
1

Multi-Period Travelling Politician Problem:

A Hybrid Metaheuristic Solution Method

Masoud Shahmanzari Deniz Aksen
 Saïd Salhi

Faculty of Business,

Istanbul Commerce University,

İstanbul, Turkey

College of Administrative Sciences and

Economics, Koç University,

İstanbul, Turkey

Kent Business School,

Centre for Logistics and Heuristic Optimisation,

University of Kent, Canterbury, United Kingdom

A B S T R A C T

This paper studies the Multi-period Travelling Politician Problem whose objective is to maximise the

net benefit accrued by a party leader during a fixed campaign period. The problem is also characterised by

flexible depots since the daily tours realised by the party leader may not start and end at the same city. A

hybrid multi-start Iterated Local Search method complemented with a Variable Neighbourhood Descent is

developed to solve the problem heuristically. Two constructive procedures are devised to generate initial

feasible solutions. The proposed method is tested on 45 problem instances involving 81 cities and 12 towns

in Turkey. Computational results show that the hybrid metaheuristic approach outperforms a recently

proposed two-phase matheuristic by producing 7 optimal solutions and 17 new best solutions. In addition,

interesting practical insights are provided using scenario analysis that could assist campaign planners in

their strategic decisions.

Keywords Routing Election logistics Travelling politician problem Iterated Local Search

Variable neighbourhood descent Scenario analysis

1 Introduction

This paper looks into the Multi-Period Travelling Politician Problem (MPTPP) which arises in the

planning of electoral campaigns. A set of cities with population- and time-dependent rewards and a set of

campaign days are given. The politician’s campaign team seeks to produce an efficient meeting schedule

for the politician. Their objective is to collect the highest possible total reward from the meetings held in

selected cities until the end of the campaign period. The schedule consists of either open or closed daily

 Corresponding author. ORCID ID: 0000-0003-1734-2042

T: +90 (212) 338 1684, F: +90 (212) 338 1653, Email: daksen@ku.edu.tr (D. Aksen)

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the Operational Research Society on 23 Apr 2021,
available online: https://www.tandfonline.com/doi/full/10.1080/01605682.2021.1895684.

mailto:daksen@ku.edu.tr

2

tours with the added restrictions of maximum tour duration and the necessity to return to the campaign

centre frequently. The name of the MPTPP derives from Periodic Travelling Politician Problem originally

coined in Aksen and Shahmanzari (2018). It can be classified as an application of the Roaming Salesman

Problem (RSP) to election logistics. The RSP was first introduced in Shahmanzari et al. (2020) as a strategic

campaign planning and reward collection problem with rich routing elements. In addition to capturing the

MPTPP, the RSP can be used to model such problems as touristic trip planning, marketing campaign

planning, and planning of client visits by company representatives.

The MPTPP which we investigate in this paper has some similarities with a multi-period extension of

the Prize Collecting Travelling Salesman Problem (PCTSP) with time-dependent rewards and multiple

visits. However, the tour does not have to be a round-trip. Besides, a city may be visited either in transit or

for the purpose of a meeting.

There are two types of rewards, namely base rewards and depreciated rewards. The base reward is

defined a priori for each city according to its characteristics, while reward depreciation circumvents

successive meetings in the same city within short time intervals. It is also worth noting that cities of high

population or significance may host multiple visits.

MPTPP has five unique features. First, a maximum tour duration is to be observed in each daily tour.

Second, it is a selection problem since not every city has to host a meeting. Third, daily tours can be either

an open or a closed route. Fourth, each city is associated with a time-dependent reward which changes

linearly according to the day of the meeting and the recency of the previous meeting in that same city.

Finally, certain cities may host more than one meeting.

Consider two sets of cities denoted by 1,...,nV and 0 N V where the latter includes a

fictitious city (indexed as 0) and the capital city (indexed as 1) which acts as the campaign centre. Also

given is a set of days }1,.{ ..,mT before the elections. On each day tT , any city iN can be visited

with or without a meeting. A base reward 0i is specified for holding a meeting in city .iN The

travelling cost from city i to city j is known in advance and denoted by ijc , , , i j i j N . Similarly, the

travelling time between each pair of cities is given by , , , ijd i j i j N .

There is a maximum allowed daily tour duration . From a marketing and practical viewpoint, there is

also an explicit limit on the number of meetings that can be held per day which is referred to as . There

is a meeting time associated with each city iN which is denoted by .i The campaign of the politician

is assumed to start in the base (capital) city 1i in the morning of day 1t , and ends in the evening of

day .t m At the end of a day tT , the politician stays overnight in some city iN . We remark that

waking up or staying overnight in a city i does not necessarily yield a reward collection in that city. Also,

for political reasons, the politician cannot be away from the capital for more than consecutive days.

3

The MPTPP is a generalised version of the well-known travelling salesman problem (TSP) which is one

of the oldest NP-hard combinatorial optimisation problems. For several decades, the academic literature

concentrated on developing heuristic approaches to find high-quality solutions for large-scale combinatorial

optimisation problems. Recently, cross-fertilisation of different optimisation techniques—including not

only (meta)heuristics but al, so exact algorithms, known as matheuristics, has been introduced as a new

variant of algorithms to deal with such problems. The motivation behind this effort is to exploit the potential

synergy that might be harvested from the combination of complementary algorithmic characteristics.

Especially the past 12 years saw a substantial growth in the numbers of workshops, conferences, books,

special journal issues, and original research articles about hybrid algorithms the scope of which is not

limited to combinatorial optimisation problems, but also extend to problems of continuous and multi-

objective optimisation (Blum et al., 2011). The method we propose in this paper consists of two distinct

metaheuristics to tackle the MPTPP, thus fits one of the categories of heuristic hybridisation as described

in Salhi (2017).

As already mentioned above, Shahmanzari et al. (2020) recently solved the MPTPP in the framework

of an election logistics application of the RSP by using a two-phase matheuristic. In this study, we propose

the hybridisation of a multi-start iterated local search and a variable neighbourhood descent method as an

improved solution technique for the same problem. The new solution approach produces better results. In

addition, an extensive and methodical scenario analysis is conducted which returns a more in-depth

perception of various situations that might arise in the planning of an election campaign. The contribution

of this study is threefold.

1. Designing a hybridised metaheuristic solution method that integrates Iterated Local Search (ILS)

and Variable Neighbourhood Descent (VND) to solve the problem recently proposed by

Shahmanzari et al. (2020)

2. Producing new best known solutions for large instances which can be used for benchmarking.

3. Presenting an extensive scenario analysis for obtaining managerial insights in the framework of a

real-life election logistics application in Turkey.

The remainder of the paper is structured as follows. Section 2 reviews the literature relevant to the

MPTPP. It is followed by Section 3 which describes the problem. Section 4 elaborates the proposed hybrid

multi-start ILS algorithm and a VND metaheuristic collectively referred to as the MS-IVND algorithm.

Detailed computational results are presented in Section 5 along with a scenario analysis in Section 6. The

findings of the study are summarised in Section 7.

2 Literature review

The first TSP variant that is related to the MPTPP is the periodic travelling salesman problem (PTSP)

where n cities have to be visited during a period of m days satisfying the required visit frequency of each

4

city. One of the first formulations for the PTSP is provided in Cordeau et al. (1997). The objective is to

minimise the travelling distance of the entire planning period while constructing a tour for each day and

meeting the visit frequency of each city. Apart from additional assumptions in our model, the main

distinction between PTSP and MPTPP lies in the fact that the rewards in MPTPP are time-dependent.

Moreover, three types of tours are present in MPTPP. Finally, unlike PTSP, MPTPP does not include a

fixed depot.

Another class of TSP variants relevant to the MPTPP is known as TSP with profits (TSPP). This class

of problems comprises the prize collecting travelling salesman problem (PCTSP), the profitable tour

problem (PTP), and the orienteering problem (OP); see Feillet et al. (2005) for more information. MPTPP

is more complex than these TSP variants as it contains multiple real life assumptions such as the presence

of reward complexity, no penalty associated with non-visited cities, the requirement to visit campaign

centre frequently, and not having a fixed depot. TSPP applications arise in a wide range of business

operations, including realistic TSPs, job scheduling, freight transportation, or they occur indirectly as a

subproblem in solution approaches dedicated to other routing problems. The TSPP is by definition the

single criterion version of a bicriteria extension of the TSP with profit maximisation and travel cost

minimisation being the two criteria. The basic characteristics of this generic problem are as follows.

(i). There is a value (like a profit or prize) associated with each vertex of the underlying graph.

(ii). A feasible solution is not required to visit all vertices.

(iii). A vertex can be visited at most once.

(iv). The distance (cost) matrix is nonnegative and satisfies the triangle inequality.

In PCTSP there are three attributes to consider, namely, the travel cost between cities i and j, the reward

or the prize that is gained by visiting a given city and lastly the penalty of not being able to visit a given

city. The aim is to determine a circuit that minimises the sum of travel costs and penalties of unvisited cities

while guaranteeing at least a minimum total profit. Structural properties of the PCTSP related to the TSP

polytope and the knapsack polytope were presented by Balas (1989) where families of facet-inducing

inequalities were identified. Bounding procedures based on different relaxations were developed by

Fischetti and Toth (1988) and Dell’Amico et al. (1995). The lower bound obtained according to the latter

paper was used in a follow-up study by Dell’Amico et al. (1998) as the starting point of a Lagrangian

heuristic. A branch-and-cut algorithm was proposed for the undirected PCTSP in the paper by Bérubé et al.

(2009). The authors adapted and implemented some classical polyhedral results and derived cut inequalities

for the PCTSP.

Another variant of the TSPP is the PTP where the objective is to maximize the net profit. This problem

was first introduced by Dell’Amico et al. (1995). Fischetti et al. (2007) examined an extended, but related

problem to cater for several vehicles with identical capacity. The last problem in the TSPP class is the OP.

The goal in an OP is to determine a circuit or a path on a graph such that the sum of all collected prizes is

5

maximised while still satisfying the upper bound on the total travel cost or time. Vansteenwegen et al.

(2011) note that OP can be viewed as a combination of the knapsack problem and the TSP. Feillet et al.

(2005) show that there is an equivalence between the path-seeking and circuit-seeking versions of the

problem. The name “orienteering problem” originates from the treasure hunt game of orienteering in which

individual competitors start at an initial control point, try to visit as many checkpoints as possible, and

return eventually to the control point within a given time frame. Each checkpoint has its own reward. The

objective of the game is to maximise the collected rewards. Several examples of OP applications have been

cited in Ke et al. (2008) and in Vansteenwegen et al. (2011). These include orienteering competitions,

routing technicians to service customers at geographically distributed locations, time-restricted fuel

delivery to households with different urgency scores, athlete recruiting from high schools for a college

team, pickup or delivery services with private fleets requiring the selection of only a subset of available

customers, and trip planning for tourists visiting a city or a region. Another noteworthy OP application is

found in Millar and Kiragu (1997). It involves fish scouting where a subset of fishing grounds are sampled

to maximise the value of catch rate assessments. The authors referred to the underlying problem in this

application as the selective TSP (STSP).

As mentioned in Section 1, MPTPP was first introduced in a paper by Aksen and Shahmanzari (2018)

where the authors presented a mixed-integer linear programming formulation for the model solution of the

problem. Later, Shahmanzari et al. (2020) proposed a two-phase matheuristic and newly generated data sets

for a closely related version of the same problem, namely the RSP. We use the same data sets of the latter

authors in our computational experiments. Aligned with the state-of-the-art literature, the variant that

appears to be the most relevant and similar to our MPTPP is the multi-period OP with time windows which

was investigated by Tricoire et al. (2010). The most critical difference is that in their study each tour starts

and ends at the same central node known as the depot, whereas in our problem the terminal node of a tour

is not known in advance. Also in our case, certain cities are allowed to be visited more than once, and the

reward function changes according to the day of visit.

3 Problem description of MPTPP

The MPTPP is defined as follows. Given a set N of n cities ()nN and a set T of m days

(),mT each city i is associated with a nonnegative reward i and a meeting duration i . For each

daily tour, there is a maximum duration and a maximum number of meetings . There are three possible

types of tours the politician may consider:

Type 1 tours: Multi-city closed tour

The politician starts the day (wakes up) in city i on day t , leaves i and visits at least one more city

scheduled for that day. At the end of the day, the politician returns to the same city i to stay overnight.

6

Type 1 tour is a closed tour starting and ending at city i and involving at least one more city other than city

i (see Fig. 1).

Type 2 tours: Single-city tour

The politician wakes up in city i on day t , spends the whole day in the same city collecting the meeting

reward and stays overnight in the same city. In Type 2 tours we assume that the politician goes from city i

to the abovementioned fictitious city 0 and returns from 0 to i . This tour is therefore treated as a closed

tour starting and ending at city i (see Fig. 2).

Type 3 tours: Multi-city open tour

The politician wakes up in city i on day t , and goes to another city j . In between cities i and j the

politician may visit one or more cities, or may directly travel from i to j where the politician stays

overnight. Type 3 tour is an open tour starting in city i and ending in city j as shown in Fig. 3.

Objective function

1

1 1
max.

it its

i t i t s t

ij ij

i

t

t

i

i j

m t m t s
NET BENEFIT FM R

m m Km

K c X

N T N T

N N T

 (1)

ijtX , itFM and itsR in (1) are binary decision variables which refer to traversing arc (,)i j on day t ,

holding the first meeting of city i on day t , and holding a meeting in city i on day t when the previous

meeting in the same city was held s days ago, respectively. The product resulting from the multiplication

of the base reward i with the binary variable itsR in the second summation term of the objective function

NET BENEFIT in (1) is depreciated further by a coefficient K . This depreciation is applied to successive

meetings held in the same city. A simple normalisation coefficient denoted by K in (1) is used to make the

rewards and travelling costs compatible. For completeness, the mathematical formulation of MPTPP is

provided in Appendix A.

The reward that accrues from meetings is calculated according to the following rules. Further details are

provided in Section 5.1 where we elaborate time-dependent rewards.

Rule 1: The earlier a meeting in the campaign period, the higher its reward.

k, l, m,… j

 i

Fig. 3 Type 3 tour

 i

j, k, l,…

Fig. 1 Type 1 tour

 i

0

Fig. 2 Type 2 tour

(0: Fictitious City)

7

Rule 2: The sooner a meeting is held after another in the same city, the more its reward is reduced.

The following constraints are considered in our implementation.

(i) Chain feasibility: Except for the last day, the terminal city of each day should be the same as the

starting city of the next day.

(ii) Maximum tour duration: The total length of each daily tour should not exceed .

(iii) Return to campaign centre: The campaign centre must be visited as a terminal node at least once

every days.

(iv) The maximum number of meetings for different city categories: There cannot be more than three

meetings in big cities. This limitation reduces to two for regular cities. The remaining cities can host

at most one meeting during the entire campaign.

(v) No repeated meetings in the same city on the same day: Each city can host at most one meeting every

day. This applies only for closed tours.

(vi) At most one meeting in big cities on the same day: If there is a meeting in one of the big cities, there

cannot be another meeting in the remaining big cities on the same day.

(vii) Maximum number of meetings per day: There cannot be more than meetings each day.

4 Proposed metaheuristic

MPTPP can be formulated as a 01 integer program as stated in Shahmanzari et al. (2020) where a two-

phase matheuristic is also proposed. Their approach is able to solve small instances of the problem in short

CPU times. However, the overall solution quality deteriorated rapidly in medium and large size instances.

In this study we develop a hybrid metaheuristic that incorporates ILS and VND to overcome the

shortcoming of the matheuristic in Shahmanzari et al. (2020). We refer to the new hybrid method as the

Multi-Start Iterated Variable Neighbourhood Descent (MS-IVND). The idea of multi-start optimisation

proved to be promising in routing problems as explored by Reihaneh and Ghoniem (2018) for the

distribution of pallets dispatched from a food bank to distant destinations of non-profit organisations.

4.1 General framework

We propose a metaheuristic based on ILS which calls a local search procedure iteratively by feeding a

different starting point in an attempt to escape local minima. In brief, ILS has two main components,

namely, Perturbation and Local Search (LS). Once an initial solution is constructed, the perturbation step

diversifies the current solution by generating a new solution with a small modification to avoid the

algorithm from being trapped in the same local minimum. At each iteration, a new solution is generated

randomly by the perturbation mechanism which is then utilised by LS. See Lourenço et al. (2003) for a

comprehensive tutorial of ILS, and Salhi (2017) for an overview of heuristic search including ILS.

The high-level architecture of ILS is sketched in Algorithm 1. The algorithm starts by generating an

initial solution 0S . Inside the main loop of the algorithm, a perturbation mechanism and a local search are

8

applied to this solution. If the resulting solution S satisfies the acceptance criterion, it replaces .S This

procedure is repeated until the termination condition is met.

Algorithm 1. Basic ILS

1: 0S =GenerateInitialSolution (See Section 4.4)

2: S=LocalSearch(0S) (See Section 4.6)

3: Repeat

4: S =Perturbation(S) (See Section 4.5)

5: S =LocalSearch(S)

6: S=AcceptanceCriterion(S , S)

7: Until the termination condition is met

8: End

4.2 The MS-IVND metaheuristic

Our proposed metaheuristic contains four additional features.

(i) The cyclic use of two novel constructive heuristics to build the initial solution from where the

algorithm restarts after a certain number of iterations without improvement. Using this technique,

we allow the algorithm to escape local minima.

(ii) The incorporation of a variable neighbourhood descent (VND) as a local search. See the review by

Hansen and Mladenović (2003) for an overview of the VND method, its variants and applications.

(iii) Two diversification strategies: The first one starts the algorithm from a new initial solution that is

constructed by either one of the two heuristics presented in Sections 4.4.1 and 0, respectively. The

second one perturbs the best known solution to generate a new starting solution for the local search.

(iv) The incorporation of neighbourhood reduction to accelerate the search

The pseudocode of the MS-IVND method is given in Algorithm 2. The main loop of MS-IVND (lines

4–19) performs a sequential ILS. The initial solution of each ILS iteration is constructed using either the

heuristic ESCC or SHRC which will be explained in Section 4.4. At every ILS iteration (lines 11–19) a

perturbation mechanism is applied followed by a VND. The current ILS loop terminates when the

maximum number of iterations without improvement max() is reached. Once the internal ILS loop stops,

the algorithm generates a new initial solution with different characteristics to start over again. This way the

entire process turns into a multi-start type method. The idea is to explore other parts of the solution space

in order to avoid losing time in the VND step whenever it is trapped at a local optimum. The stopping

criterion of the main approach is a maximum number of iterations denoted by max .iter Once this threshold

is exceeded, both VND and MS-IVND loops will terminate, and the best found solution *S is returned. We

describe the primary components of MS-IVND in the following sections. We first provide the solution

9

representation, which is followed by the generation of the initial feasible solution, the perturbation

mechanism, and the local search procedure. To accelerate the search we also resort to a granular

neighbourhood reduction scheme which is used throughout the local search.

Algorithm 2. MS-IVND

1: 1iter

2: 1

3: *S // *S is initially empty set.

4: While maxiter iter Do

5: If iter is an odd number

6: ()initS ESCC (See Section 0)

7: Else

8: ()initS SHRC (See Section 4.4.1)

9: End If

10: ()Best initS VND S (See Section 4.6)

11: While max Do

12: ()Pert BestS Perturb S

13: ()Temp PertS VND S

14: If () ()Temp BestNetBenefit S NetBenefit S

15: Best TempS S

16: Append BestS to the set of *S ;

17: 0

18: End If

19: 1

20: End While

21: 1iter iter

22: End While

23: Return the maximum element of *S

4.3 Solution representation

A solution of MPTPP is encoded as two 2-dimensional lists of nodes, one for routing schedules and one

for meeting schedules. Each list consists of m arrays (one for each day of the campaign period) where the

sequence of visited cities is indicated. Fig. 4 represents an example of a campaign of 3m days with four

cities being visited on the first day while only three meetings are held. The meeting for city 4 which is the

last city visited on the first day is held on day 2. Therefore, that city becomes the starting city of the second

day’s tour. In the solution representation of MPTPP, the first list records the sequence of visited cities for

each day regardless of whether there is a meeting there or not, whereas the second list records the meetings

10

of each day. The order of nodes in the second list is not important since rewards earned from meetings are

not dependent on the actual order of visits to cities within a day.

4.4 Initial solution construction

We propose two constructive heuristics to obtain initial solutions for the MS-IVND. Every ILS in our

implementation starts with a feasible initial solution that is produced by either a greedy heuristic or an

exhaustive search. The main motivation for alternating between these two heuristics is to diversify the

search. Both methods initiate with a solution consisting of m empty routes, each for one of the m days of

the campaign period. Cities are iteratively inserted into routes until a stopping criterion is met. The first

heuristic is called Selecting Highest-Reward Cities (SHRC) where it follows a similar schema to the

nearest neighbourhood search. However, it inserts the next city into the route by considering the reward of

the unrouted cities. The second heuristic which is named Exhaustive Search of Candidate Cities (ESCC)

performs an exhaustive search to find the best route for each day. We will describe these two procedures in

the following two subsections.

4.4.1 The SHRC heuristic

SHRC starts by assigning a selection probability for each unrouted city; the higher the reward, the higher

the chance to be selected for insertion. The first selected city is connected to the initial node, which is the

campaign centre indexed as 1. After checking the feasibility of the route, the search either reverses to the

previous move or jumps to another node. This procedure continues until the route’s length exceeds the daily

maximum tour duration. Then, the SHRC starts again to construct the route of the next day. In SHRC the

highest-reward cities are mostly assigned to the early days of the campaign. The search continues until

either no unrouted city can be inserted due to the violation of the maximum tour duration or no other city

is available for insertion. The main steps of SHRC are presented in Algorithm 3. We assume that every city

is visited only once, and every visited city hosts a meeting. For the terminal (depot) node of each day, it is

Solution:

 ,

1

2

3
4

5

6

7

8

Day 1

Day 2

Day 3

Fig. 4. Example of a solution with 8n and 3m

11

possible to hold the meeting at the end (beginning) of that day or shift the meeting to the beginning (end)

of the next (previous) day.

Algorithm 3. The construction of the initial feasible solution: SHRC

1: For 1day to m Do

2: While initS day is time feasible Do

3: i Pseudo-random selection of an unrouted city

4: Append i to initS day ;

5: End While

6: Drop i from initS day ;

7: 1init iS day

8: End For

9: Return initS

4.4.2 The ESCC heuristic

ESCC is also a greedy heuristic which builds daily routes one by one; but it seeks to assign cities to days

relatively quickly. The detailed pseudo code of ESCC is presented in Algorithm 4. The main idea is to

assign the cities with higher rewards to the early days of the campaign due to the characteristics of the

reward function. This assignment procedure is performed through an exhaustive search repeated for each

day of the campaign period (the outermost For loop in lines 2–28). For each day tT , we first create a

sorted list of all cities with respect to their updated rewards (lines 3–9). Then, we build a feasible route such

that the maximum possible net benefit is achieved considering limitations like the maximum tour duration

and the necessity to return to the campaign centre periodically (lines 10–23). To this end, all possible

permutations of selected cities are evaluated within a CPU time limit of MaxTimeInit for each day (lines

20–22). In our experiments we set MaxTimeInit to one second. Finally, a feasibility restoration function is

utilised to make the solution feasible (lines 24–26).

In the ESCC heuristic we assume that there will be a meeting in every visited city of the daily tour other

than the wakeup city. It is interesting to note that the wakeup city of day t never hosts a meeting; but being

the terminal city for day (1)t where the politician stays overnight, it always hosts a meeting on day

(1).t

12

Algorithm 4. The construction of the initial feasible solution: ESCC

1: Initialize WakeupCity(1) 1City and TopCities ; // City 1 refers to the campaign centre.

2: For 1t to m Do

3: If 1t

4: Rewards

5: Else

6: Calculate the reward of each city by taking into account the current meeting day t and

the recency of the previous meetings which may have been held before day t ;

7: End If

8: Sort all cities eligible for hosting a meeting on day t in descending order of their rewards

into the array tH ;

9: Append WakeupCity()t to the set TopCities ;

10: 1k

11: While TopCities 6 Do // We allow at most six visits on a tour.

12: []tj k H

13: If WakeupCity()t j

14: 1k k

15: Else

16: TopCities To }pCities { j

17: 1k k

18: End If

19: End While

20: While CPU time elapsed MaxTimeInit Do

21: Evaluate all the 5! tour permutations and select the one with the lowest total travelling cost.

Break ties arbitrary; // Each possible permutation represents an open tour for day t.

22: End While

23: Call the selected tour BestTour ()t
* * * * * *]1 ,2 ,3 ,4 ,5 ,6[// 1* is going to be ()WakeupCity t .

24: If BestTour ()t is infeasible with respect to MaximumTourDuration

25: Crop BestTour ()t from its right end starting at city 6* until it becomes time-feasible;

26: End If

27: WakeupCity(1)t last visited city in BestTour ()t

28: End For

29: Return BestTour ()t , 1,...,t m .

4.5 The perturbation mechanism

Perturbation plays a crucial role in our implementation since it forces the algorithm to escape from the

present local optimum. One of the main goals in such schemes is to control the level of perturbation by

13

avoiding too strong or too loose modifications as this balance helps to maintain the desirable properties of

the current solution. The perturbation phase used in MS-IVND accepts both improving and non-improving

moves. In our implementation, the perturbation operator returns a randomly perturbed solution by

considering three potentially-deteriorating moves which are randomly selected in each iteration.

M1: Two pairs of two distinct cities are randomly selected and their positions are swapped.

M2: The two cities with the lowest rewards are replaced with two unrouted cities.

M3: A city from a route is randomly removed and inserted into the cheapest position in another route.

It is worth noting that the above perturbation transforms the current solution configuration into a new

configuration that is unlikely to be reversed to its previous state. This sort of a perturbation mechanism is

commonly used in tabu search to avoid cycling. We have also tested other moves such as the well-known

2-Opt. In this classical move, two edges in a route are removed and reordered to eliminate crisscrosses

which would augment the total travelling distance when triangular inequality applies (Croes, 1958).

However, the results were found to be inferior; and hence not used here.

4.6 Local search procedure

We use the variable neighbourhood descent (VND) method as our local search procedure (LS). VND

searches for improving solutions within various defined neighbourhoods used in a systematic way to avoid

local optimality (Hansen and Mladenović, 2003). VND is in principle similar to, though much simpler

than, the multilevel metaheuristic developed by Salhi and Sari (1997) for multi-depot routing problems

where local searches known as levels are used instead of neighbourhoods. The main steps of VND are

sketched in Algorithm 5.

Algorithm 5. VND

1: Improved FALSE

2: While Improved FALSE Do

3: 1k

4: While
maxk k Do ((1) 4) 1k k mod

5:
* (,)kS LocalSearch S N

6: If
*() ()NetBenefit S NetBenefit S

7:
*S S

8: Improved TRUE

9: End If

10: 1k k

11: End While

12: End While

13: Return S

14

4.6.1 Neighbourhood structures

We introduce four neighbourhood structures with two being inter-route and two intra-route.

N1: 1-1 Exchange Inter-route:

Two nodes from two distinct routes are randomly selected, and their positions are exchanged.

N2: Drop-Add:

One node is randomly selected and dropped from its current route. Next, the unrouted node with

the highest reward is selected and inserted into the cheapest position in other routes.

N3: 1-1 Exchange Unrouted:

Two nodes are randomly selected from the set of routed and unrouted nodes, respectively. The

interchange is made between the two.

N4: 1-1 Exchange Intra-route:

Two nodes in the same route are randomly selected and their positions are swapped. The selected

nodes can be either a depot (terminal) node or a transient city. In case of a depot (or a terminal

node) is selected, the last (first) node of the previous (next) period is changed as well.

Fig. 5 depicts these four moves. As for all neighbourhoods, we execute the best improving moves (if

any) where they might affect either scheduling or routing decisions. Each operator is able to select any type

2 7 3 4 1

6 0 5 8 9

2 7 0 4 1

6 3 5 8 9

2 7 3 4

6 0 5 8 9 6 0 7 8 9

2 5 3 4

2 7 3 4 1

6 0 5 8

2 7 3 1

6 0 5 11 8

9 11 14 9 4 14

2 7 3 4 1 2 4 3 7 1

1-1 Exchange Inter-route

Drop-Add

1-1 Exchange Unrouted

1-1 Exchange Intra-route

Fig. 5. Examples for the four moves used in VND

15

of nodes including depot, terminal, and transient nodes. For example, in the first two cases, the moves are

more complicated due to the resulting changes in the route of the next or the previous period. Moreover, if

a node is inserted as a depot (terminal node), we check whether holding the meeting in the current day or

the previous (next) day improves the objective value. If this is the case, we assign the meeting to that day.

In our hybrid MS-IVND method, we explore only feasible regions of the solution space since the

feasibility restoration is quite time-consuming for the MPTPP. Hence, a solution is only accepted if it is

feasible with respect to the constraints defined in Section 3.

4.7 Acceleration scheme

For the purpose of accelerating the search, we incorporate a neighbourhood reduction scheme similar to

granular neighbourhoods in Tabu Search (Toth and Vigo, 2003). During the insertion of node i into route

(, 1,..., 1,)R j j k k , if we observe min(,)ij ik jkt t t where is an appropriate positive coefficient and

ijt denotes the travel time between i and j , we allow the evaluation of this move. Otherwise, this move is

eliminated. The logic behind such a restriction is to prevent the algorithm from consuming CPU time by

evaluating non-promising moves. Obviously, if node i is too far from the starting and ending nodes of a

route, such an insertion becomes a non-promising move. Therefore, in our MS-IVND implementation only

those moves are taken into consideration in which i is fairly close to either j or k or both. Similar

neighbourhood reduction schemes were successfully developed earlier for the multi-depot vehicle routing

problem by Salhi and Sari (1997). These acceleration schemes are also highlighted in Salhi (2017) as part

of an effective design in heuristic search in general, and fully exploited in Sze et al. (2016, 2017) for the

classical and the cumulative vehicle routing problems.

5 Computational results

We tested our hybrid solution method MS-IVND on a Dell Precision T7810 model PC equipped with

Intel Xeon® E5-2690 v4 2.60 GHz processor and 32 GB RAM running 64-bit Windows 10 Professional.

The Xeon® processor provides 28 threads with the hyper-threading feature turned on. We coded the

mathematical models of MPTPP and the MS-IVND method in Python 3.6.3 (64-bit version). For the

solution of the models we employed the commercial mixed-integer linear programming (MILP) solver

GUROBI 7.5.0 (GUROBI Optimization, 2020) which is called within the Python code.

The solver specific options applied to all runs are listed in Appendix B where more information is

provided. Using 45 MPTPP instances from Shahmanzari et al. (2020) we compared the performance of

MS-IVND with the best known solutions and commercial solver results in that paper. These instances were

generated with real-world travel distances and times among all cities of Turkey. In each instance at least

one big city, one midsize city and one small city are included. Appendix C presents the characteristics of a

16

medium-size instance with 40n cities and a planning horizon of 10m days. The best tours for this

instance are mapped in Fig. C.2. All instances are publicly available at http://shahmanzar.ir/MPTPP.html.

We consider the 80 cities (provinces) of Turkey plus a campaign centre, namely, the capital city Ankara.

At the time of the 2015 elections, Turkey had 81 cities and 85 electoral zones where İstanbul was comprised

of three zones, İzmir and Ankara of two zones each. Each city is associated with a base reward value and a

fixed meeting duration.

The maximum tour duration limit which is 14 hours (12 hours) in the summer (in the winter) imposes

an implicit threshold on the number of cities that can be visited any given day. Each city can accommodate

at most one meeting a day. There can be an upper bound (such as two or three) on the total number of

meetings held in each city during the campaign period. The meeting durations range from 60 to 120 minutes

depending on the population of the host city. For the three biggest cities, namely İstanbul, Ankara and

İzmir, it is 120 minutes. For cities with fewer than one million population it is 60 minutes, and 90 minutes

for all other ones. Another point to be mentioned is the periodic returns to the campaign centre Ankara. The

politician cannot be away from the capital city for more than consecutive days with {4,5,6,7}.

The travel time between a pair of cities is the fastest trip (either by road or by airplane), and its cost is

the sum of the monetary costs of the trip legs. The reader interested in the derivation of these two entities

is referred to Shahmanzari (2019) where the trade-off between road and air travel is explained in detail.

5.1 Time-dependent rewards

In this section we expound the reward calculation and the categorisation of cities in Turkey from the

main opposition party’s perspective. The proposed model utilises a multifaceted reward function. Initially,

a nonnegative prize of i (base reward) is specified for holding a meeting in each city iV where i

depends on two factors:

Factor 1: Population of city iV ().iPop

Factor 2: Ratio of votes of the politician’s party (PP).

In addition, the reward earned in city iN on day tT is dependent on two further factors:

Factor 3: Number of remaining days denoted by ()m t until the end of the campaign.

Factor 4: Number of days passed since the previous meeting in the same city, denoted by s where

1 1s t .

The first two factors directly affect the base reward i , while the remaining two make the reward time-

dependent. Each factor is explained below.

Factor 1: Population

http://shahmanzar.ir/MPTPP.html

17

In an ideal representative election system, the number of representatives allocated to each electoral

zone (to each city in the context of our problem) has to be approximately commensurate with the

population share of that zone (Çarkoğlu and Aksen, 2019). This implies that population is one of the most

decisive factors in determining the importance of a city in an election campaign.

In the calculation of the parameter i , each city is first assigned a starting base reward of 100 units.

Each city’s population is divided by the minimum population of all cities, rounded to the nearest integer,

and multiplied by a city-dependent multiplier. The result is added to the initial reward of 100, and then

multiplied further by a Criticality Factor ()iCF . The formula of the base reward calculation is shown in

(2) where where the operator ⟦∙⟧ rounds its argument to the nearest integer number.

.

100()
Popi

i i i
Min.Pop

= CF × + × Multiplier (2)

The multiplier in (2) is taken as 3.0 for the top seven (most populated cities), but 2.0 for İstanbul. The

remaining cities are assigned a multiplier value of 5.0. When a town is taken into consideration, it is

assumed that it shares the same multiplier with its parent city. These specific multipliers turned out to yield

proportionate and scaled base rewards.

Factor 2: Ratio of votes

In order to find the effect of variation in the number of votes on the number of deputies in the parliament,

the data of June 2015 election has been analysed for all cities. In our criticality analysis, we first simulated

the election procedure according to the actual vote counts registered in the election of June 2015. We were

able to reproduce exactly the same seat distributions in all 85 electoral zones of Turkey which shows the

validity of the implemented simulation. Next, we evaluated each city by decreasing and increasing the votes

of the political party in that city by 20%. Cities are categorised as discussed below. The reward statistics

are provided in Table 1.

Table 1 Statistics of rewards in criticality categories

 Noncritical Negative Critical Positive Critical Positive-and-Negative critical

Number of cities 42 19 11 9

Average Reward 268 444 564 1,193

Min. Reward 210 315 460 800

Max Reward 440 675 680 2,370

We define four criticality categories to label the importance of a city from the perspective of the political

party on the basis of the distribution of votes in the previous election. Different towns or electoral zones of

a city are mutually assigned to the same criticality category. We define four distinct categories of criticality

of cities and associate each category with a different Criticality Factor CF as follows:

18

Category 1: Noncritical Cities

These are the cities in which the number of seats won by the political party would not change even when

the number of its votes changes by 20%. We set 2iCF for .i Noncritical Cities

Category 2: Negative Critical Cities

In these cities, a 20% increase in the votes of the political party does not affect its seat number in the

parliament (the number of its deputies elected from those cities). However, a 20% decrease would cause

the political party to lose at least one seat. We set 3iCF for .i Negative Critical Cities

Category 3: Positive Critical Cities

In positive critical cities, the political party would gain at least one more seat in the event of a 20%

increase in the vote count of the past election. However, there exists no risk of losing any seat in the event

of a 20% loss in the votes. We set 4iCF for .i Positive Critical Cities

Category 4: Positive-and-Negative Critical Cities

The situation is most sensitive in cities of category 4 where an increase or decrease by 20% in the vote

count would impact the party’s current seat count in the parliament. Hence, we set 5iCF for

- - .i Positive and Negative Critical Cities

The motivation behind these CF values is to assign high rewards to highly populated cities, but doing

so at a decreasing rate. Another motivation is to close the enormous gap between metropolitan cities and

other midsize cities of Turkey. For instance, İstanbul, despite its ~15 million population, should not earn

thrice as much base reward as Ankara just because of having thrice as much population.

Criticality Analysis

To illustrate the effect of the CF, let us consider two cities, namely Samsun and Kastamonu in the Black

Sea Region. The base reward of Samsun is higher than Kastamonu (540Samsun and 500Kastamonu)

although Samsun’s population is three times higher than Kastamonu’s population. The base reward of

Kastamonu almost catches up with Samsun because the latter is a positive-critical city, whereas the former

is a negative-critical city. As highlighted earlier, MPTPP has obviously a selective nature where not all

cities in {0,1,..., }nN need to be included in the meeting schedule.

Factor 3: Number of remaining days until the election day

We assume that as we get closer to the end of the campaign, the influence of meetings will decrease. In

order to inflate the base rewards with the increasing number of remaining days until the elections, we

develop the following reward function.

1

()i i

m t
Reward t

m

 , i t N T (3)

19

If the political party decides to reverse the effect of Factor 3, the formula in (3) can be easily modified by

setting ()i i

t
Reward t

m
 . The reward of a meeting would then be the lowest on the first day and the

highest on the last day of the campaign.

Factor 4: Number of days passed since the previous meeting

In order to prevent the model from visiting highly rewarded cities frequently, we severely penalise

repeated meetings. To inflate the base rewards with the increasing number of days passed since the last

meeting, we extend the reward function previously given in (2) as follows:

1

(,)i i

m t s
Reward t s

m Km

 , i t N T (4)

where s represents the number of days passed since the last meeting and (1)K K is a prespecified

depreciation factor for repeated meetings. The criterion of depreciation is not the number of meetings held

in city i so far, but the recency of the previous meeting.

5.2 Parameter calibration

The efficiency of most metaheuristics depends on their corresponding parameters. The strength of our

MS-IVND lies in the fact that it has three parameters only: (i) Maximum number of iterations max()iter ,

(ii) Maximum number of iterations without improvement max() , and (iii) the granularity coefficient ().

As we use the same neighbourhood structures throughout the experimentation, the number of

neighbourhood structures, namely maxk is fixed and hence not considered in our parameter calibration.

Starting with a promising configuration, we performed empirical tests to determine the best tuning

parameters for MS-IVND on a benchmark set of 10 instances. Parameters were varied one at a time before

the method was run again to observe the effect of a given parameter. We compared the test results obtained

before and after varying the value of the parameter, and chose the one which yielded better results. If no

change was suggested at the end of the tests conducted for a particular parameter, we moved to the new

configuration. The following values have been tested: maxiter {25, 50, 100, 150}, max {25, 50, 75,

100}, and {0.25, 0.40, 0.75, 0.90}.

After the calibration tests we used the following parameter values in the sequel of our experiments: We

assigned a fixed value of 100 to maxiter since the number of calls to the algorithms ESCC, HRC and VND

is a significant determinant of the execution time of MS-IVND. The parameter max is set to 50 since the

multi-start nature within the scope of MS-IVND allows the search to explore diverse regions of the solution

space. Finally, the parameter is fixed at 0.75. Comprehensive results of the calibration tests are not

provided here, but can be collected from the authors. Due to the inherent randomness in our algorithm, the

20

reported MS-IVND solution values and running times for every instance of MPTPP are the averages of the

best results over ten runs.

5.3 Results on existing instances

To our knowledge, no metaheuristic has been published for the MPTPP. The only solution methodology

developed is FDOR (Finding Daily Optimal Routes) which is a matheuristic due to Shahmanzari et al.

(2020). Hence, we benchmarked MS-IVND against the commercial MILP solver GUROBI and the FDOR

heuristic on the same test instances as those reported in Shahmanzari et al. (2020). They are divided into

three sets referred to as PE.I, PE.II and LE, which comprise 22, 20 and 3 instances, respectively. Our

results are reported in Table 2 through Table 5. Instance names in the first column of each table comply

with the identification template nC-m D where n and m stand for the number of cities (excluding the

fictitious city) and the number of days in the campaign period, respectively.

The average objective values, CPU times and gaps in the first three tables have been calculated for the

pool of 38 instances in which GUROBI was able to find a best feasible solution (BFS) within a time limit

of 24 hours. The BFS constitutes the tightest lower bound on the true optimal objective value that can be

obtained by GUROBI within the specified time limit. For the remaining 7 instances of PE.I and PE.II,

we benchmarked MS-IVND with FDOR only. The results of these latter tests are presented in Table 5.

Proven optimal objective values are indicated by an asterisk (*), while the objective value (Obj. Val.) of

the best known solution (BKS) for a specific test instance is shown in boldface.

Table 2. Results for 18 PE.I instances solvable by GUROBI

PE.I

Instances

GUROBI FDOR MS-IVND

BFS
Opt.Gap

(%)

CPU
(s)

 Obj. Val.
CPU

(s)
FDOR

Gap (%)

Obj. Val.
CPU

(s)
MS-IVND

Gap (%) (s)

6C-2D 7110* 0.0 0 0.1 7110 0.1 0.0 7110 109.6 0.0

6C-3D 8181* 0.0 0 0.1 8181 0.1 0.0 8181 138.0 0.0

7C-2D 9629* 0.0 0 0.2 9629 0.1 0.0 9629 124.4 0.0

7C-4D 11597* 0.0 0 0.4 11457 0.2 1.2 11597 135.2 0.0

9C-3D 10939* 0.0 0 0.5 10788 0.1 1.4 10939 150.7 0.0

9C-4D 11668* 0.0 1 1.3 11268 0.1 3.4 11668 183.0 0.0

12C-5D 14575* 0.0 6 6.0 12906 0.3 11.5 13682 207.6 6.1

15C-7D 17240* 0.0 462 551.3 16132 0.5 6.4 16491 209.2 4.3

15C-10D 18759* 0.0 19972 30458.5 17356 0.7 7.5 18065 22.8.0 3.7

21C-7D 19138* 0.0 2026 6705.3 17325 0.9 9.5 17709 263.8 7.5

21C-10D 21904 6.8 11582 86400.0 20673 1.2 5.6 20934 230.3 4.4

30C-7D 29427* 0.0 20665 20670.3 27474 1.7 6.6 28582 217.8 2.9

30C-10D 35013 5.9 30040 86400.0 32213 2.2 8.0 33109 286.9 5.4

40C-7D 30086 4.0 59757 86400.0 28821 3.7 4.2 29187 213.0 3.0

40C-10D 36409 12.6 62342 86400.0 34672 4.9 4.8 36005 392.0 1.1

51C-7D 41087 9.9 85597 86400.0 36942 8.4 10.1 37449 423.1 8.9

51C-10D 45667 22.3 77316 86400.0 43212 11.3 5.4 44047 484.7 3.6

21

51C-30D 47279 186.7 61189 86400.0 59890 14.5 26.7 63009 829.7 33.3

Average 23094.9 23941.9 36844.1 22558.3 2.8 3.27 23188.5 270.5 0.98

Table 3. Results for 17 PE.II instances solvable by GUROBI

PE.II

Instances

GUROBI FDOR MS-IVND

BFS
Opt.Gap

(%)

CPU
(s)

 Obj. Val.
CPU

(s)
FDOR

Gap (%)

Obj. Val.

CPU
(s)

MS-IVND

Gap (%) (s)

20C-5D 25118* 0.0 44 239.2 24196 0.6 3.7 25118 306.3 0.0

20C-7D 27523* 0.0 454 1995.9 25419 0.6 7.6 27523 440.7 0.0

30C-5D 16635* 0.0 161 709.9 16052 1.5 3.5 16635 212.0 0.0

30C-7D 18855* 0.0 13163 28216.8 17997 1.8 4.6 18855 228.6 0.0

30C-10D 21251 5.9 17722 86400.0 19577 2.0 7.9 20229 219.8 4.8

40C-7D 32811 20.1 76679 86400.0 31748 3.0 3.2 33023 266.8 0.6

40C-10D 37851 3.8 51297 86400.0 34267 3.6 9.5 36427 351.7 3.7

50C-7D 32829 1.6 4945 86400.0 33101 6.9 0.8 32881 321.3 0.2

50C-10D 38098 11.8 45006 86400.0 37389 8.5 1.9 37344 325.0 2.0

50C-15D 44098 35.6 70662 86400.0 41687 11.0 5.5 42293 575.4 4.1

60C-7D 40480 2.5 36955 86400.0 38105 13.8 5.9 40237 217.7 0.6

60C-10D 48270 7.0 82709 86400.0 45446 18.8 5.8 48066 385.9 0.4

60C-20D 50559 80.1 64244 86400.0 62869 22.8 24.3 64056 565.1 26.7

70C-10D 42474 13.9 82434 86400.0 40201 26.1 5.4 45159 237.9 6.3

70C-20D 43705 112.3 83589 86400.0 51055 34.9 16.8 57439 591.3 31.4

80C-10D 40808 22.2 52003 86400.0 38423 38.6 5.8 42559 255.3 4.3

80C-20D 50777 75.1 74448 86400.0 53270 41.9 4.9 55691 350.0 9.7

Average

 36008.4 44500.9 67903.6 35929.5 13.9 1.39 37855.0 344.2 3.74

Table 4. Results for the LE instances

LE

Instances

GUROBI FDOR MS-IVND

BFS
Opt.Gap

(%)

CPU
(s)

Obj. Val.

CPU
(s)

FDOR

Gap (%)
 Obj. Val.

CPU
(s)

MS-IVND

Gap (%) (s)

39C-7D 22361 4.7 85841 86400 22164 11.7 0.9 23360 308.2 4.5

39C-10D 26774 18.5 63714 86400 27191 13.5 −1.6 27241 276.2 1.7

39C-14D 30214 57.5 76094 86400 31757 15.9 −5.1 32486 339.2 7.5

Average 26449.7 75216.3 86400.0 27037.3 13.7 1.93 27576.3 307.9 4.57

Table 5. Results for 7 PE.I and PE.II instances unsolvable by GUROBI

PE.I Instances
FDOR MS-IVND

Obj. Val. CPU (s) Obj. Val. CPU (s) MS-IVND Gap (%)

70C-15D 46818 16.6 47813 304.7 2.1

70C-40D 58408 22.2 66819 1244.3 14.4

93C-30D 68174 26.6 69444 1191.6 1.9

93C-40D 73574 27.1 75148 1798.9 2.1

PE.II Instances

22

70C-30D 57065 36.2 61786 994.1 8.3

80C-30D 57285 50.0 61605 738.4 7.5

80C-40D 62576 48.7 65027 1338.4 3.9

Average 60557.1 32.5 63948.9 1087.2 5.74

When GUROBI attains a proven optimal solution on a given instance, the associated optimality gap

between the final lower and upper bounds of the GUROBI solution with respect to the lower bound BFS

drops to 0.00%. Optimality gaps reported by GUROBI are shown under the column header “Opt.Gap (%)”.

CPU times are measured in seconds. The columns with the header BFSt in Table 2, Table 3 and Table 4

reveal the time it took GUROBI to attain its BFS. The percent gaps in the first three tables are given under

the column header “MS-IVND Gap (%)”. They have been calculated with respect to the BFS using the

formula
BFS Obj.Val.

BFS
Gap (%) 100

 . On the other hand, the percent gaps in Table 5 have been calculated

for the incumbent objective values of MS-IVND with respect to those of FDOR since GUROBI cannot

attain a feasible solution despite running for 24 hours on the instances of Table 5.

In terms of solution quality, MS-IVND outperforms GUROBI and FDOR on 11 and 40 instances,

respectively. There is a tie between GUROBI and MS-IVND in 10 instances. Nonetheless, the performance

of MS-IVND is timewise far superior to GUROBI. With reference to the BFS of GUROBI, it achieves a

smaller average gap (0.97%, 3.74%, 4.57%) than FDOR (3.27%, 1.39%, 1.93%) in all three instance

sets. The average Obj. Val. is improved by 0.41%, 5.13%, and 4.71% compared with GUROBI, and by

2.79%, 5.36%, and 2.43% compared with FDOR. The percent improvement over FDOR is 5.60% in the

hardest 7 instances which are unsolvable by GUROBI. MS-IVND finds 7 optimal solutions more than

FDOR. In addition, it achieves 17 new BKSs.

5.4 Starting GUROBI at the incumbent solution of MS-IVND

Another set of experiments with GUROBI is performed as follows. We selected all 30 MPTPP instances

where GUROBI was previously unable to find an optimal solution. For each instance we retrieved the

values of the decision variables of the implied MILP model from the incumbent MS-IVND solution, and

passed them to GUROBI as the initial decision variables vector using the MIPStart attribute.

Subsequently, we started GUROBI at this incumbent MS-IVND solution. The new BFS, Opt.Gap (%) and

CPU time results are reported and compared with the original results in Table 6. Note that the initial decision

variables vector of an optimization model in GUROBI is set to zero unless instructed otherwise.

Starting GUROBI at the incumbent solution of MS-IVND led to one more optimal solution; instance

PE.I 40C7D is now solved to proven optimality. The final BFS of GUROBI improved in a total of 18

instances. In three instances it remained the same. Interestingly, in two instances (PE.I 51C7D and PE.II

50C15D), the BFS deteriorated which means that the best possible net benefit value decreased. It is hard to

comment on this retrogression as we are not exactly knowledgeable about the internal algorithms of the

black box commercial solvers. It can also be linked to the structure of the new initial solution. Moreover,

23

in 10 instances GUROBI achieved no improvement over the respective MS-IVND solution which was fed

as the initial solution.

Our observation also supports the GUROBI documentation (GUROBI Optimization, 2020) which says

that starting the solver at an initial feasible nonzero solution will not always lead to a better solution at the

end. All in all, this approach improved the solution quality in 30 test instances, but not dramatically.

Average relative BFS improvement is about 6.58% in those instances where GUROBI was able to return a

feasible solution previously.

Table 6. GUROBI solutions before and after starting with to the incumbent MS-IVND solution.

Instances Original GUROBI Solution
 MS-IVND

solution

 GUROBI solution using the MS-

IVND solution as the initial solution

PE.I BFS Opt. Gap (%) CPU (s) Obj. Val. BFS Opt. Gap (%) CPU (s)

21C-10D 21904 6.8 86400 20934 21904 6.8 86400

30C-10D 35013 5.9 86400 33109 35034 5.9 86400

40C-7D 30086 4.0 86400 29187 30122 0.0 64501

40C-10D 36409 12.6 86400 36005 36560 12.4 86400

51C-7D 41087 9.9 86400 37449 38838 10.8 86400

51C-10D 45667 22.3 86400 44047 46319 19.6 86400

51C-30D 47279 186.7 86400 63009 63009 94.1 86400

70C-15D − − 86400 47813 47905 67.3 86400

70C-40D − − 86400 66819 66819 57.9 86400

93C-30D − − 86400 69444 69822 96.1 86400

93C-40D − − 86400 75148 75164 52.7 86400

PE.II

30C-10D 21251 5.9 86400 20229 21606 3.7 86400

40C-7D 32811 2.1 86400 33023 33026 1.5 86400

40C-10D 37851 3.8 86400 36427 37851 3.8 86400

50C-7D 32829 1.6 86400 32881 33319 0.1 86400

50C-10D 38098 11.8 86400 37344 38235 11.5 86400

50C-15D 44098 35.6 86400 42293 42293 32.6 86400

60C-7D 40480 2.5 86400 40237 40480 2.5 86400

60C-10D 48270 7.0 86400 48066 48515 6.2 86400

60C-20D 50559 80.1 86400 64056 64056 42.8 86400

70C-10D 42474 13.9 86400 45159 45159 10.1 86400

70C-20D 43705 112.3 86400 57439 57458 78.5 86400

70C-30D − − 86400 61786 61965 59.6 86400

80C-10D 40808 22.2 86400 42559 42559 17.9 86400

80C-20D 50777 75.1 86400 55691 58053 88.0 86400

80C-30D − − 86400 61605 61630 58.6 86400

80C-40D − − 86400 65027 65027 64.9 86400

LE

39C-7D 22361 4.7 86400 23360 23360 0.4 86400

24

39C-10D 26774 18.5 86400 27241 27241 16.0 86400

39C-14D 30214 57.5 86400 32486 32486 47.5 86400

Average 37426.3 30.56 86400 39227.4 39890.6 22.29 85448

5.5 Results on a Case Study

We next compare the real-life campaign plan of the party with the MILP model solution and the best

heuristic solution found by MS-IVND. This comparison better emphasises the need to solve the MPTPP.

To this end, we retrieved the opposition party’s realised meetings prior to the general election in June 2015.

In the light of these meetings, we created our large-size instance with 70 cities and a campaign period of

40 days. In order to make a fair comparison, we removed from the MPTPP model the constraints associated

with two of our assumptions.

(i) The first constraint was forcing the politician to hold at least one meeting every day. However, in

the actual meeting schedule of the party there were two meeting-free days.

(ii) The second constraint was forcing the politician to end the campaign at the campaign centre. We

also lifted this constraint since the actual campaign of the party back in June 2015 had not been

completed in Ankara. Table 7 illustrates the solutions of GUROBI and MS-IVND alongside the

party’s actual plan on the 70C-40D instance.

Table 7 Comparison of the GUROBI and MS-IVND solutions with the actual schedule of the party

 Obj. Val. Opt. Gap(%) # of Meetings CPU time

GUROBI
LB = 46,640 (BFS)

 UB = 117,427
60.3 75

259,200 s

(3 days)

Party’s Plan 24,534 — 77 —

MS-IVND 64,830 — 98 1012 s

Table 7 shows that GUROBI is not able to solve the new MPTPP model to optimality despite a time

allowance of 3 days. It can only bracket the true optimal objective value between a lower bound (LB) of

46,640 and an upper bound (UB) of 117,427 where the former is the objective value of the BFS reached by

GUROBI. However, the BFS bears a net benefit that is about 90% greater than the net benefit accrued by

the end of the actual campaign plan of the party. In the actual plan there are three meetings in Istanbul,

Ankara, and Mersin each; two meetings in Izmir; and one meeting in the remaining cities. However, the

BFS of GUROBI prescribes three meetings in İstanbul, Ankara, İzmir, and Mersin each; two meetings in

the majority of midsize cities such as Adana, Balıkesir, Bursa, Çanakkale, Hatay, Konya, Zonguldak, Uşak,

etc.; and one meeting in the remaining cities. MS-IVND, on the other hand, is able to find a much better

solution with 98 meetings. The results in Table 7 underline the massive advantage of solving the MPTPP

25

for the maximisation of the net benefit obtained from an election campaign that involves a relatively large

number of cities and spans an extended period.

6 Scenario analysis and managerial insights

In this section we conduct an extensive scenario analysis to gain managerial insights into the MPTPP.

We consider two levels of scenarios; the first level covers extreme scenarios, and the second one

investigates the effect of different objective functions. Scenario descriptions are presented in the next two

subsections followed by the last one which discusses their respective results.

6.1 Scenario analysis level 1: Extreme scenarios

We consider the following four scenarios with 14 hours as the maximum tour duration (MTD).

Scenario 1: Base Scenario, described in section 3.

Scenario 2: Base Scenario with the additional restriction of at most one meeting in each candidate

city throughout the campaign.

Scenario 3: Base Scenario where the objective function involves only collected rewards and no

travelling costs. In addition, the politician needs not return to the capital city periodically.

Scenario 4: Base Scenario with only closed daily tours originating and terminating at the capital city

every day.

6.1.1 Description of the scenarios

Scenario 1: Model Full-MILP (Base Scenario)

The politician’s campaign starts in Ankara. The politician cannot be away from Ankara for more than

5 days in a row. There is no restriction as to where to terminate the tour (sleep) at the end of a given

day and start the tour of the next day (wake up). Thus, the tour on a given day t can be either an open or

a closed tour. There is an MTD constraint in place which prohibits daily tours in excess of 14 hours.

Candidate cities are divided into three groups, namely big cities (İstanbul, Ankara and İzmir), midsize cities

and small cities where the number of meetings hosted is limited to three, two and one, respectively. The

number of meetings held each day is limited to four.

Scenario 2: Model Full-1Meet

This scenario is derived from Scenario 1 by revoking the option of multiple meetings in big and midsize

cities. Since each city can host at most one meeting during the campaign, the binary decision variables itsR

are excluded from the MILP model of the Base Scenario which, in turn, simplifies the model of the MPTPP

drastically. We then modify our MS-IVND according to the no-repeated-meeting assumption. While

exploring the neighbourhoods, a list of all meetings is kept, and the algorithm performs another feasibility

26

check to avoid repeated meetings. The net benefit definition comprising the objective function is simplified

as shown in (5). It is also worth noting that the optimal solutions (thus the optimal objective values)

of Scenario 1 and Scenario 2 may be identical.

1

(-) i it ij ijt

i t i j t

m t
NET BENEFIT Full 1Meet Z K c X

m

N T N N T

 (5)

Scenario 3: Model Rew-Only

The third scenario is derived from Scenario 1 using the following two modifications:

(i) The necessity to periodically return to the capital Ankara at least once every days is lifted.

The politician has full freedom to hop from one city to another. Also, the politician can stay

overnight in any city. Yet the campaign is still going to start in Ankara on day 1.

(ii) Travelling costs are discarded from the objective function. This fundamental change motivates

the politician to roam between all candidate cities without considering the cost of travelling.

These two modifications make our MS-IVND relatively much faster, because the computationally

expensive feasibility check of returning to the campaign centre is now redundant.

Scenario 4: Model Alt-1Depot

The fourth scenario is derived from Scenario 1 by a fundamental paradigm shift in which the politician

wakes up in the capital city Ankara every morning and returns there to sleep by the end of every day. This

implies that each daily trip is going to be a closed tour with Ankara being the depot of the trip. This reduces

the problem to a multi-period selective TSP with a single depot. In our MS-IVND implementation, we do

not permit the algorithm to apply the neighbourhood moves on depot nodes. Note that Alt-1Depot is a much

more restrictive model than Full-MILP since it does not allow open tours. Clearly, the optimal objective

value of Alt-1Depot is a valid lower bound on that of Full-MILP. Alt-1Depot is also computationally much

more tractable due to the absence of the novel binary variables representing exclusive departures from and

exclusive entrances to candidate cities. The reader is referred to Shahmanzari et al. (2020) for an in-depth

discussion of those variables of the model Full-MILP.

27

Fig. 6 Different tours in the first three scenarios.

6.2 Scenario analysis level 2: Alternative reward function

Thus far we assumed that earlier meetings produce higher rewards. In an alternative scenario, we reverse

the direction of the reward function such that the reward increases as we approach the election day, i.e. the

end of the campaign period. In this case, the objective function is defined in Eq. (6) where linearity of the

objective function is also preserved.

2
1

()
max . () i it i its ijt ijt

i t i t s t i j t

t m s t m
NET BENEFIT FM R c X

m Km

N T N T N N T

 (6)

6.3 Computational results of the scenario analysis

6.3.1 Scenario analysis level 1

The results of the four different scenarios of level 1 are presented in Table 8. The naming convention in

the leftmost column of the table sheds light on the sizes of the 10 test instances. We choose only 10 instances

to illustrate the characteristics of each scenario where we ensure that there exist small-sized, medium-sized,

and large-sized cities in every instance. Boldface figures in the BFS column of each scenario point to

proven optimality achieved by the commercial solver GUROBI. Possible tours in the first three scenarios

are illustrated in Fig. 6. Table 8 consists of four segments where in each segment the first three columns

correspond to GUROBI. These columns show the optimal or best feasible objective value, the number of

meetings held during the planning horizon () , and the final gap attained by GUROBI. Within each

segment, the second group of three columns correspond to the MS-IVND results, and show the objective

value and the final gap of MS-IVND.

The CPU time limit in all GUROBI runs was 24 hours. The average optimality gap is 6.19% which

implies MPTPP is a large-scale optimisation problem even for small-size instances. In Full-1Meet (Scenario

2), the computational complexity of the problem is greatly reduced due to the removal of the binary

variables of repeated meetings from the model and due to the simplified net benefit definition shown in Eq

(5). However, the average optimality gap of GUROBI is still high (7.20%) in Scenario 2.

Objective values obtained in Rew-Only (Scenario 3) are not comparable with the ones obtained in the

other scenarios since the travelling costs in the definition of net benefit are ignored. However, except in

three instances, namely 40C-7D, 51C-7D and 51C-10D, the count of meetings realised in this scenario is

either higher than or equal to the count of meetings in other scenarios. This can be ascribed to having a

larger feasible solution space which occurs because of lifting the necessity to visit the campaign centre

every days. Similarly, the politician in this scenario has more freedom to travel to remote cities that

would not be visited in the Base Scenario due to the net benefit being negative after the deduction of

travelling expenses. The average gap in Scenario 3 is 6.07%.

28

Table 8. Results of the four scenarios

 Scenario 1: Full-MILP Scenario 2: Full-1Meet

 GUROBI MS-IVND GUROBI MS-IVND

Instance BFS
Opt.Gap

(%)
Obj. Val.

MS-IVND

Gap (%)
BFS

Opt.Gap

(%)
Obj. Val.

MS-IVND

Gap (%)

15C-7D 17240 14 0.0 16491 15 4.3 16000 13 0.0 16000 13 0.0

15C-10D 18759 17 0.0 18065 17 3.7 16299 15 0.0 16299 15 0.0

21C-7D 19138 16 0.0 17709 17 7.5 18117 16 0.0 18117 16 0.0

21C-10D 21904 21 6.9 20934 19 4.4 20850 20 0.0 20850 20 0.0

30C-7D 29427 18 0.0 28582 18 2.9 27576 17 3.3 27912 23 1.2

30C-10D 35013 24 6.0 33109 25 5.4 32210 24 9.0 33964 26 5.4

40C-7D 30086 20 4.1 29187 18 3.0 27023 18 16.4 28550 19 5.6

40C-10D 36409 25 12.6 36005 26 1.6 32210 24 9.0 35021 28 8.7

51C-7D 41087 31 9.9 37449 30 8.9 33366 23 17.6 37042 25 11.0

51C-10D 45667 36 22.4 44047 35 3.5 35314 26 16.7 40117 30 13.6

 Scenario 3: Rew- Only Scenario 4: Alt-1Depot

 GUROBI MS-IVND GUROBI MS-IVND

Instance BFS
Opt.Gap

(%)
Obj. Val.

MS-IVND

Gap (%)
BFS

Opt.Gap

(%)
Obj. Val.

MS-IVND

Gap (%)

15C-7D 22561 16 0.0 21730 16 3.7 11539 10 0.0 11539 10 0.0

15C-10D 26061 20 0.0 25238 17 3.2 11170 13 15.4 11834 13 5.9

21C-7D 23932 17 0.0 21750 16 9.1 13779 12 0.0 13779 12 0.0

21C-10D 28927 23 3.8 26947 21 6.8 14498 15 14.6 15013 15 3.6

30C-7D 33638 18 0.0 33115 19 1.6 20774 13 0.0 20774 13 0.0

30C-10D 38148 24 10.0 36991 24 3.0 24520 17 15.9 25901 18 5.6

40C-7D 32586 19 9.5 31435 19 3.5 20893 13 7.1 21375 13 2.3

40C-10D 39876 25 13.7 39226 27 1.6 25324 18 19.73 26230 19 3.6

51C-7D 33123 19 11.0 30774 16 7.1 31154 19 0.0 31154 19 0.0

51C-10D 41325 28 12.7 38827 25 6.0 37373 26 5.1 37824 29 1.2

The results of Alt-1Depot (Scenario 4) are also interesting, as this scenario bears the most similar

conditions to the current campaign policy of the party. In comparison to Full-MILP, the commercial solver

GUROBI was able to attain optimality in one more instance (51C-7D). Table 8 reports an overall lesser

number of meetings in Scenario 4. It is apparent that the requirement to return to the capital city Ankara at

the end of every day prevents some of the meetings which were realised in the Full-MILP model of the

Base Scenario. The average gap reported by GUROBI in this scenario is 7.78%.

6.3.2 Scenario analysis level 2

The importance of holding meetings in early days or in the last days of the campaign period should be

decided by party executives indeed. Despite this fact, we present in Table 9 the comparison between the

29

original and the alternative reward functions on 14 small-size test instances where we solved the Full-MILP

model of the Base Scenario. All instances are solved to proven optimality under each net benefit function.

The column with the header “CPU (s)” indicates the solution times in seconds reported by GUROBI.

According to Table 9 the solution times obtained with the original reward function are better in 13 out

of 14 instances. The objective values are unfortunately not comparable due to different rewards being

assigned to each city in different days. The decision to choose which reward function is obviously up to the

politician. Based on the results in Table 9, we can say that the use of the alternative reward function in (6)

as the objective function of the MPTPP increases the solution times of our algorithm MS-IVND.

Table 9 Comparison of new reward function and original reward function

Instances

Full-MILP with original reward function Full-MILP with alternative reward function (6)

Obj. Value Gap (%) CPU (s) Obj. Value Gap (%) CPU (s)

6C-2D 7110.8 0.0 0.1 17441.2 0.0 0.1

6C-3D 8181.3 0.0 0.1 22272.2 0.0 0.2

7C-2D 9629.5 0.0 0.1 22172.4 0.0 0.2

7C-3D 10939.0 0.0 0.2 26778.4 0.0 0.4

7C-4D 11597.4 0.0 0.4 30339.9 0.0 0.7

9C-2D 9695.0 0.0 0.3 22172.4 0.0 0.1

9C-3D 10939.0 0.0 0.5 28572.9 0.0 0.9

9C-4D 11668.4 0.0 1.3 32149.5 0.0 1.8

12C-3D 12620.0 0.0 1.1 31726.9 0.0 1.3

12C-4D 13584.8 0.0 2.3 37076.3 0.0 3.6

12C-5D 14575.6 0.0 6.0 40382.8 0.0 6.4

15C-3D 12620.0 0.0 1.6 32750.8 0.0 2.9

15C-4D 14210.3 0.0 4.3 39496.6 0.0 6.1

15C-5D 15446.9 0.0 14.4 43533.7 0.0 159.8

7 Conclusions

In this paper we investigate a logistical planning problem arising in election campaigns which is known

as the Multi-Period Travelling Politician Problem (MPTPP). It involves a politician who wants to maximise

the net benefit of his/her campaign over a fixed period of days. Time-dependent and meeting frequency-

dependent rewards are earned by holding a meeting in a city visited on a daily tour. The objective function

represents the net benefit defined as the total collected reward minus the total travelling cost. Several real-

life aspects such as the necessity to return to the campaign centre frequently, the maximum tour duration,

and a time- as well as recency-dependent reward function are also incorporated into the model.

We propose a hybrid multi-start metaheuristic which integrates ILS and VND. It also leverages

perturbation and local search schemes where three characteristic moves are built into the former and four

30

in the latter. Our approach restarts with a new initial point whenever VND reaches a local optimum.

Computational results on 45 test instances published in the literature reveal that the proposed metaheuristic,

which we call MS-IVND, is an efficient algorithm for solving the MPTPP. It outperforms a recently

published two-phase matheuristic called FDOR and the commercial MILP solver GUROBI in terms of

solution quality and speed, respectively, which serve as two basic performance criteria. MS-IVND produces

7 optimal solutions and 17 new best known solutions. The superiority of the new algorithm MS-IVND over

the MILP solution approach with GUROBI lies in its solution speed. On the other hand, it has a significant

solution quality advantage over the matheuristic FDOR. We conclude that MS-IVND can help to reap

higher net benefits from a multi-period election campaign.

In order to gain managerial insights into this problem, we also carry out a scenario analysis using the

Base Scenario model referred to as Full-MILP. We conduct extensive experiments in which we demonstrate

the power as well as the flexibility of MS-IVND which yields favourable results within relatively short

computational times. Our experimental results provide useful insights into the planning of an election

campaign in a real-world setting. This study will hopefully inspire other researchers to explore new avenues

in the research of election logistics, touristic trip planning, and marketing campaigns.

Acknowledgement

The authors are thankful to three anonymous referees and to the Associate Editor for their comments

and suggestions that filled in the margins for improvement in the original draft. The fast and scrupulous

review process of the Journal of the Operational Research Society during the ongoing hardship of the

COVID-19 pandemic is deeply appreciated.

Appendix A

We provide the description of the MILP formulation of the MPTPP in this appendix. The formulation

is originally due to Aksen and Shahmanzari (2018). The reader is also referred to Shahmanzari et al. (2020)

for an in-depth discussion of the model constituents, another alternative formulation for the satisfaction of

the maximum tour duration, and also for valid inequalities which help tighten the original formulation.

Index Sets:

{0,..., }nN Set V joined by city ‘0’ which denotes a fictitious city with all associated costs, rewards

and meeting duration being zero.

\ {0}V N The set of cities to be considered for collecting rewards throughout the election campaign

where city 1i denotes the campaign centre.

{1,..., }mT The set of m days comprising the campaign duration.

Parameters:

31

ijc Travelling cost from city i to j where 0.iic

ijd Travelling time from city i to city j where 0.iid

i The base reward of city i .

i The meeting duration in city i .

 Maximum number of meetings allowed each day.

maxT Maximum tour duration (in hours) in each daily tour.

 Maximum number of consecutive days during which the politician is allowed to be away from

the campaign centre.

K The base reward depreciation coefficient applied in successive meetings held in the same city.

K Normalisation coefficient multiplied with the collected rewards to make travelling costs and

daily rewards compatible.

Decision Variables:

ijtX Binary variable indicating if arc (,)i j is traversed on day t (, ,)i j t N T with 0.iitX

itL Binary variable indicating if the politician does not enter, but only leaves city i in day t .

itE Binary variable indicating if the politician does not leave, but only enters city i in day t .

itS Binary variable indicating if the politician stays overnight (sleeps) in city i by the end of day .t

itZ Binary variable indicating if the politician holds a meeting in city i on day t

itFM Binary variable indicating if the first meeting in city i is held on day t .

itsR

itsR

Binary variable indicating if city i accommodates two consecutive meetings on day t and day

()t s with no other activity in between. Since 1 s t , we have 0itsR for t s m .

itU A continuous nonnegative variable used in the Modified Miller-Tucker-Zemlin subtour elimination

constraints. It is used to determine the order of visit for city i on day t .

The MPTPP can be formulated as the following mixed-integer linear program:

1

1 1
max.

it its

i t i t s t

ij ij

i

t

t

i

i j

m t m t s
NET BENEFIT FM R

m m Km

K c X

N T N T

N N T

 (7)

Subject to:

1ijt

j

X

N

 , i t N T (8)

1jit

j

X

N

 , i t N T (9)

it

i

Z

V

 tT (10)

32

1it

i

Z

V

 tT (11)

max i it ij ijt

i i j

Z d X T

V N N

 tT (12)

1 1i iFM Z iV (13)

it itFM Z , \ {1}i t V T (14)

1it iuFM Z , \ {1}, 1i t u t V T (15)

ijt jit it it

j j

X X L E

N N

 , i t N T (16)

1it itL E , i t N T (17)

() 2it it

i

L E

N

 tT (18)

(1)
2

jt jt
i t it

j

L E
S S

N

 , \ {1}i t N T (19)

(1)
2

jt jt
i t it

j

L E
S S

N

 , \ {1}i t N T (20)

(1)i t it itS L S , \ {1}i t V T (21)

0 0tS tT (22)

0it i tS X , i t V T (23)

(1) 0i t i tS X , \ {1}i t V T (24)

0 0i t itX X , i t V T (25)

it itE S , i t V T (26)

(1)it ij t

j

S X

N

 , 1i t m V (27)

1it

i

S

V

 tT (28)

1 1
t

k

k t

S

 1 t m (29)

it ijt it

j

Z X E

N

 , i t V T (30)

it jit it

j

Z X L

N

 , i t V T (31)

(1)(1) (1)(1) 1j t ijt jt itS X U U , () , \ {1}i j i j t N T (32)

1itU , i t N T (33)

1it jkt

j k

U X

N N

 , i t N T (34)

(1)it i tU S , {1}i t N T \ (35)

(1)(1)(1) 1i t itS U , \ {1}i t N T (36)

33

it ijt

j

U X

N

 , i t N T (37)

it it ijt

j

U S X

N

 , i t N T (38)

(1) (1)it ijt jit

j j

U X X

N N

 , i t N T (39)

its itR Z , 2 , 1i t m s t N (40)

()its i t sR Z , 2 , 1i t m s t N (41)

1

1

(1)
t

ik its

k t s

Z s R

 , 3 , 2i t m s t N (42)

0itsR , , i t t s m N T (43)

1ius itR FM , \ {1}, , i t t u m u t s u V T (44)

1

()

1

 1
t

its i t s it k

k t s

R Z Z Z

 , 3 , 2i t m s t V (45)

ijtX , itL , itE , itS , itZ , itFM , {0,1}itsR and 0itU (46)

The objective function (7) maximises the total net benefit. Constraints (8)(9) reflect the selective

routing characteristic of the MPTPP. Constraints (10)(11) determine a lower and an upper bound on the

number of meetings held on a given day. Constraints (12) specify the maximum tour duration restriction

on each daily tour of the politician. Constraints (13)(15) couple the decision variables itFM and itZ .

Constraints (16)(28) couple the binary decision variables ijtX , itS , itE , and itL . Constraints (29) ensure

frequent visits to the campaign centre, at least once every days. The constraint sets (30) and (31)

guarantee that no reward can be collected from unvisited cities. Constraint (32)(39) serve as subtour

elimination constraints. Constraints (40)(45) couple the decision variable itsR , itFM and itZ . Finally,

constraints (46) are nonnegativity and binary constraints imposed on the decision variables.

Appendix B

Table B.1 summarises the GUROBI options chosen in implementation. MIPGap is computed as

100%BFS BPS BFS where BFS and BPS stand for the best feasible and best possible solutions,

namely the tightest lower and upper bounds in a maximisation problem, respectively. The CPU time limit

(TimeLimit) is set to 86,400 seconds (24 hours). The options Threads and Concurrentmip turn on the

multithreading (concurrent optimisation) capabilities of GUROBI. When Threads is set to zero, the

computing load is distributed onto all available fourteen cores (28 threads) of the Intel Xeon® E5-2690 v4

processor. On the other hand, when Concurrentmip is set to three, the solver divides available threads

evenly between three independent MILP solve operations and performs them in parallel. Optimisation

terminates when the first solve operation completes. In order to compare multithreading options, we tested

34

the performance of GUROBI under different concurrent optimisation configurations. We observed that

Concurrentmip = 3 outperforms other configurations and finds the best feasible solution as well as the

best possible solution achieving thereby the smallest optimality gap. NumericFocus controls the degree to

which the code attempts to detect and manage numerical issues. It is set to 3 since the right-hand side values

of the constraints are relatively large in our model. The reader is referred to GUROBI User’s Manual (2018)

for a more thorough explanation of these options.

Table B.1 List of GUROBI specific options applied to all runs.

GUROBI specific options used in Python codes

MIPGap = 0.000

TimeLimit = 86400

IterationLimit = 1.e9

NodeLimit = 5.0e8

Nodefilestart = 6.5

Threads = 0

Concurrentmip = 3

NumericFocus = 3

DualReductions = 0

InfUnbdInfo = 1

Appendix C

The candidate cities considered in the test instance PE.I 40C-10D and their population, base reward,

meeting duration and criticality factor data are shown in Table C.1. The cities are sorted in descending

order of their base rewards.

Table C.1. City characteristics in PE.I 40C-10D

City Population in 2015 Base Reward Meeting Duration Criticality Factor

İstanbul 14,657,434 2,370 2 5

Ankara 5,270,575 1,505 2 5

İzmir 4,168,415 1,295 2 5

Bursa 2,842,547 1,040 1.5 5

Hatay 1,533,507 1,000 1.5 5

İskenderun 247,220 1,000 1 5

Antalya 2,288,456 935 1.5 5

Alanya 134,396 935 1 5

Adana 2,183,167 736 1.5 4

Kahramanmaraş 1,096,610 680 1.5 4

Gaziantep 1,931,836 675 1.5 3

Denizli 993,442 660 1 4

Aydın 1,053,506 660 1.5 4

Kocaeli 1,780,055 645 1.5 3

Gebze 357,743 645 1 3

Muğla 908,877 640 1 4

Çorlu 273,362 640 1 4

Mersin 1,745,221 630 1.5 3

Ordu 728,949 580 1.5 4

Manisa 1,380,366 570 1 4

Balıkesir 1,186,688 525 1.5 3

Kastamonu 372,633 500 1 4

Edirne 402,537 500 1 4

Kars 292,660 480 1 4

Eskişehir 826,716 465 1 3

Erzincan 222,918 460 1 4

Afyon 709,015 435 1 3

Adıyaman 602,774 420 1 2

Diyarbakır 1,654,196 410 1.5 2

35

City Population in 2015 Base Reward Meeting Duration Criticality Factor

Çanakkale 513,341 405 1 3

Isparta 421,766 375 1 3

Giresun 426,686 375 1 3

Kayseri 1,341,056 370 1.5 2

Konya 2,130,544 362 1.5 2

Amasya 322,167 360 1 3

Bolu 291,095 360 1 3

Niğde 346,114 360 1 3

Bartın 190,708 330 1 3

Malatya 772,904 300 1 2

Kırşehir 225,562 230 1 2

The shaded areas in Fig. C.1 denote those cities of Turkey which are included in the 10-day-long

campaign period. Full-MILP results on PE.I 40C-10D are provided in Fig. C.2 where the circled numbers

on a city represent the number of meetings realised and the meeting days. Table C.2 reveals the daily tours

where (M) indicates a meeting. The best gap obtained for this instance in 24 hours was 12.6%.

Table C.2. Daily tours of the instance PE.I 40C-10D

Days Route

1

2

3

4

5

6

7

8

9

10

Ankara (M) → Hatay (M) → İskenderun (M)

İskenderun → Adana (M) → Istanbul (M)

Istanbul → Kocaeli (M) → Bursa (M) → Balıkesir (M)

Balıkesir → Manisa (M) → İzmir (M) → Aydin (M) → Muğla

Muğla (M) → Denizli (M) → Antalya (M) → Isparta

Isparta (M) → Afyonkarahisar (M) → Eskişehir (M) → Ankara

Ankara (M) → Gebze (M) → Istanbul

Istanbul (M) → Gaziantep (M) → Kahramanmaraş (M)

Kahramanmaraş → Hatay (M) → Adana (M) → Mersin

Mersin (M)

36

Fig. C.1 Geographical distribution of 40 cities (shaded areas)

Fig. C.2 Cities with meetings

37

References

Aksen, D., & Shahmanzari, M. (2018). A periodic traveling politician problem with time-dependent rewards. In A.

Fink, A. Fügenschuh, & M. J. Geiger (Eds.), Operations Research Proceedings 2016 (pp. 277283). Springer,

Cham.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6), 621636.

Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009). A branch‐and‐cut algorithm for the undirected prize collecting

traveling salesman problem. Networks, 54(1), 5667.

Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A

survey. Applied Soft Computing, 11(6), 41354151.

Çarkoğlu, A., & Aksen, D. (2019). Partisan and apportionment bias in creating a predominant party system. Political

Geography, 69, 4353.

Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi‐depot vehicle

routing problems. Networks, 30(2), 105119.

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations research, 6(6), 791812.

Dell'Amico, M., Maffioli, F., & Sciomachen, A. (1998). A Lagrangian heuristic for the prize collecting travelling

salesman problem. Annals of Operations Research, 81, 289306.

Dell'Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize‐collecting tours and the asymmetric travelling salesman

problem. International Transactions in Opeational Research, 2(3), 297308.

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with profits. Transportation Science,

39(2), 188205.

Fischetti, M., Salazar-González, J. J., & Toth, P. (2007). The generalised traveling salesman and orienteering

problems. In G. Gutin & A. P. Punnen (Eds.), The traveling salesman problem and its variations (pp. 609662).

Springer, Boston, MA.

Fischetti, M., & Toth, P. (1988). An additive approach for the optimal solution of the prize-collecting travelling

salesman problem. Vehicle routing: methods and studies. Studies in Management Science and Systems vol. 16.

GUROBI Optimization (2020). GUROBI Optimizer Quick Start Guide Version 9.1. Gurobi Optimization, LLC.

Houston, USA. Retrieved December 10, 2020, from

https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/quickstart_windows.pdf.

Hansen, P., & Mladenović, N. (2003). Variable neighbourhood search. In Handbook of metaheuristics (pp. 145184).

Springer, Boston, MA.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In F. W. Glover & G. A. Kochenberger

(Eds.), Handbook of Metaheuristics (pp. 321–368). Springer.

Millar, H. H., & Kiragu, M. (1997). A time-based formulation and upper bounding scheme for the selective travelling

salesperson problem. Journal of the Operational Research Society, 48(5), 511518.

Reihaneh, M., & Ghoniem, A. (2018). A multi-start optimization-based heuristic for a food bank distribution problem.

Journal of the Operational Research Society, 69(5), 691706.

Salhi, S. (2017). Heuristic search: The emerging science of problem solving. Springer.

Salhi, S., & Sari, M. (1997). A multi-level composite heuristic for the multi-depot vehicle fleet mix problem. European

Journal of Operational Research, 103(1), 95112.

Shahmanzari, M. (2019). The roaming salesman problem and its application to election logistics. [Doctoral

dissertation, Koç University Graduate School of Business]. Yükseköğretim Kurulu Ulusal Tez Merkezi.

https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=Eb5EkakJlp3olBdo_wNEGeAki02cDutrlUa5pi-

1NVi8X-rjUM2GcvMcBSygdAPM>

https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/quickstart_windows.pdf
https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=Eb5EkakJlp3olBdo_wNEGeAki02cDutrlUa5pi-1NVi8X-rjUM2GcvMcBSygdAPM
https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=Eb5EkakJlp3olBdo_wNEGeAki02cDutrlUa5pi-1NVi8X-rjUM2GcvMcBSygdAPM

38

Shahmanzari, M., Aksen, D., & Salhi, S. (2020). Formulation and a two-phase matheuristic for the roaming salesman

problem: Application to election logistics. European Journal of Operational Research, 280(2), 656670.

Sze, J. F., Salhi, S., & Wassan, N. (2016). A hybridisation of adaptive variable neighbourhood search and large

neighbourhood search: Application to the vehicle routing problem. Expert Systems with Applications, 65,

383397.

Sze, J. F., Salhi, S., & Wassan, N. (2017). The cumulative capacitated vehicle routing problem with min-sum and

min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large

neighbourhood search. Transportation Research Part B: Methodological, 101, 162184.

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle routing problem. INFORMS

Journal on Computing, 15: 333–348.

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics for the multi-period orienteering problem

with multiple time windows. Computers & Operations Research, 37(2), 351367.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey. European

Journal of Operational Research, 209(1), 110.

