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The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with
deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the
key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN)
and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results,
acquiring training data for the artificial neural network model. The backpropagation ANNmodel was used to establish a mapping
function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the
weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters.
Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation
stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements
predicted by the BP neural networkmodel, and the numerical simulation using the back-analyzed parameters.The proposedmodel
is useful for rock mechanical parameters determination and instability investigation of rock slopes.

1. Introduction

Mechanical parameters of rockmasses are crucial for stability
analysis of high rock slopes [1, 2]. They can be obtained
through laboratory experiments or in situ tests. However,
the mechanical parameters of rock specimens obtained in
laboratory experiments cannot represent those parameters of
rock masses. In addition, due to many types of fractures and
joints at different scales existing in rock masses and complex
geostress conditions, it is difficult to acquire the mechanical
parameters exactly in in situ tests. Because in situ tests have
many drawbacks such as poor reproducibility, long period,
and high costs, field displacement measurement is widely
applied in rock engineering projects.

Displacement back analysis has been widely used to
derive rock mass mechanical parameters [3–6]. The meth-
ods used in the displacement back analysis of geotechni-
cal engineering projects can be broadly divided into two
types, namely, inverse method and optimization method.

The inverse method, such as that suggested by Sakurai and
Takeuchi [5], is the inverse of the common numerical simu-
lation procedure to solve some of the material parameters or
loading conditions based on observed displacements. Rapid
numerical solution and a number of simplifying assumptions,
including uniform media, uniform or linear stress filed, and
one-step excavation, enhance the popularity of the inverse
method. However, for some excavation engineering projects
such as high slopes, the problems may be very large in
scale involving multimaterial, and there is a complex initial
geostress filed due to the multimedia and tectonic stress.
Moreover, multisteps of excavations and supports will last a
long period, inducing stress field variation during the con-
struction process [6]. These characteristics limit applications
of the inverse method in slope engineering.

The optimization method used the summed squared
errors between the calculated displacements and their cor-
responding observed values as the objective function. The
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solution of the objective function is based on some optimiza-
tion techniques for determining a set of material parameters
or loading conditions that make the value of the objective
function a minimum [6].

Low efficiency and low reliability are the two drawbacks
of the optimization method.The numerical methods, such as
finite element method or finite difference method, are often
applied to calculate the stress and displacement of the model
in parameter adjustment in the optimization of the objective
function. To achieve the minimal value of the objective func-
tion, a great number of parameter adjustments are needed.
Therefore, it is impossible to apply the routine optimization
method to resolve large scale problems with a great number
of freedom degrees because the solution by either the FEM or
FDM could be very time consuming.

In addition, the objective function for back analysis could
be multimodal, and the optimization results could depend
on the initial values in some routine optimization methods
such as the Powell method.The range of themechanical para-
meters is unlimited theoretically, so its low efficiency makes
it unsuitable for estimated parameter search.

Fortunately, the back-propagation neural network (BP
network) provides a reliable method instead of the FEM
or FDM calculation, establishing the high nonlinear func-
tion between the estimated parameters and the measured
displacement. Furthermore, some useful optimization mod-
els such as genetic algorithm and particle swarm optimi-
zation method provide efficient methods to enhance the
search speed to achieve reliable convergence solution.

Studies show that the intelligent back analysismethod can
be used to deal with the identification of rock mechanical
parameters, build the nonlinear relationship among variables
effectively, and overcome many defects of traditional opti-
mization algorithms. Deng and Lee [6] proposed a novel
method for displacement back analysis based on error back-
propagation neural network and genetic algorithm in the
slope stability analysis of the Three Gorges Project. Xia-ting
et al. [7] used neural network model and genetic algorithm
to estimate the mechanical rock mass parameters of the
permanent shiplock at the Three Gorges Project.

These optimization algorithms should resolve global
optimal solution in a fast convergence rate and determine
the unknown parameters among a large variable space. It
has become one of the most potential approaches in the
displacement back analysis. Researchers have performed
many investigations and achieved significant progress on the
aspect of back analysis in geotechnical engineering. Liang
et al. [8] proposed a back analysis model to estimate the
elastic moduli of the high slope of the Three Gorges Project.
Tan and Zheng [9] introduced Newton-Laplason iterative
method into the back analysis, and they verified that strength
parameters could be obtained inversely by using displace-
ments of several monitoring points. Feng et al. [10] summa-
rized several new methods for intelligent feedback analysis.
However, because multipoint extensometers are often buried
after each step of excavations, the deformation of rockmasses
induced by elastic strain energy release cannot be measured
before the current excavation step. Therefore, how to analyze

Figure 1: Survey of the Dagangshan Hydropower Station.

the measured deformation data and apply them in back
analysis for safety evaluations become very important.

In this paper, the back-propagation neural network was
used to construct a function between undetermined parame-
ters and displacements of the rockmass of the right back slope
in Dagangshan Hydroelectric Power Station project. Totally
32 training samples were created by numerical simulations
using FLAC3D code according to orthogonal experimental
design.The particle swarm optimization method was applied
to initiate the training weights and search for satisfactory
deformation parameters. By using the deformation param-
eters obtained by the back analysis as input parameters,
the results of the numerical simulations agreed well with
the measured displacements. The method of combination of
the BP neural network and particle swarm optimization is
proved to have a powerful capability of resolving deformation
parameters in rock slope problems with complex geostress
and multiexcavation steps.

2. Brief Description of the High Slope of the
Dagangshan Hydroelectric Power Station

TheDagangshanHydroelectric Power Station is located at the
midstream ofDadu River in Shimian County, west of Sichuan
Province in China. It is one of the largest hydroelectric
projects which are currently being constructed along the
mainstream of the Dadu River. The normal water level of the
station dam is 1130m, the dead water level is 1120m, and the
storage capacity below the normal water level is about 0.742
billion m3. Its maximum height is nearly 210m. The power
station is installed with a capacity of 2600 MW [11]. The dam
is located in a typical valley of a “V” shapewith steep and high
bank slopes (Figure 1).

Thedamarea ofDagangshanHydroelectric Power Station
has complex geological conditions with deep fractures, devel-
oped faults, and unloading cracks. The rock mass in engi-
neering area has formed a series of high and steep slopes
caused by the excavations. As the strike of most weak struc-
tural surfaces is parallel to the river and the dip is steep, the
problem of slope stability is rather serious. It mainly involves
abutment high slope at right and left banks. The dip angle of
the right bank slope varies from 35∘ to 40∘ above 1220m and
varies from 40∘ to 50∘ below 1220m.The height of the slope is
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Figure 2: Layout of the right bank slope.

more than 600m [11].The topographic map of the right bank
slope is shown in Figure 2.

The bed rock of slope is mainly composed of grey and
reddish monzonitic granite, which is hard and core bread,
rib spalling frequently occurs in unloading zones, and aplitic
granite dykes as well as dolerite dykes are exposed on the nat-
ural slope surface in places. The faults mainly develop along
with dolerite dykes with a steep reversal dip angle. Many
dykes develop in the slope, such as 𝛽

5
, 𝛾L5, 𝛽202, 𝛽96, 𝛽4,

𝛽
85
, 𝛽
62
, 𝛽
83
, 𝛽
68
, 𝛽
117

, 𝛽
43
, 𝛽
143

, and 𝛽
82
. Some structural

planes also develop in the slope, such as fault 𝑓
231

, fault 𝑓
208

,
and some unloading fissures named XL

9-15 and XL
316-1. The

right bank slope of the Dagangshan Hydroelectric Power
Station with complicated geological conditions is very steep,
and unloading fissures and faults with steep dip angles have
considerable influence on the slope stability, which has rarely
been observed in other hydroelectric projects [12–16].

According to the geological survey data, approximately
seventy-eight dolerite dykes (𝛽) and eight aplitic granite
dykes (𝛾L) develop in the right bank slope, such as 𝛽

4
,

𝛽
97
(𝑓
93
), and 𝛽

146
. Approximately eighty-four faults with

steep reversal dip angles develop along with dolerite dykes
containing rock blocks, microfragments, and mud.

The geological survey also indicates that intensive open
cracks can be observed inside the slope with a distance of
100m from the slope surface. Two main unloading fissures
named XL

9-15 and XL
316-1 are most concerned, which will

control the displacement and stability of the slope. Further
investigation has shown that the stability of the right bank
slope is controlled by a potentially instable block whose bot-
tom slip surface is formed by weak structural planes dipping
outside the slope (such as 𝑓

231
and 𝑓

208
) and rigid structural

planes (such as XL
9-15 and XL

316-1) and back cutting surface
is formed by dyke fracture zones (𝛽

5
(𝐹
1
), 𝛾L5, and 𝛾L6) [17].

3. Back Analysis Model

3.1. BP Neural Network. Artificial neural network can be
seen as a set of parallel processing elements, and the suitable
mathematical methods can be used to change the weights
and thresholds to perform specific functions. The BP neural
network can figure out each layer’s error derivatives by using
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Figure 3: Typical structure of a BP neural network.
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Figure 4: Flow chart of BP neural network.

the back-propagation algorithm according to the generated
weightmatrices and thresholdmatrices. And then, BP adjusts
corresponding matrices on the basis of error derivatives and
square error sum to approach the mapping relation between
the system input variables and output variables step by step.

The typical structure of a BP neural network is shown in
Figure 3. It has one input layer, one ormore hidden layers, and
one output layer, with each layer consisting of one or more
neurons.

The number of neurons (𝑚) in the input layer is the same
as the number ofmechanical parameters to be solved, and the
number of neurons (𝑛) in the output layer is the number of
themeasured displacements. Usually, only one hidden layer is
needed.Thenumber of neurons (𝑝) in the hidden layer can be
specified either manually or by an optimization method [6].
The training samples are oftenused to adjust theweight values
by making the summed squared error between the displace-
ments fromnumerical simulation and those fromBPnetwork
a minimum. For the training samples, the input parameters
can be prepared by the parameter experiment designmethod,
while the corresponding output parameters can be prepared
by numerical simulation.

The calculating procedure of a three-layer BP neural net-
work is shown in Figure 4.𝑊

1
and 𝑏
1
are weight matrix and

threshold matrix between the input layer and the hidden
layer, respectively;𝑊

2
and 𝑏
2
are weight matrix and threshold

matrix between the hidden layer and the output layer, respec-
tively; function 𝑓 is the transfer function between two adja-
cent layers. Three transfer functions, including tan-sigmoid
transfer function (tansig), log-sigmoid transfer function
(logsig), and linear transfer function (purelin), are the most
commonly used transfer functions for multilayer networks.

However, the summed squared error between the dis-
placements from numerical simulation and those from BP
network depends on the randomly generated initial weights
and the thresholds, so it is easy to fall into local convergence in
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the training process. Therefore, an improved particle swarm
optimization algorithmwith global optimization capability is
necessary for the initiation of the weights and the thresholds
of the BP neural network.

3.2. Particle Swarm Optimization. The particle swarm opti-
mization (PSO), as an important branch of evolutionary algo-
rithm, is a computational method that optimizes a problem
by iteratively trying to improve a candidate solution with
regard to a givenmeasure of quality [18]. PSO avoids complex
genetic operators and takes advantage of cooperation and
competition. Each particle of the swarm represents one can-
didate solution of the problembeing optimized.Thequality of
solution is evaluated by defining fitness function. Compared
with other optimization algorithms, the superiority of PSO
lies in fast convergence rate, simple program structure, and
less calculation parameters. In order to further improve the
convergence velocity and accuracy, some scholars [19, 20]
adopt the dynamic inertia weight w that linearly decreases
with iterative generation increasing, which ensures the good
global searching capacity of PSO in the optimization and
enhances the convergence performance. In this paper, the
improved particle swarm optimization algorithm is used.

On the one hand, particle swarm optimization is used to
initialize the weights and thresholds of BP neural network,
solve the problem of local convergence, and guarantee the
correctness of the network training in this paper.On the other
hand, PSO is adopted to determine suitable values of the rock
mechanical parameters within the ranges as an important
part during the process of back analysis.

3.3. Back Analysis Procedure. Generally, engineering geolog-
ical conditions and rock characteristics cannot be quantified
completely, and relation function between rock property
parameters is highly nonlinear, so that it is difficult to describe
the complex mapping by using a determined mathematical
model. Artificial neural network is especially suitable for the
situation that there is no formula between parameter vari-
ables and objective function values [21]. This study adopted a
BP neural network to establish the nonlinear mapping func-
tion between the deformation parameters and incremental
displacements. Only the parameters of the elastic moduli are
considered in this study.

The flow chart of the back analysis based on BP neural
network optimized by PSO is shown in Figure 5. Firstly, the
distribution ranges of elastic moduli of the high rock masses
at the right bank of the Dagangshan Hydroelectric Power
Station were determined by analyzing the geological condi-
tions, the laboratory and field test results, and the practical
monitoring data. Secondly, the training samples were created
by calculating the incremental displacements on the basis of
orthogonal experimental design. Thirdly, the samples were
used to train the BP neural network which was initialized
by PSO in advance. Thus, the nonlinear mapping relation
between the elastic moduli of the rock masses and incremen-
tal displacements was established. The measured displace-
ments in the slope were input into the established BP neural
network to search the most optimized parameters using the
particle swarmoptimizationmodel, whichmade the summed

Experimental
scheme

Establish BP
neural network

Training samples

Numerical
calculation

Practical
monitoring data

Inversely estimated
parameter valuesFurther analysis

PSO initializes weights and thresholds

PSO searches for satisfactory values

Orthogonal table

Determine ranges
of the parameters

Figure 5: Back analysis flow chart based on BP neural network opti-
mized by PSO.

square error between the simulated displacements and the
measured ones a minimum. Finally, the elastic moduli were
determined to carry out further stability analysis of the slope.

4. Results of Monitoring Displacement

Displacement monitoring provides a helpful technique to
predict slope stability. Trends of displacement variation can
be traced during excavation and supporting periods. The
excavation of the right bank slope of Dagangshan Hydro-
electric Power Station caused lots of concrete surface cracks
due to stress adjustments caused by the excavations. The
monitoring displacement data of points TP28R and TP31R,
which were located at Elevation 1100m and Elevation 1070m,
are shown in Figure 6. It can be observed that the slope has
large displacement obviously along the horizontal direction
(𝑋 direction) under the excavations.

A number of multipoint extensometers were embedded
in the right bank slope at different locations to monitor the
inside displacements. The monitoring results of the multi-
point extensometer M4

10RBP at EL 1135m are shown in
Figure 7. The distances of these three monitoring points of
M4
10RBP to the excavation face are 5 meters, 13 meters, and 25

meters, respectively.
Usually, a three-layer BP neural network with 𝑀 nodes

in input layer, 2𝑀 + 1 nodes in hidden layer, and 𝑁 nodes
in output layer can be trained to express any functional
relationship accurately [22]. Therefore, a BP neural network
model with 10 input layer nodes and 1 output layer nodes
was supposed to predict the elastic moduli of the rockmasses
of the high slope. The node number of the hidden layer was
assigned to be 21 and the structure of the BP neural network
model is 10-21-1.TheBP neural networkmodel was trained by
using the samples created with the data ofM4

10RBP monitored
fromMarch 27, 2010, to January 9, 2011.Then, other data were
used for testing the validity of the BP neural network model.
The comparison betweenmeasured displacements ofM4

10RBP
and the predicted displacements by the BP neural network
is shown in Figure 8. It can be found that the proposed
model can reflect the deformation trendwith a good accuracy
and basically meet the practical requirement in the slope
engineering project.
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Figure 6: Accumulative displacement curves of the monitoring points TP28R and TP31R.

−5

0

5

10

15

20

25

30

Cu
m

ul
at

iv
e d

isp
la

ce
m

en
t (

m
m

)

Time

20
10
03

03

20
10
04

22

20
10
06

11

20
10
07

3
1

20
10
09

19

20
10
11
08

20
10
12
28

20
11
02
16

20
11
04

07

5-meter measured value
13-meter measured value
25-meter measured value

Figure 7: Accumulative displacement curves of M4
10RBP.

5. Displacement Back Analysis

5.1. Material Properties Used in the Simulations. According to
the geologic investigations and monitoring data, Profile LPIX-
IX (0+161.19 from upstream to downstream) was selected as
the typical profile for displacement back analysis. The model
covered most of the disturbed zones of the high slope: 700
meters long toward the inner slope from the centerline of
the riverbed in transverse direction (as 𝑋 direction) and 625
meters in vertical direction from EL 900m to EL 1525m (as
𝑌 direction). Only a unit thickness in 𝑍 direction was con-
sidered by simplifying the model into a plan strain problem.
The bottom boundary was fixed in the vertical direction and
surrounding boundaries were fixed in their respective normal
directions. The number of the numerical elements is 4923,
and the number of nodes is 10244. All the monitoring points
were located at the nodes. The weak geological structural
planes were built in the model, namely, fault 𝑓

231
, fault 𝑓

65
,

and unloading fractures such as XL
9-15 and XL316-1.Themesh

of the right bank slope is shown in Figure 9.

According to the weathering degree, the rock masses in
the right bank slope of the Dagangshan Hydropower Station
were divided into six grades as follows: (a) completely weath-
ered rock (V

2
); (b) intensely weathered rock (V

1
); (c) heavily

weathered rock (IV); (d) upper part of moderately weathered
rock (III

2
); (e) lower part ofmoderately weathered rock (III

1
);

and (f) slightly weathered and fresh rock (II).
According to the results of the field tests, laboratory tests,

and related practical engineering experience [23, 24], the
details of the material properties used in the model are listed
in Table 1. There parameters include the density (𝑔), elastic
modulus (𝐸), cohesion (𝑐), uniaxial compressive strength
(𝜎
𝑐
), Poisson ratio (𝜇), and the inner friction angle (𝜙).

5.2. Measured Incremental Displacements. The excavation of the
right bank slope started in November 2007, and the excava-
tions down to EL 1135m were all finished in December 2008.
The slope under the dam top was excavated to EL 1100m in
April 2009.

The multipoint extensometers were installed in three
major locations to monitor the slope deformation. The exca-
vations are divided into 10 steps as shown in Figure 10.

Monitoring data from several geological points are gen-
erally selected for back analysis. Because the multipoint
extensometers were installed after each step of the excava-
tions, the displacements could not be recorded before the
installation. However, the incremental displacements caused
by the excavations of the slope below had been measured
by the multipoint extensometers. Four incremental displace-
ment measurements were selected for the back analysis:
the third point of multipoint extensometer M4

1RX at EL
1135m, the innermost point of the multipoint extensometer
M4
2RX at EL 1165m, the innermost point of the multipoint

extensometer M4
1RJC at EL 1225m, and the innermost point

of the multipoint extensometer M4
2RJC at EL 1255m.The last

three excavation steps and their corresponding incremental
displacements are shown in Table 2.

5.3. Training Sample Design. In elastic-plastic model, elastic
modulus (𝐸) has greater influence on rock mass deformation
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Table 1: Parameters employed in the numerical simulations.

Rock mass 𝑔 (g⋅cm−3) 𝜎
𝑐
(MPa) 𝐸 (GPa) 𝜇 𝑐 (MPa) 𝜙 (∘)

II 2.65 70∼80 18.00∼25.00 0.25 2.000 52.43
III1 2.62 40∼60 9.00∼11.00 0.27 1.500 50.19
III2 2.62 40∼60 6.00∼9.00 0.30 1.000 45.00
IV 2.58 20∼40 2.50∼3.50 0.35 0.700 38.66
V1 2.45 <15 0.25∼0.50 >0.35 0.500 33.02
V2 2.10 <10 0.20 >0.35 0.300 26.57
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Figure 8: Displacement comparison between the measured displacements and the predicted displacements.

Table 2: Measured incremental displacement.

Excavation step M4
2RJC M4

1RJ M4
2RX M4

1RX

Step 8 0.82mm 0.87mm — —
Step 9 1.35mm 1.37mm 2.30mm —
Step 10 0.15mm 0.12mm −0.01mm −0.10mm

than Poisson ratio (𝜇), cohesion (𝑐), and internal friction
angle (𝜑) [25]. Therefore, the elastic moduli of the rock
masses were the parameters to be back analyzed. In the com-
pletely weathered rocks, the tectonic stress had been released
and had little influence on the deformation of the slope; the
material parameters of the completely weathered rock were

Table 3: Elastic modulus levels of the four types of the slope rock
masses.
Zone Elastic modulus (GPa) Level (GPa)
I (𝐸
1
) [0.25, 0.50] 0.25, 0.33, 0.42, 0.50

II (𝐸
2
) [2.50, 3.50] 2.50, 2.80, 3.20, 3.50

III (𝐸
3
) [2.50, 3.50] 2.50, 2.80, 3.20, 3.50

IV (𝐸
4
) [6.00, 9.00] 6.00, 7.00, 8.00, 9.00

not involved in the back analysis. The elastic moduli of the
four kinds of rock masses to be back analyzed are shown in
Table 3, namely, 𝐸

1
, 𝐸
2
, 𝐸
3
, and 𝐸

4
. For the training samples,

four different levels were selected in the range for each
parameter in back analysis.
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Figure 10: Monitoring points and excavation steps in the slope.

To establish the mapping function between the elastic
moduli and incremental displacements, enough sampleswere
designed for the BP network training. It is impossible to test
all the combinations of the input and output parameters.
Orthogonal experimental design has an ability to determine
typical experimental schemes by considering complex combi-
nations ofmany factors. Four factors and four levelswere con-
sidered. Hence, the orthogonal table L

32
(49) was designed. It

meant that less than 9 factors and 4 levels could be considered,
and the total number of combinations was 32.

The numerical simulations were conducted using the
FLAC3D code. An elastoplastic constitutivemodel andMohr-
Coulomb failure criterion were used in the simulations.Thus,
28 training samples and 4 testing samples were built for the
back analysis, as shown in Table 4. For each sample, the input

parameters were prepared by the orthogonal design method,
while the corresponding output parameters were obtained by
the numerical simulations.

5.4. BP Neural Network Initialized by PSO. The rock elastic
moduli of the 4 zones were the input vectors. Two, three, and
four monitoring incremental displacements were measured
after the excavation Step 8, the excavation Step 9, and the
excavation Step 10, respectively. And they constituted the
output vectors separately as shown in Table 2. Namely, there
were four nodes in the input layer of the BP neural network
and two, three, or four in the output layer. As mentioned
before, for a three-layer BP neural network with𝑀 nodes in
input layer, if it has 2𝑀 + 1 nodes in the hidden layer and
𝑁 nodes in the output layer, it can be trained to describe
any function between the parameters [22]. For this reason, 3
BP network models were established with different network
structures as follows: 4-9-2, 4-9-3 and 4-9-4.

The parameters of the PSO to be determined included
particle number m, total evolution number genmax, inertia
weight w, and learning factors c󸀠

1
and c󸀠

2
. Generally, m was

set in the range of [20, 40] and genmax was a relatively large
value according to the actual condition. An improved particle
swarm optimization algorithm was proposed. The dynamic
inertia weight w linearly decreased with the increasing of the
iterative generation. Previous studies show that both the
searching efficiency and precision of the PSO will increase
greatly when the initial inertia weightis near 1.0 and the learn-
ing factors are near 2.0 [26].

The training samples were used to train the BP network,
while the PSO was adopted to search for the relatively
matched network model in advance, making the summed
square error between the displacements from the numerical
simulation and those from the BP network a minimum. Only
the last neural network model was described here. In the
particle swarm optimization model, the particle number was
25, the total evolution number was 200, the inertia weight
was varied linearly from 0.95 to 0.4, the learning factors (c󸀠

1

and c󸀠
2
) were both 2.02, and upper speed limit was 0.5. Then,

the BP neural network initialized by PSO was trained by the
trainlm algorithm. The tansig function and purelin function
were used as the transfer functions from the input layer to the
hidden layer and from the hidden layer to the output layer,
respectively. The convergence curve for the summed square
error is shown in Figure 11.The BP neural network was finally
established for the following back analysis when the mean
square error tended to be a minimal value.

5.5. Displacement Back Analysis. The elasticmoduli of the rock
masses are back analyzed using particle swarm optimization
algorithm which had a global searching capability. For the
excavation Step 10, PSO was applied to search for suitable
parameter values according to the monitoring incremental
displacementsmeasured after Step 10 as shown inTable 2.The
particle number was set to be 20, the total evolution number
was 200, the inertia weight was varied linearly from 1.05 to
0.4, the learning factors (c󸀠

1
and c󸀠

2
) were both 2.0, and the

upper speed limit was set to be 0.5.Theposition vector of each
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Table 4: The incremental displacements of the monitoring points in the orthogonal experimental design.

ID
Elastic modulus (GPa) Incremental displacement (mm)

Step 8 Step 9 Step 10
Zone I Zone II Zone III Zone IV M4

2RJC M4
1RJC M4

2RJC M4
1RJC M4

2RX M4
2RJC M4

1RJC M4
2RX M4

1RX

1 0.25 2.5 2.5 6 0.38 0.28 1.35 1.64 2.22 0.09 0.08 −0.01 −0.11
2 0.25 2.8 2.8 7 0.46 0.39 2.39 2.73 2.31 −0.09 −0.08 −0.06 −0.07
3 0.25 3.2 3.2 8 0.45 0.39 1.35 1.64 2.22 0.12 0.14 −0.01 −0.08
... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

30 0.5 2.8 3.5 8 0.24 0.08 1.81 2.25 1.58 0.13 0.13 −0.08 −0.09
31 0.50 3.2 2.5 7 0.85 0.88 1.65 1.99 2.61 0.11 0.11 0.02 −0.08
32 0.50 3.5 2.8 6 0.51 0.50 1.19 1.50 2.29 −0.00 −0.01 −0.07 −0.09

Table 5: Comparison of back analysis values, BP values, and measured values.

Excavation step Monitoring point Increment displacement (mm)
FLAC BP Measurement

Step 8 M4
2RJC 0.869 0.820 0.820

M4
1RJC 0.943 0.870 0.870

Step 9
M4
2RJC 1.456 1.240 1.350

M4
1RJC 1.775 1.511 1.370

M4
2RX 2.386 2.285 2.300

Step 10

M4
2RJC 0.138 0.131 0.150

M4
1RJC 0.143 0.143 0.120

M4
2RX −0.012 −0.010 −0.010

M4
1RX −0.078 −0.100 −0.100

Training
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Figure 11: Convergence curve of the BP neural network.

particle had four dimensions, representing the four elastic
moduli of the rockmasses.When the fitness function reached
a steadyminimal value, the back-analyzed values of the elastic
moduli of the rock masses in the right bank slope (𝐸

1
, 𝐸
2
,

𝐸
3
, and 𝐸

4
) were obtained.The results showed that they were

0.45GPa, 2.50GPa, 2.76GPa, and 7.98GPa, respectively.
The back-analyzed elastic moduli were put into the

numerical code to calculate the displacements at the mon-
itoring points, and their elastic moduli also were used as
the input in the trained BP neural network model to obtain
the corresponding displacements at the monitoring points at
different excavation steps. The displacements measured by
the multipoint extensometers, the displacements simulated
by the numerical code using the back-analyzed parameters,

and the derived displacements using the BP neural networks
are shown in Table 5.

It can be found that the predicted displacements of the
BP neural network model using the back-analyzed elastic
moduli as the input are close to the measured displacements
in practical slope engineering.

The incremental displacements obtained by the BP neural
network model and those measured at monitoring points of
M4
2RJC and M4

1RJC after Step 8 and Step 10 were the same.
Themaximumabsolute error between the predicted displace-
ments and the measured displacements was −0.141mm, and
the relative errors were not greater than 20%. The calculated
displacements by FLAC3D using the estimated parameters
were close to the measured ones. There results indicate that
the parameters obtained by the back analysis were verified to
be much reasonable for further slope stability analysis.

The slope stability after excavating Step 10 was analyzed
using FLAC code by assigning the estimated elastic moduli to
the four kinds of rockmasses.The strength reductionmethod
was applied in the numerical simulation, by reducing the
strength of the rock masses gradually step by step to obtain
the safety factor of the slope.

Figure 12 shows the slope displacement distribution after
excavating Step 10.Thephenomena of groundheave appeared
caused by the excavation and geostress unloading at EL
1100m. Figure 13 shows the failure state of the slope model.
The blue blocks were in elastic state, and blocks in the other
colors were the plastic zone. It can be found that the plastic
zones develop downward along the fissures XL

316-1, especially
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Figure 12: Displacement contour and displacement vector distribution after step 10 (unit: m).

View title: step 1-d10
Step 46555 model perspective

Center:
X: 3.500e + 002
Y: 3.044e + 002
Z: −2.500e + 000

Rotation:
X: 90.000
Y: 0.000
Z: 0.000
Mag.: 1.4
Ang.: 22.500

FLAC3D 3.00

Axes
Line style

Block state
None
Shear-n shear-p

Shear-p tension-p

Itasca Consulting Group, Inc.
Minneapolis, MN, USA

Shear-p

Dist: 1.938e + 003

11:11:26 Mon. May 13, 2013

Figure 13: Failure state of the slope model.

in the area between fissures XL
316-1 andXL9-15.The large plas-

tic zone from EL 1135 to EL 1195 had considerable influence
on the slope stability.

6. Conclusions

The BP neural network model was proposed to estimate the
elastic moduli of the rock masses of the right bank high slope
in Dagangshan Hydroelectric Power Station. The particle
swarm optimization model was applied to optimize the BP
neural network. The displacements at the monitoring points
were obtained by putting the back-analyzed parameters into
the numerical simulations and the BP neural network. The
major findings and conclusions can be summarized as fol-
lows.

(1) The BP neural network and the particle swarm
optimization model were successfully applied in the
deformation parameter estimation of the slope rock
masses in Dagangshan Hydroelectric Power Station.
The BP network model was established to express
the highly nonlinear mapping relation between

the mechanical parameters and deformation behav-
iors of the four rock masses in complex stress state
disturbed by the excavations. The particle swarm
optimization model helped the BP network initialize
the weights and thresholds and search for the suitable
values of the elasticmoduli within the large parameter
space. The results showed that the parameters were
reasonable and acceptable in the slope stability anal-
ysis. The displacement back analysis based on the BP
neural network and the particle swarm optimization
was proved to be an efficient and reliable method for
parameter estimation of rock masses under complex
geological conditions and large-scale excavations.

(2) To avoid the loss of instantaneous displacement, the
incremental displacements at each excavation step
were used to back-analyze the elastic moduli of the
rock masses. As the multipoint extensometers were
installed after each step of the excavations, the dis-
placements of the rock mass caused by elastic strain
release before that step could not be measured. The
incremental displacements of the rock masses mea-
sured by the multipoint extensometers were adopted
for back analysis.

(3) The back-analyzed parameters were put into the
numerical model to obtain the displacements of the
monitoring points. The displacements simulated by
the numerical model were compared with the mea-
sured displacement and the output displacements by
the BP network using the back-analyzed parameters.
This provided a potentially useful way to examine
the validity of the previously established BP network
model.

(4) The estimated parameters were used in the numerical
model to predict the stability of the slope by using the
strength reduction method. The numerical analysis
indicated that the stability of the right bank slope is
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controlled by a potentially instable block whose slip
surfaces were formed by many structural planes
including the unloading fissures XL

316-1 and the fault
𝑓
231

.
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