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Abstract: We consider the scattering of time-periodic electromagnetic fields by metallic obstacles,
or the eddy current problem. In this interface problem, different sets of Maxwell equations must
be solved both in the obstacle and outside it, while the tangential components of both electric and
magnetic fields are continuous across the interface. We describe an asymptotic procedure, applied for
large conductivity, which reflects the skin effect in metals. The key to our method is a special integral
equation procedure for the exterior boundary value problems corresponding to perfect conductors.
The asymptotic procedure leads to a great reduction in complexity for the numerical solution, since it
involves solving only the exterior boundary value problems. Furthermore, we introduce a FEM/BEM
coupling procedure for the transmission problem and consider the implementation of Galerkin’s
elements for the perfect conductor problem, and present numerical experiments.

Keywords: boundary element; asymptotic expansion; skin effect

MSC: 65-04; 65A05; 65N30; 65N38

1. Introduction

We present asymptotic expansions with respect to inverse powers of conductivity for
the electrical and magnetic fields and report the algorithm of MacCamy and Stephan [1],
which allows us to compute the expansion terms of the electrical field in the exterior domain
by successively solving only exterior problems (so-called perfect conductor problems). We
use various data for the interfaces between the conductors (metal) and the isolator (air).
We solve the exterior problems numerically by applying the Galerkin boundary element
method to boundary integral equations of the first kind, which were originally introduced
by MacCamy and Stephan in [2]. This system of integral equations on the interface Σ results
from a single layer ansatz for the electrical field and has unknown densities, namely, a
vector field and a scalar function on Σ which we approximate with lower-order Raviart
Thomas elements and continuous piecewise linear functions on a regular, triangular mesh
on Σ. As in the two dimensional case investigated by Hariharan [3,4] and MacCamy
and Stephan [5], the asymptotic procedure gives for the computation of the solution of
the transmission problem a great reduction in complexity, since it involves solving only
the exterior problem, and furthermore, only a few expansion terms must be computed.
We describe in detail how to implement the boundary element method for the perfect
conductor problem. As an alternative to the asymptotic expansions for the solution of
the transmission problem, we introduce a new finite element/boundary element Galerkin
coupling procedure which converges quasi-optimally toward the energy norm.
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2. Asymptotic Expansion for Large Conductivity and Skin Effect
Let Ω− be a bounded region in R3 representing a metallic conductor and Ω+ :=

R3\Ω− represent air. The parameters ε0, µ0, σ0 denoting permittivity, permeability and
conductivity, are assumed to be zero in Ω+ with positive ε, µ and σ values in Ω−. Let the
incident electric and magnetic fields, E0 and H0, satisfy Maxwell’s equations in air. The total
fields E and H satisfy the same Maxwell’s equations as E0 and H0 in Ω+, but a different
set of equations in Ω−. Across the interface Σ := ∂Ω− = ∂Ω+, which is assumed to be a
regular analytic surface, the tangential components of both E and H are continuous. E− E0

and H−H0 represent the scattered fields. All fields are time-harmonic with frequency ω.
As in [1], we neglect conduction (displacement) currents in air (metal).

Then, with appropriate scaling, the eddy current problem is (see [6,7]).
Problem (Pαβ): Given α > 0 and β > 0, find E and H, such that

curl E = H, curl H = α2E in Ω+ (air)
curl E = H, curl H = iβ2E in Ω− (metal)
E+

T = E−T , H+
T = H−T , on Σ.

(1)

∂

∂r
E(x)− iαE(x) = O

(
1
r2

)
with r = |x|, as |x| → ∞.

Here α2 = ω2µ0ε0 and β2 = ωµσ− iω2µε are dimensionless parameters, and β2 =
ωµσ > 0, if displacement currents are neglected in metal (ε = 0). The subscript T denotes
a tangential component, and the superscripts plus and minus denote limits from Ω+ and
Ω−.

At higher frequencies, the constant β is usually large, leading to the perfect conductor
approximation. Formally this means solving only the Ω+ equation and requiring that
ET = 0 on Σ. If we let E and H denote the scattered fields, we obtain

Problem (Pα∞): Given α > 0, find E and H, such that

curl E = H, curl H = α2E in Ω+

ET = −E0
T , on Σ.

(2)

Remark 1. There exists at most one solution of problem (Pαβ) for any α > 0 and 0 < β ≤ ∞
(see [8]).

Remark 2. There exists a sequence {αk}∞
k=1, such that if α 6= αk, then curl E = H, curl H = α2E

in Ω+, ET ≡ 0 on Σ implies E ≡ H ≡ 0 in Ω+.

We are interesting in an asymptotic expansion of the solution of problem (Pαβ) with
respect to inverse powers of conductivity. With τ denoting the distance from Σ measured
into Ω− along the normal to Σ, the expansions reads:

E ∼ E0 +
∞

∑
n=0

Enβ−n in Ω+ (3)

H ∼ H0 +
∞

∑
n=0

Hnβ−n in Ω+ (4)

E ∼ e−
√
−iβτ

∞

∑
n=0

Enβ−n in Ω− (5)

H ∼ e−
√
−iβτ

∞

∑
n=0

Hnβ−n in Ω− (6)

Here En and Hn are independent of β, which is proportional to
√

σ. The exponential
in (5) and (6) represents the skin effect. Next, we present from [1] these expansions for



Mathematics 2022, 10, 1148 3 of 16

the half-space case where the various coefficients can be computed recursively. Note E0
and H0 in (3) and (4), respectively, are simply the perfect conductor approximation, that is,
the solution of (Pα∞). En and Hn in (3) and (4) can be calculated successively by solving
a sequence of problems of the same form as (Pα∞) but with boundary values determined
from earlier coefficients. The En and Hn in (5) and (6), respectively, are obtained by solving
ordinary differential equations in the variable x3.

For the ease of the reader, we present here in the half-space case Ω+ = R3
+, i.e., x3 > 0,

and Ω− = R3
−, i.e., x3 < 0, a formal procedure to compute En, Hn, which was given by

MacCamy and Stephan [1]. They substituted Equations (3)–(6) into (Pαβ) for Σ = R2 and
equated coefficients of β−n. Here, we give a short description of their approach.

Let χ = e
√
−iβx3 and decompose field F into tangential and normal components:

F = F+ f e3, F = F 1e1 +F 2e2, (7)

with orthogonal component F⊥ = e3 × F, and unit vectors ei (i = 1, 2, 3).
Then, one computes with the surface gradient gradT , the rotation

curl F = F⊥x3
− (gradT f )⊥ − (div F⊥)e3 (8)

and
curl(χF) = χ[

√
−iβF⊥ + F⊥x3

− (gradT f )⊥ − (div F⊥)e3]. (9)

Now, by setting En = En + `ne3, one obtains for x3 < 0

curl E ∼ χ{
√
−iβE⊥0 +

∞

∑
n=0

[
√
−iE⊥n+1 + E⊥n,x3

− (gradT `n)
⊥ − (div E⊥n )e3]β

−n}, (10)

and

curl curl E ∼ χ

{
iβ2E0 −

√
−iβE0,x3 +

√
−iβdiv E0e3 +

∞

∑
n=0

[
iβEn+1 −

√
−iEn+1,x3

−
√
−idiv En+1e3 −

√
−iβEn,x3 − En,x3,x3 + div En,x3e3 +

√
−iβgrad `n

+(gradT `n)x3 + div grad `ne3]β
−n + grad div β−ne3

}
= χ[iβ2E0 + iβ2`0e3 + iβE1 + iβ`1e3 +

∞

∑
n=0

(iEn+2 + i`n+2e3)β−n] ∼ iβ2E.

(11)

Hence, matching coefficients of β2 and β, respectively, yields `0 ≡ 0, i`1 =
√
−idiv E0

and E0,x3 = 0 implying E0(x1, x2, x3) = E0(x1, x2, 0).
As coefficients of β0, one obtains

−
√
−iE1,x3 +

√
−igrad `1 = 0,

√
−idiv E1 + div E0,x3 − grad div E0 = i`2.

Now the gauge condition div E0 = 0 implies `1 ≡ 0 and div E0,x3 = 0; hence E1,x3 = 0
and
√
−idiv E1 = i`2. Thus, E1(x1, x2, x3) = E1(x1, x2, 0).

Equating coefficients of β−1 in (11) gives

−
√
−iE2,x3 −

√
−iE2,x3 +

√
−igrad `2 = 0,

√
−idiv E2 − grad div E1 = i`3.

Setting

H = χ
∞

∑
n=0

(Hn + hne3)β−n, (12)
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MacCamy and Stephan obtained in [1] with `1 = 0, h0 = 0, E0 = 0:
√
−iE⊥1 + E⊥0,x3

= H0,
√
−iH⊥0 = iE1, h0 = div E⊥0 = 0. (13)

and √
−iE⊥2 + E⊥1,x3

= H1,
√
−iH⊥1 +H⊥0,x3

= iE2 (14)

h1 = −div E⊥1 , −div H⊥0 = i`2. (15)

and
H0,x3 ≡ E1,x3 ≡ 0

H0 ≡
√
−iE⊥1 in x3 < 0

(16)

For x3 > 0, we have that curl E = H yields

curl E0 +
∞

∑
n=0

curl Enβ−n = H0 +
∞

∑
n=0

Hnβ−n.

Matching coefficients of β−n, one finds in x3 > 0

curl E0 = H0, curl En = Hn, n ≥ 0,

(and corresponding due to curl H = α2E)

curl H0 = α2E0, curl Hn = α2En, n ≥ 0.

With the above relations, the recursion process goes as follows. First one use (6.10) for
n = 0 and (6.13), in [1], to conclude that

curl E0 = H0, curl H0 = α2E0 in x3 > 0
E+

0 = −(E0
T)
−, on x3 = 0.

Now (E0, H0) is just the solution of (Pα∞), which can be solved by the boundary
integral equation procedure introduced in MacCamy and Stephan [1] and revisited below.
However, from (1)3 we obtain

H−0 = H+
0 = (H0)

+
T on x3 = 0. (17)

Now, the right side of (17) is known and easily computed. Then (1)3 and (17) yield

(E1)
+
T = (E1)

−
T = E−1 = −

√
i(H⊥0 )− = −

√
i((H0)

+
T )
⊥. (18)

Therefore, by (6.10), in [1], we have, again, a new solvable problem for (E1, H1) which
is just like (Pα∞), that is

curl E1 = H1, curl H1 = α2E1 in x3 > 0,

but with new boundary values for ET as given by (18).
For the complete algorithm see [1]. Note, with λ =

√
−i, we have E−1 (x1, x2, 0) =

− 1
λ
(n× curl E0) yielding in x3 < 0

E1(x1, x2, x3) =
∫ −τ

0
eλβx̃3E−1 (x1, x2, 0)dx̃3 = − 1

λ2β
(n× curl E0)[e−λβτ − 1]

A comparison with Peron’s results (see Chapter 5 in [9]) shows that Wcd
j (yα, hρ) =

e−
√
−iβτEj, j ≥ 0, in Ωcd, λY3 =

√
−iβτ and wj = `j. Furthermore, we see that the first
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terms in the asymptotic expansion of the electrical field for a smooth surface Σ derived by
Peron coincide with those for the half-space x3 = 0 investigated by MacCamy and Stephan,
namely, `0 = w0 = 0, `1 = w1 = 0, E0 = Wcd

0 = 0.

Remark 3. From Theorem 5 in Chapter 3 of [10], there exists only one solution to the electromag-
netic transmission problem for a smooth interface. This solution which can be computed by the
boundary integral equation procedure is shown below, where we assume that (19) holds. Then,
for the electrical field E obtained via the boundary integral equation system, we have that in the
tubular region Ω±(δ) = {x ∈ Ω±, dist(x, Σ) < δ}, there holds for the remainders Eis(cd)

m obtained
by truncating (3) and (5) at n = m

‖Eis
m,ρ‖W(curl,Ωis) ≤ C1ρ−m−1 and ‖Ecd

m,ρ‖ ≤ C2eC3τ

for constants C1, C2, C3 > 0, independent of ρ.

3. A Boundary Integral Equation Method of the First Kind

Next, we describe the integral equation procedure for (Pαβ) and (Pα∞) from [1,7,11,12].
Throughout the section, we require that

α 6= αk, k = 1, 2, . . . (19)

These methods, like others, are based on the Stratton–Chu formulas from [6]. To
describe these, some notation is needed. Let n denote the exterior normal to Σ. Given any
vector field v defined on Σ, we have

v = vT + vNn, vT = n× (v× n) (20)

where vT , which lies in the tangent plane, is the tangential component of v.
Define the simple layer potential Vκ for density ψ (correspondingly for a vector field)

for the surface Σ by

Vκ(ψ) =
∫

Σ
ψ(y)Gκ(|x− y|)dsy, with Gκ(r) =

eiκr

4πr
. (21)

For a vector field v on Σ, define Vκ(v) by (21) with v replacing ψ.
We collect in the following lemma some of the well-known results about the simple

layer potential Vκ .

Remark 4 (Lemma 2.1 in [1]). For any complex κ, 0 ≤ arg κ ≤ π

2
and any continuous ψ on Σ,

there holds:

(i) Vκ(ψ) is continuous in R3,
(ii) ∆Vκ(ψ) = −κ2Vκ(ψ) in Ω− ∪Ω+,

(iii) Vκ(ψ)(x) = O

(
eiκ|x|

|x|

)
as |x| → ∞,

(iv) (
∂Vκ(ψ)

∂n
(x)
)±

= ∓1
2

ψ(x) +
∫

Σ
Kκ(x, y)ψ(y)dsy, on Σ,

where Kκ(x, y) = O(|x− y|−1) as y→ x.
(v)

(n× curl Vκ(v)(x))± = ±1
2

v(x) +
1
2

∫
Σ

Kκ(x, y)v(y)dsy,

where the matrix function Kκ satisfies Kκ(x, y) = O(|x− y|−1) as y→ x.
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For problem (1)2 in Ω−, the Stratton–Chu formula gives

E = V√iβ(n×H)− curl V√iβ(n× E) + grad V√iβ(n · E),
H = curl V√iβ(n×H)− curl curl V√iβ(n× E).

(22)

Similarly, for problem (1)1, in Ω+

E = Vα(n×H)− curl Vα(n× E) + grad Vα(n · E),
H = curl Vα(n×H)− curl curl Vα(n× E).

(23)

For given n×H, n× E and n · E, (23) yields a solution of (Pα∞). However, we know
only n× E. The standard treatment of (Pα∞) starts from (23), sets n×H = 0 and n · E = 0
and replaces −n× E with an unknown tangential field L yielding

E = curl Vα(L), H = curl curl Vα(L). (24)

Then the boundary condition yields an integral equation of the second kind for L in
the tangent space to Σ.

The method (24) is analogous to solving the Dirichlet problem for the scalar Helmholtz
equation with a double layer potential. However, having found L, it is hard to determine
HT , or equivalently n×H, on Σ. Note that calculating n×H on Σ involves finding a
second normal derivative of Vα(L).

The method in [1] for (Pα∞) is analogous to solving the scalar problems with a simple
layer potential (see [13]). MacCamy and Stephan use (23), but this time they set n× E = 0
and replace n×H and n · E by unknowns J and M. Thus, they take

E = Vα(J) + grad Vα(M), H = curl Vα(J). (25)

If they can determine J, then in this case, they can use Remark 4 to determine n×H;
hence, HT on Σ.

With the surface gradient gradTψ = (grad ψ)T on Σ, the boundary conditions in (1)
and (25) imply, by continuity of Vα,

n× E = n× Vα(J) + n× grad Vα(M) = −n× E0,

or equivalently,
Vα(J)T + gradT Vα(M) = −E0

T . (26)

Note that for any field v defined in a neighborhood of Σ, one can define the surface
divergence divT by

div v = divT v +
∂v
∂n

n.

As shown in [1]), there holds, for any differentiable tangential field v, that div Vκ(v) =
Vκ(divT v) on Σ.

Setting divE = 0 on Σ yields, therefore, with (25),

0 = div E = div Vα(J) + div grad Vα(M),

and div gradVα(M) = −α2Vα(M) gives immediately

Vα(divT J)− α2Vα(M) = 0. (27)
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4. FEM/BEM Coupling

Next, we present a coupling method for the interface problem (Pαβ) (see [10,14–17]).
Integration by parts gives in Ω− for the first equation in (Pαβ), with γNE = (curl E)× n,
γDE = n× (E× n)∫

Ω−
curl E · curl vdx−

∫
Ω−

iβ2E · vdx−
∫

Σ
γ−NE · γ−Dvds = 0. (28)

Therefore, with γ−NE = γ+
NE + γNE0 and setting E = Vα(J) + grad Vα(M) in Ω+,

we obtain∫
Ω−

curl E · curl vdx−
∫

Ω−
iβ2E · vdx−

∫
Σ

γ+
N(Vα(J) + grad Vα(M)) · γ+

Dvds =
∫

Σ
γNE0 · γ+

Dvds.

Note that γ+
N(Vα(J) + grad Vα(M)) =

1
2

J+
1
2

Kα(J), where Kα is a smoothing operator.

As shown in (Lemma 4.5 in [1]), there exists a continuous map Jα(J)T from Hr(Σ) into
Hr+1(Σ), for any real number r with

divT Vα(J)T = Vα(divT J) + Jα(J)T . (29)

As shown in [2], the system of boundary operators on Σ (which is equivalent to (26)
and (27)),

Vα(J)T + gradT Vα(M) = −E0
T

−Jα(J)T − (∆T + α2)Vα(M) = divT E0
T ,

(30)

is strongly elliptic as a mapping from H−
1
2 (Σ) × H

1
2 (Σ) into H

1
2 (Σ) × H−

1
2 (Σ), where

gradT(divT) denote the surface gradient (surface divergence) and ∆T the Laplace–Beltrami
operator on Σ.

Now, the fem/bem coupling method is based on the variational formulation: For
given incident field E0 on Σ, find E ∈ H(curl, Ω−), J ∈ H−

1
2 (Σ) and M ∈ H

1
2 (Σ) with∫

Ω−
curl E · curl vdx−

∫
Ω−

iβ2E · vdx− 1
2

∫
Σ
(J + Kα(J)) · γ+

Dvds =
∫

Σ
γNE0 · γ+

Dvds∫
Σ
Vα(J)T · j dS +

∫
Σ

gradTVα(M) · j dS = −
∫

Σ
E0

T · j dS,

−
∫

Σ
Jα(J)Tm dS−

∫
Σ
(∆T + α2)Vα(M)m dS =

∫
Σ

divT E0
TmdS,

(31)

∀v ∈ H(curl, Ω−), j ∈ H−
1
2 (Σ), m ∈ H

1
2 (Σ).

In order to formulate a conforming Galerkin scheme for (31), take subspaces H1
h ⊂

H(curl, Ω−), H−
1
2

h ⊂ H−
1
2 (Σ), H

1
2
h ⊂ H

1
2 (Σ) with the mesh parameter h and look for

Eh ∈ H1
h, Jh ∈ H−

1
2

h , Mh ∈ H
1
2
h such that

〈A(Eh, Jh, Mh), (vh, jh, mh)〉 = 〈F , (vh, jh, mh)〉 (32)

where A is the operator given by the left-hand side in (31), F = (γNE0,−E0
T , divT E0

T).

Theorem 1. 1. System (31) has a unique solution (E, J, M) in X = H(curl, Ω−) ×H−
1
2 (Σ) ×

H
1
2 (Σ).

2. The Galerkin system (32) is uniquely solvable in Xh = H1
h × H−

1
2

h × H
1
2
h , and there exists

C > 0, independent of h,

‖E− Eh‖H(curl,Ω−) + ‖J− Jh‖H−
1
2 (Σ)

+ ‖M−Mh‖
H

1
2 (Σ)

≤ C inf
(v,j,m)∈Xh

{
‖E− v‖H(curl,Ω−) + ‖J− j‖

H−
1
2 (Σ)

+ ‖M−m‖
H

1
2 (Σ)

} (33)
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where (E, J, M) and (Eh, Jh, Mh) solve (31) and (32), respectively.

Proof. First, note that system (31) is strongly elliptic in X, which follows by considering A
as a system of pseudodifferential operators (cf. [2]). The only difference from [2], is that
here we additionally have the first equation in (31). Since ∆E = curlcurlE− graddivE, by
taking divE = 0, the principal symbol of A has the form (with |ξ|2 = ξ2

1 + ξ2
2)

σ(A)(ξ)(E, J, M)t =



|ξ|2 + ξ2
3 0 0 1 0 0

0 |ξ|2 + ξ2
3 0 0 1 0

0 0 |ξ|2 + ξ2
3 0 0 0

0 0 0
1
|ξ| 0 iξ1

1
|ξ|

0 0 0 0
1
|ξ| iξ2

1
|ξ|

0 0 0 0 0 |ξ|





E1
E2
E3
J1

J2

M

 (34)

where (E1, E2) = ET and E3 is perpendicular to x3 = 0.
Obviously the two sub-blocks are strongly elliptic (see [2] for the lower sub-block). Assuming

that (α,
√

iβ) is not an eigenvalue of Pαβ, we have existence and uniqueness of the exact solution. Due
to the strong ellipticity of A, there exists a unique Galerkin solution and the a priori error estimate
holds, due to the abstract results by Stephan and Wendland [18].

5. Galerkin Procedure for the Perfect Conductor Problem (Pα∞)

Next, we present implementations of the Galerkin methods (see [7,10,19,20]) and
some numerical experiments for the integral equations (26) and (27). These experiments
were performed with the package Maiprogs (cf. Maischak [21,22]), which is a Fortran-
based program package utilized for finite element and boundary element simulations [23].
Initially developed by M. Maischak, Maiprogs has been extended for electromagnetic
problems by Teltscher [24] and Leydecker [25].

We investigate the exterior problem (Pα∞) by performing the integral equations proce-
dure with (26) and (27):

Testing against arbitrary functions j ∈ H−
1
2 (Σ) and m ∈ H

1
2 (Σ) in (26) and (27), we get∫

Σ
Vα(J)T · j dS +

∫
Σ

gradTVα(M) · j dS = −
∫

Σ
E0

T · j dS,

−
∫

Σ
Vα(divTJ) ·m dS + α2

∫
Σ
Vα(M) ·m dS = 0.

(35)

Partial integration in the second term of (35)1∫
Σ

gradTVα(M) · j dS = −
∫

Σ
Vα(M) · divTj dS

shows that the formulation (35) is symmetric: by definition of symmetric bilinear forms a
and c, of the bilinear form b and linear form ` through

a(J, j) : =
∫

Σ
Vα(J)T · j dS,

b(J, m) : = −
∫

Σ
Vα(divTJ) ·m dS

= −
∫

Σ
Vα(m) · divTJ dS,

c(M, m) : = α2
∫

Σ
Vα(M) ·m dS,

`(j) : = −
∫

Σ
E0

T · j dS
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the variational formulation has the form: find (J, M) ∈ H−
1
2 (Σ)× H

1
2 (Σ) such that

a(J, j) + b(j, M) = `(j)
b(J, m) + c(M, m) = 0

(36)

for all (j, m) ∈ H−
1
2 (Σ)× H

1
2 (Σ).

We now work with finite dimensional subspacesRh ⊂ H−
1
2 (Σ) of dimension n and

Mh ⊂ H
1
2 (Σ) of dimension m, and seek approximations Jh ∈ Rh and Mh ∈ Mh for J and

M, such that
a(Jh, j) + b(j, Mh) = `(j),
b(Jh, m) + c(Mh, m) = 0

(37)

for all j ∈ Rh and m ∈ Mh.
Let {ψi}n

i=1 be a basis ofRh and {ϕj}m
j=1 be a basis ofMh. Jh, and Mh are of the forms

Jh :=
n

∑
i=1

λiψi and Mh :=
m

∑
j=1

µj ϕj. (38)

Inserting (38) in (37) provides

n

∑
i=1

λia(ψi, ψk) +
m

∑
j=1

µjb(ψk, ϕj) = `(ψk)

n

∑
i=1

λib(ψi, ϕl) +
m

∑
j=1

µjc(ϕj, ϕl) = 0
(39)

for all ψk and ϕl , 1 ≤ k ≤ n, 1 ≤ l ≤ m.
With matrices and vectors

A := (a(ψi, ψk))i,k ∈ Cn×n,
B := (b(ψi, ϕl))i,l ∈ Cn×m,
C := (c(ϕj, ϕl))j,l ∈ Cm×m,
λ := (λi)i ∈ Cn,
µ := (µj)j ∈ Cm,
` := (`(ψk))k ∈ Cn.

(40)

(39) has also the form (
A Bt

B C

)(
λ
µ

)
=

(
`
0

)
. (41)

We have considered {ψi}n
i=1 a basis ofRh and {ϕj}m

j=1 a basis ofMh. These functions
were chosen as piecewise polynomials. To obtain these bases, we considered suitable basis
functions locally on the element of a grid, i.e., on each component grid.

Start from a grid
{Σk}N

k=1 with
⋃

1≤k≤N

Σk = Σ

with N elements, and let {ψ̂i}n̂
i=1 and {ϕ̂j}m̂

j=1 be the basis of a square reference element Σ̂.

The local basis functions on an element Σk are each {ψi}
nk
i=1 or {ϕj}

mk
j=1.

Therefore, we should calculate first

A := (a(ψjs , ψiz))iz ,js ∈ Cn×n,
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where ψjs or ψiz are the basis functions ofRh and

a(ψjs , ψiz) =
∫

Σ
Vα(ψjs)T ·ψiz dS =

N

∑
k=1

∫
Σk

Vα(ψjs)T ·ψiz dS,

Test each local basis function against any other local basis function and sum the result
to the test value of the global basis functions, which include these local basis functions.

Let IN = {1, . . . , N} be the index set for the grid elements, In̂ = {1, . . . , n̂} the index
set for the basic functions on the reference element and In = {1, . . . , n} the index set for the
global basis functions.

Let ζ : IN × In̂ → In be the mapping from local to global basis functions, such that
ζ(k, i) = j, if the local basis function ψk,i component of the global basis function is ψj.

Let ζ−1 be the set of all pairs of (k, j) with ζ(k, j) = i; then,∫
Σ
Vα(ψjs)T ·ψiz dS = ∑

(k,i)∈
ζ−1

(iz)

∑
(l,j)∈

ζ−1
(js)

∫
Σk

Vα(ψl,j)T ·ψk,i dS

= ∑
(k,i)∈

ζ−1
(iz)

∑
(l,j)∈

ζ−1
(js)

∫
Σk

∫
Σl

Gα(|x− y|)(ψl,j(y))
t ·ψk,i(x) dSy dSx.

We are dealing in this implementation with Raviart–Thomas basis functions. The

transformation of these functions requires a Peano transformation ψk,i =
1

|det Ak|
Akψ̂i.

Thus, if Ak = (a1, a2), detAk is calculated by detAk = (a1 × a2) ·
a1 × a2

‖a1 × a2‖
, then the Peano

transformation of the local basis functions to the basic functions on the reference element
then gives

I = ∑
(k,i)∈

ζ−1
(iz)

∑
(l,j)∈

ζ−1
(js)

∫
Σk

∫
Σl

Gα(|x− y|)(ψl,j(y))
t ·ψk,i(x) dSy dSx

= ∑
(k,i)∈

ζ−1
(iz)

∑
(l,j)∈

ζ−1
(js)

∫
Σ̂

∫
Σ̂

Gα(|x− y|)
|det Ak · det Al |

(ψ̂i(x̂))
t(Ak)

t · Alψ̂j(ŷ) dSŷ dSx̂

(42)

with x = ak + Akx̂ and y = al + Alŷ, and referent element Σ̂.
The calculation of the integrals with Helmholtz kernel Gα is not exact. We consider

the expansion of the Helmholtz kernel in a Taylor series. There holds

Gα(|x− y|) = 1
4π

eαi|x−y|

|x− y| =
1

4π

[
1

|x− y| + αi +
(αi)2

2
|x− y|+ . . .

]
The first terms are singular for x = y, and their corresponding integrals are treated by

analytic evaluation in Maiprogs (cf. Maischak [21,22,26]), but the integrals of all other terms
can be calculated with sufficient accuracy by Gaussian quadrature.

Compute

b(ψiz , ϕjs) = −
∫

Σ
Vα(∇T ·ψiz) · ϕjs dS

= − ∑
(k,i)∈

ζ−1
ψ (iz)

∑
(l,j)∈

ζ−1
ϕ (js)

∫
Σl

∫
Σk

Gα(|x− y|)∇T ·ψk,i(y) · ϕl,j(x) dSy dSx. (43)
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with ζ−1
ψ = ζ described above, and ζ−1

ϕ , the analogously defined map for the basic functions
ofMh.

While a transformation of the scalar basis functions is not required, the transforma-
tion of the surface divergence of Raviart–Thomas elements is carried out by ∇T · ψk,i =

1
|detAk |

∇̂ · ψ̂i and we have

b(ψiz , ϕjs) = − ∑
(k,i)∈

ζ−1
ψ (iz)

∑
(l,j)∈

ζ−1
ϕ (js)

∫
Σ̂

∫
Σ̂

Gα(|x− y|)
|detAk|

∇̂ · ψ̂k,i(ŷ) · ϕ̂l,j(x̂) dSŷ dSx̂
(44)

with y = ak + Akŷ and x = al + Al x̂. The calculation of c(ϕi, ϕj) is similar to the one
mentioned before.

The calculation of the right-hand side appears simple at first glance, since there
are no single layer potential terms. However, the right-hand side must be computed
by quadrature.

The quadrature of an integral over f on the reference element is determined by the
quadrature points x̂x,y, and the associated weights wx,y = wx · wy, which are processed
in x and y directions. Perform the two-dimensional quadrature as a combination of one-
dimensional quadratures in each x and y direction, and use here the weights from the
already implemented one-dimensional quadrature formula. With ñx quadrature points in
x-direction and ñy quadrature points in y-direction, the quadrature formula reads:

QΣ̂(f) =
ñx

∑
i=1

ñy

∑
j=1

f(x̂i,j) · wiwj. (45)

The quadrature points on the square reference element and the corresponding weights
for Gaussian quadrature were implemented in Maiprogs already. For triangular elements,
use a Duffy transformation.

We will now calculate the right-hand side in the Galerkin formulation, i.e., the linear
form `, applied to the base functions ψi, i = 1, . . . , n. The quadrature takes place on the
reference element. Decompose global functions into local basis functions and then use the
Peano transformation for the Raviart–Thomas functions. Therefore,

`(ψir ) = −
∫

Σ
(E0

T(x))
t ·ψir (x) dSx

= − ∑
(k,i)∈

ζ−1(ir)

∫
Σ̂
(E0

T(x))
t · Ak · ψ̂k,i(x̂) dSx̂

with x = ak + Akx̂. Applying (45) with ñx = ñy := ñ, leads to

Q(`(ψi)) = − ∑
(k,i)∈

ζ−1(ir)

ñ

∑
i1=1

ñ

∑
i2=1

(E0
T(xi1,i2))

t · Ak · ψ̂k,i(x̂i1,i2) · wi1 wi2 (46)

with xi,j = ak + Akx̂i,j. As before, the task is carried out by looping through all grid
components, and the values are added to the entries for each of its base function.

The electrical field can be calculated by

Eh = Vα(Jh) + grad Vα(Mh). (47)



Mathematics 2022, 10, 1148 12 of 16

We have for the first term in (47) with (38)1

Vα(Jh)(x) =
n

∑
i=1

λi

∫
Σ

Gα(|x− y|)ψi(y)dSy. (48)

Then using Peano transformation, it follows that

Vα(ψis)(x) =
∫

Σ
Gα(|x− y|)ψis(y)dSy

= ∑
(l,i)∈

ζ−1
(is)

∫
Σ̂

Gα(|x− y|)
|det Al |

Alψ̂i(ŷ) dSŷ. (49)

For the second term in (47), one gets

grad Vα(ϕjz)(x) = ∑
(l,j)∈

ζ−1
(jz)

∫
Σ̂

gradxGα(|x− y|)ϕ̂j(ŷ) dSŷ.
(50)

The calculation of H±T is done as follows (compare Remark 4 (v)).

H±T = [n× curl Vα(J)]
± = ±1

2
J(x) +

1
2

n(x)×
∫

Σ
gradxGα(|x− y|)× J(y)dSy. (51)

6. Numerical Experiments

Here, consider one example to test the implementation. As the domain, take the cube
Ω− = [−2, 2]3. We tested the Galerkin method in (37). We chose the wave number α = 0.1
(or α = 0.5, 1.5) and the exact solution

J =
1
8

 0
(1− x1)(1− x2) · n3
−(1− x1)(1− x2) · n2

 (52)

and
M =

1
8α2 (x1 − 1) · n3 (53)

where n = (n1, n2, n3) denotes the outer normal vector at a point on the surface Σ = ∪6
k=1Σk.

We can write each term of Equation (26) as:

Vα(J)T(x) =
6

∑
k=1

∫
Σk

Gα(|x− y|)(Jk(y))
t dSy, (54)

and

gradTVα(M)T(x) =
6

∑
k=1

gradT

∫
Σk

Gα(|x− y|)Mk(y) dSy. (55)

Then, from (26), (54) and (55), the following holds.

ET =
6

∑
k=1

(∫
Σk

Gα(|x− y|)(Jk(y))
t dSy + gradT

∫
Σk

Gα(|x− y|)Mk(y) dSy

)
. (56)

We used different values of α for our investigation. In Table 1, we present the results of
the errors in energy norm and L2-norm for α = 0.1, 0.5, 1.5 for the uniform h version with
polynomial degree p = 1. In Figures 1 and 2, we compare the h-version with different α.
The exact norm, known by extrapolation, for α = 0.1 is |C| = 8.580798, for α = 0.5 is |C| =
1.6171534, and for α = 1.5 is |C| = 1.8042380. Here, C = Re〈E0

T , J〉 and Ch = Re〈E0
T , Jh〉
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(see [27]). The exact L2-norms, known by extrapolation, for α = 0.1 are ‖J‖L2 = 2.1066356
and ‖M‖L2 = 81.9249906; for α = 0.5 are ‖J‖L2 = 2.1977966 and ‖M‖L2 = 3.9588037; and
for α = 1.5 are ‖J‖L2 = 2.3826646 and ‖M‖L2 = 0.7763804.

Table 1. Errors in L2-norm and energy norm with respect to the degrees of freedom for α = 0.1, 0.5, 1.5.

N DOF |C| |C− Ch| ‖J‖L2 ‖M‖L2 ‖J− Jh‖L2 ‖M−Mh‖L2

α = 0.1

1 144 8.502965 1.153119 2.085189 80.704374 0.299829 14.08929

2 576 8.568451 0.460150 2.104369 81.690279 0.097681 6.196968

3 2304 8.578833 0.033717 2.106395 81.879637 0.031823 2.725645

4 9216 8.654072 0.073274 2.117002 83.123825 0.010367 1.198835

α = 0.5

1 144 1.603519 0.209552 2.149511 3.8937090 0.458159 0.714952

2 576 1.614451 0.093436 2.185426 3.9467491 0.232851 0.308704

3 2304 1.616616 0.041661 2.194608 3.9565591 0.118342 0.133293

4 9216 1.617260 0.018576 2.198619 3.9592220 0.060145 0.057554

α = 1.5

1 144 1.774450 0.326497 2.350909 0.7243729 0.387707 0.279375

2 576 1.800799 0.111334 2.365011 0.7422644 0.343627 0.227618

3 2304 1.803838 0.037965 2.382843 0.7539064 0.304558 0.185450

4 9216 1.804284 0.012946 2.397906 0.7909461 0.269932 0.151093
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Figure 1. Errors in the L2-norm for α = 0.1, 0.5.
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Figure 2. Errors in the L2-norm for α = 1.5 and the energy norm |C−Ch| = O(hη) for α = 0.1, 0.5, 1.5.

The convergence rates η, for α = 0.1 are, for the energy norm ηC = 1.325363, and
for the L2-norm ηJ = 1.617988 and ηM = 1.184964. With α = 0.5, the energy norm of
ηC = 1.165255, the L2-norms of ηJ = 0.976440 and ηM = 1.211619 and α = 1.5, for the
energy norm ηC = 1.552163, and for L2-norm ηJ = 0.174124 and ηM = 0.295586.

Let us compare the numerical convergence rates above for the boundary element
methods obtained in the above example with the theoretical convergence rates predicted
by Theorem 1. Note that we have implemented the boundary integral equation system
(26), and (27) and note the strongly elliptic system (30), where convergence is guaranteed
due to Theorem 1. Nevertheless, our experiments show convergence for the boundary
element solution, but with suboptimal convergence rates. Theorem 1 predicts (when
Raviart–Thomas elements are used to approximate J and piecewise linear elements to
approximate M) a convergence rate of order η = 3

2 in the energy norm for smooth solutions
J and M. Our computations depend on the parameter α which is a well-known effect with
boundary integral equations where it may come to spurious eigenvalues diminishing the
orders of the Galerkin approximations. Due to the cube Ω− = [−2, 2]3, the numerical
solution might become singular near the edges and corners of Ω−; hence, the Galerkin
scheme converges sub-optimally.

Next, we applied the boundary element method above to compute the first terms
in the asymptotic expansion of the electrical field considered in Section 1 (Remark 1). In
this way we obtained good results for the electrical field at some point away from the
transmission surface Σ by only computing a few terms in the expansion.

Algorithm for the asymptotic of the eddy current problem:

1. First solve the exterior Problem (Pα∞) by integral Equations (26) and (27), i.e., (35)
with given incident field −E0

T .
2. Compute H+

T from (51).
3. Go back to 1: Solve the exterior problem (Pα∞) with new right hand side from (18).
4. Go back to 2.
5. E = E0 + β−1E1 + β−2E2 + Rm, where E0 is the solution of the step 1 and E1 and E2

are solutions of step 3.

We have Ẽ = E0 + β−1E1 + β−2E2, and calculate the error |Ẽ− Eexact(xi)|, i = 1, 2, 3,
where x1 = (3, 0, 0), x2 = (6, 0, 0) and x3 = (9, 0, 0). To find Eexact, Equations (25)–(53) are
used. We present the results in Table 2 and in Figure 3.
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Table 2. Errors for electrical field in x1, x2, and x3.

DOF |Ẽ− Eexact(x1)| |Ẽ− Eexact(x2)| |Ẽ− Eexact(x3)|
144 0.4959 0.6499 0.8049

576 0.1043 0.0910 0.0347

2304 0.0998 0.0067 0.0378
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 100  1000  10000

e
rr

o
r

degrees of freedom

X_1
X_2
X_3

Figure 3. Errors for the electrical field with respect to the degrees of freedom for x1, x2, and x3.

7. Conclusions

In this article we have studied the scattering of time-periodic electromagnetic fields by
metallic obstacles, or the eddy current problem. An asymptotic procedure was described,
applied for large conductivity, and reflects the skin effect in metals. A special integral equa-
tion procedure was introduced for the exterior boundary value problems corresponding to
perfect conductors. In addition, an FEM/BEM coupling procedure was presented for the
transmission problem, and the implementation of Galerkin’s elements was considered for
the perfect conductor problem. The numerical experimentation showed good behavior by
the procedure.
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