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A B S T R A C T

The research work presented in this paper has been funded by a national research project whose aims are
to enable an Unmanned Aerial Vehicle (UAV) to fly autonomously with the use of a Digital Elevation Model
(DEM) of the target area and to detect terrain changes with the use of a 3D Structure Change Detection
Model (3D SCDM). A Convolutional Neural Network (CNN) works with both models in training the UAV
in autonomous flying and in detecting terrain changes. The usability of such an autonomous flying IoT is
demonstrated through its deployment in the search for water resources in areas where a satellite would not
normally be able to retrieve images, e.g., inside gorges, ravines, or caves. Our experiment results show that it
can detect water flows by considering different surface shapes such as standing water polygons, watersheds,
water channel incisions, and watershed delineations with a 99.6% level of accuracy.
. Introduction

The application of Artificial Intelligent (AI) is one of the main
rivers of the Fourth Industrial Revolution’s (4IR) Internet of Things
evices and unmanned Aerial Vehicles (UAVs) is fueling the revolution.
quipping a UAV with sensors and machine learning capabilities will
urn the eye-in-the sky into an autonomous flying IoT with immediate
enefits.

From a communications perspective, UAVs may act as an alternative
o satellites, but without the distance penalty, launch and maintenance
ost and complexities, and offering more flexibility, rapid deployment
nd portability, and Line of Sight (LoS) connectivity. From a remote
ensing perspective, UAV may capture, for example, high resolution
ata rapidly, at low cost and risk and importantly whilst flying near
he target area which may normally be inaccessible to satellites. From
n IoT perspective, a UAV may be trained in autonomous flying and
errain change detection using a machine learning approach. Such an
utonomous flying IoT, would be useful, for instance, for smart farming,
errain monitoring, emergency response, ecological research [1–4].

From a combined perspective, UAVs are now challenging the tra-
itional view that aerial reconnaissance and photogrammetry is a job
rimarily for satellites. UAVs offer terrestrial close-range, in contrast
o satellites’ remote from space photogrammetry, access to areas that
re normally inaccessible to satellites, and without the distance, launch
nd maintenance cost, and deployment time penalties of satellites [5,6].
eploying a UAV to recognize terrain morphology requires the use
f a DEM or Digital terrain model (DTM), or Digital surface model
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E-mail addresses: m.faris@tu.edu.sa (F.A. Almalki), marios.angelides@brunel.ac.uk (M.C. Angelides).

(DSM) [7,8]. Fig. 1 presents the landscape of geomatics techniques,
sensors, and platforms in relation to scene size and complexity [5].

However, enabling a UAV to fly autonomously requires that the
UAV is trained to recognize the morphology of the terrain it flies over,
using the terrain’s DEM. Furthermore, enabling a UAV to carry out
continuous reconnaissance missions over the same terrain requires that
the UAV is trained to detect terrain morphology changes with the use
of a 3D SCDM. Such a flying IoT will be very useful for reconnaissance
missions that rely on detecting terrain changes as the first signs, for
example, of water resources, in areas that cannot sustain human life,
and which are not normally accessible by a satellite to retrieve terrain
imagery.

The aim of this paper is to present a machine learning framework
that enables a Convolutional Neural Network (CNN) to train a UAV
loaded with spectral cameras to fly autonomously over a terrain and
detect terrain changes over several missions using a DEM and a 3D
SCDM respectively. The paper demonstrates the usability of the re-
sulting autonomous flying IoT during reconnaissance missions aimed
at searching for water resources. This will also require the use of a
specialist Water Detection Model (WDM) that will help the CNN train
the UAV narrow its search to detecting water signs. Naturally the
resulting framework can be applied to other areas where a model like
WDM exists that will help the UAV narrow its search as it is the case
with WDM.

The rest of this paper is organized as follows: Section 2 reviews
related research; Section 3 presents the proposed autonomous flying
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Fig. 1. UAV photogrammetry against other approaches.
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oT UAV along with the intelligent CNN framework that supports
ts reconnaissance operations; Section 4 presents simulation results;
ection 5 concludes.

. Related research

The search criteria for sourcing related research works to review
nclude types of UAV platforms, low altitude missions, autonomous
lying, types of aerial imaging, standalone topologies, change detection,
nd intelligent frameworks with preference for works that broadly fit
ur application area. The section concludes with a research windup ta-
le, followed by a presentation of the research gaps identified, and our
wn research motivations for prototyping the proposed autonomous
lying IoT.

An aerial platform for Marine Ecosystem Restoration (MER) is pre-
ented in [9], which aims at monitoring water quality within a broad
mpacted area before and after restoration. Results infer that aerial
maging via UAV can deliver flexibility in temporal and spatial reso-
ution, especially in enabling access to hard-to-reach zones with little
o no disturbance.

The use of a DEM for terrain mapping, e.g., soil and water, is
resented in [10]. This is achieved with remote sensing images in the
oess plateau. Remote sensing may also be used for soil and water
onservation for sustainable farming. The cost-effectiveness of using a
AV and DEM for spatial and temporal data resolution in hydrological
odeling and water resource management is emphasized in [11].

The performance for flood estimation using experimental Fixed-
ing UAVs is evaluated in [12] by taking aerial imaging at an altitude

f 325 m and using a DEM and Light Detection and Ranging (LiDAR).
he results reveal that aerial imaging for flood assessment applications
re reasonable within a 10.3 cm pixel size.

A study in Italy on the use of UAV and DEM for watershed detection
rom an altitude of 100 m is presented in [13]. Results yield high
esolution and accuracy between 15 and 30 cm with low surveying cost
nd time in contrast to LiDAR. The results support small basin flood
apping.

A UAV aimed at recognizing objects using DSM aerial imaging at
ltitudes of 300 m and 500 m is simulated in [14]. The study covers an
rea of 0.51 km 2 in the center of University Technology Malaysia. The
imulated results show the ability to recognize different land features
ncluding water bodies. When applying a structure from motion (SFM)
pproach, the photogrammetric processing accuracy rises to around
0%.
 r
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An aerial photogrammetry study for observing water surfaces in a
mall stream in Denmark using UAV and DEM is presented in [15].
he experiment was conducted at 30 m and 70 m above ground level
nd results show that the UAV–DEM can retrieve highly accurate water
urface elevation (WSE) observations.

Monitoring river morphology and bank erosion in rural France using
AV and DEM to retrieve imagery is discussed in [16]. At around
n altitude of 130 m, the spatial resolution of UAV images is of
ufficient quality to survey small changes between 10 and 20 cm. The
esults suggest an ability to survey and monitor rivers efficiently, at
minimum cost, complexity, cloud cover and logistical problems in

omparison to satellites.
Empirical evaluation of a photogrammetry streamflow model taken

n rural Wisconsin using UAV and DTM is introduced in [17]. Taken
rom an altitude of 80 m, the hydrologic model structure serves as good
ase on how UAV data can be sourced at low-cost but serve equally
ecision making.

The UAV and DSM utility for monitoring marshes in rural Central
alifornia is evaluated in [18]. Working from an altitude of 30 m is

ound to be ideal for taking aerial images with high spatial variation of
reas that are otherwise difficult to access on foot.

An experimental study that compares the performance of two UAV
pproaches over North Carolina is presented in [19]. The first approach
ims at 3D Water Surface Reconstruction using structure from motion
SFM) and CNN whereas the second approach aims at 3D Water Recon-
truction using DEM and CNN. The root mean squared error (RMSE)
ssessment tool was used to compute the floodwater depth error. The
MSEs were 0.34 m and 0.26 m respectively.

A fixed-wing UAV with DTM for analyzing the quality and accuracy
f geomorphology photogrammetry that includes water bodies is pro-
osed in [20]. The work highlights the need for optimization through
everal variables that would affect the performance of the aerial DTM
urvey, including UAV altitude and speed, orientation of the flight lines,
mage overlap, and camera configuration, e.g., shutter speed, frame
ate, focal length. Results confirm that the RMSE performance indica-
or can deliver DTMs with high accuracy when the photogrammetry
ariables are optimized. It has been observed that as the UAV altitude
ncreases from 70 m up to 150 m so does the RMSE which affects
ccuracy. The RMSE remains almost constant below 70 m.

A UAV with LiDAR and DEM that detects pipe-related depressions
n rural Poland is presented in [21]. Using area topography, the study
eports a rate of success between 76 and 80%. This drops down to a

ate between 45 and 50% depending on the area morphology.
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A UAV with a digital orthophoto map (DOM) photogrammetry for
ssessing landslide behavior in China is introduced in [22]. The deep
earning image recognition technique of RetinaNet is utilized for feature
xtraction. Results show a notable influence on the distinguishability
ndex for landslide cracks, and these are validated using a receiver
perating characteristic (ROC) curve that reflects the relation between
he true positive rate (TPR) and the false positive rate (FPR).

The study of a UAV building a DSM of hyperspectral data on ground
haracteristics including water signs from an altitude of 80 m above
he ground in China is presented in [23]. The study considers different
ntelligent object classification schemes including a classification and
egression tree (CART), and vegetation indices (VIs). The results indi-
ate an overall accuracy of 88% and a kappa coefficient of 0.87 with
erial feature identification.

Remote sensing in hard-to-reach regions highlights the advantages
f UAVs over satellites and access on foot. The use of UAV with a
hermal camera for remote mapping of underground caves and rock-
lides from an altitude of 100 m is presented in [24]. The UAV’s
SM data help with detection of water signs from images retrieved.
multifunctional UAV with thermal camera and Synthetic Aperture

adar (SAR) deployed during search and rescue operations of missing
ersons in complex environments is presented in [25]. Experimental
esults advocate improved connectivity between the UAV and ground
ontrol station through implementation efficiencies.

A UAV with DSM for geological spatial modeling of underground
aves from an altitude of 170 m in Indonesia all in support of local
ourist attractions such as caving, and body rafting is reported in [26].
nitial experimental results confirm the usability of the aerial imagery
rom such a high altitude. A UAV with a DTM that uses a multi-spectral
amera from an altitude of 300 m for AGB estimation of tropical
ountain forests including ravines is reported in [27]. The results

howcase how effective UAVs can be in mapping narrow or inaccessible
egions to fill in gaps in existing imagery.

A UAV that uses a DEM model and Structure from Motion (SfM)
oftware to estimate the ice volume and thickness on riverbeds and
iverbanks from an altitude range of 20 to 50 m above ground is
roposed in [28]. The results obtained from 11 flight missions yield
cceptable manual measurements. A UAV that uses a DEM model to
ollect spatial high-resolution data on coastal line vulnerability from
n altitude of 40 m above ground is presented in [29]. The aim is
ssessment of short-term morphological and topographic changes on
ater bodies along coastal lines.

A UAV that uses an agrometeorological DSM for reducing water
onsumption and ensuring sustainability in agriculture is introduced
n [30]. The UAV collects a wide range of spatial and thermal im-
ge data that showcase the efficiency of aerial imaging for irrigation
anagement.

A UAV that uses a DEM to identify water erosion in open mining
ones from an altitude of 115 m is proposed in [31]. The imagery
he UAV collects autonomously helps with calculating the volume
nd speed of erosion and identifying watersheds. A UAV that uses a
eural Network with a DEM model for flood modeling in a dense
rban environment from an altitude ranging to 100 m is presented
n [32]. A study that makes use of a UAV with DEM, SfM, Multi-View
tereo (MVS), aerial photogrammetry and remote sensing to determine
hallow waterbodies is presented in [33]. Initial results indicate high
ccuracy in depth measurements.

.1. Research motivation and contribution

Table 1 summarizes the findings from our review of the literature
n terms of issues being addressed and those gaps that remain the latter
f which have motivated our own research work. The research review
eveals several approaches in response to on-going challenges that still
eed addressing, thus, motivated by what related studies reveal, the

roposed model not only aims to address on-going challenges, but also
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offers added value. The key difference between the proposed model
against what is reported in the literature is, primarily, the combined
use of:

• A DEM for autonomous flying over target area,
• A 3D SCDM for detection of terrain changes,
• CNNs for initiating autonomous flying and terrain change detec-

tion,

and, secondarily, testing the usability of such autonomous flying IoTs in
addressing a life-critical problem that has recently become much more
than just a pastime, i.e., searching for water resources using a WDM in
those regions across the world where water resources are scarce.

3. Proposed work

The main advantage of loading a UAV with both a DEM and a 3D
SCDM arises from the need to have an eye-in-the-sky but as near the
ground as possible to detect terrain changes over time in those areas
that are inaccessible by satellites for image retrieval, e.g., a gorge,
a ravine, or inside caves. Therefore, the aim of this gain-of-function
model is threefold: First, to enable a UAV to fly autonomously over a
target terrain, second, to detect terrain surface changes in the target
terrain and third, to detect, in our case, possible water flows as a proof
of concept.

To achieve the first aim of enabling an autonomous flying UAV, we
train a Reinforcement Learning (RL) Network with a DEM to establish
both a precision aerial imagery and the flight-plan for the UAV over
the target terrain. To achieve the second aim of detecting terrain
surface changes, we train a deep learning CNN with a 3D SCDM to
recognize such changes. In achieving the third and more specific aim
of detecting changes because of possible water flows, we also train the
deep learning CNN with a Water Detection Model (WDM) of water flow
classifications, including standing water polygons, watersheds, water
channel incisions, and watershed delineation. Regions of interest are
areas void of people because of lack of water resources that will sustain
human life.

3.1. The autonomous flying IoT framework

Fig. 2 shows a flowchart of the proposed autonomous flying IoT
framework for water detection. The development of the projection
matrices for DEM and WDM with which the NNs are initially trained
are discrete events, whereas the development of the projection matrix
for the 3D SCDM is a continuous event as this may evolve after each
flight.

Fig. 3 offers a birds-eye-view of the entire framework architecture
at the core of which is the CNN which is trained to fly autonomously
using a DEM and to recognize change in the terrain surface, in our case
for signs of water, using a 3D SCDM and a WDM. This is a notable shift
from what has been previously reported in the literature and this is the
novelty of this work, i.e., an autonomous flying IoT aiming at detecting
water resources in remote areas in which the lack off cannot sustain
human live and where neither satellites nor people can penetrate and
retrieve imagery at ground level.

3.2. The autonomous flying IoT framework architecture components

This subsection discusses in detail each component of the au-

tonomous flying IoT architecture.
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Table 1
Related review wind up against the search criteria.

Authors UAV type Altitude (m) Autonomous flying Aerial imaging type Standalone
topology

Change
detection

Intelligent
framework

[10] UAV x x DEM ✓ ✓ x
[12] Fixed-wing UAV 325 x DEM ✓ x x
[13] UAV 100 x DEM ✓ x x
[14] UAV 300 - 500 x DSM ✓ x ✓

[15] UAV 30 - 70 x DEM ✓ x x
[16] UAV 130 x DEM ✓ ✓ x
[17] UAV 80 x DTM ✓ x x
[18] UAV 30 x DSM ✓ x x
[19] UAV x x DEM ✓ x ✓

[20] Fixed-wing UAV 70 - 150 x DTM ✓ x x
[21] UAV 35 - 50 x DEM ✓ x ✓

[23] UAV 80 x DSM ✓ x ✓

[24] UAV 100 x Thermal with DSM ✓ x x
[25] UAV 15 x Thermal with SAR ✓ x x
[26] UAV 170 x DSM ✓ x x
[27] UAV 300 x DTM ✓ x x
[28] UAV 25 - 50 x DEM ✓ x x
[29] UAV 40 x DEM ✓ ✓ x
[30] Fixed-wing UAV 30 ✓ DSM ✓ ✓ x
[31] UAV 115 ✓ DEM ✓ x x
[32] UAV 100 x DEM ✓ x ✓

[33] UAV 50 - 100 x DEM ✓ x x
Proposed UAV 100 ✓ DEM ✓ ✓ ✓

x denotes presence; ✓denotes absence
Fig. 2. Flowchart of the proposed autonomous flying IoT framework for water detection.
w
b
e

3.2.1. Component 1: The DEM of the target area
Fig. 4 shows two types of camera configurations, one for vertical

and the other for oblique imagery which are necessary to achieve the
precision and model texture quality whilst minimizing model defor-
mity. Further, the combination between vertical and oblique aerial
imagery would help with capturing images of overhanging watershed
topography obscured by obstacles, e.g., treetop cover, overhanding
rocks, blocking sunlight, water surface reflection, which may hinder
the accurate planning and timing of a flight mission.

The initial DEM of the target area for input to the RL network
will be based on previously known topography and this will be fine-
tuned through aerial reconnaissance images and then pipelining these
for structure processing which includes feature tracking, triangulation,
and bundle adjustment, followed by positioning information, and dense
matching of 3D point cloud analysis, and concluding with a validation.
Pipelining is vital in estimating a projection matrix for images taken,
feature detectors, enhancing the ground structure spatial resolution,
 D
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eliminating noisy data, and interpolating the dense point cloud by
using a mesh-grid generator. The DEM detail and precision has a
direct effect on flight planning. Fig. 5 illustrates part of the principal
method for fine-tuning the initial DEM. The development of the DEM
is a discrete event from the point of view of enabling autonomous
flying as once fine-tuned from the initial topography, the DEM will
not change over time unless a significant major event has taken place,
such as an earthquake or landslide, that may result in a change of
topography [34,35].

The DEM is represented as Eqs. (1) and (2).

𝑑ℎ ≈ 𝑑𝑥ℎ
𝑏

(1)

ℎ = 𝑍01 −𝑍𝐷𝐸𝑀 (2)

here 𝑑ℎ denotes height errors used as corrections, 𝑑𝑥 denotes parallax
etween two images, ℎ denotes point height in DEM, 𝑍01 denotes
levation of left image projection center, 𝑍𝐷𝐸𝑀 denotes elevation of
EM point, 𝑏 denotes photo base.
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Fig. 3. The autonomous flying IoT framework architecture.
Fig. 4. UAV camera vertical and oblique configurations.

Fig. 5. Fine-tuning of a DEM.
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3.2.2. Component 2: A WDM representative of the target terrain morphol-
ogy

A WDM with detailed classifications of spectral and spatial data
which are representative of the target terrain morphology is used to
train the Deep learning CNN to detect signs of water flows, standing
water polygons, watersheds, water channel incisions, and watershed
delineations. The architecture of the NN consists of several connected
layers such as convolution, pooling and fully connected. To achieve
gain-of-function, additional layers of batch normalization, dropout and
flatten, and a dense layer with sigmoid activation have also been
included in this model to give the NN its learning trait. The batch
normalization and dropout layers are used to improve normalization,
rescaling, and shifting off the offset of input values, as well as to prevent
overfitting in the model. The flatten layer converts the entire pooled
feature map matrix into one-dimensional array which is then input to
the dense layer.

The logistic sigmoid regression is used since this is a binary classifi-
cation problem of identifying natural water channel incisions. The fully
connected NN constructs feature maps through convolutional filters
that can learn to identify high-level features from image properties and
then predict the nature of each image pixel. The development of WDM
is also a discrete event from the point of view of detection of water
signs as the classifications of water signs that comprise the model will
not normally evolve unless new classifications come to surface [36].
The WDM is represented as Eqs. (3) to (7).

𝑋′ =
(𝑋∕max) − 𝜇

𝜎
(3)

where 𝑋′ denotes normalized data, max denotes maximum pixel value
in the image, 𝜇 and 𝜎 denote mean and standard deviation of 𝑋∕max,
respectively. The normalization is vital since aerial imaging have in-
teger values, and initial weights are randomly selected between 0
and 1, thus, normalization to pixel values of the orthophotos prevents
abnormal gradients.

The proposed deep learning CNN is trained with a backpropagation
algorithm and stochastic gradient descent (SGD). This utilizes a mini-
batch’s backpropagation error to approximate the error of all training
samples, which accelerate each cycle’s weight update through a smaller
back propagation error which speeds up the model convergence. The
optimization is run to reduce the loss function (𝐽 ) as Eq. (4).

𝐽
(

𝑋′,𝑊 , 𝑏, 𝜃
)

= − 1
𝑁

[ 𝑁
∑

𝐾
∑

1
{

𝑦𝑖 = 𝑡
}

𝑦𝑖𝑡

]

(4)

𝑖=1 𝑗=1
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𝑦𝑖𝑡 =
exp(𝜃𝑇𝑡 𝑐)

∑𝐾
𝑗=1 exp(𝜃

𝑇
𝑡 𝑐)

(5)

𝑊𝑡+1 = 𝑊𝑡 − 𝜆𝑉𝑡 − 𝛼∇𝑊 (6)

𝑏𝑡+1 = 𝑏𝑡 − 𝜆𝑈𝑡 − 𝛼∇𝑏 (7)

where 𝑊 and 𝑏 are parameters of the NN, 𝜃 is a parameter for the
igmoid classifier, 𝑁 denotes the number of samples, 𝐾 denotes the
umber of land cover classes, 𝑦𝑖 = (𝑦𝑖1,… .𝑦𝑖𝑘) is the prediction vector
eo by the Sigmoid classifier, 𝑦𝑖𝑡 denotes the possibility of the 𝑖th sample
abel being 𝑡 and is represented by (5).

Through backpropagation, (6) and (7) are adapted to update 𝑊 and
in every layer, where 𝜆 denotes the momentum which help accelerate
GD by adding a fraction of the update value of the previous time step
o the recent updated value, 𝛼 denotes learning rate, ∇𝑊 and ∇𝑏 are
he gradients of 𝐽 , and 𝑡 denotes the number of epochs during SGD.

.2.3. Component 3: The 3D SCDM of the target area
A 3D SCDM may evolve continuously over the course of several

earch flights until either a water resource has been detected or the
earch is called off. Therefore, the development of this model is a
ontinuous event from the point of view of detection of a terrain change
s the model may evolve after every search cycle if a terrain change has
een detected. Achieving detection accuracy requires an unsupervised
NN which has the ability of feature learning and uses a latent change
etection map. This allows the network to learn of features from the
nput data and regularization parameters. When a change is detected
n the target area the 3D SCDM is updated to help with future search
issions [37]. The modeling of imagery at two different times i and j
here i < j is given as Eqs. (8) and (9).

CDM𝑖 (𝑥, 𝑦) =𝑚𝑖𝑛
𝑥′ ,𝑦′

((

𝐷1 (𝑥, 𝑦) −𝐷2
(

𝑥′, 𝑦′
))

≥ 0
)

(8)

CDM𝑗 (𝑥, 𝑦) =𝑚𝑎𝑥
𝑥′ ,𝑦′

((

𝐷1 (𝑥, 𝑦) −𝐷2
(

𝑥′, 𝑦′
))

≤ 0
)

(9)

here 𝐷1 and 𝐷2 are images, 𝑥′ ∈ [𝑥 −𝑤, 𝑥 +𝑤], 𝑦′ ∈ [𝑥 −𝑤, 𝑥 +𝑤]
nd (w) is window around a set of pixels.

.2.4. Component 4a: RL network for autonomous flying IoT over terrain
The network uses a Double Deep Q-Network (DDQN), a type of

-Learning with a cycle of interactions between an agent and its en-
ironment at each state. DDQN uses a Markov Decision Process (MDP)
o plan a path. The MDP is described by the tuple (S, A, R, P), where S
s a set of possible states, A is a set of possible actions, R is the reward
unction, and P is a deterministic state transition function [30]. In an
×N grid, the state space S is defined as:

S = Map × Coverage × Position × Movement Budget × Safety Flag
and represented as Eq. (10).

= B𝑁×𝑁×3 × B𝑁×𝑁 × R2 × N × B (10)

here B denotes the Boolean domain {0, 1} . The action space A con-
ains five actions (North; East; South; West; Land). The state transition
unction is defined as: 𝑃 ∶ 𝑆 × 𝐴 → 𝑆. The reward function which is
efined as: 𝑅∶ 𝑆 × 𝐴 → R maps the current state 𝑠 ∈ 𝑆 and current
ction 𝑎 ∈ 𝐴 to a real-valued reward and consists of four components:
■ 𝑟𝑐𝑜𝑣 (positive) coverage reward for each target point that is

overed by the UAV for the first time
■ 𝑟𝑠𝑐 (negative) safety penalty in case the safety controller (SC)

ejects the agent’s proposed action
■ 𝑟𝑚𝑜𝑣 (negative) constant movement penalty applied for every unit

f the movement budget used
■ 𝑟crash (negative) penalty in case the UAV runs out of movement

udget without having safely landed in a landing zone.
Q-learning updates iteratively the present state of the Q-function.

hen the optimum Q-function is identified, it constructs an optimum

trategy by taking actions that maximize the Q-function. The target
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alue is given as Eq. (11), while the corresponding loss function is given
s Eq. (12).
𝐷𝐷𝑄𝑁 (

𝑠, 𝑎, 𝑠′
)

= 𝑟 (𝑠, 𝑎) + 𝛾𝑄𝜃′ (𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝜃(𝑠′, 𝑎′)) (11)
𝐷𝐷𝑄𝑁 (𝜃) = E𝑠,𝑎,𝑠′∼𝐷(𝑄𝜃 (𝑠, 𝑎) − 𝑌 𝐷𝐷𝑄𝑁 (

𝑠, 𝑎, 𝑠′
)

)2 (12)

here
(

𝑠, 𝑎, 𝑟, 𝑠′
)

stores experience tuples that have been collected by
he agent during each interaction with the environment, 𝜃 refers to the
umber of trainable parameters, 𝜃′ refers to the parameters of the target
etwork which can be updated as a periodic hard copy of 𝜃 or as a soft
pdate 𝜃′ ← (1 − 𝛤 ) 𝜃′ + 𝛤𝜃. The back-propagating gradient is stopped
t 𝑌 𝐷𝐷𝑄𝑁 (

𝑠, 𝑎, 𝑠′
)

. 𝛾 refers to the discount factor for the target value,
nd 𝛤 refers to the target network update factor [38].

All DDQN layers are zero-padded for all channels, except for the
irst layer’s no-fly zone channel which is reserved for the no-fly zone
urrounding the mission grid. The rectified linear unit (ReLU) is the
ctivation function for the convolutional layers, whilst the last layer
s flattened and concatenated with the movement budget input. Fully
onnected layers with the ReLU activation are attached to this flattened
ayer. Choosing the argmax of the 𝑄-values through a greedy policy is
iven as Eq. (13), which reflects the agent’s learning progress

(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴 𝑄𝜃(𝑠, 𝑎) (13)

uring training, the sampled softmax policy for exploration of the state
nd action space is given as Eq. (14).
(

𝑎𝑖|𝑠𝑠
)

= 𝑒𝑄𝜃 (𝑠,𝑎𝑖)∕𝛽
∑

∀𝑎𝑗 ∈ 𝐴𝑒𝑄𝜃 (𝑠,𝑎𝑖 )∕𝛽
(14)

where 𝛽 refers to a temperature parameter.
Training the RL network commences with resetting the state, choos-

ing a random UAV starting position and a random movement budget.
Training continues if the movement budget is greater than zero and
the UAV has not landed and finishes either when the UAV lands or the
movement budget decreases to zero. Then, another round of training
starts unless the maximum number of training rounds 𝑁𝑚𝑎𝑥 has been
met.

3.2.5. Component 4b: Deep learning CNN for terrain change and water
resources detection

The Deep Learning CNN uses both the WDM and the evolving 3D
SCDM for feature extraction and classification therefore a 3D fully
connected unsupervised CNN is needed, one that makes use of a latent
change detection map and comprise of three modules: feature learning,
a single-stream feature fusion, and unsupervised noise modeling. This
is represented as Eqs. (15) through to (20) [39–41]. Convolution is a
basic feature learning component represented as Eq. (15).

𝑦𝑖𝑗 = 𝑓1(
{

𝑥𝑠𝑖 + 𝛿𝑖,𝑆𝑗
+ 𝛿𝑗

}

, 0 ≤ 𝛿𝑗 , 𝛿𝑗 ≤ 𝑘) (15)

where 𝑦𝑖𝑗 denotes the convolution output, which is also used as input
to the next layer, 𝑓1 denotes a specific operation for the input layer,
𝑥𝑠𝑖 denotes input data, 𝑖, 𝑗 denote a spatial coordinate, 𝑠 denotes the
convolution stride, and 𝑘 denotes the kernel size. When loading the
convolution layers, high semantic-level features are extracted, whereby
if 𝑠 is set to 2 then the spatial size of the output will be half of the
input size at the convolution layer. However, since deconvolution is a
transposed convolution type which is used to enlarge the output spatial
size, the output spatial size will be twice the size of input.

A fully connected convolution network detects a terrain change by
extracting the deep features of a target terrain at different times and
this is represented as Eqs. (16) and (17).

𝐹𝑆𝐶𝐷𝑀𝑖 = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟
(

𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑆𝐶𝐷𝑖)
)

, 𝐹𝑆𝐶𝐷𝑀𝑖 ∈ R{𝑁,𝐶,𝐻,𝑊 } (16)

𝐹𝑆𝐶𝐷𝑀𝑗 = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟
(

𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑆𝐶𝐷𝑗)
)

, 𝐹𝑆𝐶𝐷𝑀𝑗 ∈ R{𝑁,𝐶,𝐻,𝑊 } (17)

where 𝑆𝐶𝐷𝑀𝑖 and 𝑆𝐶𝐷𝑀𝑗 are the terrain structure changes detected
from search mission i to j respectively, 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟 denotes decoder, 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟

{𝑁,𝐶,𝐻,𝑊 } {𝑁,𝐶,𝐻,𝑊 }
denotes encoder, 𝐹𝑆𝐶𝐷𝑀𝑖 ∈ R and 𝐹𝑆𝐶𝐷𝑀𝑗 ∈ R
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denote the final convolution feature maps which will be used to update
the SCDM with the changes detected and 𝑁,𝐶,𝐻,𝑊 denote batch size,
channel size, height, and width of the final feature maps, respectively.

Detecting a change is established when a significant number of
pixels change from mission i to j with reference to the classifications
included in WDM. A feature-level fusion is applied to update the SCDM.
Generating a change detection map is represented as Eqs. (18) to (20).

𝐹𝑖,𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹𝑆𝐶𝐷𝑀𝑖, 𝐹𝑆𝐶𝐷𝑀𝑗 ) (18)

𝐹𝑖,𝑗 =
1
2
𝐹𝑆𝐶𝐷𝑀𝑖 +

1
2
𝐹𝑆𝐶𝐷𝑀𝑗 (19)

𝐹𝑖,𝑗 = 𝐹𝑆𝐶𝐷𝑀𝑖 − 𝐹𝑆𝐶𝐷𝑀𝑗 (20)

where 𝐹𝑆𝐶𝐷𝑀𝑖 and 𝐹𝑆𝐶𝐷𝑀𝑗 represent the final feature maps at the high-
est spatial resolution and abstract level, 𝐹𝑖,𝑗 in (11) uses concatenation
to fuse multiple features, 𝐹𝑖,𝑗 in (19) uses element-wise summation to
use two feature maps, 𝐹𝑖,𝑗 in (20) uses element-wise subtraction for
eature fusion. Once these feature fusion functions conclude, the feature
aps obtained are used in the following noise module to update the

hange detection map.
The change detection in the 3D SCDM does not includes ground

ruth labels since we use an unsupervised change detection method to
rain the fully connected convolution network. The training dataset 𝑌𝑝

is represented as Eq. (21).

𝑌𝑝 = {𝑦𝑖 ∈ R(𝐻,𝑊 ), 𝑖 = 1,…… , 𝑘} (21)

The network learns the latent change detection map, following which
should be trained to generate the actual change detection map with
the training dataset 𝑌𝑝 and 𝑘 which denotes existing change detection
maps. Therefore, the noise module is represented as Eqs. (22) to (24).

𝑦𝑖 = 𝑓 (𝑆𝐶𝐷𝑀𝑖, 𝑆𝐶𝐷𝑀𝑗,𝛩) + 𝑛𝑖 (22)

𝑛𝑖 = 𝑦𝑖 − 𝑦𝑖 (23)

𝑦𝑖 ∈(𝐻,𝑊 )= 𝑓𝑑 (𝐹𝑆𝐶𝐷𝑀𝑖) (24)

here 𝑓 denotes the whole network, 𝛩 denotes convolution network
arameter, 𝑛𝑖 denotes noise map which is subject to a zero-mean
aussian distribution, 𝑦𝑖 denotes estimated change map, 𝑦𝑖 ∈(𝐻,𝑊 )

enotes the actual change detection map, and 𝑓𝑑 denotes the decoder
etwork.

To enforce the computed noise map to follow the prior Gaussian
istribution, Kullback–Leibler (KL) divergence loss is used. Hence, the
oss function is represented as Eq. (25).

𝐾𝐿(𝛩,
∑

) = 𝐾𝐿(𝑝(
∑

) ∥ 𝑞(
⌢
∑

)) (25)

here 𝑝(
∑

) denotes the corresponding distribution, and 𝑞(
⌢
∑

) denotes
he prior Gaussian distribution. This formula is vital since the noise is
eparating the training dataset from change detection. Performance is
mproved in an unsupervised manner.

.2.6. Component 5: Projection matrices
The flowchart on Fig. 6 below depicts the part of the process in-

olving the three projection matrices. This commences with generating
DEM for the first brain to train the UAV to fly autonomously over
target terrain without human intervention. A WDM is generated

rom existing imagery on water polygons, watersheds, water channel
ncisions, and watershed delineations for the second brain to train the
utonomous UAV to detect signs of water resources over the target
errain with reference to this model.

A 3D SCDM is continuously updated with terrain surface imagery
or the second brain to train the autonomous UAV in detecting terrain
urface changes across flights that may now suggest the presence of
ater resources with reference to the WDM. After each flight there are

hree possible outcomes: no changes, terrain change but no water re-
ources detected, terrain changes and water resources detected. Image
esolution, the altitude, latitude, and longitude of images taken by the
160
Table 2
RL network parameter settings.

Parameter Value

No. of Images 1000
Steps 50
Batch size 30
Learning rate 0.0001
Camera linear velocity 2 m/s
Training iteration 6000
Discount factor 0.99
Target factor 0.01
Exploration Constant 0.9
Action time interval 0.4 s
UAV Altitude 10-40 m
Path average distance 3 km
Path average width 47 m

UAV, flying time of the UAV, wind speed and direction are the core
data set that populates the projection matrices. The cycle continues
until either a maximum number of flights or water resources have been
detected.

4. Simulation

Pre-flight UAV, and camera settings are input to a Mission Planner
tool before the first mission flight. Developing a UAV flight-plan in-
cludes take-off and landing sites, altitude, speed, flight mode, path-plan
which are all necessary for aerial imaging and watershed detection.
Fig. 7 demonstrates the Mission Planner tool calibrated with these
parameters including search methods such as: Strip, Line, and Grid.
Stripe and Grid use double-line search which is effective but time
consuming. Thus, we use line search which is efficient for outdoors.
In the search for water resources over the Snake gorge and ravine in
the Arabian Peninsula, we use Google Maps for aerial imaging, as Fig. 8
shows footage over and inside the Snake gorge.

4.1. Training the two-brains

The first brain relates to the RL network supporting autonomous
flying over the terrain. Training the RL network commences with
resetting the state, choosing a random UAV starting position and a
random movement budget. It continues if the movement budget is
greater than zero and the UAV has not landed and finishes either when
the UAV lands or the movement budget decreases to zero. Then another
round of training commences unless the maximum number of training
rounds 𝑁𝑚𝑎𝑥 has been met. Table 2 shows the parameter settings for the
RL network. Fig. 9 shows a sample of a DEM image taken from inside
the Snake gorge by the UAV. Deciding on the simulation parameters
set broadly follows the examples in [40,41] and on the number of
iterations is based on past practical experimentation and experience,
and with the steps representing approximately 1% of the total number.

Fig. 10 shows the training results with 6000 iterations and accumu-
lated rewards. Training ends when simulation reaches 6000 iterations,
each of which is 50 steps. At the end of each iteration, the UAV resets
to its initial state and receives observation feedback. In each iteration,
the UAV seeks to make the highest number of steps to achieve a
high reward point. Light blue denotes the actual reward value for the
iteration, whilst dark blue denotes the mean rewards after 50 steps. All
learning, decision making and action taking during each step is pitched
against a level of reward on the way to a maximum reward level.

Fig. 10 shows that at the start of training, when the UAV is be-
ginning to establish its correct flying behavior, rewards are below
zero. The lowest reward on the line chart denotes a UAV crash, which
is an expected outcome during training. Arbitrary or incorrect flying
behavior decreases over time and reward values are gradually increas-
ing towards positive rewards. Training iterations stop when the UAV

either meets its training goals, or its level of reward values become
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Fig. 6. Projection matrices.
Fig. 7. The mission planner tool calibrated.

stable, or the number of iterations reach the set maximum. UAV crash
episodes occur regularly over the first 1487 steps but, thereafter, the
UAV corrects its flying behavior over the training environment, and no
further crash episodes occur over the next 2500 steps. At approximately
step 4000, the UAV has its first crash episode as it learns to avoid
obstacles in its flight path, but, thereafter, the mean reward values
increase as the UAV has learned to fly autonomously and avoid crashing
on obstacles along its flight path. Noticeably, before reaching the end
of training, the UAV does not crash with any obstacles along its flight
path until during its last iteration cycle of 6000.

The second brain is used to train the autonomous UAV to detect
changes over the terrain with reference to the 3DSCDM and then
determine if any of these are new signs of water resources since the
last reconnaissance mission with reference to the WDM. Fig. 11 shows
a reconnaissance image taken inside the Snake gorge where in the green
square a water sign is detected with reference to the WDM, but none
are detected in the red square. The CNN can expect to detect water
signs, but errors are also expected to occur. Superpixel segmentation
161
Fig. 8. Footages of over and inside the Snake gorge.
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Fig. 9. Sample of a DEM image from inside the Snake gorge.

Fig. 10. Training results for autonomous flying over the terrain.

akes place to resolve by considering adjacent image blocks with alike
olor and brightness features as Fig. 12 shows.

The WDM dataset has been sourced from ‘‘Kaggle’’. This includes
00 images of water bodies taken from the sky for training and 500
mages for testing and validation [42]. Fig. 13 shows the line chart
or training and validation accuracy and loss with the use of WDM
ith both charts in sync. Training and validation accuracy tracks the
erformance of the classifier during training with the dataset and
alidation accuracy of the results. Training and validation loss tracks
itting of the model with the dataset, and validation loss indicates
itting of the model with new data. These two are key performance
ndicators in our proposed framework.

Fig. 13 shows an increase in accuracy and a decrease in loss over
ime which highlights the usefulness of the WDM in classifying image
ixels into different class labels. The accuracy chart line indicates that
he model can classify nearly all classes with relatively high level of
ccuracy. Training and validation accuracy is in synchronization with
raining and validation loss with a value near 0.94. It is significant that
o overfitting has accrued from utilizing a dropout layer to prevent this
rom arising. The dropout layer deactivates neurons during training to
educe dependency on the training set and hence prevent the network
rom maintaining a memory of the dataset.

Fig. 14 showcases training with reference to the 3D SCDM: (a)
eveals no changes, and (b) reveals some changes when comparing
mages taken of the same location but at different times. Using both
162
Fig. 11. Images of water signs inside the Snake gorge.

Fig. 12. Matching aerial images to water signs in WDM.

the 3D SCDM and WDM, the second brain trains in feature extraction
and classification to detect changes that may have occurred since the
last reconnaissance mission with reference to the former and determine
if these changes are water-related with reference to the latter. The deep
learning CNN that uses the 3D SCDM is a fully connected unsupervised
CNN that relies on a latent change detection map to specify whether
there are changes or not.

Fig. 15 plots loss against iterations during training with the image
dataset. During an iteration, the loss function calculates the loss on
a subset of the entire dataset. The loss is formulated as the squared
difference between the output of the model and the ground truth, and
it is inversely proportional to the model robustness. The loss function
is regularly applied during training to find the best parameter values
for the overall model, e.g., weights. Due to the size of the dataset
and the change detection function, the loss function requires between
7000 to 8000 iterations to converge. After 3500 iterations, the lose

value shows a gradual decline in comparison to the period before that
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Fig. 13. Training and validation with the WDM.

here it clearly shows a steep decline. Overall, the line chart of the
oss indicates that the training results are congruent with the training
ataset accuracy.

.2. Validation of the autonomous flying IoT framework

We deploy Overall Accuracy (OA) and Kappa Coefficient to evaluate
uccess with change detection. The Kappa Coefficient is used as a
onsistency test for to the accuracy of classification whereas OA is
sed as a consistency test to the accuracy of classification. Kappa
ndicates the level of consistency between the change detection and
he ground-truth map, with the kappa coefficient directly proportional
o the performance of the corresponding method. OA and the Kappa
oefficient are represented as Eqs. (26) to (28).

𝐴 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(26)

𝐾𝑎𝑝𝑝𝑎 = 𝑂𝐴 − 𝑃
1 − 𝑃

(27)

=
(𝑇𝑃 + 𝐹𝑃 ) (𝑇𝑃 + 𝐹𝑁)
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝐵 + 𝐹𝑁)2

+
(𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2

(28)

where True Positives (𝑇𝑃 ) and True Negatives (𝑇𝑁) refer to the num-
er of changed and unchanged pixels accurately detected respectively,
nd False Positives (𝐹𝑃 ) and False Negatives (𝐹𝑁) refer to the number
f unchanged and changed pixels falsely detected as changed and
nchanged respectively.

Fig. 16 shows an aerial DEM over the Snake gorge in the Arabian
eninsula, where the UAV acts as an eye near the ground in those
163
Fig. 14. Training with the 3D SCDM.

Fig. 15. Training loss with the 3D SCDM.

narrow or covered areas where a satellite would not normally be able
to retrieve images. With the focus of this work being the detection
of water bodies inside narrow areas like gorges or caves using an
intelligent framework onboard a UAV, a normalized confusion matrix is
presented in Fig. 17 which is obtained from the two-brains optimization
framework.

The confusion matrix of Fig. 17 shows the accuracy level of the pro-
posed 3DSCDM and WDM. Rows depict the ground-truth and columns
depict predictions. The confusion matrix reveals that a UAV on a remote
sensing mission and flying at a low altitude can distinguish between
water bodies and other features with a high level of accuracy. The
maximum accuracy for the water body class comes very close to 1.0,
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Fig. 16. Aerial DEM over the Snake gorge.

Fig. 17. Normalized confusion matrix.

hereas the minimum accuracy goes to grass and shadow classes at
round 0.818. The boundary evaluation over the study area shows that
rass and shadows raise complexities as these two classes are shal-
ow and sometimes overlap with water bodies and/or marks. Overall,
he classification level evaluation over the study area suggests that
he performance of the two-brains optimization framework in relation
o change detection and object recognition achieves a high level of
ccuracy that ranges between 91.3 and 99.6%.

Table 3 shows a summary of classification accuracies of various
eatures inside the Snake gorge using the two-brains optimization
ramework. The table presents the two parameters of performance and
alidation indicators, OA and Kappa. The CNN can identify all classes
ith high degree of accuracy.

To validate the proposed framework further, primarily the DEM, a
omplexity analysis of its execution time against that of DSM and DTM
as been carried out. Fig. 18 depicts the results of the analysis and
hows an exponential increase in time as the input size rises. The overall
omplexity of the proposed framework is lower than that of DSM and
TM and the main reason for that is that the DEM uses raster grids to

epresent buildings, trees, or other types of vegetation in the fly zone as
ertical datum. This yields a smooth DEM which reduces the complexity
f detecting water flows.
164
Table 3
Classification accuracies for various features inside the Snake gorge.

Classified
category

Performance and validation indicators

𝐾𝑎𝑝𝑝𝑎 𝑂𝐴%

Water body 0.983 99.6%
Animal/Bird 0.967 98.1%
Rock 0.917 94.9%
Tree 0.962 98%
Grass 0.818 91.3%
Shadow 0.818 91.3%

Fig. 18. Complexity analysis of the proposed framework against DSM, and DTM.

5. Conclusion and future direction

Progressively, UAVs are becoming part of the fabric in people’s
lives. The technology has matured and is considered as an efficient
method, perhaps the only one, for delivering various applications and
services timely and efficiently. This research has exploited the UAV’s
primary function of retrieving imagery, over those areas whose mor-
phology poses problems for satellites, to search for water bodies using
a combination of a DEM, 3DSCDM and WDM within a deep learning
framework. In assessing the feasibility and efficacy of a photogram-
metrically derived 3DSCDM with reference to a DEM and a WDM,
the combination has retrieved extraordinary invaluable temporal and
spatial geomorphic and geologic information whilst searching for water
bodies. This work can be useful not only for national and local govern-
ments and associations in safe searching for those natural resources that
are essential in sustaining human life, but also in supporting safety and
security with underground tourist activities.

The research and practical facets of this work have highlighted
several challenges addressing of which will open new opportunities:

• Power management on site (battery recharging) without a manda-
tory return to base when energy levels reduce near the level of
safe return,

• Decision making mid-fly (conflict resolution) without human in-
tervention when two or more competing actions yield an impasse.

With regards to on-site power management, approaches being consid-
ered include deploying a charging station UAV capable of harvesting
renewable energy. With regards to mid-fly decision making, approaches
currently being pursued include, among other, serious gaming.
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