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A B S T R A C T   

Complex nature of the fibre reinforced composites, their non-homogeneity and anisotropy make their modelling 
a challenging task. Although the linear – elastic behaviour of the composites is well understood, there is still a 
significant uncertainty regarding prediction of damage initiation, damage evolution and material failure espe
cially for a general loading case characterised with triaxial state of stress or strain. Consequently, simplifying 
assumptions are often unavoidable in development of constitutive models capable of accurately predicting 
damage. The approach used in this work uses decomposition of the strain energy based on spectral decompo
sition of the material stiffness tensor and an assumption that each strain energy component represent free energy 
for a characteristic deformation mode. The criteria for damage initiation are based on an assumption that the 
damage corresponding to a deformation mode is triggered when the strain energy for that mode exceeds a 
specified critical limit. In the proposed model the deformation modes are not interacting at continuum scale due 
to orthogonality of the eigenvectors, i.e. the stiffness tensor symmetry. Damage and its evolution are modelled by 
reduction of the principal material stiffness based on the effective stress concept and the hypothesis of strain 
energy equivalence. The constitutive model was implemented into Lawrence Livermore National Laboratory 
(LLNL) Dyna3d explicit hydrocode and coupled with a vector shock Equation of State. The modelling approach 
was verified and validated in a series of single element tests, plate impact test and high velocity impact of hard 
projectile impact on an aerospace grade carbon fibre reinforced plastic. The model accurately predicted material 
response to impact loading including the test cases characterised by presence of shock waves, e.g. the plate 
impact test. It was also demonstrated that the model was capable of predicting damage and delamination 
development in the simulation of the high velocity impact tests, where the numerical results were within 5% of 
the post impact experimental measurements.   

1. Introduction 

Damage in a material depends on its life cycle starting with design 
process, through manufacturing and exploitation. Design and 
manufacturing are complex processes dependent on the large number of 
parameters, which determine the final material quality. A good example 
are residual stresses between the fibres and matrix due to different 
thermal expansion during curing process. Design and manufacturing of 
composites, although important for the material quality, lay beyond the 
scope of this work. This work focuses solely on the in-service behaviour 
of composites. 

Extent and character of damage in composites depends on their 

architecture, properties of constituents, loading rates and load types. 
Based on the loading rate/impact velocity, one can distinguish low ve
locity (LVI) and high velocity impacts (HVI), although some authors also 
identify hypervelocity and ballistic impacts [1,2]. A low velocity impact 
is typically characterised by impact velocities up to about 50 m/s [3]. In 
a LVI structures respond globally where the impact event time scale 
allows for impact energy transfer from the impact zone into the global 
deformation modes of the structure. LVI are typically modelled as quasi- 
static events, where inertial and strain rate effects are neglected. Typi
cally, LVI does not lead to instantaneous collapse of the structure but to 
reduction of stiffness, strength and reduction in fatigue life combined 
with damage with low detectability. The commonly used example of low 
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velocity impact is tool dropping, which can lead to delamination which 
is difficult to detect because it forms below material surface with no 
visible trace. However, it can cause significant strength and stiffness 
reduction and compromise the safety of the structure. Composite 
behaviour under LVI has been widely studied to provide the insight into 
damage mechanisms related to different impact stages [4]. 

Investigation of damage in composites under high velocity impact 
(HVI) is far more complicated because of the impact short time scale; the 
difficulties arise in experiment design especially in terms of observation 
of damage effects [1]. Understanding the HVI behaviour of composite 
materials is critically important for defence and aerospace sectors, 
where HVI such as debris and hailstone impacts, bird strike, fragment 
and projectile impacts are of safety critical. Bird strike and debris impact 
can lead to catastrophic structural failures and consequently to fatal 
accidents – one example is Concorde accident in Paris in 2000. In this 
incident debris from the runway hit the aircraft fuel tank leading to fire. 

Although this work concentrates on aerospace application of com
posites it should be noted that it could be of interest to other industries 
including the wind energy, automotive, military and defence. In case of 
wind turbines, the blades can be damaged and destroyed by hailstones 
during heavy storms. Important aspect of HVI, that is not of high 
importance in low velocity impact, is generation of stress and shock 
waves in the material which propagate at high speeds. 

The presence of at least two constituents/phases in composite ma
terials also implies presence of an interface between the constituents 
with the interface properties different from properties of the constitu
ents. Consequently, damage mechanisms that evolve in the material can 
be related to either of the constituents/phases and/or their interface as 
described in [6]. These mechanisms are: matrix microcracking, fibre 
breakage, fibre microbuckling, interfacial debonding and delamination 
(interlaminar cracking). 

In the development of the proposed material model the following 
intralamina damage mechanisms were considered: matrix micro
cracking, fibre breakage and interfacial debonding. These types of 
damage were considered through mesoscale modelling of the composite 
where stiffness and strength properties of the matrix and fibres were 
varied in order to represent specific extent of the corresponding physical 
damage. The damage related to the fibre matrix interface was repre
sented by varying fibre matrix contact properties in the models. 

It is important to note that the energy-based nature of the model 
allows for additional damage mechanisms to be added. 

The approach adopted for the model formulation has very limited 
commonality with the majority of the models for modelling of pro
gressive damage and failure in composites available in public domain 
literature. Consequently, the number of references used in this work is 
limited (23 relevant publications only). 

The paper is organized as follows: Section 2, provides description of 
the thermodynamic framework used for the model development and 
Helmholtz free energy decomposition based on spectral decomposition 
of the material stiffness tensor. The section concludes with development 
of constitutive relation for a single mode of deformation. Section 3 de
scribes mesoscale modelling of unidirectional composite used to verify 
the basic assumptions used in the model development and the material 
model characterisation. Description of the model verification and vali
dation based on the modelling of the plate impact and steel projectile 
impact experiments is given in Section 4. Conclusions related to the 
outcome of this work are given in Section 5. 

2. Model formulation 

This section starts with a description of the main assumptions used in 
the model development. The proposed model is a continuum scale model 
inspired by the work of Schreyer and Zuo [7,8] who used spectral 
decomposition in definition of material failure criteria. Fibre Reinforced 
Composites, in general, are anisotropic material with linear elastic 
behaviour described by the generalised Hooke’s Law given in the Voigt 

notation in symbolic tensor and index form as [9]: 

σ = C εσα = Cαβεβ (1)  

where: σ and ε are stress and strain vectors respectively and C is sym
metric second order tensor representing material stiffness. 

The above equations for transversely isotropic material in matrix 
form can be written as: 

[

σ1
σ2
σ3̅̅̅̅̅̅̅
2σ4

√

̅̅̅̅̅̅̅
2σ5

√

̅̅̅̅̅̅̅
2σ6

√

] = [

C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 C22 − C23 0 0
0 0 0 0 2C66 0
0 0 0 0 0 2C66

]⋅[

ε1
ε2
ε3̅̅̅̅̅̅̅
2ε4

√

̅̅̅̅̅̅̅
2ε5

√

̅̅̅̅̅̅̅
2ε6

√

] (2)  

where the factors 
̅̅̅
2

√
ensure the standard tensor operations apply. 

The diagonalization of the stiffness tensor given in Eq. (2) leads to 
identification of the six eigenvalues and corresponding eigenvectors. 
Therefore, the stiffness tensor C can be spectrally decomposed and 
represented as: 

C =
∑VI

i=I
λiPi Pi = vi ⊗ vi (3)  

where: λi are eigenvalues, vi are unit eigenvectors,Pi, i = I, II, ...,VI are 
projection operator tensors. The roman numbers used as the superscripts 
to indicate the modes should not be treated as the exponents. Eigen
values of the stiffness tensor can be considered as the material principal 
stiffnesses, their explicit expressions for transversely isotropic materials 
can be found, for instance, in [8–12]. The unit eigenvectors vi define the 
material bases and are calculated as: 

vI =
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
2 + α2

√ [α 1 1 0 0 0 ]T α =
2C12

λI − C11
(4)  

vIII =
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
2 + β2

√ [ β 1 1 0 0 0 ]T β =
2C12

λIII − C11  

vII =
1̅
̅̅
2

√ [ 0 − 1 1 0 0 0 ]T vIV = [ 0 0 0 1 0 0 ]T  

vV = [ 0 0 0 0 1 0 ]T vVI = [ 0 0 0 0 0 1 ]T 

One of the main assumptions in the formulation of the model was 
that the eigenvectors were invariant (not varying with material defor
mation). This assumption was validated for a unidirectional composite 
through mesoscale modelling presented in Section 3. 

Spectral decomposition of the stiffness tensor allows for constitutive 
relationship to be defined as: 

σ = C⋅ε =
∑VI

i=I
λiPi⋅ε =

∑VI

i=I
λiεi =

∑VI

i=I
σi εi = Pi⋅ε (5)  

where εi and σi are the modal strain and stress components respectively, 
i.e. the strain component collinear with the ith eigenvector. Note, the 
modal stresses are defined in terms of the modal strain components and 
the material stiffness eigenvalues and corresponding projection opera
tors as: 

σi = λiεi σi = Pi⋅σ (6) 

Damage was assumed to be mode-specific and was included in the 
constitutive equation using the effective stress concept and the strain 
energy equivalence hypothesis, according to which the damaged mate
rial stiffness C(D ) is defined as: 

C(D ) = (I − D )
T ⋅C0(I − D ) (7)  

where second order damage tensor D is diagonal, I = δij is identity 
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tensor and C0 is second order stiffness tensor of the virgin material 
(material with no damage). Note, stiffness of the damaged material 
C(D ) reduces with increase of damage. Based on the assumption that 
damage is mode specific, i.e. damage modes are uncoupled, Eq. (7) 
simplifies to: 

C
(
di) =

∑VI

i=I

(
1 − di)2λi

0Pi (8)  

where di and λi
0 are a scalar damage variables and eigenvalues of the 

virgin/undamaged stiffness tensor. Consequently, the principal stiffness 
of a damaged material λi

d can be defined as: 

λi
d =

(
1 − di)2λi

0 (9)  

2.1. Helmholtz free energy decomposition 

The material model was developed in the framework of irreversible 
thermodynamics as in [13,22]. Helmholtz free energy, given by Eq. (10), 
comprising the strain energy and the damage associated energy was 
used as thermodynamic potential: 

Ψ = W +
∑

i
Hi (10)  

where W is strain energy (a measure of elastic strain energy stored in the 
material that can be recovered in unloading) and Hi are damage mode 
associated potentials. The damage potentials define the non-recoverable 
part of free energy associated with damage (irreversible) processes in 
the material. They allow for modelling of damage evolution, i.e. the 
damage hardening/softening of the material. Associative damage flow 
rule was adopted in the model. 

Elastic strain energy is defined by: 

W
(
ε, di) =

1
2

ε⋅C(D )ε (11) 

Application of the spectral decomposition, defined in Eq. (3), leads to 
definition of the strain energy as a sum of the modal strain energies Wi: 

W(ε) = 1
2

ε⋅Cε =
1
2

ε⋅

(
∑VI

i=I
λiPi

)

ε =
1
2
∑VI

i=I
λiε⋅Piε =

1
2
∑VI

i=I
λiεi⋅εi =

∑VI

i=I
Wi

(12) 

The strain energy equivalence hypothesis leads to definition of strain 
energy for a damaged material as: 

W
(
ε, di) = 1

2

∑VI

i=I

(
1 − di)2λi

0

(
εi)2 (13)  

where: 
(
εi)2

= εi⋅εi and εi = Pi⋅ε. 
Consequently, the damage potential is a quadratic function of dam

age evolution variable hi [7]. Damage is assumed to be mode specific, 
therefore damage evolution is also mode specific and can be expressed 
as: 

Hi( hi) =
1
2
κi( hi)2 (14)  

where κi is modal damage evolution parameter and hi is modal damage 
evolution variable. Both damage and damage hardening variables are 
dimensionless, which implies that the material constant κi has the unit of 
energy. 

Making use of equations for strain energy Eq. (13) and damage 
evolution associated energy Eq. (14), the final form of Helmholtz free 
energy potential is: 

Ψ
(
ε, di, hi) =

1
2
∑VI

i=I

(
1 − di)2λi

0

(
εi )2

+
1
2
∑VI

i=I
κi( hi )2

=
1
2
∑VI

i=I

((
1 − di)2λi

0

(
εi )2

+ κi( hi )2
)
=
∑VI

i=I
Ψi (15) 

The above equation clearly shows that Helmholtz free energy can be 
divided into components corresponding to the non-interacting damage 
modes. The model is derived with respect to the eigenvector basis which 
significantly simplifies the model formulation. Further, this allows for 
further development of the model to be described by presenting 
formulation of the model for a single deformation mode. 

2.2. Constitutive equations for single mode 

The modal Helmholtz free energy is defined by Eq. (16) as: 

Ψi( ε, di, hi) =
1
2
(
1 − di)2λi

0

(
εi )2

+
1
2
κi( hi )2 (16) 

The rate of change of the modal Helmholtz free energy based on the 
chain rule is: 

Ψ̇
i( ε, di, hi) =

∂Ψi

∂εi ε̇i
+

∂Ψi

∂di ḋ
i
+

∂Ψi

∂hi ḣ
i (17) 

Conjugate thermodynamic forces and flow rates are identified in Eq. 
(17). The first term in Eq. (17) represents the rate of change of the elastic 
(recoverable) strain energy. Consequently, the energy dissipation rate is: 

Υ̇i( εi, di, hi) =
∂Ψi

∂εi ε̇i
− Ψ̇

i
= −

∂Ψi

∂di ḋ
i
−

∂Ψi

∂hi ḣ
i (18) 

The force yi
d conjugate to damage variable di and the force yi

h con
jugate to damage evolution variable hi are defined, respectively, as: 

yi
d = −

∂Ψi

∂di =
(
1 − di)λi

0

(
εi )2 yi

h = −
∂Ψi

∂hi = − κihi (19) 

Following [13], we assumed that the damage potential Φi( yi
d, yi

h

)
, 

that defines failure onset and damage evolution, is a linear function of 
conjugate forces, i.e. 

Φi( yi
d, yi

h

)
≡ yi

d −
(
yi

h + ωi
0

)
⩽0 (20)  

where ωi
0 is the energy threshold for the damage initiation in the ith 

mode. Negative value of the damage potential represents thermody
namic states of the material when damage does not evolve and the 
damaged material is behaving as elastic with reduced stiffness. Ac
cording to the associative damage flow rule damage evolution occurs 
when the damage potential is equal to zero. Damage potential cannot 
have value larger than zero, in other words the material strain energy 
cannot exceed its limit defined by the initial energy limit ωi

0 or the en
ergy limit of damage hardened material (yi

h + ωi
0). Damage and damage 

evolution variables can be determined from Eq. (20), the consistency 
condition and the maximum entropy production (maximum dissipation) 
principle. The energy dissipation rate, defined by Eq. (18), combined 
with the constraint for associative damage evolution Φi( yi

d, y
i
h
)
= 0 is 

maximised using Lagrange multiplier Λ̇i in the functionals Li: 

Li = − Υ̇i
+ Λ̇iΦi =

∂Ψi

∂di ḋ
i
+

∂Ψi

∂hi ḣ
i
+ Λ̇iΦi = yi

dḋ
i
+ yi

hḣ
i
+ Λ̇iΦi (21) 

Consequently, damage and damage evolution variables are obtained 
as: 

∂Li

∂yi
d
= 0 ⇒ ḋ

i
= Λ̇i∂Φi

∂yi
d
= Λ̇i ∂Li

∂yi
h
= 0 ⇒ ḣ

i
= Λ̇i∂Φi

∂yi
h
= − Λ̇i

= − ḋ
i

(22) 

Kuhn-Tucker conditions for damage evolution allow for damage 
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increase during loading of the material and do not allow for reduction of 
damage (material healing): 

Λ̇i
= ḋ

i⩾0 Φi⩽0 Λ̇iΦi = 0 (23) 

To ensure that during damage evolution material does not violate Eq. 
(20), the consistency condition must be satisfied. i.e. both the damage 
potential and its time derivative have to be equal to zero. This is 
postulated as: 

Φi( yi
d, yi

h

)
= 0 ∧ Φ̇i

(

ẏi
d, ẏi

h

)

≡ ẏi
d − ẏi

h = 0 (24) 

The rate of change of the forces conjugate to damage and damage 
evolution variables are given by Eq. (25): 

ẏi
d

(
εi, di) =

∂yi
d

∂di ḋi +
∂yi

d

∂εi ε̇
i
= − λi

0

(
εi)2ḋ

i
+ 2
(
1 − di)λi

0εi : ε̇i  

ẏi
h

(
hi) =

∂yi
h

∂hi ḣ
i
= − κiḣ

i
= κiΛ̇i

= κiḋ
i (25) 

Substitution of Eq. (25) into Eq. (24) yields: 

1
(
1 − di

)ḋ
i
=

2λi
0εi

κi + λi
0(εi)

2ε̇i (26)  

where 
(
εi)2 was defined in Eq. (13). Integration of this equation, given in 

Appendix A-1, leads to the analytical solution for the damage variable 
and corresponding integration constant Ci for the ith damage mode as: 

di = 1 −
1

(
κi + λi

0(εi)
2 )Ci

Ci =
1

ωi
0 + κi (27) 

Finally, using Eq. (27), damage variable for each damage mode can 
be defined as: 

di =
λi

0(εi)
2
− ωi

0

λi
0(εi)

2
+ κi

(28)  

2.3. Deformation eigenmodes for transversely isotropic material 

For a transversely isotropic material, the modal strain vector is: 

εi = Pi⋅ε =
(
vi ⊗ vi)⋅ε =

(
vi⋅ε
)
vi (29) 

It can be demonstrated that the single contraction of a modal strain 
vector with itself is: 

εi 2 =
(
vi⋅ε
)
vi⋅
(
vi⋅ε
)
vi =

(
vi⋅ε
)2vi⋅vi =

(
vi⋅ε
)2

=
(
εi )2 (30)  

where the magnitude of the modal strain vector is: εi = vi⋅ε. The explicit 
solutions for the modal decomposition of the total strain vector are given 
below in terms of the strain components with respect to the material 

coordinate system: 

(
εI)2

=
(
εI)2

=
1

2 + α2(αε1 + ε2 + ε3)
2 (

εIV)2
=
(
εIV)2

= 2ε2
4  

(
εII)2

=
(
εII)2

=
1
2
(ε2 − ε3)

2 (
εV)2

=
(
εV)2

= 2ε2
5  

(
εIII)2

=
(
εIII)2

=
1

2 + β2(βε1 + ε2 + ε3)
2 (

εVI)2
=
(
εVI)2

= 2ε2
6 (31)  

where ε1 to ε6 are strain components in material coordinate system. 
A single strain energy mode is activated if only one of the modal 

strains is nonzero. Therefore, by solving the system of six equations 
obtained from Eq. (31) for each modal strain being non zero, the ex
pressions for the modal strains given in terms of the strain components 
in material coordinate system can be obtained for each mode. 

Orthotropic materials are defined by six modes, given in terms of six 
eigenvalues and six eigenvectors, therefore one can express six damage 
potentials that uniquely define these six modes in the form: 

ΦI ( yI
d, y

I
h

)
=

1
2 + α2

(
1 − dI)λI

0(αε1 + ε2 + ε3)
2
− κIhI − ωI

0⩽0  

ΦII ( yII
d , y

II
h

)
=

1
2
(
1 − dII)λII

0 (ε2 − ε3)
2
− κIIhII − ωII

0 ⩽0  

ΦIII ( yIII
d , yIII

h

)
=

1
2 + α2

(
1 − dIII)λIII

0 (αε1 + ε2 + ε3)
2
− κIIIhIII − ωIII

0 ⩽0  

ΦIV ( yIV
d , yIV

h

)
= 2
(
1 − dIV)λIV

0 ε2
4 − κIV dIV − ωIV

0 = 0  

ΦV ( yV
d , y

V
h

)
= 2
(
1 − dV)λV

0 ε2
5 − κV dV − ωV

0 = 0  

ΦVI ( yVI
d , yVI

h

)
= 2
(
1 − dVI)λVI

0 ε2
6 − κVIdVI − ωVI

0 = 0 (32) 

Note that for transversely isotropic materials, there are only five 
distinct eigenvalues, i.e. principle material stiffnesses so the number of 
modes can be reduced to four, with the fifth equivalent to sixth mode. 
For the material analysed here, the second and fourth principle stiff
nesses have similar values, due to the fact that C23 is significantly smaller 
than C22. 

3. Mesoscale modelling of unidirectional and orthotropic 
composites 

In order to justify the assumptions that this model is based on, made 
in the previous sections, a number of mesoscale models and loading 
conditions were considered. The validation of the assumption that 
damage induced changes in the material stiffness tensor at the contin
uum scale do not affect symmetries of the tensor, i.e. the direction of the 
tensor eigenvectors was one of the key steps. Further, the mesoscale 

Fig. 1. Unidirectional material model representative volume element: a) isometric view, b) periodic RVE.  
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modelling was intended to improve understanding of the material 
behaviour and to aid in definition of material characterisation required 
for the damage model. A representative volume element (RVE) of the 
composite material with unidirectional fibre reinforcement was 
modelled using finite element (FE) method as shown in Fig. 1. The main 
composite constituents were modelled separately, i.e. fibres, matrix and 
their interface each having its own mechanical properties. 

The mesoscale models of the RVE shown in Fig. 1 were generated in 
the commercial code Digimat [14]. RVE of a unidirectional composite 
comprised 16 fibres randomly distributed in matrix representative of a 

transversely isotropic material. Note that the model has the properties of 
a repeating/periodic unit cell, as presented in Fig. 1-b) and thus satisfies 
the requirements for the RVE [15,16]. 

The RVE model, a cube with edge length of 26 μm, had the fibre 
volume fraction of 50% and the fibre diameter of 5 µm. The model 
consisted of 100,000 under integrated hexagonal solid elements (one 
integration point) of equal size, where isotropic and orthotropic elastic 
models (MAT_001 and MAT_002) [17], were used for matrix and fibre 
material, respectively. The matrix and fibre mechanical properties, used 
in the models, were determined experimentally. The value for the matrix 
Young’s modulus was E = 4668MPa and Poisson ratio ν = 0.4. The fibre 
material properties are listed in Table 1. 

Two types of boundary conditions were used in the models: periodic 
boundary conditions on the opposite faces to represent material conti
nuity and boundary conditions combined with the loading. 

Plain strain state was imposed in the material to determine columns 
of the material stiffness tensor. Each model was successively loaded by 

Table 1 
Fibre material properties used in mesoscale model simulations (MAT_002).  

Ex 2.654•105 MPa  νyx 0.0126 Gxy 1.550•104 MPa 

Ey 1.298•104 MPa  νzx  0.0126 Gxz  1.550•104 MPa 
Ez 1.298•104 MPa  νyz  0.206 Gyz  5.380•103 MPa  

Fig. 2. Loading and boundary conditions for normal load case.  

Fig. 3. Loads and boundary conditions for shear load case.  

Fig. 4. Mesoscale model with fibre cracking damage mechanism a) the whole model, b) highlighted fibre elements with reduced material properties representing 
the crack. 
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six displacements – three normal displacements and three shear dis
placements. For normal loading cases one face of the RVE was loaded in 
tension, and the remaining faces were constrained from movement in 
the direction normal to them as schematically represented in Fig. 2 for 
the load in X direction. The load was applied by the set displacement of 
δ = 2.6⋅10− 5mm, which corresponds to the normal strain εii = 1⋅10− 3. 

Plane shear strain was obtained by constraining one face in all di
rections and applying the load parallel to the RVE opposite face (Fig. 3). 
The load was applied as set displacement of magnitude δ = 2.6⋅10− 5mm 
which corresponds to the true shear strain of εij = 5⋅10− 4 (or engineer
ing shear strain γij = 1⋅10− 3). The applied strain magnitudes used in 
plain strain loading do not violate small strains assumption. 

Fibre cracking was modelled by reduction of the material properties 
of one layer of the fibre elements as shown in blue in Fig. 4. Crack plane 
was normal to the fibre direction and situated in the middle of the RVE. 
It was modelled with the fibre elastic properties reduced by the different 
damage factors (4, 10, 40, 100, 400, 1000, 10000) to represent a range 
of damage extents. 

Matrix damage was modelled by uniform reduction of stiffness 
properties applied to all matrix elements by a range of damage factors: 4, 
10, 40, 100, 400, 1000 and 10,000. The Poisson’s ratio remained un
changed. Fibre-matrix debonding was modelled by reduction of material 
properties of all matrix elements adjacent to the fibres as presented in 
green in Fig. 5. Debonded layer was modelled with isotropic material 
properties allowing for large deformations expected in the layer. The 
damage factors used in this model were 4, 10, 20, 40, 100, 400, 1000 
and 10000. 

Damage effects for specific damage mechanisms/cases were 

incorporated in the models by reduction of the material stiffness for a set 
of specific elements within the RVE models, and the results averaged 
over the RVE. Following three damage cases were considered in this 
paper – fibre cracking, matrix microcracking and fibre–matrix 
debonding. 

The calculation of material stiffness tensors was performed trough 
six simulations, each corresponding to either one of the three plain strain 
states or one of the three in plain shear states of the material. The 
stresses calculated in the finite element simulations resulting from these 
strain loading cases of the RVE allowed for determination of one ma
terial stiffness tensor column. The average stress values, used in equa
tions (33), were determined using strain energy equivalence principle, i. 
e. the strain energy of the average stress was made equal to the strain 
energy of the calculated stress acting within the RVE for the applied 
strain. 

As an example, calculation of the first column of the stiffness tensor 
using Eq. (2). For the loading defined as ε1 ∕= 0, ε2 = ε3 = ε4 = ε5 =

ε6 = 0 and the components of stress, determined from the finite element 
model of the RVE, the related members of the material stiffness tensor 
were determined as: 

σ1 = C11ε1⇒C11 =
σ1

ε1
σ2 = C21ε1⇒C21 =

σ2

ε1
σ3 = C31ε1⇒C31 =

σ3

ε1

(33) 

The stiffness tensors were determined for undamaged material and 
material with different damage types. These damage types were ana
lysed for a range of damage extents. For instance, fibre cracking was 
modelled by reducing the stiffness in one layer of all fibres located at the 
RVE midplane perpendicular to the fibre direction. Matrix 

Fig. 5. Mesoscale model with fibre–matrix debonding damage mechanism a) the whole model, b) elements with with reduced material properties representing 
debond layer. 

Fig. 6. Fibre damage effects: a) eigenvalue reduction, b) eigenvector roation.  
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microcracking damage was modelled by reducing stiffness of the matrix 
(all matrix elements) in the RVE. The fibre–matrix debonding was 
modelled by reduction of the stiffness of the layer of the matrix elements 
adjacent to the all fibres. The stiffness of the elements affected by the 
introduced damage was reduced (divided by the scaling factor S for each 
damage mechanism incrementally in a number of steps (S = 1, 10, 100, 
1000, 10000, 100000; see Fig. 6) to determine the influence of the 
progressive damage. 

Stiffness tensors for all damage cases were determined and analysed 
in spectrally decomposed form, defined in terms of their eigenvalues and 
eigenvectors, defined in Section 2. Eigenvalues, obtained by the diago
nalisation of the stiffness tensor, represent the material principal stiff
nesses. For the investigated transversely isotropic material the 
undamaged material eigenvalues were: 

λI = 139.5 GPa λII = 5.8 GPa λIII = 16.1 GPa (34)  

λIV = 5.7 GPa ≅ λII λV = 11.0 GPa λVI = 11.0 GPa = λV 

Note, for this material λII and λIV have a very similar value. Analysis 
of the eigenvalues without considering eigenvectors offers limited in
formation in assessment of damage. The shear related eigenvectors of 
the stiffness tensor (vIV , vV and vVI) are known and do not depend on the 

Fig. 7. Matrix damage effects: a) eigenvalue reduction, b) eigenvector roation.  

Fig. 8. Fibre-matrix debonding damage effects: a) eigenvalue reduction, b) eigenvector roation.  

Table 2 
Physical damage types and the affected damage parameters for unidirectional 
material.  

Physical damage 
types 

Affected damage modes 
(deformation modes) 

Related general strain 
components - Eq. (35) 

Fibre damage dI ,dIII,dV ,dVI ε1 , ε2, ε3, ε5 ,ε6 

Matrix cracking dII ,dIII ,dIV ,dV ,dVI ε2 , ε3, ε4,ε5, ε6 

Matrix fibre 
debonding 

dII ,dIII ,dIV ,dV ,dVI ε2 , ε3, ε4,ε5, ε6  

Fig. 9. RVE Finite Element model used for orthotorpic composite modelling: 
fibres material in blue and matrix material in red. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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eigenvalues (λI to λVI) for transversely isotropic materials. The eigen
vectors that may be subjected to change due to damage are eigenvectors 
vI, vII and vIII. Change in orientation of the eigenvectors was measured by 
the rotation angle defined as φI = arccos

(
vI

0⋅vI
d
)
, where the subscripts ‘0′

and ‘d’ refer to undamaged and damaged material eigenvector, respec
tively. The eigenvectors of undamaged material were: 

vI
0 = [ 0.998 0.044 0.044 0 0 0 ]T vII

0

= [ 0 − 0.707 0.707 0 0 0 ]T (35)  

vIII
0 = [ − 0.062 0.706 0.706 0 0 0 ]T vIV = [ 0 0 0 1 0 0 ]T  

vV = [ 0 0 0 0 1 0 ]T vVI = [ 0 0 0 0 0 1 ]T 

The first eigenvector vI was almost aligned with the fibre direction. 
Therefore, the first eigenvalue is associated with the longitudinal di
rection. This is consistent with the reduction of the first eigenvalue due 
to fibre damage, which was significant in comparison to other eigen
value reductions, as can be observed in Fig. 6-a). As a consequence of 
this effect, the first and the third eigenvectors rotated significantly more 
compared to the other eigenvectors, see Fig. 6-b). The rotation of the 
eigenvectors reflects the material losing its anisotropy, i.e. dominant 
longitudinal stiffness. It is important to note that the rotation of eigen
vectors vI and vIII becomes significant when the effective fibres stiffness 
becomes comparable to the matrix stiffness due to the damage (damage 
factor over 100 in Fig. 6-b)). For damage factor of 100, the rotation of 
eigenvectors I and III is below 5◦ . Consequently, the assumption that 
eigenvectors remain invariant is justified. 

The similar analysis was carried out for the matrix damage related 
effects. For uniform matrix damage the highest (and equal) reduction 
was observed for the second, third and fourth eigenvalues (Fig. 7). The 
uniform damage in the matrix does not have significant impact on the 
eigenvector basis rotation – none of the eigenvectors rotated more than 
5◦ even when matrix stiffness was reduced by five orders of magnitude 
(see Fig. 8). 

The fibre–matrix debonding damage modelling results were similar 
to the uniform matrix damage results. The reduction of the second, third 
and fourth eigenvalue is almost equal as it is for the mode five and six, 
Fig. 7-a). The eigenvector rotation due to the fibre–matrix debonding 
damage was insignificant, as illustrated in Fig. 7-b). 

The most important conclusions from mesoscale damage modelling 
are: 

Fig. 10. Graphical representation of the single deformation modes.  

Table 3 
Characteristics of the eigenmodes for unidirectional mesoscale material.  

Mode Critical 
strain 
[%] 

Principal 
stiffness λi 

[GPa] 

Energy limit 
ωi

0 
[kJ/m3] 

Dominant damage 
type 

I  1.82  139.5  46684.8 fibre 
II  0.94  5.8  524.0 matrix 
III  3.12  16.1  15794.3 matrix 
IV  0.95  5.7  518.7 matrix 
V  0.39  11.0  164.5 matrix 
VI  0.40  11.0  171.3 matrix  

Table 4 
Unidirectional material properties used for single element verification.  

Density [g/cm3] ρ  1.622 
Stiffness [GPa] E1  165.00 

E2 = E3  9.84 
G12 = G31  4.98 
G23  3.00 

Poisson’s ratio [-] ν21 = ν31  0.0169 
ν32  0.4535 

Damage threshold [MPa] ωI  46.210 
ωII = ωV  2.096 
ωIII  7.836 
ωIV = ωVI  3.138 

Critical damage variable dI  0.3 
dII = dIII  0.5 
dIV = dV = dVI  0.7  
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- the eigensystem of the material remains unchanged due to the matrix 
damage;  

- the small (negligible) rotation of eigensystem is characteristic for 
fibre damage up to the critical fibre damage (damage level for which 
the fibre effective stiffness approaches the matrix stiffness);  

- modelling of damage can be based on the reduction of the principal 
stiffnesses without change of direction of the eigenvectors. This is 
conditional to the extent of the fibre damage, as described above. 

The data presented in Figs. 2 to 4 is summarised in the Table 2. which 
relates physical damage types, affected damage parameters and the 
general components of strain. 

The procedure outlined for the unidirectional (transversely 

isotropic) composites was repeated for orthotropic composite material, 
using the RVE finite element model shown in Fig. 9. The RVE can be 
interpreted as a being representative of two plies of a cross-ply laminate, 
which was used here as a mesoscale model of an orthotropic material. 
The stiffness tensor and corresponding set of six eigenvalues and the 
eigenvectors obtained for this architecture and material properties of 
experimentally tested orthotropic material is given below: 

Fig. 11. State variables histories from the single element tests for Mode I loading: a) strain; b) Damage conjugate force; c) damage variable; d) stress strain curve.  

Fig. 12. Analytical solution for damage conjugate force (a) and stress strain curve (b) obtained for a range of evolution energies.  
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

10.00 0.47 0.47 0 0 0
0.47 68.63 2.70 0 0 0
0.47 2.70 68.63 0 0 0

0 0 0 7.14 0 0
0 0 0 0 9.14 0
0 0 0 0 0 7.14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa (36)  

λI = 71.3 GPa, vI = [ 0.011 0.707 0.707 0 0 0 ]T ,

λII = 65.9 GPa, vII = [ 0 − 0.707 0.707 0 0 0 ]T ,

λIII = 10.0 GPa, vIII = [ − 0.9999 0.008 0.008 0 0 0 ]T ,

λIV = 7.1 GPa, vIV = [ 0 0 0 1 0 0 ]T ,

λV = 9.1 GPa, vV = [ 0 0 0 0 1 0 ]T ,

λVI = 7.1 GPa = λIV , vVI = [ 0 0 0 0 0 1 ]T .

where the coefficients α and β are equal to 0.015 and, − 131 respec
tively. The high value of β makes the third eigen vector parallel to the 
through thickness direction (X), with negligible influence of the material 
properties in Y and Z directions. The material properties given in Eq. 
(36) were used for calculation of the orthotropic material properties 
given in Table and modelling of plate impact tests and hard projectile 
impact tests in described in Section 4. The RVE dimensions were chosen 
so that through thickness size of the RVE model was equivalent to the ply 
thickness of the experimentally tested orthotropic material. 

3.1. Calculation of the material properties for damage model – Critical 
energy limits 

Young’s moduli, shear moduli and Poisson’s ratios define linear 
elastic material behaviour and the material stiffness tensor, including its 
eigenvalues and eigenvectors. Additional parameters needed to define 
the damage initiation and evolution are critical damage initiation en
ergy (threshold energy). The critical damage initiation energy ωi

0 can be 
determined by the mechanical tests which activate single strain energy 
modes. Experimental activation of a single strain energy mode can be 
achieved when the sample loading results in a strain state determined by 
a single modal strain defined in Eq. (31). Six single strain energy modes 
and the related eigenvectors of the material stiffness tensor for ortho
tropic materials are illustrated in Fig. 10. Note, material characterisation 
for modes I and III require constrained uniaxial tests whereas mode II 
requires uniform biaxial loading test. Second, fourth, fifth and sixth 
modes are the shear modes which can be achieved in the shear tests, for 

Fig. 13. a) Modal Stress modal strain curve and a family of unloading curves for a range of damage variables for deformation mode I b) modal stress – modal strain 
curve with unloading at d = 0.3. 

Table 5 
Material parameters determined for the orthotropic composite materials.  

GPa / [-] MJ/m3 [-] MJ/m3 

Ex  10.0 ωI
0  36.5 dI

cr  0.3 κI  73.0 
Ey = Ez  68.5 ωII

0  16.0 dII
cr  0.3 κII  32.0 

Gyz  4.57 ωIII
0  6.3 dIII

cr  0.5 κIII  12.6 
Gzx =

Gxy  

3.57 ωIV
0  3.1 dIV

cr  0.7 κIV  6.2 

νyz  0.039 ωV
0  2.1 dV

cr  0.7 κV  4.2 
νzx = νxy  0.045 ωVI

0  3.1 dVI
cr  0.7 κVI  6.2  

Fig. 14. Shock velocity vs particle velocity for the composite material 
considered: data points with error bars obtained in the plate impact tests and 
linear approximation of the data. 
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instance IOSIPESCU shear test. For the unidirectional composites, the 
second and the fourth modes are equivalent and consequently charac
terised by the same energy limit. The same holds for modes V and VI. 

In this work, the critical damage initiation energy thresholds were 
established by the mesoscale model simulations designed to activate a 
single strain energy mode in the series of separate simulations. For Mode 
I, the strain energy threshold was established at the point where 
maximum stress levels in fibres reached fibre strength level. For the 
other modes, the critical energy levels were established by comparison 
maximum von Mises stress in matrix with the matrix material strength. 
Note, this is possible because of the linear elastic material response up to 
damage initiation point. Calculated critical damage initiation energy 
thresholds and the corresponding damage mechanism for unidirectional 
material are presented in the Table 3. 

The results show that the fibre related first mode has the highest 
energy limit. For the other five modes, the matrix was found to be more 
critical constituent. 

4. Model validation and impact modelling 

The constitutive model described in Section 2 was implemented into 
explicit nonlinear finite element code DYNA3D [23] and coupled with 
the vector Shock Equation of State, developed in [21]. Verification and 
validation of the constitutive model were conducted in the series of 
single element tests, simulation of plate impact tests and sphere pro
jectile impacts. 

Fig. 15. FE model for plate impact test in through thickness direction with enlarged target mesh and elements used to generate stress time histories; the flyer and 
cover plates are shown in (yellow), composite taget plate has plies shown in green and blue and PMMA back plate is shown in red. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Stress histories obtained in plate impact test for a 3.8 mm thick composite plate in the through thickness direction at impact velocity of 504 m/s [18].  
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4.1. Single element tests 

The new material model was first verified in a series of single 
element tests for which analytical solutions were known. The first set of 
tests verified a version of the model which allows for constant damage 
hardening and failure. In the second set of single element tests the 
variable damage hardening part of the model was activated allowing for 
more realistic modelling of progressive damage and failure. 

Verification of the model implementation was performed for the 
loading conditions presented in Figure, for which the analytical solu
tions were known. The material model input data used for simulation of 
the unidirectional composite is given in Table 4. Note, the critical energy 
for damage initiation and critical damage parameter for complete failure 
were the input parameters for the constitutive model. Damage initiation 
for the first mode was determined from the fibres failure strain. This was 
justified by the fact that, in the mesoscale modelling, the first eigenstrain 
was almost exactly equal to the fibre strain. Critical strains for the shear 
modes were calculated using the matrix shear strength. The second and 
the fourth mode parameters are the same, as these modes share the 
similar eigenvalue. The damage initiation energy threshold for the third 
mode was determined from the mesoscale simulations. The state vari
able histories for the Mode I and the corresponding stress strain curve 
are given in Figure. These results confirm that a single mode is activated 
as the all non zero variables in this test correspond to Mode I. For the 
constant modal strain rate loading, liner elastic response was obtained 
up to damage initiation, when the damage conjugate force reaches the 
critical value of 46MPa at the response time td = 160μs. For the loading 
increasing monotonically with time, the Mode I damage variable in
creases to the critical value of dcr = 0.3 at the response time td = 200μs. 
When the critical damage value is reached, the material loses its load 
carrying capacity and the stress is set to zero over the subsequent 100 
calculation timesteps. Similar results are obtained for the other modal 
loadings. The simulation results are equivalent to the corresponding 
analytic solutions, which confirms that the model was implemented 
correctly. 

The single element tests results shown in Fig. 11 were obtained with 
a minimum set of material damage parameters, which consists of dam
age initiation energy thresholds and the critical damage variables for 
total material failure for the six deformation modes. 

The second stage in the single element verification considered the 
variable damage evolution rate part of the material model. As already 
stated, the model uses a linear damage evolution law (linear function of 
the conjugate force Eq. (20)) which allows for more realistic modelling 
of progressive damage/material softening. 

Φ = yd +(yh − ω0) = 0, yd = (1 − d)λ0ε2, yh = κh, (37) 

In Eq. (37) the evolution of the damage potential is controlled via the 
damage evolution variable h which can have value between 0 and 1. 

The material parameters for the damage model can be determined 
from a series of six modal experiments where a single deformation mode 
is generated in specimens and the modal stress – modal strain curves 
recorded. Equally, one can analytically determine estimates for these 
parameters and their allowable ranges, as illustrated in Figure, where 
the evolution energy κ is defined in terms of the threshold energy ω0. 

In Fig. 12 the constant damage threshold behaviour corresponds to 
κ = 0 where stress decreases below σcr value at the fastest rate. One can 
observe that as κ increases the material softening decreases. For κ =

5ω0, which should be taken as a threshold value for this parameter, 
following damage initiation the material exhibits almost zero hardening 
rate. Further increase in the evolution variable resulted in a nonphysical 
damage hardening (for this material), as illustrated with the curve κ =

10ω0 in Fig. 12-b). 
Determination of a critical damage parameter for deformation mode 

I is illustrated in Fig. 13, where (a) illustrates a stress strain curve ob
tained for one deformation mode and a family of possible unloading 
curves, which correspond to the damage variables ranging from zero to 
one. For a failure obtained at the stress – strain state denoted with 
asterisk in Fig. 13-b), one can calculate the stress at failure and the 
critical damage as: 

dcr = 1 −
̅̅̅̅̅̅̅̅̅̅̅σfail

λ0εfail

√

(38) 

For the carbon fibre composites considered in this work, critical 
damage parameter for fibre failure dominated modes was determined to 
be dcr = 0.3 and for the other deformation modes critical damage was 
taken to be dcr = 0.5. 

Material characterisation for the orthotropic composite material 
used in the simulations of the impact tests followed the approach 
described above, making use of the elastic and strength properties at the 
mesoscale level obtained from material manufacturer. Calculated 
constitutive model parameters are given in Table 5 and used in the 
following section for the numerical validation against the experimental 
data. 

4.2. Plate impact tests 

Plate impact tests are typical material characterisation experiments 
designed to determine material Hugoniot and Equation of State data 
[18–20]. At the impact of ideally parallel flyer plate and target plate, the 
materials in contact undergo uniaxial strain state and for the sufficiently 
high impact velocity, shock wave is generated and propagate through 
the both plates. In our plate impact experiments, the flyer plate and 

Fig. 17. Hard projectile impact test: a) finite element model (hexagonal mesh not displayed for the resolution reasons), b) composite material layup;  
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Fig. 18. Damage variables distribution thought the thickness of the composite target panel: a) damage mode I; b) damage mode II; c) damage mode III; d) damage 
mode IV; e) damage mode V; f) damage mode VI; 
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target cover plate were made from aluminium. The rear side of the 
composite target was covered by PMMA backing plate. 

A schematic representation of finite element model of plate impact 
test of the orthotropic carbon fibre composite in through thickness di

rection is given in Figure. The model consists of under-integrated hex
agonal solid elements with one integration point: 5 mm thick flyer plate 
was modelled with 30 elements in the impact direction; the 1 mm thick 
cover plate was modelled with 10 elements in the impact direction, 

Fig. 18. (continued). 
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3.8 mm thick composite plate modelled with 32 elements along the 
impact direction (4 elements per ply) and 12 mm thick PMMA modelled 
with 100 elements in the impact direction. Aluminium and PMMA are 
modelled as an isotropic-elastic–plastic-hydrodynamic model, the ma
terial data for which was taken from the literature (Steinberg 1991). The 
carbon fibre epoxy target plate was modelled as a quasi-orthotropic 
material with the elastic and strength properties obtained from mate
rial manufacturer. The material parameters required for the shock 
equation of state for this material were determined through plate impact 
tests. The experimental data from the plate impact tests, in the form of 
Shock velocities US vs. particle velocity UP, is shown in Fig. 14. In the 
linear approximation of the shock velocity as a function of particle ve
locity US = C + S1UP, the coefficients have the following values C =

2.84 km/s and S1 = 1.42. 
The simulation results were assessed in terms of stress histories ob

tained at the front and at the back of the composite target plate, using 
the elements 2013 and 1575, respectively (shown in Fig. 15). The stress 
history recordings from the front and the back stress gauges, published 
in [18], were compared to the simulation results obtained with the 
newly developed constitutive model in Fig. 16. A good agreement be
tween numerical and experimental results can be observed in terms of 
stress levels, loading pulse duration and shape and shock wave speed. 
Note, the slope of the unloading part of the simulation curve obtained at 
the back of the target plate (back gauge) is very similar to the slope of 
the corresponding experimental curve. This indicates that the new 
constitutive model is accurately modelling progressive damage in the 
composite due to the shock loading. The average stress level behind the 
shock is underestimated by 5% from the experimentally observed. The 
rising parts of the stress history curves calculated and experimental 
coincide indicating that the shock computed wave speed was close to the 
experimental shock wave speed. 

4.3. Hard projectile impact test on a flat composite panel 

Numerical validation of the newly developed constitutive model was 
completed by modelling the hard projectile impact on the flat composite 
target [20]. The composite plate is 6 mm tick and consists of 16 ortho
tropic plies with the ply thickness of 0.375 mm. The initial/impact speed 
of the steel projectile was 1200 m/s. 

Due to the local nature of the deformation process in this test, in- 
plane dimensions of the finite element model are reduced from 

300 mm to 200 mm as shown in Fig. 17. The composite target was 
modelled with one hexagonal solid element per the ply thickness, cor
responding to a total of 640,000 hexagonal elements used for the target. 
The sphere was modelled with 2,432 solid elements, using the butterfly 
mesh. 

The experimental results were given in terms of hole size generated 
at impact and the extent of delamination developed through the thick
ness of the composite panel. These results are compared to the numerical 
results obtained at response time t = 20.8 µs after the initial projectile- 
target contact, which is over 4 µs after the projectile completely pene
trated the target. Simulation results agree well with the experiments in 
terms of overall kinematics of deformation and damage distribution. The 
projectile penetrated through the thickness of the panel, creating a hole 
in the material. The experimentally determined hole diameters, ob
tained in two perpendicular directions are 11.7 mm and 12.8 mm, whilst 
the corresponding numerical results are 12.0 mm and 12,14 mm, 
respectively. The relative errors for these two results are, respectively, 
2.5% and 5.2%. 

Quantitative analysis of damage through the thickness of the panel 
was carried out by using the six modal damage variables plotted in 
Fig. 18. For the sake of clarity, the figure shows one half of the cross 
section through the middle of the model, where the red elements 
represent total failure and the blue elements represent virgin material. 
Damage distribution through the thickness of material for all six modes 
is of hourglass shape which agrees very well with the experimental 
observation. Maximum and minimum damage dimeters measured from 
the numerical results for each damage mode are given in Table 6. 

One can observe that fibre failure driven damage modes (first and 
second) developed locally in vicinity of the generated hole and did not 
propagate far away from the impact zone. Damage distribution obtained 
at the back of the target panel was similar in shape and size to the 
damage obtained at the front ply. 

Damage eigen modes affiliated with three delamination modes are 
Mode III, Mode IV and Mode VI for opening, shear and tearing modes, 
respectively. However, the available experimental data were the C-scans 
of delamination opening mode, as the shear modes do not necessarily 
cause the free surface opening. Consequently, a comparison of the nu
merical results for Mode III with the delamination size distribution 
through thickness is shown in Fig. 19, where the maximum delamination 
calculated in the simulation is within 5% of the experimental results. 

5. Conclusion 

A series of numerical simulations was conducted using the newly 
developed constitutive model described in this work. The model was 
implemented in LLNL Dyna3d 2004 [23] and coupled with the vector 
Equation of State [21]. The verification was conducted in a series of 
single element modal simulations, with the results correctly reproducing 
the analytical solutions. 

Numerical validation was conducted against the available experi
mental data from plate impact tests and hard projectile impact tests. The 
constitutive model accurately predicted the composite material response 

Table 6 
Diameter of the modal damage zones thought the target thickness.  

Mode Maximum diameter 
[mm] 

Minimum diameter [mm] Ply number 

I  28.0  22.0  
II  30.0  27.0 7/8 
III  42.0  28.0 7 
IV  60.0  34.0 8 
V  38.0  28.0 8 
VI  74.0  52.0 7  

Fig. 19. Damage mode III variable distribution (left) that corresponds to delamination obtained from the post impact C scans experimental results (right).  
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to the considered shock loading in through thickness direction, 
including the shock wave speed and progressive damage in the com
posite due to the shock loading. The constitutive model accurately 
predicted the kinematics of deformation, including the damage distri
bution through the target thickness and size of the delamination zone 
generated at high velocity impact. The size of the delaminated zone 
obtained in these simulations was within 5% of the size calculated from 
the post impact analysis of the tested panels [5]. 
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Appendix 

A-1. Integration of damage variable rate 

Eq. (26) for rate of change of damage variable, obtained from the consistency condition, is written with damage variable and its time derivative on 
the left side and strain and its time derivative on the right side: 

1
(
1 − di

)
ddi

dt
=

2λi
0εi

κi + λi
0(ε

i)
2

dεi

dt
(A.1) 

This equation can be integrated and solved in the following steps as: 
∫

1
(
1 − di

) ddi =

∫
2λi

0εi

κi + λi
0(ε

i)
2 dεi (A.2)  

e− ln(1− di) = eln
(

κi+λi
0(εi)

2
)
+C0  

1
(
1 − di

) =
(

κi + λi
0

(
εi)2

)
eC0 =

(
κi + λi

0

(
εi)2

)
Cidi = 1 −

1
(
κi + λi

0(ε
i)

2 )Ci
(A.3) 

Integration constant Ci can be obtained using the condition that damage potential must be equal to zero: 
n+1Φi =

(
1 − n+1di)λi

0
n+1εi2 +

(
κi( nhi + ndi − n+1di) − ωi

0

)
= 0 (A.4) 

This gives integration constant, consequently damage variable as: 

C =
1

ωi
0 + κid

i =
λi

0εi2 − ωi
0

λi
0εi2 + κi

(A.5) 

The analytical solution for damage variable in A.6 makes the model fully defined analytically. 
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