, and 𝜆 = 0.004 was obtained for both 

α = 0.1 and α = 0.2. 

Moreover, as Table 2 shows, all the computed average least lost values are very 

small—in the range of 0.009–0.014—although the feature dimension was reduced from 

6000 (in the original raw vibration signals) to 600 (the dimension of the compressively 

sampled signals with α = 0.1), which reduced to 28 (d-dimension) and then further reduced 

to 8 (f-dimension wit 0.01 tolerance value). This suggests that the feature selection is a good 

idea to be performed in our proposed method. 
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Figure 7. Example of the average loss values versus 𝜆 values computed from the reduced dimen-

sion of compressively sampled data with α = 0.2. 

 

Figure 8. Example of the selected features and their corresponding weights using α = 0.2 and NCA 

tolerance value = 0.02. 

Furthermore, the NCA tolerance values have a clear effect on the computed intrinsic 

dimension (d) and the dimension of the NCA-based selected features. For example, with 

a 0.02 tolerance value, we obtained intrinsic dimension (d) of 62, 55, 33, which reduced to 

28, 40, and 26 with 0.01 tolerance value for α = 0.1, α = 0.2, and α = 0.3, respectively. 

Furthermore, with the tolerance value of 0.02, we obtained the final feature dimension (f) 

of 18, 14, and 11, which reduced to 8, 10, 8 with 0.01 tolerance for α = 0.1, α = 0.2, and 
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α = 0.3 respectively. Taken together when the tolerance value decreases the dimension of 

both selected features, i.e., d and f, decreases. 

Table 2. Examples of the computed values of the average intrinsic dimension, the dimension of the 

NCA-based selected features, least loss, and best 𝜆 values taken from 10 trials. 

NCA Tolerance 

Value 

CS Sampling 

Rate (𝜶) 

Average 

Intrinsic Di-

mension (d) 

The Average Dimension 

of NCA-Based Selected 

Features (f) 

Average Least 

Loss 

Average Best 

Lambda for NCA 

0.01 

0.1 28 8 0.013 0.004 

0.2 40 10 0.009 0.004 

0.3 26 8 0.010 0.003 

0.02 

0.1 62 18 0.014 0.003 

0.2 55 14 0.013 0.003 

0.3 33 11 0.013 0.003 

The final NCA-based selected features were used to train the classification algorithm, 

i.e., the MLR, to classify among c classes of roller bearing health conditions. The overall 

results are shown in Table 3, where the classification accuracy is the average of 10 trials 

for each experiment and the time obtained by averaging the training time and testing time 

of these 10 trials. It is apparent from this Table that our proposed method achieved high 

classification accuracies (all above 99%) for all the compressive sampling rates and toler-

ance values with less than 35% of the acquired vibration data samples. Classification ac-

curacies from our proposed method are 99.9%, 99.7%, and 99.5% for only 30%, 20%, and 

10% of the whole collected data with 8, 10, 8 selected features (with tolerance value = 0.01) 

respectively, used to train the MLR classifier. Additionally, with tolerance value = 0.02, 

α = 0.3, and 11 selected features, the proposed method achieved 100% classification accu-

racy for every single run in our experiments. Moreover, the trained classification model 

of our proposed method requires less than 0.016 s to complete the classification task. 

Table 3. Classification results with their corresponding RMSE and computational time for the auto-

matically selected features (d refers to the intrinsic dimension, and f is the dimension of the NCA-

based selected feature) using two values of NCA tolerance and three compressive sampling rates. 

NCA Tolerance 

Value 

CS Sampling 

Rate (𝜶) 
d f 

MLR Classifier 

Training Accuracy 

(%) 

Training 

Time (s) 

Testing Accuracy 

(%) 

Testing 

Time (s) 

0.01 

0.1 28 8 99.8 ± 0.3 5.34 ± 1.7 99.5 ± 0.6 0.015 ± 0.002 

0.2 40 10 99.9 ± 0.1 4.6 ± 2.3 99.7 ± 0.3 0.003 ± 0.00 

0.3 26 8 100 ± 0.0 3.3 ± 0.5 99.9 ± 0.1 0.003 ± 0.001 

0.02 

0.1 62 18 99.9 ± 0.2 3.37 ± 0.8 99.7 ± 0.3 0.003 ± 0.001 

0.2 55 14 99.9 ± 0.1 3.55 ± 0.9 99.8 ± 0.2 0.003 ± 0.001 

0.3 33 11 100 ± 0.0 4.6 ± 2.0 100 ± 0.0 0.004 ± 0.003 

Table 4 provides sample confusion matrices of the classification results of MLR clas-

sifier using selected features with tolerance value = 0.01 and a sampling rate of (a) α =

0.1, 0. 2, and α = 0.3. As can be seen from Table 4c, the recognition of the bearing health 

conditions with α = 0.3 is 100%. In Table 4a, with 10% testing data (with α = 0.1), our 

method misclassified one of the testing examples of condition 5, i.e., RE, as condition 

three, i.e., IR. In Table 4b, with 20% testing data (with α = 0.2), our method misclassified 

only two of the testing examples of condition 2 (NW) as condition 6 (CA). 
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Table 4. Sample confusion matrices of the classification results of MLR classifier using selected fea-

tures with tolerance value = 0.01 and a sampling rate of (a) α = 0.1, (b) α = 0.2, and (c) α = 0.3. 

 NO NW IR OR RE CA 

NO 80 0 0 0 0 0 

NW 0 80 0 0 0 0 

IR 0 0 80 0 0 0 

OR 0 0 0 80 0 0 

RE 0 0 1 0 79 0 

CA 0 0 0 0 0 80 

(a) 

 NO NW IR OR RE CA 

NO 80 0 0 0 0 0 

NW 0 78 0 0 0 2 

IR 0 0 80 0 0 0 

OR 0 0 0 80 0 0 

RE 0 0 0 0 80 0 

CA 0 0 0 0 0 80 

(b) 

 NO NW IR OR RE CA 

NO 80 0 0 0 0 0 

NW 0 80 0 0 0 0 

IR 0 0 80 0 0 0 

OR 0 0 0 80 0 0 

RE 0 0 0 0 80 0 

CA 0 0 0 0 0 80 

(c) 

Comparisons of Results 

In this subsection, a comparison of various methods using the same vibration dataset 

of rolling bearings used in the first case study (see Table 5). In [34], three methods were 

used for bearing fault diagnosis using SVM. The first method used the whole collected 

vibration data. The second method used compressively sampled datasets of α = 0.25 and 

α = 0.5, while the third method used the corresponding reconstructed signals of these 

compressively sampled data. In [45], a method using a genetic programming (GP) algo-

rithm for feature extraction was used, and then ANN and SVM were employed to classify 

bearing health conditions. In [46], a hybrid model comprising the fuzzy min–max (FMM) 

neural network and random forest (RF) with sample entropy (SampEn) and power spec-

trum (PS) features was utilized to classify bearing health conditions. In [37], a three-stage 

hybrid method consisting of CS, PCA, LDA, and canonical correlation analysis (CCA) was 

used for bearing fault classification from (1) the whole 6000 samples from the frequency 

domain, and (2) compressively sampled data with α = 0.1 and α = 0.2. In [38], a frame-

work combining CS and feature ranking techniques including fisher score, Laplacian 

score, Relief-F, Pearson correlation coefficients, and Chi-square (Chi-2) were used for 

bearing fault classification from compressively sampled vibration data with 0.1, feature 

dimension of 120. Then, with these features, the MLR classifier was used to classify bear-

ing faults. In [47], a three-stage method combining CS (with α = 0.1, 0.2, and 0.3), a fea-

ture selection procedure, and SVM was used for bearing fault classification. 
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Table 5. A comparison with the classification results from the literature on the vibration bearing 

dataset of the first case study. 

Ref Method Testing Accuracy  Testing Time 

[33] 

Raw vibration with entropic features + SVM 98.9 ± 1.2 

_ Compressed sampled with 𝛼 = 0.5 followed by signal reconstruction + SVM 92.4 ± 0.5 

Compressed sampled with 𝛼 = 0.25 followed by signal reconstruction + SVM 84.6 ± 0.41 

[44] 

GP generated feature sets (un-normalised data)    

 ANN 96.5 

SVM 97.1 

[45]  

FMM-RF:                      SamEn 99.7 ± 0.02 

_ PS 99.7 ± 0.50 

SamEn + PS 99.8 ± 0.41 

[36] 

CPDC (with 6000 inputs from FFT) 99.4 ± 0.5 64.9  

CS-CPDC 𝛼 = 0.1 99.8 ± 0.2 6.7  

          𝛼 = 0.2  99.9 ± 0.1 7.8  

[37] 

With FFT, 𝛼=0.1, feature dimension = 120, and LRC classifier)  

_ 

CS-FS  99.7 ± 0.4 

CS-LS 99.5 ± 0.3 

CS-Relief-F 99.8 ± 0.2 

CS-PCC 99.8 ± 0.3 

CS-Chi-2 99.5 ± 0.5 

[46] 

Feature selection (with 𝜆=0.004, tolerance value = 0.02) from compressively 

sampled data and SVM for fault classification:  
 

_ α = 0.1 and feature dimension = 14 98.8 ± 2.4 

α = 0.2 and feature dimension = 13 99.9 ± 0.2 

α = 0.3 and feature dimension = 26 99.9 ± 0.1 

 

Our proposed method with 𝜆 = 0.003, NCA tolerance value = 0.01, α = 0.1, 

and feature dimension = 8: 
  

MLR classifier 99.5 ± 0.6 0.015  

SVM classifier 99.5 ± 0.5 0.060  

Our proposed method with 𝜆 = 0.003, NCA tolerance value = 0.01, α = 0.2, 

and feature dimension = 10:  
  

MLR classifier 99.7 ± 0.3 0.003  

SVM classifier 99.8 ± 0.2 0.040  

Our proposed method with 𝜆 = 0.003, NCA tolerance value = 0.01, α = 0.3, 

feature dimension = 8: 
  

MLR classifier 100 ± 0.0 0.003  

SVM classifier 100 ± 0.0 0.030 

As Table 5 shows, the classification results of our proposed method are better than 

those reported in [34,45]. Moreover, our results are the same as, if not better than the clas-

sification results described in [37,38,46,47]. Our method is extremely fast and needs only 

0.015 s to complete the fault classification task compared to the method in [37], which 

needs 6.7 s using a classification model trained with 10% of the whole data. Furthermore, 

results from our proposed method remain as good as, if not well improved than the results 

stated in [38], although we used limited features (only 8 features), which are not met by 

the method in [38], which used 120 features. 

For further verification of the efficacy of the proposed method, we conducted three 

experiments using our proposed method using the same settings used to perform our ex-

periments with α = 0.1, 0.2, and 0.3. Then, we employed SVM in place of the MLR classi-

fier in our proposed method to classify bearing health conditions to examine the speed 
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and accuracy performance of our proposed method compared to the method used in [47]. 

The results are presented in the last row of Table 5. The classification results of our method 

with MLR classifier are as good as, if not better than the results of our method with SVM. 

Interestingly, the results demonstrate that our method with MLR classifier is faster and 

requires only 25%, 13.3%, and 10% of the time of our method with SVM to complete the 

classification task using classification models trained with α = 0.1, 0.2, and 0.3, respec-

tively. 

3.2. Second Case Study 

The bearing datasets used in this case are provided by Case Western Reserve Univer-

sity (https://engineering.case.edu/bearingdatacenter/download-data-file, accessed on 2 

April 2022). The bearing datasets were obtained from a motor driving mechanical system 

where the faults were planted into the drive-end bearing of the motor under four different 

speeds and several health conditions, namely, normal condition (NO), with an IR fault 

(IR), with a roller element fault (RE), and with an OR fault (OR). Then, the datasets were 

further categorized by the width of the fault (0.18–0.71 mm) and the load of the motor (0–

3 hp). The sampling rates {xe “sampling rates”} utilized were 12 kHz for some of the sam-

pled data and 48 kHz for the rest of the sampled data. At each speed, 100 time series were 

recorded for each condition per load. For the IR, OR, and RE conditions, vibration signals 

for four different fault widths (0.18, 0.36, 0.53, and 0.71 mm) were separately recorded. In 

this study, of these acquired vibration signals, two groups of datasets were prepared for 

the evaluation of our proposed method. 

The first group of datasets is selected from the data files of the vibration signals sam-

pled at 48 kHz with fault width (0.18, 0.36, and 0.53 mm) and fixed loads including 1, 2, 

and 3 hp, and the number of examples chosen is 200 examples per condition. This offered 

three different datasets A, B, and C with 2000 total examples and 2400 data points for each 

signal. The second type of bearing dataset was chosen from the data files of vibration sig-

nals sampled at 12 kHz with fault size (0.18, 0.36, 0.53, and 0.71 mm) and load 2 hp, and 

the number of examples chosen was 60 examples per condition. This offered a dataset D 

with 720 total examples and 2000 data points for each signal. The description of the used 

bearing vibration dataset is presented in Table 6. 

To classify the bearing’s health conditions from datasets A, B, C, and D described 

above, the same steps as in the first case study were followed to apply our proposed 

method. First, 50% of the total observations of datasets A, B, C, and D were randomly 

chosen for training and the other 50% is employed for testing the trained model. Then, we 

obtained the compressively sampled vibration signal from the high dimensional datasets 

A, B, and C, with 2400 time samples for each of the 2000 observations and dataset D with 

2000 time samples for each of the 720 observations. The FFT coefficients were employed 

as sparse representations of all the datasets used in the second case study, i.e., A, B, C, and 

D. Then, we adopted the CS mechanism with different sampling rates (α) of 0.1, 0.2, and 

0.3, using a random Gaussian matrix as described in the first case study to obtain the com-

pressively sampled signals for each dataset. 

Table 6. Description of the bearing health conditions of the bearing vibration dataset used in the 

second case study. 

Health Condition Fault Width (mm) Classification Label 

NO 0 1 

RE1 0.18 2 

RE2 0.36 3 

RE3 0.53 4 

RE4 0.71 5 

IR1 0.18 6 

IR2 0.36 7 
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IR3 0.53 8 

IR4 0.71 9 

OR1 0.18 10 

OR2 0.36 11 

OR3 0.53 12 

To estimate and reduce further the dimensionality of the compressively sampled sig-

nals, we applied the same steps of the feature selection process step of our proposed 

method as described in the first case study. Two tolerance values (0.01 and 0.02) were 

investigated for the feature selection process. Table 7 presents examples of the computed 

values of the average intrinsic dimension, the dimension of the NCA-based selected fea-

tures, least loss, and best 𝜆 values taken from 10 for each dataset. To test the impact of 

the tolerance values and the compressive sampling rates on the number of the selected 

features using our proposed method. Table 7 shows the computed values of the average 

intrinsic dimension (d), the dimension of the NCA-based selected features (f), the best least 

loss, and best 𝜆 values taken from 10 trials for datasets A, B, C, and D. Moreover, it can 

be seen from the data in Table 7 that all the computed average least lost values are exceed-

ingly small in the range of 0.000–0.003 although the feature dimension was reduced to a 

fewer number of features, e.g., for dataset A the feature dimension were reduced from 

2400 (in the original raw vibration signals) to 240 (the dimension of the compressively 

sampled signals with α = 0.1), which reduced to 13 (d-dimension) and then further reduced 

to 6 (f-dimension with 0.01 tolerance value). 

Moreover, the computed average best lambda values for the NCA algorithm are in 

the range of 0.0002–0.0041. The NCA tolerance values have a clear effect on the computed 

intrinsic dimension (d) and the dimension of the NCA-based selected features. For exam-

ple, for dataset A with a 0.02 tolerance value, we obtained an intrinsic dimension (d) of 18, 

21, and 25, which reduced to 13, 15, and 15 with 0.01 tolerance values for α = 0.1, α = 0.2, 

and α = 0.3, respectively. Furthermore, for dataset A with the tolerance value of 0.02, we 

obtained the final feature dimension (f) of 10, 12, and 14, which reduced to 6, 7, 9 with 0.01 

tolerance for α = 0.1, α = 0.2, and α = 0.3, respectively. It can therefore be assumed that 

when the tolerance value decreases the dimension of both selected features, i.e., d and f, 

decreases. Figure 9 shows an example of the average loss values versus 𝜆 values. Figure 

10 presents an example of the selected features and their corresponding weights. 

Table 7. Examples of the computed values of the average intrinsic dimension, the dimension of the 

NCA-based selected features, least loss, and best 𝜆 values taken from 10 trials for datasets A, B, C, 

and D. 

Dataset 
NCA Tolerance 

Value 

CS Sampling 

Rate (𝜶) 
d f Average Least Loss 

Average Best Lambda 

for NCA 

A 

0.01 

0.1 13 6 0.001 0.0011 

0.2 15 7 0.000 0.0009 

0.3 15 9 0.001 0.0006 

0.02 

0.1 18 10 0.000 0.0009 

0.2 21 12 0.000 0.0004 

0.3 25 14 0.000 0.0003 

B 

0.01 

0.1 17 7 0.000 0.0007 

0.2 19 9 0.001 0.0006 

0.3 24 9 0.000 0.0002 

0.02 

0.1 28 11 0.000 0.0009 

0.2 23 10 0.000 0.0005 

0.3 26 12 0.000 0.0003 

C 0.01 0.1 16 5 0.001 0.0010 
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0.2 17 7 0.000 0.0006 

0.3 23 8 0.000 0.0006 

0.02 

0.1 21 11 0.000 0.0009 

0.2 22 12 0.000 0.0004 

0.3 27 14 0.000 0.0003 

D 

0.01 

0.1 15 4 0.003 0.0041 

0.2 18 5 0.001 0.0041 

0.3 20 7 0.001 0.0015 

0.02 

0.1 17 9 0.001 0.003 

0.2 21 10 0.001 0.003 

0.3 23 9 0.001 0.003 

The final NCA-based selected features from datasets A, B, C, and D were used to 

train the MLR classifier to obtain a trained classification model for each dataset to classify 

among c classes of roller bearing health conditions. Table 8 shows an overview of the test-

ing results for each bearing vibration dataset where the classification accuracy is the aver-

age of 10 trials for each experiment, and the time obtained by averaging the testing time 

of these 10 trials. One of the more significant findings to emerge from the results in Table 

8 is that the classification results with α = 0.2 and 0.3 and tolerance values = 0.01 and 0.02 

for all datasets A, B, C, and D are all over 99%. For datasets B and C with α = 0.3 and 

tolerance values of 0.01 and 0.02, our proposed method attained 100% classification accu-

racy. 

 

Figure 9. Example of the average loss values versus 𝜆 values computed from the reduced dimen-

sion of compressively sampled data with α = 0.2 and dataset A. 
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Figure 10. Example of the selected features from dataset A and their corresponding weights using 

α = 0.2 and NCA tolerance value = 0.02. 

Similarly, for dataset A with α = 0.3  and tolerance value of 0.02, our proposed 

method achieved 100% classification accuracy for every single run in our experiments. 

Furthermore, the trained classification models of our proposed method for all bearing vi-

bration datasets A, B, C, D require less than 0.01 s to complete the classification task. These 

findings suggest that our proposed method is fast and offers high classification accuracies 

for rolling bearings from vibration datasets under different load levels as in A, B, and C. 

Table 8. Classification results with their corresponding RMSE and computational time for the auto-

matically selected features (d refers to the intrinsic dimension, and f is the dimension of the NCA-

based selected feature) using two values of the NCA tolerance and compressive sampling rates for 

datasets A, B, C, and D (all classification accuracies of 100% are in bold). 

Dataset 
NCA 

Tolerance Value 

CS Sampling 

Rate (𝜶) 
d f 

MLR Classifier 

Testing Accuracy 

(%) 

Testing Time  

(s) 

A 

0.01 

0.1 13 6 98.5 ± 0.7 0.002 

0.2 15 7 99.9 ± 0.1 0.003 

0.3 15 9 99.9 ± 0.1 0.002 

0.02 

0.1 18 10 99.6 ± 0.2 0.003 

0.2 21 12 99.8 ± 0.2 0.006 

0.3 25 14 100 ± 0.0 0.003 

B 

0.01 

0.1 17 7 99.2 ± 0.7 0.002 

0.2 19 9 99.5 ± 0.5 0.003 

0.3 24 9 100 ± 0.0 0.009 

0.02 
0.1 28 11 99.9 ± 0.1 0.003 

0.2 23 10 99.9 ± 0.1 0.006 
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0.3 26 12 100 ± 0.0  0.003 

C 

0.01 

0.1 16 5 99.7 ± 0.2 0.002 

0.2 17 7 99.9 ± 0.1 0.003 

0.3 23 8 100 ± 0.0 0.002 

0.02 

0.1 22 11 99.9 ± 0.1 0.003 

0.2 27 12 99.9 ± 0.1 0.006 

0.3 15 14 100 ± 0.0 0.003 

D 

0.01 

0.1 18 4 92.7 ± 2.9 0.002 

0.2 20 5 99.1 ± 0.8 0.002 

0.3 17 7 99.9 ± 0.1 0.002 

0.02 

0.1 21 9 99.9 ± 0.1 0.002 

0.2 23 10 99.9 ± 0.1 0.002 

0.3 13 9 99.9 ± 0.1 0.002 

Table 9 presents sample confusion matrices of the classification results of MLR clas-

sifier using selected features with tolerance value = 0.01 and a sampling rate of (a) α =

0.1, 0.2, and 0. 3 with dataset A. As can be seen from Table 9a with 10% testing data our 

method misclassified three of the testing examples of condition 6, i.e., IR2, as condition 1, 

i.e., NO, condition 3, i.e., RE2, and condition nine, i.e., OR2, respectively. In Table 9b, with 

20% testing data, our method misclassified three of the testing examples of condition 6, 

i.e., IR2, as condition 7, i.e., IR3. Moreover, in Table 9c the recognition of all bearing health 

conditions is 100%. 

Table 9. Sample confusion matrices of the classification results of MLR classifier using selected fea-

tures with tolerance value = 0.01 and a sampling rate of (a) α = 0.1, (b) α = 0.2, and (c) α = 0.3 with 

the dataset A. 

 NO RE1 RE2 RE3 IR1 IR2 IR3 OR1 OR2 OR3 

NO 100 0 0 0 0 0 0 0 0 0 

RE1 0 100 0 0 0 0 0 0 0 0 

RE2 0 0 100 0 0 0 0 0 0 0 

RE3 0 0 0 100 0 0 0 0 0 0 

IR1 0 0 0 0 100 0 0 0 0 0 

IR2 1 0 1 0 0 97 0 0 1 0 

IR3 0 0 0 0 0 0 100 0 0 0 

OR1 0 0 0 0 0 0 0 100 0 0 

OR2 0 0 0 0 0 0 0 0 100 0 

OR3 0 0 0 0 0 0 1 0 0 99 

(a) 

 NO RE1 RE2 RE3 IR1 IR2 IR3 OR1 OR2 OR3 

NO 100 0 0 0 0 0 0 0 0 0 

RE1 0 100 0 0 0 0 0 0 0 0 

RE2 0 0 100 0 0 0 0 0 0 0 

RE3 0 0 0 100 0 0 0 0 0 0 

IR1 0 0 0 0 100 0 0 0 0 0 

IR2 0 0 0 0 0 97 3 0 0 0 

IR3 0 0 0 0 0 0 100 0 0 0 

OR1 0 0 0 0 0 0 0 100 0 0 

OR2 0 0 0 0 0 0 0 0 100 0 

OR3 0 0 0 0 0 0 0 0 0 100 

(b) 
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 NO RE1 RE2 RE3 IR1 IR2 IR3 OR1 OR2 OR3 

NO 100 0 0 0 0 0 0 0 0 0 

RE1 0 100 0 0 0 0 0 0 0 0 

RE2 0 0 100 0 0 0 0 0 0 0 

RE3 0 0 0 100 0 0 0 0 0 0 

IR1 0 0 0 0 100 0 0 0 0 0 

IR2 0 0 0 0 0 100 0 0 0 0 

IR3 0 0 0 0 0 0 100 0 0 0 

OR1 0 0 0 0 0 0 0 100 0 0 

OR2 0 0 0 0 0 0 0 0 100 0 

OR3 0 0 0 0 0 0 0 0 0 100 

(c) 

Comparisons of Results 

For additional assessment of the efficiency of the proposed method, Table 10 shows 

comparisons with some recently published results using the same bearing vibration da-

tasets used in the second case study. In [4], a CS-DNN technique that involves a deep neural 

network method (DNN) with two hidden layers method combined with the Haar Wavelet-

based CS technique was used to classify rolling bearing from the same rolling bearing da-

tasets A, B, and C with α = 0.1. In [38], a framework combining CS and feature ranking 

techniques including Fisher score, Laplacian score, Relief-F, Pearson correlation coeffi-

cients, and Chi-square (Chi-2) were used for bearing fault classification from the dataset D 

with α = 0.1 and a feature dimension of 120. With these features, the MLR classifier was 

used to classify bearing faults. In [48], several methods were used to classify bearing faults 

with the same roller bearing the dataset D used in the second study. One of the methods 

used feature selection by adjunct rand index and standard deviation ratio (FSAR) the orig-

inal feature set (OFS). Some of the other techniques utilized PCA, LDA, LFDA, and support 

margin LFDA (SM-LFDA). The selected features of these methods were used to train SVM 

to be used for bearing fault classification. Moreover, classification results for bearing fault 

classification using two methods with datasets A, B, and C are reported in [49]. The first 

method is based on a deep neural network (DNN) and the second method is a method 

based on a backpropagation neural network (BPNN). Additionally, classification results 

using a generic multi-layer perceptron (MLP) method with datasets A, B, and C are re-

ported in [50]. 

As shown in Table 10, the results from our proposed method are better than those 

reported in [38,48,50]. Additionally, our classification results are better than the results 

produced using BPNN in [49]. Moreover, our results are the same as, if not better than the 

results reported in [4] and the results obtained using DNN in [49]. Remarkably, the results 

show that our method is faster than the CS-DNN technique that used in [4] as our method 

requires less than 0.005 s while the CS-DNN requires at least 5.7 s to complete the classi-

fication task. 

In summary, the high reduction in the computation time originates from two rea-

sons—(i) using CS that allow us to use a smaller sampling rate as in α = 0.1, 0.2, and 0.3, 

and (ii) selecting far fewer features to be used for training the classification algorithm and 

for classifying rolling bearing health conditions using the trained classification model. Fi-

nally, our proposed method achieves classification results for all the rolling bearing vibra-

tion datasets A, B, C, and D that are the same as, if not more improved than, fault classifi-

cation results from the literature on the same vibration bearing datasets. 
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Table 10. A comparison with the classification results from the literature on the vibration bearing 

datasets A, B, C, and D of the second case study. 

Ref Dataset Method 
Testing  

Accuracy (%)  

Testing Time 

(s) 

 A  99.3 ± 0.6 5.7 

[4] B CS-DNN with α=0.1 99.7 ± 0.5 5.9 

 C  100 ± 0.0 5.7 

[37]  D 

With FFT, 𝛼=0.1, feature dimension=120, and LRC    

_ 

CS-FS  98.4 ± 1.6 

CS-LS 99.1 ± 0.8 

CS-Relief-F 99.3 ± 0.6 

CS-PCC 99.2 ± 0.8 

CS-Chi-2 97.5 ± 2.6 

[47] 

 OFS-FSAR-SVM  

_ 

 Selected features = 25 91.46  

 Selected features = 50 69.58 

 OFS-FSAR-PCA-SVM  

 Selected features = 25 91.67 

 Selected features = 50 69.79 

 OFS-FSAR-LDA-SVM  

 Selected features = 25 86.25 

 Selected features = 50 92.70 

 OFS-FSAR-LFDA-SVM  

 Selected features = 25 93.75 

 Selected features = 50 94.38 

 OFS-FSAR-(SM-LFDA)-SVM  

 Selected features = 25 94.58 

D Selected features = 50 95.63 

  

[48]  

A  99.95 ± 0.06 

_ 

B  99.61 ± 0.21 

C DNN 99.74 ± 0.16 

   

A  62.20 ± 18.09 

B  61.95 ± 22.09 

C BPNN 69.82 ± 17.67 

[49] 

A 

B 

C 

 MLP _ 

  
Our proposed method with 𝜆=0.003, NCA tolerance value = 0.02, and 

α=0.1. 
  

 A feature dimension= 10 99.6 ± 0.2 0.003 

 The pro-

posed 
B feature dimension= 11 99.9 ± 0.1 0.003  

method C feature dimension= 11 99.9 ± 0.1 0.003 

 D feature dimension= 9 99.9 ± 0.1 0.002 

4. Conclusions 

The purpose of the present research was to examine the classification of bearing 

health conditions with far fewer selected features of compressively sampled vibration sig-

nals to achieve highly reduced computation time and yet to achieve high classification 

accuracy. The proposed method comprises a CS-based technique, which was used to ob-

tain compressed vibration signals, followed by an intrinsic dimension estimation-based 
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feature selection process that includes SPE-based feature selection with a self-organizing 

iterative scheme to embed the compressed data dimension into a further lower dimension, 

and a non-parametric NCA-based feature selection that maximize the stochastic variant 

of the leave-one-out nearest neighbour score to achieve the best classification accuracy on 

the training set. This ensures selecting fewer features from the high dimensional data ca-

pable of achieving high classification accuracy and a reduced computation time. 

The multinomial logistic regression (MLR) algorithm was used to classify bearing 

faults. Two fault classification cases of rolling bearings vibration signals under different 

working loads were used to test the proposed method. The first set of analyses inspected 

the impact of the compressive sampling rate and the tolerance values on the number of 

the selected features The experimental results of bearing faults classification demon-

strated that the proposed method could obtain higher classification accuracy and higher 

reduction in the computational time. The higher reduction in the computation time origi-

nates from two causes, (i) using CS that allows us to use a smaller sampling rate as in α =

0.1, 0.2, and 0.3, and (ii) selecting far fewer features to be used for training the classification 

algorithm and for classifying rolling bearing health conditions using the trained classifi-

cation model. Finally, our proposed method achieves classification results for all the roll-

ing bearing vibration datasets A, B, C, and D that are as good as, if not better than, classi-

fication results from the literature on the same vibration bearing datasets. 
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