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Abstract
This paper is concerned with the electric vehicle (EV) charging station planning problem based on the dynamic charging
demand. Considering the dynamic charging behavior of EV users, a dynamic prediction method of EV charging demand is
proposed by analyzing EV users’ travel law via the trip chain approach. In addition, a multi-objective charging station planing
problem is formulated to achieve three objectives: (1) maximize the captured charging demands; (2) minimize the total cost of
electricity and the time consumed for charging; and (3) minimize the load variance of the power grid. To solve such a problem,
a novel method is proposed by combining the hybrid particle swarm optimization (HPSO) algorithm with the entropy-based
technique for order preference by similarity to ideal solution (ETOPSIS) method. Specifically, the HPSO algorithm is used to
obtain the Pareto solutions, and the ETOPSIS method is employed to determine the optimal scheme. Based on the proposed
method, the siting and sizing of the EV charging station can be planned in an optimal way. Finally, the effectiveness of the
proposed method is verified via the case study based on a test system composed of an IEEE 33-node distribution system and
a 33-node traffic network system.
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Introduction

Due to the shortage of resources and increasing pressure on
the environment protection, the past decades have witnessed
a surge of research interest in energy-saving and emission
reduction (such as event-triggeredmechanism [10,11,22,24],
transmission scheduling scheme [20,48] and energy-efficient
sampling scheme [29]). With this background, electric vehi-
cles (EVs) have become the future direction of the automo-
tive industry development [40]. In addition, the continuous
progress of battery technology and the incentive policies put
forward by the governments have significantly facilitated the
rapid development of EVs. It is well known that charging
infrastructures (e.g. charging stations) are the essential con-
nection between EVs and the power distribution grid [44].
As such, the reasonable planning of charging stations can not
only provide the satisfactory charging service for EV users,
but also adjust the load distribution efficiently to guarantee
the stable and safe operation of power system [42].

The planning of EV charging stations has been captur-
ing constant attention from both academy and industry, and
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a variety of planning schemes have been available in the
existing literature. One of the main streams of research is
to plan the layout of charging stations from the economic
point of view [5,14,30], and minimize the cost using certain
optimization algorithms [26,27]. For instance, in [5], an opti-
malmodel has been proposed tominimize the investment and
operation cost of the EV charging stations. Amulti-objective
optimization model for the charging station planning in res-
idential areas has been established in [30] to minimize the
total cost of line installation and power losses of the distri-
bution system. In recent years, the road traffic information
has also been incorporated in planning charging stations
[33,39,46]. Specifically, a multi-objective decision-making
model has been considered in [39] for the optimal planning
of EV charging stations, aiming at maximizing the captured
traffic network flow and minimizing the power network loss.
In [33], a dynamic traffic network method has been used to
minimize the capital cost and charging cost, thereby obtain-
ing the optimal distribution and scale of EV charging station.
It is worth mentioning that, so far, most reported results have
been focused on the planningmodels that are formulated sim-
ply from the perspective of the economics and traffic flow
information, and the EV charging demand has not been paid
adequate research attention, which would seriously affect the
rationality of the planned charging stations.

It is obvious that the charging demand is closely related to
the travel characteristics of EV users. As such, the charging
demand should be forecasted based on a comprehensive anal-
ysis of EVusers’ travel behaviours [3,39]. In [3], the planning
method of EV charging station has taken into account the
EV users’ travel rules that are described by the trip chain.
Moreover, by virtue of the Monte Carlo stochastic simula-
tion of trip chain, a novelmethod has been proposed in [39] to
analyze the dynamic charging demand for EVs.More specif-
ically, the complete trip chains can be formed by extracting
samples from the Monte Carlo simulation, and the probabil-
ity distribution of characteristic variables in the trip chains
can be analyzed and fitted. Then, it is possible to derive the
charging demand distribution in the functional region with
the full analysis of the EVs’ travel characteristics.

In order to better integrate EVs into the power grid, it is
quite necessary to consider the effect from the charging sta-
tion layout on the operation of power grid [16,17]. Recently,
the disordered charging has become an increasingly promi-
nent problemas the rapid popularisationofEVs,whichwould
lead to the load peak and do harm to the normal operation
of power grid. To avoid such an issue, the load scheduling
problem has been studied in [16] to minimize the serious
peak-to-valley difference in the distribution grid and the
financial loss. The real-time scheduling strategies have been
proposed in some literature, see e.g. [9,47], inwhich the time-
of-use (TOU) electricity price has been used as an incentive
measure to instruct users to charge during the off-peak peri-

ods. Furthermore, based on the forecasted load information,
an optimal EV charging scheduling model has been estab-
lished in [35], where the relationships between feeder losses,
load factor, and load variance have been revealed. In [13], an
optimal charging time scheduling model has been developed
to minimize the power cost of the power system. Obviously,
the EV users’ charging behavior would be affected by the
scheduling policies, and the users are more willing to satisfy
their charging demands with lower extra costs.

Motivated by the above discussions, in this paper, we aim
to provide an optimal planning method of EV charging sta-
tions by taking into account the charging behavior of the
EV users. To this end, a charging demand forecasting model
is established and the charging station planning is formu-
lated as a multi-objective optimization problem. In addition,
the hybrid particle swarm optimization (HPSO) algorithm
is utilized to solve the multi-objective optimization problem
and obtain the Pareto solutions. Moreover, the entropy-based
technique for order preference by similarity to ideal solution
(ETOPSIS) method is used to determine the optimal loca-
tions of charging stations, and then the optimal sizes of the
selected charging stations are derived. The main contribu-
tions of this paper are summarized as follows.

1. Based on the analysis of EV users’ travel activities, a
dynamic forecasting method of charging demand is pre-
sented with the consideration of the relationship between
EV charging demands and individual driving habits.

2. A charging station planning model is proposed by tak-
ing the mutual coupling relationship between charging
demand distribution and charging station layout into
account, which aims to maximize the captured charg-
ing demands, minimize the total cost of electricity and
the time consumed for charging, and minimize the load
variance of the power grid.

3. Amulti-objective optimizationmethod is proposed to get
the optimal planning scheme of EV charging stations in
the designated functional region.

The rest of this paper is organized as follows. In the next
section, the dynamic charging behavior of the EV users
is analyzed, and the charging demand is forecasted. The
multi-objective model for the optimal planning and the con-
figurationmodel of EV charging station are formulated in the
subsequent section followed by which the HPSO algorithm
and the ETOPSIS method are presented to get the optimal
siting of charging stations, and the optimal sizing of the cor-
responding stations are obtained. A case study is provided in
the penultimate section based on a test system consisting of
an IEEE 33-node distribution system and a 33-node traffic
network system. Finally, the conclusions are drawn.

123



Complex & Intelligent Systems (2022) 8:1035–1046 1037

6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

Time(h)

Ve
hi

cl
e 

flo
w

Vehicle flow on the way to work
Vehicle flow on the way home

Fig. 1 Vehicle flow on the way to work and home

Dynamic EV charging demand forecasting

Charging demand distribution and trip chain of EVs

For the EV charging station planning, the first thing to
focus on is the spatial and temporal distributions of charging
demand. In practice, it is often the case that there is consid-
erable distance between place of residence and employment
location, which gives rise to the tide phenomenon at rush
hours, and this could trigger off the large-scale, long-distance
and tidal traffic flows [41], as shown in Fig. 1. During peak
periods, there would be a surge of demand for fast charg-
ing on the way to and from work, while more conventional
charging demands need to be fulfilled around the residential
areas during off-peak hours [15].1 In this case, the charging
stations near the residential areas should be deployed with a
higher proportion of conventional chargers, and the charging
stations close to the commercial and industrial areas should
be equipped with more fast chargers.

It is worth mentioning that the charging demand is closely
related to EV users’ travel law. The travel activities of EV can
be described by the trip chain that is consistent with people’s
daily travel law. The trip chain is generally made by linking
home and non-home sites, which includes the information of
time, space and activity type during the trip [39]. Moreover,
since the real-time state of charge (SOC) of EV is greatly
significant for judging whether EV needs to be charged or
not, the SOC of EV during travel process is added to the trip
chain in this paper. As shown in Fig. 2, the circle represents
the arriving/leaving time of each destination along the jour-
ney, the rectangle denotes the origin/destination position, and
the hexagon represents the SOC of EV. Moreover, Ts_0 is the
start time of the travel, Ta_i and Ts_i are, respectively, the
arriving time and leaving time of destination i . tp_i is the
parking time at destination i , and di−1,i is the distance from
destination i − 1 to destination i . SOCs_0 is the initial avail-

1 Generally, the charging modes of EVs can be divided into two cate-
gories: the fast charging mode and conventional charging mode.

Fig. 2 Schematic diagram of the EV trip chain

able capacity, SOCa_i denotes the capacity when EV arrives
at destination i , and SOCs_i denotes the capacity when EV
leaves destination i .

Dynamic forecasting of EV charging demand

In general, the selection of charging station depends on a
variety of factors which include, but are not limited to, the
extra driving distance, road traffic conditions and the ser-
vice capability of the alternative charging station. For the
fast charging demand, the EV user usually focuses more on
the extra driving distance and queuing time at the charging
station. In contrast, the EV user with the conventional charg-
ing demand is more willing to choose the nearest charging
station. As such, the satisfaction of EV user k with the charg-
ing trip to station j can be expressed by

Mk, j (t) =
⎧
⎨

⎩

ω
Cavg
Ce
k, j (t)

+ (1 − ω) Fmax
Fj (t)

, Selecting fast charging mode;
Lavg

Lk
O j

, Selecting conventional charging mode.

(1)

where Ce
k, j (t) denotes the extra charging cost of user k at

the station j , Cavg denotes the average charging cost, Fj (t)
denotes the time-varying vehicle flow at the charging station
j , Fmax denotes the maximum number of EVs waiting for
charging at station j [3], andω is the compromise coefficient.
In addition, Lk

O j denotes the distance from the origin of user
k to the charging station j , and Lavg denotes the average
distance from the origins of EV users to the charging stations.

Moreover, the extra cost is defined as the sum of the extra
electricity and time costs for charging, which can be mathe-
matically formulated as follows:

Ce
k, j (t) = q(t)EaL

e
k, j + αβ(t)

Le
k, j

va
, (2)

where q(t) is the time-varying charging price, Ea is the aver-
age capacity consumption per kilometer, α is the conversion
coefficient of time cost, β(t) is the traffic congestion coeffi-
cient, and va is the average velocity of EV. In addition, Le

k, j
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is the extra driving distance for EV user k incurred by the
charging trip to station j , which is given by

Le
k, j = Lk

O j + Lk
j D − Lk

OD, (3)

where Lk
O j is the distance fromoriginO to charging station j ,

Lk
j D is the distance from charging station j to destination D,

and Lk
OD is the direct distance from origin O to destination

D.
Now, we are in a position to present the dynamic fore-

casting method of EV charging demand, which is shown in
Fig. 3. First, initialize the number of EVs and the charac-
teristic variables (e.g. the trip purpose, starting time, origin,
destination and initial SOC information). Second, the Monte
Carlo sampling method is utilized to simulate the travel law
of EVusers to generate the trip chains. Thirdly, the trip chains
are extracted according to the time sequence, and then the EV
users’ charging behaviors are analyzed one by one. With the
initial travel information, such as the origin, destination and
SOC of EVs, the maximum travel distance that each EV can
run under the initial capacity is calculated, and the shortest
distance betweenorigin anddestination is calculated byusing
the Dijkstra algorithm [45]. Comparing the two distances,
we are able to make a judgment about whether or not the EV
needs to be charged. If the EV needs to be charged, the EV
user will select the charging station according to the satisfac-
tion function defined in (1). If not, the user will drive directly
to the destination. Finally, the number of EVs charging at the
charging station in each time period and the charging loads
would be counted to realize the dynamic forecasting of EV
charging demand.

Remark 1 In this paper, in order to describe EV users’ travel
characteristics, the trip chain approach is adopted to analyze
the spatial and temporal distributions of charging demands,
which can accurately simulate the EV users’ charging behav-
ior during the travel process. In addition, the proposed
satisfaction function is helpful to instruct EV users to choose
charging station for the next charging cycle. It can be seen
from (1) that the higher the satisfaction degree, the higher the
possibility that the charging station can be selected. Hence,
the proposed method is able to facilitate the efficient coor-
dination of EV charging demand in the functional area, and
make the charging station planning more reasonable.

Charging station planningmodel
formulation

Model for siting of EV charging station

As a service provider, the charging station should satisfy
EV users’ charging requirements to the greatest extent. On

Fig. 3 Flow chart of EV charging demand forecasting

the other hand, as one of the important loads connected to
the power distribution grid, the EV charging behavior may
incur a variety of adverse effects on the power system, which
include, but are not limited to, increased peak load, dis-
rupted load balance, and local voltage deviation of the power
grid [34]. Therefore, the planning of EV charging station
is required to fully consider not only the charging demand,
but also the impact of charging load on the power grid. To
this end, in this subsection, amulti-objective charging station
planning model is established to achieve the following three
objectives: (1) maximize the captured charging demands;
(2) minimize the extra electricity and time costs; and (3)
minimize the load variance. The planning objectives and con-
straints are detailed as follows.

(1)Maximizing the captured charging demands

To meet the charging requirements of more EV users,
the layout of charging stations should be able to cover the
charging demand as much as possible. In addition, due to the
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mobility of EVs and the randomness of charging behaviors,
the dynamicity of the EV charging demand should be incor-
porated in planning charging stations. Consequently, the first
optimization objective is tomaximize the sumof the charging
demand divided by the extra driving distance. The specific
mathematical expression is presented as follows:

Maximize : Z1 =
n̄∑

j=1

m∑

k=1

Qk, j Rk (4)

Subject to :
Rk ≤ ck j x j , j ∈ {1, 2, . . . n̄}
∑

j

ck j ≤ 1, ck j ∈ {0, 1}, j ∈ {1, 2, . . . n̄}
∑

j

x j = n, x j ∈ {0, 1}, j ∈ {1, 2, . . . n̄}, (5)

where Qk, j is the charging demand of EV user k at charging
station j ; Rk is a binary variable: Rk = 1 if the charging
demand of EV user k can be satisfied, and Rk = 0 otherwise;
x j is a binary variable: x j = 1 if an EV charging station
is located at node j , and x j = 0 otherwise; ck j is a binary
variable: ck j = 1 if EV k can be charged at charging station j ,
and ck j = 0 otherwise; n is the number of charging stations
to be constructed; n̄ is the total number of alternative location
nodes for the charging station planning; andm is the number
of EVs in the functional region.

(2)Minimizing the extra cost of electricity and time consumed
for charging

Generally speaking, EV users are eager to choose a charging
station along their trip routes with lower charging cost. In
order to minimize the extra cost of electricity and time con-
sumed during the travel to the charging station, the second
objective function is given as follows:

Minimize : Z2 =
n∑

j=1

m∑

k=1

Ce
k, j (t)Rk, (6)

where Ce
k, j (t) denotes the extra cost of EV user k consumed

for charging at station j , which is defined in (2).

(3) Minimizing the load variance of power grid

It should be noted that the soaring charging demand may
give rise to a new peak form during the normal off-peak
period, thus the scheduling policies are usually utilized to
guide the EV users’ charging behaviors [36]. To minimize
the load variance and smooth the load fluctuation of power
grid, the third optimization objective is proposed as follows:

Minimize : Z3 = 1

T

T∑

t=1

⎡

⎣

⎛

⎝Pgrid,t +
n∑

j=1

Pj,t

⎞

⎠ −

1

T

T∑

s=1

⎛

⎝Pgrid,s +
n∑

j=1

Pj,s

⎞

⎠

⎤

⎦

2

. (7)

Subject to : 0 ≤ Pj,t ≤ ζ Pmax
j , (8)

where T denotes the number of calculation periods, Pgrid,t

denotes the predicted value of the power grid load, Pj,t is the
predicted value of the charging load at the station j , Pmax

j
is the maximum charging power that can be provided by
charging station j , and ζ is the charging efficiency.

Model for sizing of EV charging station

As mentioned in section “Dynamic EV charging demand
forecasting”, there are usually two service modes available
for different charging requirements, namely, fast charging
mode and conventional charging mode, and the correspond-
ing principles of charging station capacity allocation are
different. As for the fast charging, the more chargers are
equipped in the charging station, the less timeEVuserswould
consume for waiting. Nevertheless, to save the construction
cost of the charging station, the operators are generally less
willing to deploy more chargers, which will inevitably affect
the charging efficiency. Therefore, aiming to minimize both
the charging station construction cost and EV users’ queuing
time, the objective function is defined as follows:

Minimize : C f =Cc + Cq

= (a f + b f )ch f , j
r(1 + r)τ

(1 + r)τ − 1

+ 365
m∑

k

αWk, j , (9)

where

Wk, j = (ch f , j · ρ)ch f , j · ρ

ch f , j !(1 − ρ)2λ
P0, (10)

P0 =
⎡

⎣

ch f , j−1
∑

h=0

1

h!
(

λ

μ

)h

+ 1

ch f , j ! · 1

1 − ρ
·
(

λ

μ

)ch f , j

⎤

⎦

−1

,

(11)

C f denotes the sum of charging station construction cost
and EV users’ queuing time cost, Cc is the charging station
construction cost, and Cq is EV user’s queuing time cost;
a f is the unit price of the charger, b f is the operation and
maintenance cost of a single charger, ch f , j is the number
of fast chargers equipped in the charging station j , r is the
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discount rate, and τ is the operating years;Wk, j is thewaiting
time of EV user k at charging station j , P0 is the probability
that all chargers are idle, and α is the conversion coefficient;
and ρ = λ/μ is the service strength of chargers, where λ is
the number of EVs reaching the charging station andμ is the
average service rate of chargers.

It is clear that the cost C f is a function related to the num-
ber of chargers. As the number of chargers increases, the
waiting time of EV users gradually decreases, while the con-
struction cost of charging stations gradually increases. The
optimal number of chargers equipped in the charging sta-
tion can be determined by solving the optimization problem
described by (9).

On the other hand, the EV users, who choose the con-
ventional charging mode, prefer shorter waiting time. The
conventional charging mode usually adopts the constant
charging power to charge the EVs, and the optimal number
of chargers can be calculated based on the largest charging
demand in one day as follows:

chc, j = Qmax
c, j

PaTj μ̃δ j
, (12)

where chc, j denotes the number of conventional chargers
equipped in charging station j , Qmax

c, j represents the largest
conventional charging demand in one day, Pa is the charging
power of a single charger, μ̃ stands for the charging rate, and
δ j denotes the coincidence factor of charging station j .

Implementation of HPSO and ETOPSIS
method

In this section, we propose a novel method by combining
the HPSO algorithm and the ETOPSIS method to solve the
multi-objective optimization problem for the EV charging
station planning. The flow chart of the planning process is
shown in Fig. 4.

HPSO algorithm

It is known that PSO is an evolutionary computation algo-
rithm, where each particle represents a candidate solution
of the considered problem and moves in a D-dimensional
search space at a certain speed. The position and velocity of
the i th particle at the t th iteration are denoted by two vec-
tors, i.e., the position vector Xt

i = [xti1, xti2, . . . , xti D] and
the velocity vector V t

i = [vti1, vti2, . . . , vti D]. In addition,
Xt
i ∈ [xmin, xmax], where xmin and xmax are, respectively,

the lower and upper bounds for the particles’ positions.
V t
i ∈ [vmin, vmax], where vmin and vmax are, respectively,

the lower and upper bounds for the particles’ velocities. The
velocity and position of the particle at the (t + 1)th iteration

Fig. 4 Flowchart of the planning process

are updated according to the following equations:

{
vt+1
i j = vti j + c1r1(pti j − xti j ) + c2r2(gti j − xti j )

xt+1
i j = xti j + vt+1

i j ,
(13)

where t is the current iteration number, c1 and c2 are the
acceleration coefficients called cognitive and social param-
eters, respectively. In addition, r1 and r2 are two random
numbers, which are uniformly distributed in [0, 1]. pti j is the
local best position at the t th iteration, and gti j is the global
best position in the swarm at the t th iteration.

Furthermore, as shown in (13), two acceleration coeffi-
cients c1 and c2 have a significant effect on the particles’
motion.When c1 is larger than c2, the particles would mainly
follow their own experience, which may result in the slower
convergence speed. If c2 is larger than c1, the particlesmay be
trapped in the local optimum location due to the faster conver-
gence speed. To solve this problem, the PSO algorithm with
constriction factor (PSOCF) has been proposed by Clerc and
Kennedy in [6], which is able to balance the local and global
optimum values by choosing the appropriate parameters, and
the velocity formula is updated by

vt+1
i j = ϕ{vti j + c1r1(p

t
i j − xti j ) + c2r2(g

t
i j − xti j )}, (14)
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whereϕ is a constriction factor defined asϕ = 2
|2−C−√

C2−4C |
with C = c1 + c2 and C > 4. The constriction factor can
effectively control the particles’ moving speed and enhance
the local searching ability of the algorithm. Nevertheless,
with the increase of the number of iterations, particles might
become similar and the search would fall into the local opti-
mum. As such, the crossover and mutation operations of
genetic algorithm (GA) are added into PSOCF to improve the
particle diversity. The procedure of the HPSO is described
as follows:

1. Initialize the HPSO algorithm by inputting EVs’ travel
information, population size (xSize), the particle length
(Dim) and the maximum number of iterations (MaxIt).

2. Set the iteration counter t = 1.
3. Generate the initial particle positions X1

i = [x1i1, x1i2,
. . . , x1in] and velocities V 1

i = [v1i1, v1i2, . . . , v1in] ran-
domly. Each particle has n components, and each com-
ponent represents the node number of a charging station.

4. Predict the charging demand and calculate the values of
the three objective functions for all particles.

5. Update the local best solution, the global best solution
and the Pareto solution.

6. Update the velocities and positions of the particles with
performing crossover andmutation operations on the par-
ticles.

7. Repeat steps 3–6 until themaximum number of iterations
is reached.

ETOPSIS method

The technique for order preference by similarity to ideal
solution (TOPSIS) is a systematic evaluation method that
is suitable for the multi-criteria decision analysis [18,21],
and the Entropy weight method is one of the most famous
weighting methods, which can be employed to determine
the objective weight of each dimension of available indexes
[12]. In this paper, the ETOPSIS method is used to calculate
the integrated closeness of each scheme, which facilitates to
select the optimal scheme according to the rank of the close-
ness of candidate schemes.

(1) Building standardized decision matrix

In this stage, the charging station planning problem is con-
verted into a decision problem with l-program and 3-index.
The standardized matrix is represented by

T = [τi j ]l×3, i = 1, 2, . . . , l, j = 1, 2, 3 (15)

where τi j denotes the standardized value of the j th index in
the i th scheme, and l is the number of candidate schemes.

(2) Calculating the entropy weight

The entropy value of the j th index is defined as

e j = − 1

ln(l)

l∑

i=1

pi j ln(pi j ) (16)

where pi j = τi j/
∑l

i=1 τi j , and pi j denotes the proportion
of index characteristics. pi j ln(pi j ) = 0 when pi j = 0 or
pi j = 1. Then, the entropy weight is calculated by

w j = 1 − e j
∑3

j=1(1 − e j )
, (17)

where
∑3

j=1 w j = 1.

(3) Building weighted decision matrix

Based on the standardized decisionmatrix and the entropy
weight values, the weighted decision matrix is constructed
as

H = (hi j )l×3 = (w jτi j )l×3. (18)

(4) Seeking the positive ideal solution and the negative ideal
solution

The positive ideal solution and the negative ideal solution are
presented by

{
S+
j = {(max hi j | j ∈ J1), (min hi j | j ∈ J2) | i = 1, 2, . . . l}

S−
j = {(min hi j | j ∈ J1), (max hi j | j ∈ J2) | i = 1, 2, . . . l},

(19)

where J1 is the set of indexes that the bigger the index is,
the better the scheme is, and J2 is the set of indexes that the
smaller the index is, the better the scheme is.

(5) Calculating the distance between candidate scheme and
positve/negative ideal solution

For the i th scheme, the distance with the positve/negative
ideal solution is described by

⎧
⎪⎨

⎪⎩

Sd+
i =

√∑3
j=1(S

+
j − hi j )2

Sd−
i =

√∑3
j=1(S

−
j − hi j )2.

(20)

(6) Calculating the integrated closeness

The integrated closeness of the i th candidate scheme is
defined as

σi = Sd−
i

Sd+
i + Sd−

i

. (21)
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Fig. 5 Test system with an IEEE 33-node distribution system and a
33-node traffic network

Note that the bigger σi is, the better the i th scheme is.
Thus, the closeness of candidate schemes can be ranked to
obtain the optimal scheme.

Case studies

Test system

In this paper, a test system consisting of an IEEE 33-node
distribution system and a 33-node traffic network is uti-
lized to verify the effectiveness of the proposed method. It
is assumed that the two kinds of nodes are geographically
overlapped, as shown in Fig. 5, where the solid lines con-
stitute the traffic network and the dotted lines constitute the
power distribution system. The planning area is divided into
residential area, industrial area, commercial area, and scenic
area. The line parameters of the 33-node traffic network are
shown in Table 1. Since the large-scale application of EVs
is still in the early stage, the travelling information of exist-
ing fuel vehicles, which is taken from the Beijing Transport
Annual Report in 2015[41], is utilized in this paper for anal-
ysis. Moreover, it is assumed that there are 5000 EVs in the
test system, and the technical parameters of EV refer to the
parameters of BYD-E6. The battery capacity of EV is 82
kW·h, and the average capacity consumption per kilometer
is 21.5 kW·h/100 km. The EV driving range is up to 300
km, and the EV average velocity is 40 km/h. The SOC of
BYD-E6 is generally between 0.2 and 0.8. In addition, the
initial SOC of EV is assumed to obey the normal distribu-
tion N (0.6, 0.1). The EV battery can be fully charged in 15
minutes by the fast charging mode, and in 4 hours by the

Table 1 Line parameters of the 33-node traffic network

Line parameters Line parameters

O D Distance/km O D Distance/km

1 2 16.6 12 13 27.9

1 18 14.4 12 22 20.3

1 19 18.6 13 14 21.7

1 25 43.7 13 20 22.4

2 3 13.9 14 15 23.1

2 19 15.1 15 16 30.5

3 4 19.4 15 20 33.6

3 23 20.1 16 17 29.3

3 24 33.8 16 19 19.3

4 5 17.3 17 18 32.1

4 19 18.7 19 20 20.8

5 6 10.2 20 21 35.8

5 20 19.9 21 22 24.7

6 7 11.1 23 24 27.1

6 26 12.7 23 28 13.9

7 8 13.5 24 25 20.5

7 21 15.8 24 29 22.2

8 9 14.9 26 27 13.9

8 26 12.8 27 28 14.1

8 31 20.8 27 30 25.8

9 10 15.5 28 29 19.2

10 11 25.4 29 30 15.8

10 21 28.5 30 31 18.9

11 12 28.2 31 32 19.3

11 22 18.3 32 33 20.3

conventional charging mode. The fast charging power is set
to be 96 kW and the conventional charging power is set to be
5 kW. The charging rate is set to be 80%.

Simulation results of the proposedmethod

In the simulation, the population size of the HPSO algo-
rithm is xSize = 50, the particle length is Dim = 10 and
the maximum number of iterations is MaxIt = 50. In addi-
tion, the number of charging stations is 10, which is equal
to the particle length. The optimization results (e.g. the opti-
mized values of three objective functions) from the HPSO
algorithm are used in the ETOPSIS method to get evalua-
tion indicators, and the entropy weights of three indicators
are derived as 0.33688, 0.291538 and 0.371586. The spe-
cific values and closeness coefficients of Pareto solutions are
shown in Table 2. It can be seen that the closeness of the
first scheme is about 0.58655, which is the largest one and
meets the decision requirement. Then, the layout of charg-
ing stations is determined by choosing the optimal scheme,
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Table 2 Pareto solution set and
TOPSIS decision results

Index Captured demand (kW) Total costs (�) Load variance (kW2) Closeness

1 1,091,594.65 597,100.88 548,324,346.10 0.58655

2 870,085.50 827,686.46 668,123,391.72 0.56905

3 782,335.88 620,690.65 677,319,491.18 0.541848

4 707,374.01 663,874.33 672,430,154.62 0.437017

5 658,234.24 532,507.29 570,283,068.54 0.377016

6 691,148.23 512,309.68 667,137,074.93 0.355856

7 867,709.42 687,180.50 545,358,826.05 0.347902

8 848,258.17 682,316.83 646,291,941.96 0.328652

which is shown in Table 3. It is worth mentioning that even
though the cost and load variance of some schemes are less
than that of the first scheme, they are not adopted due to the
lower closeness.

In addition, Figs. 6 and 7 show, respectively, the tempo-
ral and spatial distributions of EVs’ charging demand. It can
be seen from Fig. 6 that EV users prefer to choose the fast
chargingmode during themorning/afternoon peak hours, and
choose the conventional charging mode during the off-peak
hours. Figure 7 depicts the demands of fast charging and con-
ventional charging in different charging stations. It is clear
that the demands of fast charging and conventional charging
vary with the location of charging station. For instance, since
charging station 8 is located in the junction of two residential
areas and two commercial areas, the demands of both charg-
ing modes are relatively high. Moreover, charging stations
3, 11, 21, and 25 are close to residential areas, therefore the
demand of conventional charging mode is higher than that
of the fast charging mode. Charging station 15, 18, and 28
are close to the industrial and commercial areas, the demand
of conventional charging mode are lower than that of fast
charging mode. Furthermore, the specific configuration of
fast charger and conventional charger in the charging sta-
tions is shown in Table 3, which corresponds to the charging
demands under the optimal scheme described in Fig. 7.

Effectiveness of charging station planning with
different EV charging behaviors

In section “Dynamic EV charging demand forecasting”, the
satisfaction function has been presented to help EV users to
select the appropriate charging stations, which also facilitates
the efficient planning of charging stations in the functional
region. To further reveal the feasibility of the proposed
method, the effectiveness analysis of charging station plan-
ning is conducted with the following three types of EV
charging behaviors:

Case 1: The charging station is selected according to the
satisfaction degree of EV users presented in this paper.

(a)

(b)

Fig. 6 The temporal distribution of charging demand under the optimal
layout scheme. a Fast charging. b Conventional charging

Case 2: The charging station is selected according to the
shortest distance between the charging station and EV users.
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Fig. 7 The spatial distribution of charging demand under the optimal
layout scheme

Case 3: The charging station is selected according to indi-
vidual random preference of EV users in the driving process.

The results for Cases 1, 2, and 3 are given in Table 4. It
can be seen from Table 4 that the scheme proposed in this
paper, corresponding to Case 1, has the maximum captured
demands, the minimum extra cost, and the minimum load
variance as expected. In Case 3, the captured demands are
much higher than that in Case 2, but the extra charging cost
and load variance are higher than that in Case 1 and Case 2.
Therefore, the establishment of an appropriate satisfaction
function that takes into account the actual charging require-
ments can improve the planning and operation efficiency of
charging stations.

Remark 2 In this paper, the EV travel characteristics, charg-
ing costs and stable operation of power grid have been
fully taken into account in planning the charging stations.
More specifically, a multi-objective charging station plan-
ningproblemhasbeen formulated to achieve three objectives,
namely, maximizing the captured charging demands, min-
imizing the extra charging cost, and minimizing the load

variance of the power grid. The optimal scheme is actu-
ally a compromise between these three objectives. As shown
in Table 2, the optimal scheme has the maximum captured
charging demand, however, the costs and the load variance
are not the minimum among all candidate schemes, which
implies that a rational tradeoff has been obtained among dif-
ferent concerns. Furthermore, it should be mentioned that
the proposed scheme is able to alleviate the traffic pressure
caused by the EV charging behavior, enhance the charging
convenience of EV users, and guarantee the stability of grid
operation.

Conclusion

In this paper, a novel method has been proposed to solve the
EV charging station planning problem based on the dynamic
prediction of charging demand. Considering the relationship
between the EV charging demand and the individual driving
habits, the dynamic forecasting method of charging demand
has been developed by virtue of the analysis on EV users’
travel laws. In addition, a multi-objective planning model
has been proposed by considering the EV travel character-
istics, charging costs and stable operation of power grid.
The capacity configuration model has also been established
according to the different demands of fast charging mode
and conventional charging mode. Moreover, the HPSO algo-
rithm has been utilized to obtain the Pareto solutions and
the ETOPSIS method has been employed to determine the
optimal planning scheme. Based on the proposed method,
the optimal siting and sizing of EV charging station have
been achieved to maximize the captured charging demands,
minimize the extra cost, and minimize the load variance of
the power grid. Finally, the case studies have demonstrated
that the proposed method can attain the reasonable planning
of the EV charging stations. Further research topics include
(1) the EVs charging demand analysis based on the K-means
technique [1] and the reinforcement learning method [8];
(2) the estimation of EV SOC based on the measurement

Table 3 Capacity configuration
under the optimal scheme Charging station node number 3 5 8 11 15 18 21 25 28 33

The number of fast charger 13 14 35 5 38 16 11 5 32 10

The number of conventional charger 106 60 220 98 65 52 176 70 42 45

Table 4 Effectiveness analysis of different EV charging behaviors

Case number Sitting scheme Captured demand (kW) Total costs (�) Load variance (kW2)

1 3 5 8 11 15 18 21 25 28 33 1091594.65 597100.88 548324346.10

2 1 4 7 21 22 25 26 27 30 32 852579.77 823447.26 638399360.16

3 7 30 12 11 3 18 14 28 19 24 1030191.70 984149.64 672736341.75
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with the network induced phenomenon [4,31,32,37]; (3) the
EV charging station planning problem subject to incomplete
information [19,23,25,28,38,43]; (4) the cooperative control
of multiple vehicles based on themultiagent systems [7]; and
(5) the optimization problem with the weighted modularity
optimization approach [2].
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