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Abstract
We examine how the most prevalent stochastic properties of key financial time series have been

affected during the recent financial crises. In particular we focus on changes associated with the
remarkable economic events of the last two decades in the mean and volatility dynamics, including
the underlying volatility persistence and volatility spillovers structure. Using daily data from several
key stock market indices we find that stock market returns exhibit time varying persistence in their
corresponding conditional variances. Furthermore, the results of our bivariate GARCH models show
the existence of time varying correlations as well as time varying shock and volatility spillovers
between the returns of FTSE and DAX, and those of NIKKEI and Hang Seng, which became more
prominent during the recent financial crisis. Our theoretical considerations on the time varying model
which provides the platform upon which we integrate our multifaceted empirical approaches are also
of independent interest. In particular, we provide the general solution for low order time varying
specifications, which is a long standing research topic. This enables us to characterize these models
by deriving, first, their multistep ahead predictors, second, the first two time varying unconditional
moments, and third, their covariance structure.
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1 Introduction

The global financial crisis of 2007-08 and the European sovereign-debt crisis that took place immediately

afterwards are at the heart of the research interests of practitioners, academics, and policy makers alike.

Given the widespread fear of an international systemic financial collapse at the time it is no wonder that

the currently on-going heated discussion on the actual causes and effects of these crises is the precursor

to the development of the necessary tools and policies for dealing with similar phenomena in the future.

The inevitable step in undertaking such an enormous task is to map, as accurately as possible, the

‘impact’of these crises onto what are currently considered the main stochastic properties of the underlying

financial time series. In this way, informed discussions on the causes and effects of these crises can take

place and thus more accurately specify the set of features that have to characterize the necessary tools

and policies to address them. This paper aspires to provide a platform upon which changes in the main

statistical properties of financial time series due to economic crises can be measured.

In particular, we focus on the recent financial crises and examine how the mean and volatility dynam-

ics, including the underlying volatility persistence and volatility spillovers structure, have been affected

by these crises. With this aim we make use of several modern econometric approaches for univariate and

multivariate time series modelling, which we also condition on the possibility of breaks in the mean and/or

volatility dynamics taking place. Moreover, we unify these approaches by introducing a set of theoretical

considerations for time varying (TV) AR-GARCH models, which are also of independent interest. In

particular, we make three broad contributions to the existing literature.

First, we present and utilize some new theoretical results on time varying AR and/or asymmetric

GARCH (AGARCH) models. We limit our analysis to low order specifications to save space and also

since it is well documented that low order AR models for stock returns often emerge in practice. We show

the applicability of these general results to one important case: that of abrupt breaks, which we make

particular use of in our empirical investigation. Our models produce time varying unconditional variances

in the spirit of Engle and Rangel (2008) and Baillie and Morana (2009). TV-GARCH specifications have

recently gained popularity for modelling structural breaks in the volatility process (see, for example,

Frijns et al., 2011, and Bauwens, et al., 2014). Despite nearly half a century of research work and the

widely recognized importance of time varying models, until recently there was a lack of a general theory

that can be employed to explore their time series properties systematically. Granger in some of his last

contributions highlighted the importance of the topic (see, Granger 2007, and 2008). The stumbling

block to the development of such a theory was the lack of a method that can be used to solve time

varying difference equations of order two or higher. Paraskevopoulos et al. (2013) have developed such
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a general theory (see also Paraskevopoulos and Karanasos, 2013). The starting point of the solution

method that we present below is to represent the linear time varying difference equation of order two

as an infinite system of linear equations. The coeffi cient matrix of such an infinite system is row finite.

The solution to such infinite systems is based on an extension of the classic Gauss elimination, called

Infinite Gaussian elimination (see Paraskevopoulos, 2012, 2014). Our method is a natural extension of

the first order solution formula. It also includes the linear difference equation with constant coeffi cients

(see, for example, Karanasos, 1998, 2001) as a special case. We simultaneously compute not only the

general solution but its homogeneous and particular parts as well. The coeffi cients in these solutions are

expressed as determinants of tridiagonal matrices. This allows us to provide a thorough description of

time varying models by deriving, first, multistep ahead forecasts, the associated forecast error and the

mean square error, and second, the first two time varying unconditional moments of the process and its

covariance structure.

Second, we use a battery of tests to identify the number and estimate the timing of breaks both

in the mean and volatility dynamics. Following our theoretical results and prompted by Morana and

Beltratti (2004) amongst others who acknowledge that misleading inference on the persistence of the

volatility process may be caused by unaccounted structural breaks1 , we implement these break tests in

the univariate context also to determine changes in the persistence of volatility. The special attention we

pay to this issue is well justified, especially within the finance literature given that it is well-established

that the proper detection of breaks is pivotal for a variety of financial applications, particularly in risk

measurement, asset allocation and option pricing. Kim and Kon (1999) emphasize the importance of

incorporating some break detection procedure into the existing financial modelling paradigms when they

call attention to the fact that ". . .Public announcements of corporate investment and financial decisions

that imply a change in the firm’s expected return and risk will be impounded in stock prices immediately

in an effi cient market. The announcements of relevant macroeconomic information will affect the return

and risk of all securities, and hence, portfolios (indexes). Since relevant information that changes the

risk structure is randomly released with some time interval (not at every moment) in sequence, these

information events translate into sequential discrete structural shifts (or change-points) for the mean

and/or variance parameter(s) in the time series of security returns."

Third, we employ the bivariate unrestricted extended dynamic conditional correlation (UEDCC)

AGARCH process to analyze the volatility transmission structure, applied to stock market returns. The

model is based on the dynamic conditional correlation of Engle (2002) allowing for volatility spillovers

effects by imposing the unrestricted extended conditional correlation (dynamic or constant) GARCH

1A detailed literature review on this issue is available upon request.
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specification of Conrad and Karanasos (2010). The most recent applications of the model can be found

in Conrad et al. (2010), Rittler (2012), Karanasos and Zeng (2013) and Conrad and Karanasos (2013).

However, we extend it by allowing shock and volatility spillovers parameters to shift across abrupt breaks

as well as across two regimes of stock returns, positive (increases in the stock market) and negative

(declines in the stock market) (see also Karanasos et al., 2013). Recently, following our work, Caporale

et al. (2014) adopted our UEDCC framework but they do not allow for breaks in the shock and volatility

spillovers. The extant literature on modelling returns and volatilities is extensive, and it has evolved in

several directions. One line of literature has focused on return correlations and comovements or what

is known as contagion among different markets or assets (e.g., Caporale et. al., 2005; Rodriguez, 2007,

among others), while another line of the literature has focused on volatility spillovers among the markets

(e.g., Baele, 2005; Asgharian and Nossman, 2011, among others). The model adopted in this paper is

flexible enough to capture contagion effects as well as to identify the volatility spillovers associated with

the structural changes and exact movements of each market (e.g., upward or downward) to the other,

and vice versa. Knowledge of this mechanism can provide important insights to investors by focusing

their attention on structural changes in the markets as well as their trends and movements (e.g., upward

or downward) in order to set appropriate portfolio management strategies.

Overall, our results suggest that stock market returns exhibit time varying persistence in their cor-

responding conditional variances. The results of the bivariate UEDCC-AGARCH(1, 1) model applied

to FTSE and DAX returns, and to NIKKEI and Hang Seng returns, show the existence of dynamic

correlations as well as time varying shock and volatility spillovers between the two variables in each

pair. For example, the results of the bivariate FTSE and DAX returns show that the transmission of

volatility from DAX to FTSE exhibited a time varying pattern across the Asian financial crisis and the

announcement of the €18bn German tax cuts plan as well as the global financial crisis. As far as the

NIKKEI and Hang Seng pair is concerned, the results provide evidence that these two financial markets

have only been integrated during the different phases of the recent financial crisis. With regard to the

regime-dependent volatility spillovers, the results suggest that declines in FTSE and DAX generate shock

spillovers to each other, whereas increases in each of these market generate negative volatility spillovers

to the other. Furthermore, the results show that declines in NIKKEI generate shock spillovers to Hang

Seng, whilst increases in NIKKEI generate negative volatility spillovers to Hang Seng.

The remainder of this paper is as follows. Section 2 considers the AR-GARCH model with abrupt

breaks in the first two conditional moments, and the time varying process, which are our two main objects

of inquiry. Section 3 introduces the theoretical considerations on the time varying AR and AGARCH

models. In Section 3.1 we represent the former as an infinite linear system and concentrate on the
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associated coeffi cient matrix. This representation enables us to establish an explicit formula for the general

solution in terms of the determinants of tridiagonal matrices. We also obtain the statistical properties of

the aforementioned models, e.g., multi-step-ahead predictors and their forecast error variances. Section

4 describes our methodology and data. Section 5 presents our empirical univariate results, and the next

Section discusses the results from various bivariate models. The final Section contains the summary and

our concluding remarks.

2 Abrupt Breaks

First, we introduce the notation and the AR-AGARCH model with abrupt breaks both in the conditional

mean and variance. Throughout the paper we will adhere to the conventions: (Z+) Z, and (R+) R stand

for the sets of (positive) integers, and (positive) real numbers, respectively. To simplify our exposition

we also introduce the following notation. Let t ∈ Z represents present time, and k ∈ Z+ the prediction

horizon.

2.1 The Conditional Mean

In this paper we will examine an AR(2) model2 with n abrupt breaks, 0 ≤ n ≤ k − 1, at times t − k1,

t − k2, . . ., t − kn, where 0 = k0 < k1 < k2 < · · · < kn < kn+1 = k, kl ∈ Z+, and kn is finite. That is,

between t − k = t − kn+1 and the present time t = t − k0 the AR process contains n structural breaks

and the switch from one set of parameters to another is abrupt. In particular,

yτ = φ0,l + φ1,lyτ−1 + φ2,lyτ−2 + ετ , (1)

for l = 1, . . . , n+ 1, and τ = t−kl−1, . . . , t−kl + 1, where3 E[ετ |Fτ−1 ] = 0 and ετ follows a time varying

AGARCH type of process with finite variance σ2τ (see the next Section).
4 Within the class of AR(2)

processes, this specification is quite general and allows for intercept and slope shifts as well as errors with

time varying variances (see also Pesaran and Timmermann, 2005, and Pesaran et al. 2006). Each regime

l is characterized by a vector of regression coeffi cients, φl = (φ0,l, φ1,l, φ2,l)
′, and positive and finite time

varying variances, σ2τ , τ = t− kl−1, . . . , t− kl + 1. We will term the AR(2) model with n abrupt breaks:

abrupt breaks autoregressive process of order (2;n), AB-AR(2;n).

2To keep the exposition tractable and reveal its practical significance we work with low order specifications.
3{Ft} is a non-decreasing sequence of σ-fields Ft−1 ⊆ Ft ⊆ F .
4Without loss of generality we will assume that outside the prediction horizon there are no breaks. That is: regime one

(l = 1) extends to time τ = . . . , t+ 2, t+ 1 and the (n+ 1)th regime extends to time τ = t− k, t− k − 1, . . ..

5
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2.2 The Conditional Variance

We assume that the noise term is characterized by the relation ετ = eτ
√
hτ , where hτ is positive with

probability one and it is a measurable function of Ft−1; eτ is an i.i.d sequence with zero mean and finite

second and fourth moments: κ(i) = E(e2iτ ), i = 1, 2. In other words the conditional (on time τ − 1)

variance of yτ is Var(yτ |Fτ−1 ) = κ(1)hτ . In what follows, without loss of generality, we will assume that

κ(1) = 1.

Moreover, we specify the parametric structure of hτ as an AGARCH(1, 1) model withm abrupt breaks,

0 ≤ m ≤ k − 1, at times t − κ1, t − κ2, . . ., t − κm, where 0 = κ0 < κ1 < κ2 < · · · < κm < κm+1 = k,

κm ∈ Z+, and κm is finite. That is, between t − k = t − κm+1 and the present time t = t − κ0 the

AGARCH process contains m structural breaks and the switch from one set of parameters to another is

abrupt:

hτ = ω` + α∗`ε
2
τ−1 + β`hτ−1, (2)

for ` = 1, . . . ,m+ 1, and τ = t−κ`−1, . . . , t−κ`+ 1; where α∗` , α`+γ`S
−
τ−1, with S

−
τ−1 = 1 if eτ−1 < 0,

0 otherwise.5 As with the AR process we will assume that outside the prediction horizon there are no

breaks. Obviously, the above process nests the simple AGARCH(1, 1) specification if we assume that the

four coeffi cients are constant.

In what follows we provide a complete characterization of the main time-series properties of this model.

Although in this work we will focus our attention on the AB-AR(2;n)-AGARCH(1, 1;m) process6 our

results can easily be extended to models of higher orders (see Paraskevopoulos et al., 2013).

2.3 Time Varying Model

In the current Section we face the non-stationarity of processes with abrupt breaks head on by employing

a time varying treatment. In particular, we put forward a framework for examining the AR-AGARCH

specification with n and m abrupt breaks in the conditional mean and variance respectively. We begin

by expressing the model as a TV-AR(2)-AGARCH(1, 1) process:

yt = φ0(t) + φ1(t)yt−1 + φ2(t)yt−2 + εt, (3)

where for l = 1, . . . , n+1 and τ = t−kl−1, . . . , t−kl+1, φi(τ) , φi,l, i = 0, 1, 2, are the time varying drift

and AR parameters; as before {εt, t ∈ Z} is a sequence of zero mean serially uncorrelated random variables
5This type of asymmetry is the so called GJR-GARCH model (named for Glosten et al., 1993). The asymmetric power

ARCH process (see, among others, Karanasos and Kim, 2006; Margaronis et al., 2013) is yet another asymmetric variant.
For other asymmetric GARCH models see Francq and Zakoïan (2010, chapter 10) and the references therein.

6That is an AR(2)-AGARCH(1, 1) model with n and m abrupt breaks in the conditional mean and variance respectively.
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with positive and finite time varying variances σ2t ∀ t. Recall that we have relaxed the assumption of

homoscedasticity that is likely to be violated in practice and allow εt to follow a TV-AGARCH(1, 1) type

of process:

ht = ω(t) + α∗(t)ε2t−1 + β(t)ht−1, (4)

where for ` = 1, . . . ,m + 1 and τ = t − κ`−1, . . . , t − κ` + 1, ω(τ) , ω`, α∗(τ) , α(τ) + γ(τ)S−t−1 , α∗` ,

and β(τ) , β` are the time varying parameters of the conditional variance equation.

The TV-AGARCH(1, 1) formulation in eq. (4) can readily be seen to have the following representation

ht = ω(t) + c(t)ht−1 + α∗(t)vt−1, (5)

with c(t) , α∗(t)+β(t) = α(t)+γ(t)S−t−1+β(t), and for ` = 1, . . . ,m+1 and τ = t−κ`−1, . . . , t−κ`+1,

c(τ) , c`; the ‘innovation’of the conditional variance vt = ε2t − ht is, by construction, an uncorrelated

term with expected value 0 and E(v2t ) = σ2vt = κ̃E(h2t ) (the conditions for the second unconditional

moments, E(h2t ), to exist for all t are available upon request), with κ̃ = Var(e2t ) = κ(2) − 1. The above

equation has the linear structure of a TV-ARMA model allowing for simple computations of the linear

predictions (see Section 3.2.1 below).7

Although in the next Section we will focus our attention on the TV-AR(2)-AGARCH(1, 1) model our

results can easily be extended to time varying models of higher orders (see Paraskevopoulos et al., 2013).

3 Theoretical Considerations

This current Section presents some new theoretical findings for time varying models which also provide

the platform upon which we unify the results we obtain from the different econometric tools. That is, we

put forward a framework for examining AR models with abrupt breaks, like eq.(1), based on a workable

closed form solution of stochastic time varying difference equations. In other words, we exemplify how

our theoretical methodology can be used to incorporate structural changes, which in this paper we view

as abrupt breaks. We also explain how we can extend our approach to the AGARCH specification with

abrupt breaks in the conditional variance.

7As pointed out, among others, by Francq and Zakoïan (2010, p. 20) under additional assumptions (implying the second-
order of ht or ε2t ), which in our case are available upon request, we can state that if εt follows a TV-AGARCH model then
ht or ε2t are TV-ARMA processes as well.
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3.1 The mean

In the context of eq. (3), the second-order homogeneous difference equation with time varying coeffi cients

is written as

φ2(t)yt−2 + φ1(t)yt−1 − yt = 0, t ≥ τ + 1 = t− k + 1. (6)

The infinite set of equations in the above equation is equivalent to the infinite linear system whose

coeffi cient matrix is row-finite (row-finite matrices are infinite N × N matrices whose rows have a finite

number of nonzero elements)



φ2(τ + 1) φ1(τ + 1) −1 · · ·

φ2(τ + 2) φ1(τ + 2) −1 · · ·

φ2(τ + 3) φ1(τ + 3) −1 · · ·
...

...
...

...
...

...
...
...
...





yτ−1

yτ

yτ+1

yτ+2

yτ+3

yτ+4
...



=



0

0

0

...


, (7)

(here and in what follows empty spaces in a matrix8 have to be replaced by zeros) or in a compact form:

Φ · y = 0. The equivalence of eqs. (6) and (7) follows from the fact that for an arbitrary i in {1, 2, 3, . . .}

the ith equation of (7), as a result of the multiplication of the ith row of Φ by the column of ys equated

to zero, is equivalent to eq. (6), as of time t = τ + i. By deleting the first column of the Φ matrix and

then keeping only the first k rows and columns we obtain the following square matrix:

Φt,k =



φ1(τ + 1) −1

φ2(τ + 2) φ1(τ + 2) −1

φ2(τ + 3) φ1(τ + 3) −1

. . .
. . .

. . .

φ2(t− 1) φ1(t− 1) −1

φ2(t) φ1(t)


(8)

(where τ = t− k). Formally Φt,k is a square k × k matrix whose (i, j) entry 1 ≤ i, j ≤ k is given by
8Matrices and vectors are denoted by upper and lower case boldface symbols, respectively. For square matrices X =

[xij ]i,j=1,...,k ∈ Rk×k using standard notation, det(X) or |X| denotes the determinant of matrix X.
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
−1 if i = j − 1, and 2 ≤ j ≤ k,

φ1+d(t− k + i) if d = 0, 1, i = j + d, and 1 ≤ j ≤ k − d,

0 otherwise.

This is a tridiagonal or continuant matrix, that is a matrix that is both upper and lower Hessenberg

matrix. We next define the bivariate function ξ : Z× Z+ 7−→ R by

ξt,k = det(Φt,k) (9)

coupled with the initial values ξt,0 = 1, and ξt,−1 = 0. ξt,k for k ≥ 2, is a determinant of a k × k

matrix; each two nonzero diagonals (below the superdiagonal) of this matrix consists of the time varying

coeffi cients φi(·), i = 1, 2, from t − k + i to t. That is, the number of elements of φi(·) in the diagonals

below the superdiagonal is k − i + 1. In other words, ξt,k is a k-order tridiagonal determinant. For the

AB-AR(2;n) process, ξt,k is given by

ξt,k = det(Φt,k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1,n+1 −1

φ2,n+1 φ1,n+1 −1

. . .
. . .

. . .

φ2,l φ1,l −1

φ2,l φ1,l −1

. . .
. . .

. . .

φ2,1 φ1,1 −1

φ2,1 φ1,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (10)

that is, the (i, i − 1), and (i, i) elements in rows i = k − kl−1, . . . , k − (kl − 1), l = 1, . . . , n + 1, of the

matrix Φt,k are given by φ2,l and φ1,l, respectively.

The general term of the general homogeneous solution of eq. (6) with two free constants (initial

condition values), yt−k and yt−k−1, is given by

yhomt,k = ξt,kyt−k + φ2(t− k + 1)ξt,k−1yt−k−1. (11)

Similarly, the general particular solution, ypart,k , can be expressed as

ypart,k =

k−1∑
r=0

ξt,rφ0(t− r) +

k−1∑
r=0

ξt,rεt−r. (12)

9
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The general solution of eq. (3) with free parameters yt−k, yt−k−1 is given by the sum of the homoge-

neous solution plus the particular solution:

ygent,k = yhomt,k + ypart,k = ξt,kyt−k + φ2(t− k + 1)ξt,k−1yt−k−1 +

k−1∑
r=0

ξt,rφ0(t− r) +

k−1∑
r=0

ξt,rεt−r. (13)

(see the Appendix and also Paraskevopoulos et al., 2013 and Karanasos et al., 2014a). In the above

expression ygent,k is decomposed into two parts: the yhomt,k part, which is written in terms of the two free

constants (yt−k−i, i = 0, 1); and, the ypart,k part, which contains the time varying drift terms (φ0(·)) and

the error terms (εs) from time t− k+ 1 to time t. When k = 1, since ξt,0 = 1 and ξt,1 = φ1(t), the above

expression reduces to eq. (3). Notice also that for the model with n abrupt breaks, we have

k−1∑
r=0

ξt,rφ0(t− r) =

n+1∑
l=1

φ0,l

kl−1∑
r=kl−1

ξt,r, and φ2(t− k + 1) = φ2,n+1,

where ξt,r is given in eq. (10). The main advantage of our TV model/methodology is that we suppose

that the law of evolution of the parameters is unknown, in particular they may be stochastic (i.e., we can

either have a stationary or non-stationary process) or non stochastic (e.g., periodic models serve as an

example, see Karanasos et al., 2014a,b). Therefore, no restrictions are imposed on the functional forms

of the time varying AR parameters. In the non stochastic case the model allows for (past/known) abrupt

breaks.

3.1.1 First Moments

We turn our attention to a consideration of the time series properties of the TV-AR(2)-AGARCH(1, 1)

process. Let the triplet (Ω, {Ft, t ∈ Z}, P ) denote a complete probability space with a filtration, {Ft}.

Lp stands for the space of P -equivalence classes of finite complex random variables with finite p-order.

Finally, H = L2(Ω,Ft, P ) stands for a Hilbert space of random variables with finite first and second

moments. Assuming that the drift and the two AR time varying coeffi cients φi(t), i = 0, 1, 2, are non

stochastic and taking the conditional expectation of eq. (13) with respect to the σ field Ft−k yields the

k-step-ahead optimal (in L2-sense) linear predictor of yt

E(yt |Ft−k ) =

k−1∑
r=0

ξt,rφ0(t− r) + ξt,kyt−k + φ2(t− k + 1)ξt,k−1yt−k−1. (14)

In addition, the forecast error for the above k-step-ahead predictor, FE(yt |Ft−k ) = yt − E[yt |Ft−k ],
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is given by

FE(yt |Ft−k ) =

k−1∑
r=0

ξt,rεt−r, (15)

which is a linear combination of k error terms from time t − k + 1 to time t, where the time varying

coeffi cients, ξt,r, are (for r ≥ 2) the determinants of an r × r tridiagonal matrix (Φt,r); each nonzero

variable diagonal of this matrix consists of the AR time varying coeffi cients φi(·), i = 1, 2 from time

t− r + i to t.

The Assumption below provides conditions that are used to obtain the equivalent of the Wold decom-

position for non-stationary time varying processes with non stochastic coeffi cients.

Assumption 1.
∑k
r=0 ξt,rφ0(t− r) as k →∞ converges for all t, and

∑∞
r=0 supt(ξ

2
t,rσ

2
t−r) < M <∞,

M ∈ Z+.

The challenge we face is that in the time varying models we can not invert the AR polynomial because

of the presence of time dependent coeffi cients. We overcome this diffi culty and formulate a type of time

varying Wold decomposition theorem (see also Singh and Peiris, 1987; Kowalski and Szynal, 1991).

Under Assumption 1 the model in eq. (3) with non stochastic coeffi cients admits a second-order

MA(∞) representation:

yt
L2= lim

k→∞
ypart,k

L2=

∞∑
r=0

ξt,r[φ0(t− r) + εt−r], (16)

which is a unique solution of the TV-AR(2)-AGARCH(1, 1) model (3). In other words yt is decomposed

into a non random part and a zero mean random part. In particular, the time dependent first moment:

E(yt) = lim
k→∞

E(yt |Ft−k ) =

∞∑
r=0

ξt,rφ0(t− r) (17)

is the non random part of yt while limk→∞ FE(yt |Ft−k ) =
∑∞
r=0 ξt,rεt−r is the zero mean random part.

The time varying expected value of yt is an infinite sum of the time varying drifts where the time

varying coeffi cients are expressed as determinants of continuant matrices (the ξs).

3.1.2 Second Moments

The current Section and Section 3.2.1 below discusses the second-order properties of the TV-AR(2)-

AGARCH(1, 1) model. Next we state the results for the second moment structure.

The mean square error

Var[FE(yt |Ft−k )] =

k−1∑
r=0

ξ2t,rσ
2
t−r (18)

is a linear combination of k variances from time t − k + 1 to time t, with time varying coeffi cients (the
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squared ξs).

Moreover, under Assumption 1 the second time varying unconditional moment of yt exists and it is

given by

E(y2t ) = [E(yt)]
2 +

∞∑
r=0

ξ2t,rσ
2
t−r, (19)

which is an infinite sum of the time varying unconditional variances of the errors, σ2t−r, (see Section 3.2.1

below) with time varying ‘coeffi cients’or weights (the squared values of the ξs).

In addition, the time varying autocovariance function γt,k is given by

γt,k = Cov(yt, yt−k) =

∞∑
r=0

ξt,k+rξt−k,rσ
2
t−k−r (20)

= ξt,kVar(yt−k) + φ2(t− k + 1)ξt,k−1Cov(yt−k, yt−k−1),

where the second equality follows from the MA(∞) representation of yt in eq. (16), and the third one

from the general solution in eq. (13), and

Cov(yt−k, yt−k−1) =

∞∑
r=0

ξt−k,r+1ξt−k−1,rσ
2
t−k−1−r.

For any fixed t, limk→∞ γt,k → 0 when limk→∞ ξt,k = 0 ∀ t. For the process with n abrupt breaks in

eq. (1) ξt,k is given by eq. (10).
9

Panel A: AR(1) Model; 3 Breaks at: t− 5, t− 10 and t− 15;

Cor(yt, yt−j), j = 1, . . . , 19 Cor(yt, yt−j), j = 1, . . . , 19

9Estimating the time varying parameters of forecasting models is beyond the scope of this paper (see Elliott and
Timmermann, 2008, for an excellent survey on forecasting methodologies available to the applied economist).
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Panel B: AR(1) Model; 3 Breaks at: t− 100, t− 120 and t− 140;

Cor(yt−i, yt−i−1), i = 80, . . . , 150 Cor(yt−i, yt−i−1), i = 80, . . . , 150

Panel C: AR(1) Model; 3 Breaks at: t− 100, t− 121 and t− 142;

Cor(yt−i, yt−i−7), i = 79, . . . , 149 Cor(yt−i, yt−i−7), i = 79, . . . , 149

Figure 1. Time Varying Autocorrelations

As an illustrative example Figure 1 shows the autocorrelations (ACR) of an AR(1) model with three

breaks and homoscedastic/independent innovations. The left graph in Panel B shows the first order

ACR, Cor(yt−i, yt−i−1), for an AR(1) model with three breaks at times t− k1(= 100), t− k2(= 120) and

t− k3(= 140), and autoregressive coeffi cients φ1,1 = 0.98, φ1,2 = 0.80, φ1,3 = 0.70, and φ1,4 = 0.90. The

first part of the graph shows the ACR when i < k1 = 100, that is, when yt−i is after all three breaks:

t − i > t − k1 (the construction of the autocorrelations is based on eq. (20)).10 As i increases, that is,

as we are going back in time, the first order ACR decrease at an increasing rate. The second part of the

graph shows the ACR when k1 ≤ i ≤ k2− 1, that is, when yt−i is between the first and the second break.

The third part of the graph shows the ACR when k2 ≤ i ≤ k3 − 1. The ACR increase since after the

third break the autoregressive coeffi cient increases from 0.70 to 0.90. Finally, for i ≥ k3, the first order

10The details are available upon request. See also the Additional Appendix, which is available on the personal webpage
of the first author: http://www.mkaranasos.com/PublicationsB.htm
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ACR are not affected by the three breaks and therefore are equal to φ1,4 = 0.90, whereas when i→ −∞,

the ACR converge to φ1,1 = 0.98.

Moreover, the right graph in Panel C shows the seventh order ACR (yt−i, yt−i−7) for an AR(1) model

with three breaks at times t − k1(= 100), t − k2(= 121) and t − k3(= 142), autoregressive coeffi cients

φ1,1 = 0.60, φ1,2 = 1.20, φ1,3 = 0.80, and φ1,4 = 0.92 and homoscedastic/independent innovations. The

second part of the graph shows the ACR when i ≤ k1− 1 and k1 + 1 ≤ i+ 7 ≤ k2. The fourth part of the

graph shows the ACR when k1 ≤ i ≤ k2 − 1 and k2 + 1 ≤ i+ 7 ≤ k3. The sixth part of the graph shows

the ACR when k2 ≤ i ≤ k3 − 1 and k3 + 1 ≤ i + 7. Notice that when i ≤ k1 − 1 or k2 ≤ i ≤ k3 − 1 the

seventh order ACR increase with i whereas when k1 ≤ i ≤ k2 − 1 they decrease as i increases. Finally,

for i ≥ k3, the ACR are equal to φ71,4 = 0.56, whereas when i→ −∞, the ACR converge to φ71,1 = 0.03.

3.2 The Conditional Variance

In order to simplify the description of the analysis of this Section we will introduce the following notation.

As before t represents the present time and k the prediction horizon. We define the bivariate function

ς : Z× Z+ 7−→ R by

ςt,k =
∏k−1

j=0
c(t− j), (21)

coupled with the initial values ςt,0 = 1, and ςt,−1 = 0 where c(·) has been defined above (see eq. (5)).

In other words ςt,1 = c(t), and ςt,k for k ≥ 2 is a product of k terms which consist of the time varying

coeffi cients c(·) from time t− k + 1 to time t. For the GARCH process with m abrupt breaks in eq. (2)

we have

ςt,k =
∏m

`=0
c
κ`+1−κ`
`+1 . (22)

Next, we define

gt,r+1 = ςt,rα
∗(t− r), r ≥ 0, (23)

where α∗(t) has been defined in eq. (4). Notice that when r = 0, gt,1 = α∗(t), since ςt,0 = 1.

Since the TV-AGARCH(1, 1) model can be interpreted as a ‘TV-ARMA(1, 1)’ process, it follows

directly from the results in Section 3.1 that the general solution of eq. (5) with free constant (initial

condition value) ht−k, is given by

hgent,k = hhomt,k + hpart,k = ςt,kht−k +

k−1∑
r=0

ςt,rω(t− r) +

k∑
r=1

gt,rvt−r, (24)

where ςt,r and gt,r have been defined in eqs. (21) and (23) respectively. In the above expression h
gen
t
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is decomposed into two parts: the hhomt,k part, which is written in terms of the free constant (ht−k); and

the hpart,k part, which contains the time varying drift terms, ω(·), and the uncorrelated terms (vs). Notice

that in eq. (24) hgent,k is expressed in terms of diagonal determinants (the ςs and therefore the gs).

Next consider the case of a GARCH(1, 1) model with constant coeffi cients. Since for this model

α(t) , a, and c(t) , c , α+ b, for all t, then ςt,k reduces to ck and gt,k becomes ck−1a, for k ∈ Z+ (see,

for example, Karanasos, 1999).

3.2.1 Time Varying Unconditional Variances

In this Section in order to provide a thorough description of the TV-AGARCH(1, 1) process given by eq.

(4) we derive, first its multistep ahead predictor, the associated forecast error and the mean square error,

and second, the first unconditional moment of this process (the second unconditional moment and the

covariance structure are available upon request).

The k-step-ahead predictor of ht, E(ht |Ft−k−1 ), is readily seen to be11

E(ht |Ft−k−1 ) =

k−1∑
r=0

ςt,rω(t− r) + ςt,kht−k, (25)

where, for r ≥ 1, ςt,r = E(ςt,r).12 In addition, the forecast error for the above k-step-ahead predictor,

FE(ht |Ft−k−1 ), is given by

FE(ht |Ft−k−1 ) =

k∑
r=1

gt,rvt−r. (26)

Notice that this predictor is expressed in terms of k uncorrelated terms (the vs) from time t − k to

time t − 1, where the ‘coeffi cients’have the form of diagonal determinants (the ςs). The mean square

error is given by

Var(ht |Ft−k−1 ) = Var[FE(ht |Ft−k−1 )] = κ̃
k∑
r=1

g2t,rE(h2t−r), (27)

where g2t,r = E(g2t,r) for r ≥ 1.13 This is expressed in terms of k second moments, E(h2t−r), from time

t− k to time t− 1, where the coeffi cients are the expectations of the squared coeffi cients of the multistep

ahead predictor multiplied by κ̃. Moreover, the definition of the uncorrelated term vt implies that

E(ε2t |Ft−k−1 ) = E(ht |Ft−k−1 ), FE(ε2t |Ft−k−1 ) = vt + FE(ht |Ft−k−1 ). The associated mean squared

11For the issue of temporal aggregation and a discussion of the wider class of weak GARCH processes see Bollerslev and
Ghysels (1996) and Ghysels and Osborn (2001, pp. 195-197).
12E(ςt,r) = E[

∏r−1

j=0
c(t − j)] =

∏r−1

j=0
c(t − j) with c(t) , E[c(t)] = α(t) + β(t) +

γ(t)
2
. For the process with m abrupt

breaks: E(ςt,r) =
∏m

`=0
c
κ`+1−κ`
`+1 .

13E(g2t,r+1) = E(ς2t,r)[α2(t − r) + γ2(t − r)/2 + α(t − r)γ(t − r)] and, for r ≥ 1, E(ς2t,r) =
∏r−1

j=0
E[c2(t − j)], with

E[c2(t)] = [α(t) + β(t)]2 + γ2(t)/2 + [α(t) + β(t)]γ(t).
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error is given by Var[FE(ε2t |Ft−k−1 )] = κ̃E(h2t ) + Var[FE(ht |Ft−k−1 )] = κ̃
∑k
r=0 g

2
t,rE(h2t−r).

Next to obtain the first unconditional moment of ht, for all t, we impose the conditions that:∑k
r=0 ςt,rω(t− r) as k →∞ is positive and converges, and

κ̃
∑∞

r=1
supt[g

2
t,rE(h2t−r)] < M <∞, M ∈ Z+, (28)

which guarantees that, for all t, the model in eq. (5) admits the second-order MA(∞) representation:

hgent,∞ = lim
k→∞

hpart,k

L2=

∞∑
r=0

ςt,rω(t− r) +

∞∑
r=1

gt,rvt−r, (29)

which is a unique solution of the TV-AGARCH(1, 1) model in eq. (4). The above result states that {hpart,k ,

t ∈ Z+} (defined in eq. (24)) L2 converges as k →∞ if and only if
∑k
r=0 ςt,rω(t− r) as k →∞ converges

and
∑k
r=1 gt,rvt−r converges a.s., and thus under the aforementioned conditions h

gen
t,∞

L2= limk→∞ hpart,k

satisfies eq. (24).

Moreover, the first time varying unconditional moment of ht, E(ht) = σ2t , is the limit of the (k + 1)-

step-ahead predictor of ht, E(ht |Ft−k−1 ), as k →∞:

E(ht) = lim
k→∞

E(ht |Ft−k−1 ) =

∞∑
r=0

ςt,rω(t− r). (30)

Notice that the first moment is time varying. The expected value of the conditional variance, that is

the unconditional variance of the error, is an infinite sum of the time varying drifts where the coeffi cients

(the ςs) are expressed as expectations of diagonal determinants. Finally, for the process with m abrupt

breaks in eq. (2), for i ≤ κ1 we have (if and only if cm+1 < 1):

E(ht−i) =
1− cκ1−i1

1− c1
ω1 +

m∑
`=2

c̃`
1− cκ`−κ`−1`

1− c
`

ω
`

+ c̃m+1
1

1− c
m+1

ω
m+1

, (31)

with

c̃` = cκ1−i1

∏`−1

j=2
(c
κj−κj−1
j ),

where we use the convention
∏j

r=i
(·) = 1 for j < i, and the ωs and the cs are defined in eqs. (4) and (5)

respectively. Notice that if and only if c1 < 1 the above expression as i→ −∞ becomes: E(ht−i) = ω1
1−c1

since c̃` = cκ1−i1 = 0 for all `. Finally, when i > κm, that is when we are before all the breaks, then if

and only if cm+1 < 1: E(ht−i) = ωm+1

1−cm+1
.
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4 Methodology and Data

This Section outlines the methodology we have employed to study the different properties of the stochastic

processes during the various financial crises and offers an overview of the data employed. First, we describe

the univariate models we have estimated. Then we mention the break identification method which we

have adopted.

4.1 Univariate Modelling

Let stock returns be denoted by rt = (log pt − log pt−1) × 100, where pt is the stock price index, and

define its mean equation as:

rt = µ+ φ1rt−1 + φ2rt−2 + εt, (32)

where εt | Ft−1 ∼ N(0, ht), that is the innovation is conditionally normal with zero mean and variance

ht.14 Next, the dynamic structure of the conditional variance is specified as an AGARCH(1, 1) process of

Glosten et al. (1993) (the asymmetric power ARCH could also be employed, as in Karanasos and Kim,

2006). In order to examine the impact of the breaks on the persistence of the conditional variances, the

following equation is specified as follows:

ht = ω +

7∑
i=1

ωiDi + αε2t−1 +

7∑
i=1

αiDiε
2
t−1 + γS−t−1ε

2
t−1 +

7∑
i=1

γiDiS
−
t−1ε

2
t−1

+βht−1 +

7∑
i=1

βiDiht−1, (33)

where S−t−1 = 1 if et−1 < 0, and 0 otherwise. Note that failure to rejectH0 : γ = 0 and γi = 0, i = 1, . . . , 7,

implies that the conditional variance follows a symmetric GARCH(1, 1) process. Furthermore, the second

order conditions require that c < 1 and c +

7∑
i=1

ci < 1.15 The breakdates i = 1, ...., 7 are given in Table

1, and Di are dummy variables defined as 0 in the period before each break and one after the break.16

We also consider a simple GARCH(1, 1) model which allows the dynamics of the conditional variances to

switch across positive and negative stock returns. This is given by

14Since mainly structural breaks in the variance are found statistically significant (see Section 5.1 below) we do not include
any dummies in the mean. Moreover, low order AR specifications capture the serial correlation in stock returns.
15 c , α+ β + γ

2
and ci , αi + βi + γi/2.

16The relation between the parameters in eq. (33) and the ones in eq. (2) is given by, i.e., for the ωs: ω+
∑m+1−`

i=1
ωi = ω`,

` = 1, . . . ,m+ 1, where the ωs in the right hand side are the ones in eq. (2).
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ht = ω + ω−D−t−1 + αε2t−1 + α−D−t−1ε
2
t−1 + βht−1 + β−D−t−1ht−1. (34)

where D−t−1 = 1 if rt−1 < 0, 0 otherwise.17 This is an example of a TV-AGARCH model with stochastic

coeffi cients.

4.2 Data and Breaks Overview

We use daily data that span the period 1-1-1988 30-6-2010 for the stock market indices, obtained from

Thomson DataStream. To account for the possibility of breaks in the mean and/or volatility dynamics

we use a set of non-parametric data-driven methods to identify the number and timing of the potential

structural breaks. In particular, we adopt the two-stage Nominating-Awarding procedure of Karoglou

(2010) to identify breaks that might be associated either to structural changes in the mean and/or

volatility dynamics or to latent non-linearities that may manifest themselves as dramatic changes in the

mean and/or volatility dynamics and might bias our analysis.18 Alternatively, we could choose the break

points by employing the methodologies in Kim and Kon (1999), Bai and Perron (2003) and Lavielle and

Moulines (2000) (see, for example, Karanasos and Kartsaklas, 2009, and Campos et al., 2012).

5 Empirical Analysis

This Section presents the empirical results we obtain from the different econometric tools. First, we

present the breaks that we have identified and discuss the possible economic events that may be associated

with them. Then we focus on the stock market returns and condition our analysis based on these breaks

to discuss first the findings from the univariate modelling and then from the bivariate one (presented in

Section 6).

5.1 Estimated Breaks

After applying the Nominating-Awarding procedure on stock market returns we find that the stochastic

behaviour of all indices yields about three to seven breaks during the sample period, roughly one every

two to four years on average. The predominant feature of the underlying segments is that mainly changes

in variance are found statistically significant. Finally, there are several breakdates that are either identical

in all series or very close to one another, which apparently signify economic events with a global impact.

17We estimate another specification with α+D+
t−1, β

+D+
t−1, and ω

+D+
t−1, instead of α

−D−
t−1, β

−D−
t−1, and ω

−D−
t−1,

where D+
t−1 = 1 if rt−1 > 0, 0 otherwise. The results (not reported) are very similar.

18The details of the two stages in the Nominating-Awarding procedure and a summary of the statistical properties of
stock market returns are available upon request.
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It appears that dates for the extraordinary events of the Asian financial crisis of 1997, the global

financial crisis of 2007—08 and the European sovereign-debt crisis that followed are clearly identified in all

stock return series with very little or no variability (see Table 1). Other less spectacular events, such as

the Russian financial crisis of 1998, the Japanese asset price bubble of 1986-1991 or the UK’s withdrawal

from the European Exchange Rate Mechanism (ERM), can also be associated with the breakdates that

have been identified in some series.19

5.2 Univariate Results

The quasi-maximum likelihood estimates of the AGARCH(1, 1) model allowing the drifts (the ωs) as well

as the ‘dynamics of the conditional variance’(the αs, βs and γs) to switch across the considered breaks,

as in eq. (33), are reported in Table 2.20 The estimated models are shown to be well-specified: there is

no linear or nonlinear dependence in the residuals in all cases, at the 5% level. Note that the insignificant

parameters are excluded. The impact of the breaks on the ω is insignificant in all eight cases. However,

there exists a significant impact of the breaks on the ‘dynamic structure of the conditional variance’

for all stock returns (irrespective of whether a symmetric GARCH(1, 1) or an AGARCH (1, 1) model

is considered). More specifically, while the ARCH parameter shows time varying features across a

single break in the cases of S&P and DAX, for CAC and Hang Seng it is shifted across two breaks and

for STRAITS it is shifted across three breaks (see the αi coeffi cients). With regard to the GARCH

parameter, CAC and NIKKEI show time varying parameters for only one break, but S&P, TSE, and

FTSE across two breaks. Furthermore, the GARCH parameter shows a time varying pattern across three

breaks in the case of DAX and across five breaks in the case of STRAITS.

Interestingly, the asymmetry parameter also displays significant time variation over the considered

breaks. Specifically, the TSE, DAX, and Hang Seng cases are significantly shifted for one break, whereas

S&P, CAC, and FTSE show a time varying pattern across three breaks, and STRAITS for two breaks

(see the γi coeffi cients in Table 2). Furthermore, the results are shown to be robust by considering the

dynamics of a GARCH(1, 1) process to switch across positive and negative stock returns (see Table 3).

Clearly, the ARCH and GARCH parameters show time dependence across positive and negative returns

in all cases (see the α−, and β− coeffi cients).

Overall, Table 4 shows that the persistence of the conditional variances of stock returns varies over the

19A detailed account of the possible associations that can be drawn between each breakdate for stock returns and a major
economic event that took place at or around the breakdate period either in the world or in each respective economy is
available upon request, as is a summary of the descriptive statistics of each segment.
20The quasi-maximum likelihood estimates of the standard AGARCH(1, 1) model are available upon request. The results

of the symmetric GARCH (1, 1) model allowing the dynamics of the conditional variance to switch across the considered
breaks are reported in Paraskevopoulos et al. (2013).
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considered breaks in all cases by considering the AGARCH (1, 1) models. The persistence is measured

by c` = α` + β` + γ`/2, ` = 1, . . . ,m + 1 (these are the cs used in eq. (31) as well), and, for example,

β` = β +
∑m+1−`

i=1
βi︸ ︷︷ ︸

Eq. (33)

.21

The cases which are shown to have been impacted strongly by the breaks are those of TSE, DAX,

Hang Seng, NIKKEI and STRAITS. In particular, the persistence of the conditional variance of TSE

increases from 0.93 to 0.98 after the break in 1996, remains 0.98 during the recent financial crisis and

then increases to near unity after the European sovereign-debt crisis. With regard to the persistence

of the conditional variance of DAX, it appears to be unaffected by German reunification, its highest

value is 0.98 during the Asian financial crisis, its lowest value is 0.94 after the break associated with

the announcement of the €18bn tax cuts plan in Germany (17/06/03), it increases to 0.97 on the onset

of the recent financial crisis and remains there during the sovereign-debt crisis. The results also suggest

that the persistence of the conditional variance of Hang Seng declines from 0.97 to 0.92 (its lowest value)

after the savings deposits were removed in July 2001, increases to 0.99 during the recent financial crisis

in 2007/2008, and finally it declines to 0.94 after the European sovereign-debt crisis. Furthermore, the

corresponding persistence of STRAITS increases from 0.87 to near unity (0.99) after the Asian financial

crisis. However, such persistence declines after the break in June 2000 to 0.91, remains the same through

the unexpected economic recession in Singapore in 2001 before bounding back to 0.97 at the onset of the

global financial crisis, and then exhibits a sharp decline to 0.88 during the European sovereign-debt crisis.

Surprisingly, the persistence of the conditional variance of NIKKEI increases from 0.90 to approximately

0.98 during the asset price bubble in Japan over the period 1986-1991 and remains unaffected afterwards.

For example, the impact of the Asian financial crisis as well as that of the recent financial crisis are shown

to be limited, which may be due to the fact that Japan has been immune to such crises.

The persistence of the conditional variances by allowing the GARCH (1, 1) process to switch across

positive and negative returns also shows a time varying pattern (see Table 5). In particular, it is shown

that the persistence of the conditional variances stemming from positive returns is lower than those of

the negative counterparts. More specifically, positive returns are shown to lower the persistence of the

conditional variances in most of the cases to around 0.90 whereas the persistence of the negative returns

is close to unity (0.99).

21The plot of the time varying-piecewise persistence of the conditional variances of stock returns against the persistence
generated from the standard AGARCH(1, 1) models is available upon request.
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Figure 2. Unconditional Variances (Stock Returns)

AGARCH(1, 1) model allowing for abrupt breaks in the variance
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Figure 2 shows the estimated time varying unconditional variances for the eight stock index returns.

For the S&P the first part of the graph shows the unconditional variances when i < k1, that is, when

ht−i is after all three breaks (t − k3(=03/97), t − k2(=09/08) and t − k1(=03/09)) (we construct the

time varying unconditional variances using the formula in eq. (31)). When i → −∞, the unconditional

variances converge to ω/(1−c1) = 0.001/(1−0.990) = 0.100. As i increases, that is, as we are going back

in time, the unconditional variances increase at an increasing rate. The second part of the graph shows the

unconditional variances when k1 ≤ i ≤ k2−1, that is, when ht−i is between the first and the second break.

Higher values of i are associated with lower unconditional variances. When i = k1, the unconditional

variance is [(1−ck2−k12 )/(1−c2)+ck2−k12 (1−ck3−k23 )/(1−c3)+ck2−k12 ck3−k23 /(1−c4)]ω = 0.228 (see eq. (31)

and the cs in the first column of Table 4). The third part of the graph shows the unconditional variances

when k2 ≤ i ≤ k3−1. When i = k2, the unconditional variance is [(1−ck3−k23 )/(1−c3)+ck3−k23 /(1−c4)]ω =

0.105. Finally, for i ≥ k3, the unconditional variances are not affected by the three breaks and therefore

are equal to ω/(1− c4) = 0.061.

Similarly, for the DAX the first part of the graph shows the unconditional variances when i < k1,

that is, when ht−i is after all three breaks (t− k3(=07/97), t− k2(=06/03) and t− k3(=01/08)). When

i→ −∞, the unconditional variances converge to ω/(1− c1) = 0.011/(1− 0.976) = 0.458. As i increases,

that is, as we are going back in time, the unconditional variances decrease at an increasing rate. The

second part of the graph shows the unconditional variances when k1 ≤ i ≤ k2 − 1 (E(ht−k1) = 0.177).

Higher values of i are associated with higher unconditional variances. The third part of the graph shows

the unconditional variances when k2 ≤ i ≤ k3 − 1. They are decreasing with i. Finally, for i ≥ k3, the

unconditional variances are not affected by the three breaks and therefore are equal to ω/(1−c4) = 0.222.

For the NIKKEI the first part of the graph shows the unconditional variances when i < k1, that is,

when ht−i is after the only break (t−k1(=02/90)). When i→ −∞, the unconditional variances converge

to ω/(1 − c1) = 0.326. As i increases the unconditional variances decrease at an increasing rate. In

addition, for i ≥ k1, the unconditional variances are not affected by the break and therefore are equal to

ω/(1− c2) = 0.068.

Finally, STRAITS exhibits the highest number of breaks, that is six. The first part of the graph

shows the unconditional variances when i < k1, that is, when ht−i is after all six breaks (t− k6(=08/91),

t− k5(=08/97), t− k4(=06/00), t− k3(=07/07), t− k2(=05/09), t− k1(=08/09)). As i increases, that is,

as we are going back in time, the unconditional variances increase at an increasing rate. When i→ −∞,

the unconditional variances converge to ω/(1 − c1) = 0.157. The second part of the graph shows the

unconditional variances when k1 ≤ i ≤ k2−1. Higher values of i are associated with higher unconditional

variances. The third part of the graph shows the unconditional variances when k2 ≤ i ≤ k3 − 1. They
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are decreasing with i. For the fourth and sixth part the unconditional variances increase with i whereas

for the fifth part they decrease with i. Finally, for i ≥ k6, the unconditional variances are not affected by

the six breaks and therefore are equal to ω/(1− c7) = 0.238.

6 Bivariate Models

In this Section we use a bivariate extension of the univariate formulation of Section 4.. In particular, we use

a bivariate model to simultaneously estimate the conditional means, variances, and covariances of stock

returns. Let yt = (y1,t, y2,t)
′ represent the 2 × 1 vector with the two returns. Ft−1 = σ(yt−1,yt−2, . . .)

is the filtration generated by the information available up through time t− 1. We estimate the following

bivariate AR(2)-AGARCH(1, 1) model

yt = µ+ Φ1yt−1 + Φ2yt−2 + εt, (35)

where µ = [µi]i=1,2 is a 2 × 1 vector of drifts and Φl = [φ
(l)
ij ]i,j=1,2, l = 1, 2, is a 2 × 2 matrix of

autoregressive parameters. We assume that the roots of
∣∣∣I−∑2

l=1 ΦlL
l
∣∣∣ (where I is the 2 × 2 identity

matrix) lie outside the unit circle.

Let ht = (h1,t,h2,t)′ denote the 2 × 1 vector of Ft−1 measurable conditional variances. The residual

vector is defined as εt = (ε1,t,ε2,t)′ = [et � q
∧−1/2
t ] � h

∧1/2
t , where the symbols � and ∧ denote the

Hadamard product and the elementwise exponentiation respectively. The stochastic vector et = (e1,t,e2,t)′

is assumed to be independently and identically distributed (i.i.d.) with mean zero, conditional variance

vector qt = (q11,t, q22,t)
′, and 2 × 2 conditional correlation matrix Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2

with diagonal elements equal to one and off-diagonal elements absolutely less than one. A typical

element of Rt takes the form ρij,t = qij,t /
√
qii,t qjj,t for i, j = 1, 2. The conditional covariance matrix

Qt = [qij,t ]i,j=1,2 is specified as in Engle (2002)

Qt = (1− αD − βD)Q̄+ αDet−1e
′
t−1 + βDQt−1, (36)

where Q̄ is the unconditional covariance matrix of et, and αD and βD are non-negative scalars fulfilling

αD + βD < 1.

Following Conrad and Karanasos (2010) and Rittler (2012), we impose the UEDCC-AGARCH(1, 1)

structure on the conditional variances (multivariate fractionally integrated APARCH models could also
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be used, as in Conrad et al., 2011 or Karanasos et al., 2014), and we also amend it by allowing the shock

and volatility spillovers parameters to be time varying:

ht = ω + A∗ε∧2t−1 +

n∑
l=1

AlDlε
∧2
t−1 + Bht−1 +

n∑
l=1

BlDlht−1, (37)

where ω = [ωi]i=1,2, A = [αij ]i,j=1,2, B = [βij ]i,j=1,2; Al, l = 1, . . . , n (and n = 0, 1, . . . , 7) is a cross

diagonal matrix with nonzero elements αlij , i, j = 1, 2, i 6= j, and Bl, is a cross diagonal matrix with

nonzero elements βlij , i, j = 1, 2, i 6= j; A∗ = A + ΓSt−1, Γ is a diagonal matrix with elements γii,

i = 1, 2, and St−1 is a diagonal matrix with elements S
−
i,t−1 = 1 if ei,t−1 < 0, 0 otherwise. The model

without the breaks for the shock and volatility spillovers, that is ht = ω+A∗ε∧2t−1+Bht−1, is minimal in

the sense of Jeantheau (1998, Definition 3.3) and invertible (see Assumption 2 in Conrad and Karanasos,

2010). The invertibility condition implies that the inverse roots of |I−BL|, denoted by ϕ1 and ϕ2, lie

inside the unit circle. Following Conrad and Karanasos (2010) we also impose the four conditions which

are necessary and suffi cient for ht � 0 for all t: (i) (1− b22)ω1 + b12ω2 > 0 and (1− b11)ω2 + b21ω1 > 0,

(ii) ϕ1 is real and ϕ1 > |ϕ2|, (iii) A∗ � 0 and (iv) [B−max(ϕ2, 0)I]A∗ � 0, where the symbol � denotes

the elementwise inequality operator. Note that these constraints do not place any a priori restrictions

on the signs of the coeffi cients in the B matrix. In particular, these constraints imply that negative

volatility spillovers are possible. When the conditional correlations are constant, the model reduces to

the UECCC-GARCH(1, 1) specification of Conrad and Karanasos (2010).

Finally, we also amend the UEDCC-AGARCH(1, 1) model by allowing shocks and volatility spillovers

to vary across positive and negative returns:

ht = ω + A∗ε∧2t−1 + B∗ht−1,

where A∗ = A + ΓSt−1 + A−D−t−1 and B∗ = B + B+D+
t−1; A−(B+) is a cross diagonal matrix with

nonzero elements α−ij(β
+
ij), i, j = 1, 2, i 6= j; D−t (D

+
t ) are 2 × 1 vectors with elements d−it(d

+
it), i = 1, 2,

where d−it(d
+
it) is one if rjt < 0 (rjt > 0) and zero otherwise, j = 1, 2, j 6= i.

6.1 Bivariate Results

Example 1: FTSE-DAX

Table 6 reports the results of the UEDCC-AGARCH(1, 1) model between the returns on FTSE and

DAX allowing shock and volatility spillover parameters to shift across the breaks in order to analyze the
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time varying volatility transmission structure between the two variables.22 As is evident from Table 6, the

results suggest the existence of strong conditional heteroscedasticity in the two variables. The ARCH as

well as the asymmetry parameters of the two variables are positive and significant, indicating the existence

of asymmetric responses in the two variables. In addition, rejection of the model with constant conditional

correlation, using Tse’s (2000) test, indicates the time varying conditional correlation between the two

financial markets. Figure 3 displays the evolution of the time varying conditional correlation between the

two variables over the sample period.

Furthermore, the results suggest that there is evidence of shock spillovers as well as negative volatility

spillovers from DAX to FTSE (the α12 and β12 coeffi cients are significant at the 1% and 10% levels,

respectively).23 With regard to the impact of the breaks on the volatility transmission structure, it is

shown that both shock and volatility spillovers between the two variables change over time. The most

significant changes include the impact of the fourth break in DAX (15/01/2008), which corresponds to

the global financial crisis, in which it shifts the shock spillovers parameter from DAX to FTSE (the α412

coeffi cient is significant at the 1% level). Also, volatility spillovers from DAX to FTSE are shown to

be shifted after the second (21/07/1997) and the third break (17/06/2003), corresponding to the Asian

financial crisis and the announcement of the €18bn German tax cuts plan, respectively (see the β212 and

β312 coeffi cients in Table 6).

These results are consistent with the time varying conditional correlations. The average time varying

conditional correlation for the period before the break 15/01/2008 is 0.58 compared to the period after

the break of 0.89. This also applies for the break 21/07/1997 (17/06/2003) with an average time varying

correlation of 0.43 (0.52) for the period before the break and 0.75 (0.82) for the period after the break.

Overall these findings are indicative of the existence of contagion between DAX and FTSE during the

turbulent periods of the two financial crises.

Figure 3. Evolution of the dynamic conditional correlation between FTSE and DAX returns.
22For an application on the returns of commodity metal futures see Karanasos et al. (2013).
23The results for the conventional UEDCC-GARCH(1, 1) process are available upon request. For this model the station-

arity condition of Engle (2002) is satisfied over time.
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Another way to look at the structure of the volatility spillovers between DAX and FTSE is to allow

volatility (and shock) spillover parameters to shift across two regimes of stock returns: positive (increases

in the stock market) and negative (declines in the stock market) returns. The results, displayed in Table

7, suggest that declines in each market generate shock spillovers to the other (the coeffi cients α−12 and

α−21 are positive and significant), whilst increases in each market generate negative volatility spillovers to

the other (the coeffi cients β+12 and β
+
21 are negative and significant).

Example 2: NIKKEI-Hang Seng

Next, we consider the structure of the volatility spillovers between the returns on NIKKEI and Hang

Seng to provide an example about the dynamic linkages between the Asian financial markets. The esti-

mated bivariate model, reported in Table 8, suggests the existence of strong conditional heteroscedasticity.

There is evidence of asymmetric effects of the two variables as the ARCH and asymmetry parameters (the

α and the γ coeffi cients) are positive and significant. Furthermore, the model with constant conditional

correlation is rejected according to Tse’s (2000) test, hence the correlation between the two variables is

time varying. This is also confirmed by Figure 4, which shows the evolution of the time varying correlation

between the two variables.

With regard to the linkages between the two variables, the results show the existence of shock spillovers

from Hang Seng to NIKKEI after the third (05/05/2009) and the fourth break (01/12/2009), which

correspond to the different phases of the European sovereign-debt crisis. Also, while Hang Seng generates

negative volatility spillovers to NIKKEI after the third break in the former (05/05/2009), there are positive

volatility spillovers from NIKKEI to Hang Seng after the second break (04/01/2008) in the former, which

corresponds to the global financial crisis. These findings indicate the superiority of the time varying

spillover model over the conventional one. In contrast to the conventional model, allowing for breaks

shows that the two financial markets have been integrated during the global financial crisis.24

With regard to the time varying conditional correlations, the average time varying conditional correla-

tion for the period before the breaks 04/01/2008, 05/05/2009, and 01/12/2009 are respectively 0.40, 0.41,

and 0.415 compared to the period after the breaks of 0.60, 0.58, and 0.585, respectively. These results

are consistent with those of volatility spillovers in which these two types of markets have become more

dependent during the recent financial crisis.
24The results from the conventional bivariate UEDCC-AGARCH(1, 1) process indicate that there is no evidence of volatil-

ity spillovers between the two financial markets (they are available upon request). For this model the stationarity condition
of Engle (2002) is fulfilled.
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Figure 4. Evolution of the dynamic conditional correlation between NIKKEI and HS returns.

Finally, allowing the volatility spillover structure to shift across two different regimes, that is, posi-

tive and negative returns, also shows the existence of time varying volatility spillovers between the two

variables. Specifically, the results, displayed in Table 9, suggest that declines in NIKKEI generate shock

spillovers to Hang Seng (the estimated α−21 coeffi cient is positive and significant), whilst increases in

NIKKEI generate negative volatility spillovers to Hang Seng (the estimated β+21 coeffi cient is negative

and significant).

7 Summary and Conclusions

In this paper, we have introduced a platform to examine empirically the link between financial crises

and the principal time series properties of the underlying series. We have also adopted several models,

both univariate and bivariate, to examine how the mean and volatility dynamics, including the volatility

persistence and volatility spillovers structure of stock market returns have changed due to the recent

financial crises and conditioned our analysis on non-parametrically identified breaks. Overall, our find-

ings are consistent with the intuitively familiar albeit empirically hard-to-prove time varying nature of

asset market linkages induced by economic events and suggest the existence of limited diversification

opportunities for investors, especially during turbulent periods.

In particular, with respect to the mean and volatility dynamics our findings suggest that in general

the financial crises clearly affect more the (un)conditional variances. Also, the results of the volatility

persistence are clear-cut and suggest that they exhibit substantial time variation. This time variation

applies to all stock market returns irrespective of whether we allow for structural changes or positive and

negative changes in the underlying market. As far as the direction of this time variation during financial

crises is concerned the jury is still out, but there is little doubt that the financial crises are the primary

driving force behind the profound changes in the unconditional variances.
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Finally, with respect to the existence of dynamic correlations as well as time varying shock and

volatility spillovers our findings are also conclusive. Specifically, they suggest that in the cases we examine

there is an increase in conditional correlations, occurring at different phases of the various financial

crises, hence providing evidence as to the existence of contagion during these periods. Such a finding is

comparable to those of other studies using only conditional correlation analysis to examine the existence

of contagion during the various financial crises. The results also suggest the existence of regime dependent

volatility spillovers in all cases we examine by using two regimes of returns, positive and negative. Given

that this is to our knowledge the first attempt to take into account the joint effect of dynamic correlations,

volatility spillovers and structural breaks in the mean and/or volatility dynamics, these findings are of

particular interest to those seeking refuge from financial crises.
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Table 1

The break points (Stock Returns)
Break S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

1 27/03/97 05/11/96 17/03/97 27/08/91 22/10/92 24/10/01 21/02/90 26/08/91
2 04/09/08 15/01/08 31/07/98 21/07/97 13/07/98 27/07/07 04/01/08 28/08/97

3 31/03/09 02/04/09 15/01/08 17/06/03 24/07/07 05/05/09 03/04/09 06/06/00

4 16/07/09 19/08/09 03/04/09 15/01/08 06/04/09 01/12/09 26/07/07

5 27/04/10 27/04/10 03/04/09 27/04/10 28/05/09
6 25/08/09
7 28/04/10

Notes: The dates in bold indicate breakdates for which, in the univariate estimation (see Table 2), at least one
dummy variable is significant, i.e, for the S&P index for the 04/09/08 breakdate β2 and γ2 are significant. The
underlined dates indicate breakdates for which, in the bivariate estimation (see Tables 6 and 8), at least one
dummy variable is significant, i.e., for the NIKKEI-Hang Seng bivariate model, for the 01/12/09 breakdate α412 is significant.

Table 2

The estimated univariate AGARCH (1,1) allowing for breaks in the variance
S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

µ 0.012
(0.004)

a 0.011
(0.003)

a 0.010
(0.006)

c 0.019
(0.005)

a 0.009
(0.004)

b 0.019
(0.005)

a 0.006
(0.005)

0.010
(0.005)

b

φ1 0.129
(0.013)

a 0.079
(0.014)

a 0.124
(0.016)

a

ω 0.001
(0.0002)

c 0.003
(0.0007)

a 0.005
(0.0004)

a 0.011
(0.0006)

a 0.002
(0.0003)

a 0.015
(0.003)

a 0.007
(0.001)

a 0.018
(0.004)

a

α 0.018
(0.006)

a 0.012
(0.007)

c 0.006
(0.003)

b 0.031
(0.006)

a 0.013
(0.004)

a 0.039
(0.007)

a 0.019
(0.005)

a 0.018
(0.010)

c

α1 −0.039
(0.008)

a −0.050
(0.011)

a 0.059
(0.013)

a

α2 0.011
(0.006)

c 0.068
(0.014)

a

α3 −0.044
(0.016)

a −0.050
(0.011)

a

β 0.954
(0.002)

a 0.906
(0.016)

a 0.936
(0.003)

a 0.861
(0.002)

a 0.952
(0.001)

a 0.866
(0.013)

a 0.820
(0.026)

a 0.854
(0.011)

a

β1 −0.019
(0.002)

a 0.081
(0.021)

a −0.112
(0.029)

a

β2 −0.048
(0.009)

a −0.031
(0.003)

a 0.029
(0.007)

a −0.019
(0.006)

a 0.115
(0.029)

a

β3 0.039
(0.015)

a 0.017
(0.009)

c −0.029
(0.012)

b −0.076
(0.018)

a

β4 −0.025
(0.013)

c 0.038
(0.006)

a 0.137
(0.029)

a

γ 0.023
(0.012)

c 0.028
(0.009)

a 0.056
(0.004)

a 0.117
(0.023)

a 0.029
(0.006)

a 0.130
(0.021)

a 0.117
(0.013)

a 0.105
(0.017)

a

γ1 0.092
(0.014)

a 0.097
(0.023)

a 0.035
(0.007)

a 0.028
(0.005)

a

γ2 0.113
(0.027)

a 0.019
(0.009)

b 0.055
(0.016)

a

γ3 −0.094
(0.029)

a 0.117
(0.038)

a 0.075
(0.043)

c 0.026
(0.012)

b

LogL −2921.3 −1837.5 −4374.3 −4469.8 −2904.1 −5231.4 −4764.1 −3957.7
LB(5) 8.343

[0.138]
2.316
[0.128]

10.870
[0.054]

5.170
[0.395]

9.745
[0.082]

2.928
[0.231]

2.555
[0.768]

3.303
[0.069]

LB2(5) 1.947
[0.856]

0.759
[0.979]

3.953
[0.556]

5.524
[0.354]

4.192
[0.522]

4.105
[0.534]

8.992
[0.109]

1.635
[0.897]

Notes: Robust-standard errors are used in parentheses. LB(5) and LB2(5) are Ljung-Box tests for serial correlations
of five lags on the standardized and squared standardized residuals, respectively (p-values reported in brackets).
Insignificant parameters are excluded. a, b, and c indicate significance at the 1%, 5%, and 10% levels, respectively. For

the Hang Seng index φ3 and γ4 are significant, and for the STRAITS index α4, α6, β6, γ5, and γ6 are also significant.
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Table 3

The estimated univariate GARCH (1, 1) models allowing for different persistence across
positive and negative returns: ht = ω + ω−D−t−1 + αε2t−1 + α−D−t−1ε

2
t−1 + βht−1 + β−D−t−1ht−1

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
µ 0.036

(0.005)

a 0.023
(0.004)

a 0.044
(0.007)

a 0.054
(0.008)

a 0.032
(0.004)

a 0.051
(0.007)

a 0.034
(0.007)

a 0.027
(0.004)

a

φ1 0.114
(0.012)

a 0.069
(0.013)

a 0.112
(0.011)

a

ω 0.002
(0.0008)

a 0.002
(0.0006)

a 0.007
(0.001)

a 0.008
(0.002)

a 0.002
(0.0005)

a 0.009
(0.002)

a 0.004
(0.0008)

a 0.006
(0.002)

a

α 0.054
(0.005)

a 0.062
(0.012)

a 0.070
(0.008)

a 0.091
(0.018)

a 0.066
(0.006)

a 0.088
(0.011)

a 0.065
(0.008)

a 0.051
(0.015)

a

α− 0.033c
(0.017)

0.033c
(0.020)

0.025c
(0.015)

0.104
(0.021)

a

β 0.837
(0.023)

a 0.861
(0.027)

a 0.822
(0.023)

a 0.779
(0.039)

a 0.832
(0.014)

a 0.815
(0.025)

a 0.842
(0.016)

a 0.883
(0.023)

a

β− 0.208
(0.034)

a 0.106a
(0.024)

0.181a
(0.029)

0.233
(0.043)

a 0.187
(0.023)

a 0.141a
(0.037)

0.157
(0.027)

a

LogL −2941.2 −1865.7 −4388.4 −4478.8 −2903.4 −5260.7 −4799.1 −4048.6
LB(5) 9.526

[0.089]
1.674
[0.195]

3.256
[0.071]

4.464
[0.484]

8.031
[0.154]

4.521
[0.104]

2.180
[0.823]

3.650
[0.056]

LB2(5) 2.398
[0.791]

0.573
[0.989]

4.237
[0.515]

5.340
[0.375]

5.428
[0.365]

4.998
[0.416]

8.430
[0.134]

2.385
[0.793]

Notes: See notes of Table 2. The φ3 coeffi cient was significant for the CAC and Hang Seng indices.

Table 4

The persistence of the AGARCH (1,1) models

The persistence of the standard AGARCH (1,1) models
S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
0.986 0.986 0.978 0.979 0.985 0.976 0.990 0.990

The persistence of the AGARCH (1,1) allowing for breaks in the variance
Break S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

0 (c4 =)0.983 0.932 0.970 (c4 =)0.950 0.979 0.970 0.897 0.924
1 (c3 =)0.990 0.980 0.987 0.974 0.920 0.978 0.871
2 (c2 =)0.998 0.976 (c3 =)0.979 0.982 0.988 0.986
3 (c1 =)0.990 0.997 0.990 (c2 =)0.937 0.995 0.910
4 0.972 (c1 =)0.976 0.945 0.974
5 0.948
6 0.884

Notes: Break 0 covers the period preceding all breaks, while break 1 covers the period between break
1 and 2, and break 2 covers the period between break 2 and 3, and so on (see Table 1 for the dates of the
breaks). When the value of the persistence is left blank for a break, it indicates that such persistence

has not changed during the period covered by such a break. The persistence is measured by

c` = α` + β` + γ`/2, ` = 1, . . . ,m+ 1, and, for example, β` = β +
∑m+1−`

i=1
βi︸ ︷︷ ︸

Eq. (33)

. That is cm+1

is the persistence before all breaks, and c1 is the persistence after all the breaks.
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Table 5

The persistence of the GARCH (1,1) allowing for different persistence
across positive and negative returns

Break S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
r 0.986 0.986 0.978 0.979 0.985 0.976 0.990 0.990
r+ 0.891 0.923 0.892 0.870 0.898 0.903 0.907 0.934
r− 0.995 0.992 0.982 0.986 0.991 0.990 0.998 0.986

Notes: r denotes the persistence generated from returns, that is from the standard AGARCH

model whilst r+(r−) corresponds to the persistence generated from positive (negative) returns.

Table 6

Coeffi cient Estimates of Bivariate UEDCC-AGARCH Models Allowing
for Shifts in Volatility Spillovers between FTSE and DAX

Conditional Variance Equation
ω1 0.003

(0.0006)

a γ11 0.078
(0.016)

a β312 −0.007
(0.002)

a

ω2 0.004
(0.001)

a γ22 0.082
(0.022)

a αD 0.044
(0.010)

a

α11 0.016
(0.007)

b α12 0.010
(0.003)

a βD 0.952
(0.011)

a

α22 0.033
(0.009)

a α412 0.011
(0.004)

a

β11 0.921
(0.014)

a β12 −0.007
(0.003)

c

β22 0.912
(0.015)

a β212 0.003
(0.001)

a

LogL −5427.03
Q(5) 27.970

[0.110]
Q2(5) 9.427

[0.977]

Notes: Robust-standard errors are used in parentheses, 1= FTSE, 2=DAX. Q(5) and Q2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardized

and squared standardized residuals, respectively (p-values are reported in brackets).
α12(β12) indicates shock (volatility) spillovers from DAX to FTSE, while αl12(β

l
12)

indicates the shift in shock (volatility) spillovers for the break l (see Table 1) from DAX to FTSE.

Insignificant parameters are excluded.a , b and c indicate significance at the 1%, 5%, and

10% levels, respectively. Tse’s (2000) test for constant conditional correlation: 20.41.
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Table 7

Coeffi cient Estimates of Bivariate UEDCC-AGARCH Models Allowing for Different
Spillovers Across Positive and Negative Returns (FTSE-DAX)

Conditional Variance Equation
ω1 0.002

(0.0005)

a γ11 0.058
(0.012)

a αD 0.043
(0.010)

a

ω2 0.004
(0.001)

a γ22 0.060
(0.016)

a βD 0.954
(0.011)

a

α11 0.030
(0.008)

a α−12 0.019
(0.005)

a

α22 0.027
(0.008)

a β+12 −0.014
(0.004)

a

β11 0.926
(0.012)

a α−21 0.042
(0.015)

a

β22 0.928
(0.012)

a β+21 −0.036
(0.016)

a

LogL −5430.26
Q(5) 26.965

[0.136]
Q2(5) 9.533

[0.975]

Notes: Robust-standard errors are used in parentheses, 1= FTSE, 2=DAX. Q(5) and Q2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardized

and squared standardized residuals, respectively (p-values reported in brackets). α−12(β
+
12)

indicates the shock (volatility) spillovers from DAX to FTSE generated by negative(positive)

returns in DAX.. α−21(β
+
21) reports shock (volatility) spillovers form FTSE to DAX generated by

negative(positive) returns in FTSE. Insignificant parameters are excluded.
a indicates significance at the 1% level.

Table 8

Coeffi cient Estimates of Bivariate UEDCC-AGARCH Models Allowing for Shifts
in Volatility Spillovers between NIKKEI and Hang Seng

Conditional Variance Equation
ω1 0.003

(0.0008)

a γ11 0.094
(0.012)

a αD 0.015
(0.005)

a

ω2 0.009
(0.002)

a γ22 0.081
(0.021)

a βD 0.982
(0.006)

a

α11 0.024
(0.004)

a α312 0.050
(0.017)

a

α22 0.050
(0.007)

a α412 0.025
(0.011)

b

β11 0.920
(0.007)

a β312 −0.046
(0.015)

a

β22 0.885
(0.015)

a β221 0.016
(0.009)

c

LogL −9413.42 Tse’s test: 10.10
Q(5) 22.122

[0.333]
Q2(5) 13.594

[0.850]

Notes: Robust-standard errors are used in the parentheses, 1= NIKKEI, 2=Hang Seng. Q(5) and Q2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardized

and squared standardized residuals, respectively (p-values are reported in brackets).
direction. αl12(β

l
12) indicates shift in shock (volatility) spillovers for the break l (see Table 1) from

Hang Seng to NIKKEI, whilst βl21 reports the shift in volatility spillovers for the break l in the
reverse direction. Insignificant parameters are excluded. a , b and c indicate significance at the

1%, 5%, and 10% levels, respectively.
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Table 9

Coeffi cient Estimates of Bivariate UEDCC-AGARCH Models Allowing for Different
Spillovers Across Positive and Negative Returns (NIKKEI-Hang Seng )

Conditional Variance Equation
ω1 0.003

(0.0009)

a β11 0.917
(0.007)

a α−21 0.017
(0.009)

a

ω2 0.008
(0.002)

a β22 0.897
(0.013)

a β+21 −0.018
(0.008)

a

α11 0.027
(0.005)

a γ11 0.099
(0.015)

a αD 0.016
(0.007)

a

α22 0.052
(0.007)

a γ22 0.065
(0.019)

a βD 0.980
(0.010)

a

LogL −9414.61
Q(5) 22.918

[0.292]
Q2(5) 9.534

[0.975]

Notes: Robust-standard errors are used in parentheses, 1= NIKKEI, 2=Hang Seng. Q(5) and Q2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardized

and squared standardized residuals, respectively (p-values are reported in brackets). α−21(β
+
21)

reports shock (volatility) spillovers from NIKKEI to Hang Seng generated by negative(positive) returns

in NIKKEI. Insignificant parameters are excluded. a indicates significance at the 1% level.
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