
FINAL VERSION 1

Minimum-Variance State and Fault Estimation for
Multi-Rate Systems with Dynamical Bias

Yuxuan Shen, Zidong Wang and Hongli Dong

Abstract—This paper is concerned with the joint state and
fault estimation problem for a class of multi-rate systems with
dynamical bias. To reflect real practice, the multi-rate sampling
is considered which allows the sensor sampling rate and the state
update rate to be different. The sensor is subject to the sensor
fault that changes according to a dynamic equation. Insteadof
applying the traditional lifting technique, we introduce a time-
varying delay into the measurement equation so as to transform
the multi-rate systems into single-rate ones. The aim of this
paper is to develop a joint state and fault estimation algorithm
with minimized estimation error covariance. The recursionof the
estimation error covariance is first derived, and appropriate esti-
mator gains are then characterized that minimizes the estimation
error covariance. A simulation example on the DC servo system
is given to confirm the usefulness of the developed recursivestate
and fault estimation algorithm.

Index Terms—Fault estimation, sensor fault, multi-rate sam-
pling, dynamical bias.

I. I NTRODUCTION

In the area of signal processing and control engineering,
state estimation has been a long-standing research topic that
has received considerable research interest [1], [2], [21]. To
date, plenty of research results have been obtained on the
state estimation problems where the developed algorithms can
be generally classified intoH∞, Kalman, set-membership and
moving-horizon state estimation approaches [11]–[13], [19].
In industrial systems such as aluminium electrolysis cellsand
power networks, owing to the diverse physical features of
the system components, it is often the case that the state
update rate is different from the sensor sampling rate, i.e.,
the system is amulti-rate system(MRS) [15]. For MRSs, the
state estimation algorithms developed for single-rate systems
(SRSs) are no longer applicable, and this triggers the recent
research attention on the state estimation algorithms for MRSs
[4], [16], [17], [20]. Up to now, most available results for
MRSs have been obtained based on the traditional lifting
technique which leads to a high computation burden due to
the augmentation.

In engineering practice, the measurement output of the
sensors are often subject to abrupt changes due to a variety
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of reasons such as sensor aging and random sensor failure.
Such a phenomenon, customarily known as sensor fault, would
largely degrade the estimation performance and it is therefore
necessary to acquire the information of the sensor fault with
hope to mitigate the impact from the sensor fault. Recently,
the fault estimation problems for SRSs with sensor fault have
been widely investigated [3], [9]. In [5], the joint estimation
problem for the state and the sensor fault has been studied
for discrete-time systems and, subsequently, a fault-tolerant
controller design scheme has been proposed. Unfortunately,
the joint state and fault estimation (JSFE) problem for MRSs
has received little attention despite its practical significance,
and this gives rise to the main motivation of our current
investigation.

In practical systems, it is quite common that the system
noises consist of white noises and the strongly correlated
noises, where the latter are calledrandom biasesthat could
be either constant or dynamic [14]. As early as in 1990,
the random bias has been characterized by a dynamical
equation in [7] where the joint state and random bias es-
timation problem has been considered. Thereafter, the state
estimation problems for SRSs with random bias have received
considerable research attention [8], [10], [18]. For example,
in [18], the state estimation problem has been studied for
a class of two-dimensional systems with random bias and
measurement quantization, and a recursive state estimation
algorithm has been designed. Note that the corresponding state
estimation problems for MRSs with random bias have not been
considered yet, and this constitutes another motivation ofthis
paper.

Motivated by the above discussions, in this paper, we aim
to solve the JSFE problem for MRSs subject to dynamical
bias. The main contributions of this paper are:1) the JSFE
estimation problem is, for the first time, studied for MRSs
with dynamical bias where the considered fault model is quite
general; 2) different from the traditional lifting technique that
often leads to high computational burden, a novel method
is put forward to convert the MRSs into SRSs through the
introduction of a time-varying delay into the measurement
equation; and 3) the proposed JSFE algorithm is in the
recursive form and therefore suitable for online application.

Notation The notation used here is fairly standard.GT and
G−1 represent the transpose and the inverse of the matrixG,
respectively.E{α} represents the expectation of the random
variableα. The Kronecker delta functionδ(m,n) is a binary
function that equals1 if m = n, and equals0 otherwise.
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II. PROBLEM FORMULATION

Consider the following class of discrete-time systems:

x(s+ 1) = A(s)x(s) +B(s)w(s) + E(s)h(s) (1)

wherex(s) ∈ R
nx is the system state andw(s) ∈ R

nw is the
process noise. The initial valuex(0) is a random variable with
the meanx̄(0) and the covarianceX(0). h(s) ∈ R

nh stands
for the random bias with the following dynamics:

h(s+ 1) = H(s)h(s) + λ(s) (2)

whereλ(s) ∈ R
nh is a zero-mean Gaussian sequence with the

covarianceΛ(s) > 0. The initial valueh(0) of the random bias
is a zero-mean Gaussian random variable with the covariance
Π(0). H(s), A(s), B(s), andE(s) are known time-varying
matrices with compatible dimensions.

In this paper, the sampling period of the sensor isb ,

lm+1−lm whereb ≥ 1 is a positive integer.lm is the sampling
instant of the sensor withm being the order number of the
sampling instant. The measurement model of the sensor is

y(lm) = C(lm)x(lm) +D(lm)v(lm) + F (lm)f(lm) (3)

wherey(lm) ∈ R
ny is the measurement output andv(lm) ∈

R
nv is the measurement noise.C(lm), D(lm), and F (lm)

are known time-varying matrices with compatible dimensions.
f(lm) is the unknown sensor fault evolving according to [6]

f(lm+1) = G(lm)f(lm) (4)

whereG(lm) is a known time-varying matrix with compatible
dimensions.

The process noisew(s) and the measurement noisev(lm)
satisfy

E{w(s)} = 0, E{w(s)wT (t)} = W (s)δ(s, t),

E{v(lm)} = 0, E{v(lm)vT (ln)} = V (lm)δ(lm, ln)

whereW (s) andV (lm) are known time-varying matrices with
compatible dimensions.

Assumption 1:The random variablesx(0), h(0), λ(s), w(s),
andv(lm) are mutually independent.

In literature, a typical approach to dealing with MRSs is to
use the lifting technique to obtain an augmented state equation
with an increased state update period, which gives rise to
heavy computational load. In this paper, instead of utilizing the
lifting technique, we aim to reconstruct a new measurement
equation with a decreased sampling period. Here, the zero-
order hold strategy is adopted to compensate the measurements
at the non-sampling instants of the sensor.

With the zero-order hold strategy, the actual measurement
used by the estimator is

ȳ(s) , y(l̄n), l̄n ≤ s < l̄n+1

with l̄n being the largest measurement sampling instant that
is not larger thans and l̄n+1 , l̄n + b.

Defineρs , s− l̄n (l̄n ≤ s < l̄n+1). Then, the measurement
ȳ(s) is rewritten as

ȳ(s) = C(s− ρs)x(s − ρs) +D(s− ρs)v(s− ρs)

+ F (s− ρs)f(s− ρs). (5)

In the following, we introduce a new notation

f̄(s) , f(l̄n), l̄n ≤ s < l̄n+1. (6)

Similarly, one hasf̄(s) = f(s− ρs) for l̄n ≤ s < l̄n+1. From
the definition off̄(s), it is obvious that

f̄(s+ 1) =

{

f̄(s), if l̄n < s+ 1 < l̄n+1

G(s− b+ 1)f̄(s), if s+ 1 = l̄n+1.

Then, f̄(s+ 1) is further rewritten as

f̄(s+ 1) = Ḡ(s)f̄(s)

where

Ḡ(s) , (1− δ(s+ 1, l̄n+1))I + δ(s+ 1, l̄n+1)G(s − b+ 1)

andδ(·, ·) is the Kronecker delta function. Furthermore, with
(6), ȳ(s) is rewritten as

ȳ(s) = C(s− ρs)x(s − ρs) +D(s− ρs)v(s− ρs)

+ F (s− ρs)f̄(s). (7)

Remark 1:In this paper, to estimate the fault, the dynamics
of the fault are required to be known [6]. Nevertheless, noting
that the update period of the fault isb, it is impossible to
obtain the relationship betweenf(s + 1) and f(s). To solve
such a problem, in this paper, we introduce a new notation
f̄(s) that satisfies (6), and the relationship betweenf̄(s + 1)
and f̄(s) is known. Then, the dynamics of̄f(s) is obtained
and an estimator can be designed to estimatef̄(s). Note that,
with the help of (6), the estimate of the faultf(lm) can be
easily obtained from the estimate of̄f(s).

From (1) and (7), it is obvious that the MRS is now
transformed into a SRS with the time-varying delayρs. To
tackle the addressed JSFE problem, we design the estimator
of the following form:































































x̂(s+ 1) = A(s)x̂(s) + E(s)ĥ(s) +K1(s)
(

ȳ(s)−

C(s− ρs)x̂(s− ρs)− F (s− ρs)f̂(s)
)

ĥ(s+ 1) = H(s)ĥ(s) +K2(s)
(

ȳ(s)−

C(s− ρs)x̂(s− ρs)− F (s− ρs)f̂(s)
)

f̂(s+ 1) = Ḡ(s)f̂(s) +K3(s)
(

ȳ(s)−

C(s− ρs)x̂(s− ρs)− F (s− ρs)f̂(s)
)

(8)

wherex̂(s) is the estimate of the statex(s), ĥ(s) is the esti-
mate of the biash(s), f̂(s) is the estimate of̄f(s), andK1(s),
K2(s), K3(s) are the estimator gain matrices to be designed.
Moreover, we set̂x(0) = x̄(0) and ĥ(0) = f̂(0) = 0.

Denoting the state estimation error asex(s) , x(s)− x̂(s),
the bias estimation error aseh(s) , h(s)− ĥ(s), and the fault
estimation error asef (s) , f̄(s)− f̂(s), we have

ex(s+ 1) =A(s)ex(s) +B(s)w(s) + E(s)eh(s)

−K1(s)
(

C(s− ρs)ex(s− ρs)

+D(s− ρs)v(s − ρs) + F (s− ρs)ef (s)
)

eh(s+ 1) =H(s)eh(s) + λ(s)
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−K2(s)
(

C(s− ρs)ex(s− ρs)

+D(s− ρs)v(s− ρs) + F (s− ρs)ef (s)
)

ef (s+ 1) =Ḡ(s)ef (s)−K3(s)
(

C(s− ρs)ex(s− ρs)

+D(s− ρs)v(s− ρs) + F (s− ρs)ef (s)
)

.

Denoting e(s) ,
[

eTx (s) eTh (s) eTf (s)
]T

, we have the
following augmented system

e(s+ 1) = Ã(s)e(s)− K̄(s)C̄(s− ρs)e(s− ρs) + Īλ(s)

− K̄(s)D(s− ρs)v(s− ρs) + B̄(s)w(s) (9)

where

Ã(s) , Ā(s)− K̄(s)F̄ (s− ρs),

Ā(s) ,





A(s) E(s) 0
0 H(s) 0
0 0 Ḡ(s)



 ,

K̄(s) ,
[

KT
1 (s) KT

2 (s) KT
3 (s)

]T
,

F̄ (s− ρs) ,
[

0 0 F (s− ρs)
]

, Ī ,
[

0 I 0
]T

B̄(s) ,
[

BT (s) 0 0
]T

, C̄(s− ρs) ,
[

C(s− ρs) 0 0
]

.

The aim of this paper is to design the estimator (8) such that
the estimation error covariance (EEC)P (s) , E{e(s)eT (s)}
is minimized.

III. M AIN RESULTS

Lemma 1:The EECP (s+1) is calculated by the following
recursion:

P (s+ 1) =Ã(s)P (s)ÃT (s) + B̄(s)W (s)B̄T (s) + ĪΛ(s)ĪT

+ K̄(s)C̄(s− ρs)P (s− ρs)C̄
T (s− ρs)K̄

T (s)

+ K̄(s)D(s− ρs)V (s− ρs)D
T (s− ρs)K̄

T (s)

− P1(s)− P
T
1 (s)− P2(s)− P

T
2 (s) (10)

where

P1(s) , Ã(s)E{e(s)eT (s− ρs)}C̄
T (s− ρs)K̄

T (s),

P2(s) , Ã(s)E{e(s)vT (s− ρs)}D
T (s− ρs)K̄

T (s).

Proof: It is easily known from Assumption 1 and (9) that
(10) is true. Therefore, the proof is omitted here.

From Lemma 1, we know that the calculation of the EEC
needs the calculations ofP1(s) andP2(s), for which some
preliminary results are presented as follows.

Lemma 2:Ω1(s) , E{e(s)vT (s− ρs)} is calculated by

Ω1(s) =

{

0, for ρs = 0

−Υ1(s), for ρs > 0
(11)

where

Υ1(s) , (1− δ(1, ρs))

ρs
∑

i=2

i−1
∏

j=1

Ã(s− j)

× K̄(s− i)D(s− ρs)V (s− ρs)

+ K̄(s− 1)D(s− ρs)V (s− ρs).

Proof: From the definition ofρs, we know thatρs takes
values in the set{0, 1, 2, . . . , b− 1} and

ρs =

{

0, for s = l̄n

ρs−1 + 1, for l̄n < s < l̄n+1.

The proof of this lemma is divided in the following two
cases.

Case 1:ρs = 0. For ρs = 0, it is obvious that

E{e(s)vT (s− ρs)} = E{e(s)vT (s)} = 0.

Case 2:ρs > 0. By introducing

∆(t) , E{K̄(t)C̄(t− ρt)e(t− ρt)v
T (s− ρs)

+ K̄(t)D(t − ρt)v(t− ρt)v
T (s− ρs)},

we have

E{e(s)vT (s− ρs)}

=Ã(s− 1)E{e(s− 1)vT (s− ρs)} −∆(s− 1)

=

ρs
∏

i=1

Ã(s− i)E{e(s− ρs)v
T (s− ρs)}

− (1− δ(1, ρs))

ρs
∑

i=2

i−1
∏

j=1

Ã(s− j)∆(s− i)−∆(s− 1).

Accordingly, what we need to do is to calculate∆(s − i)
(1 ≤ i ≤ ρs). From the definition ofρs, we know thats−ρs =
l̄n. For 1 ≤ i < ρs, one has

l̄n = s− ρs < s− i ≤ s− 1 = l̄n + ρs − 1 < l̄n+1,

and therefores− i− ρs−i = s− ρs. For i = ρs, it is obvious
thats− i−ρs−i = s−ρs. Accordingly,∆(s− i) (1 ≤ i ≤ ρs)
is rewritten as

∆(s− i) =E{K̄(s− i)C̄(s− ρs)e(s− ρs)v
T (s− ρs)

+ K̄(s− i)D(s− ρs)v(s− ρs)v
T (s− ρs)}

=K̄(s− i)D(s− ρs)V (s− ρs).

Therefore, one has

E{e(s)vT (s− ρs)} =− (1− δ(1, ρs))

ρs
∑

i=2

i−1
∏

j=1

Ã(s− j)

× K̄(s− i)D(s− ρs)V (s− ρs)

− K̄(s− 1)D(s− ρs)V (s− ρs).

The proof is complete.
Remark 2: In Lemma 2, instead of simply applying the

elementary equality to avoid the calculation ofE{e(s)vT (s−
ρs)}, we have derived the exact form ofE{e(s)vT (s−ρs)}. It
is worth mentioning that the calculation ofE{e(s)vT (s−ρs)}
is nontrivial due to the existence of the time-varying delayρs.

Lemma 3:The termΩ2(s) , E{e(s)eT (s − ρs)} is recur-
sively calculated by

Ω2(s) =

{

P (s), for ρs = 0

Υ2(s), for ρs > 0
(12)

where

Υ2(s) , Ã(s− 1)Ω2(s− 1)
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− K̄(s− 1)C̄(s− ρs−1 − 1)P (s− ρs−1 − 1).

Proof: The proof of this lemma is similar to that of
Lemma 2 and is therefore omitted here.

Theorem 1:The estimator gains that minimize the EEC
P (s) are given as follows:

K1(s) =
[

I 0 0
]

K̄(s), (13)

K2(s) =
[

0 I 0
]

K̄(s), (14)

K3(s) =
[

0 0 I
]

K̄(s) (15)

where

K̄(s) , Ψ(s)Θ−1(s),

Θ(s) , F̄ (s− ρs)P (s)F̄T (s− ρs)

+ C̄(s− ρs)P (s− ρs)C̄
T (s− ρs)

+D(s− ρs)V (s− ρs)D
T (s− ρs)

+ F̄ (s− ρs)Ω2(s)C̄
T (s− ρs)

+ C̄(s− ρs)Ω
T
2 (s)F̄

T (s− ρs)

+ F̄ (s− ρs)Ω1(s)D
T (s− ρs)

+D(s− ρs)Ω
T
1 (s)F̄

T (s− ρs),

Ψ(s) , Ā(s)P (s)F̄T (s− ρs) + Ā(s)Ω2(s)C̄
T (s− ρs)

+ Ā(s)Ω1(s)D
T (s− ρs).

Moreover, the minimal EEC is given by

P (s+ 1) =−Ψ(s)Θ−1(s)ΨT (s) + Ā(s)P (s)ĀT (s)

+ B̄(s)W (s)B̄T (s) + ĪΛ(s)ĪT .

Proof: With the help of Lemmas 1-3, one has

P (s+ 1) =K̄(s)Θ(s)K̄T (s) + Ā(s)P (s)ĀT (s)

− K̄(s)F̄ (s− ρs)P (s)ĀT (s)

− Ā(s)P (s)F̄T (s− ρs)K̄
T (s)

+ B̄(s)W (s)B̄T (s) + ĪΛ(s)ĪT

− Ā(s)Ω2(s)C̄
T (s− ρs)K̄

T (s)

− K̄(s)C̄(s− ρs)Ω
T
2 (s)Ā

T (s)

− Ā(s)Ω1(s)D
T (s− ρs)K̄

T (s)

− K̄(s)D(s− ρs)Ω
T
1 (s)Ā

T (s).

We are now ready to derive the estimator gains that mini-
mize the EEC. The EECP (s+ 1) is rewritten as

P (s+ 1) =K̄(s)Θ(s)K̄T (s)−Ψ(s)K̄T (s)

− K̄(s)ΨT (s) + Ã(s)P (s)ÃT (s)

+ B̄(s)W (s)B̄T (s) + ĪΛ(s)ĪT

=
(

K̄(s)−Ψ(s)Θ−1(s)
)

Θ(s)

×
(

K̄(s)−Ψ(s)Θ−1(s)
)T

−Ψ(s)Θ−1(s)ΨT (s) + Ā(s)P (s)ĀT (s)

+ B̄(s)W (s)B̄T (s) + ĪΛ(s)ĪT .

It is easily known that the EECP (s + 1) is minimized
by choosingK̄(s) as Ψ(s)Θ−1(s). Noting the definition of
K̄(s), the estimator gains that minimizeP (s+1) are derived
by (13)-(15). The proof is complete.

Remark 3:In this paper, the fault estimation problem is
concerned for a class of MRSs with dynamical bias. A novel
method is put forward to convert the MRSs into SRSs and
the proposed method has less computation complexity as
compared to the lifting technique. First, in Lemma 1, the
recursion of the EEC is derived. Then, with the help of
Lemmas 2-3, the estimator gains that minimize the EEC as
well as the minimal EEC are given in Theorem 1. It is worth
noting that both the state and the fault are well estimated with
the proposed estimation algorithm.

IV. A N ILLUSTRATIVE EXAMPLE

In the simulation example, we consider the JSFE problem
for a DC servo system [22] subject to random bias where the
system parameters in (1)-(2) are given as follows:

A(s) =





1.12 + 0.3 sin(s) 0.213 −0.333
1 0 0
0 1 0



 , b = 2,

E(s) =





0.45 0.26 0.12 + 0.2 sin(s)
0.43 0.33 + 0.2 cos(s) 0.28
0.33 0.34 0.25



 ,

H(s) =





0.31 0.12 0.26
0.37 0.21 0.34
0.52 0.15 0.25



 , B(s) =





0.8
0
0



 , F (lm) =

[

1
1

]

,

C(lm)=

[

1 2 + sin(lm) 1
2 1 2

]

, D(lm)=

[

0.43
0.51

]

, Λ(s)=0.15I.

The covariances of the process noisew(s) and the measure-
ment noisev(lm) are 0.1 and 0.15, respectively. The initial
conditions are given aŝx(0) =

[

0.52 −0.56 0.55
]T

.
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Estimate of x1(s)
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State x2(s)
Estimate of x2(s)
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State x3(s)
Estimate of x3(s)

Fig. 1: Statex(s) and the estimate

In the simulation, the following sensor fault is considered:

f(lm+1) = G(lm)f(lm)

with G(lm) = 1.8 sin(lm). With the given parameters, the
estimator gainsKi(s) (i = 1, 2, 3) and the EECP (s) are
derived according to the proposed estimation algorithm. The
simulation results are shown in Figs. 1-3. Fig. 1 showsxi(s)
(i = 1, 2, 3) and the corresponding estimates wherexi(s)
denotes theith element of the statex(s). Fig. 2(a) depicts
the sensor faultf(lm) and its estimate. It is known from
Fig. 1 and Fig. 2(a) that the proposed estimation scheme
can estimate the system state and the sensor fault with a
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(b) The abrupt fault and its estimate
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(a) The sensor fault and its estimate
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Fig. 2: The fault estimation performance
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Fig. 3: The mean-square error of the estimation

satisfactory accuracy. LetMSEi(s) (i = 1, 2, 3) denote the
mean-square error of the estimation ofxi(s), i.e.,MSEi(s) =
1

N

∑N

j=1

(

xi(s) − x̂i(s)
)2

. The MSEi(s) (i = 1, 2, 3) are
plotted in Fig. 3 which further verify the estimation accuracy
of the developed fault estimation algorithm. The simulation
results verify that the proposed estimation scheme is indeed
effective.

To further verify the fault estimation performance, let us
consider the abrupt fault described by (4) with

G(lm) =







1, lm ≤ 20;
1.5, 20 < lm ≤ 26;
1, 27 < lm.

The fault and its estimate are shown in Fig. 2(b), from which
we can verify the effectiveness of the sensor fault estimation.

V. CONCLUSION

In this paper, the fault estimation problem has been inves-
tigated for a class of MRSs with dynamical bias. To avoid
the computational complexity from the lifting technique, a
novel method has been developed to transform the MRSs
into SRSs. Based on the transformed SRSs, the estimator
has been designed that estimates the fault and the system
state simultaneously. First, the recursion of the EEC has been
derived. Then, the estimator gains have been characterized
that minimize the EEC. Finally, a practical simulation has
verified the usefulness of the proposed estimation scheme. In
the future, we will extend the results of this paper to other
systems with multi-rate sampling such as multi-agent systems
and sensor networks.
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