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A B S T R A C T   

The multi-terminal HVDC system based on the modular multilevel converter (MMC-MTDC) is a promising 
technique for flexible power transmissions to multiple regions. As such a system is quite sensitive to DC faults, 
there is an acute need to propose a protection element that can trip the local DC circuit breaker (CB) within 
several milliseconds once there is an internal DC line fault. However, the existing main protection scheme faces a 
dilemma balancing selectivity and sensitivity. To solve this problem, a novel semi artificial-intelligence (AI) 
based protection element is proposed, including a start-up criterion and a fault-identification criterion. The start- 
up criterion is based on the propagation characteristics of the initial fault-induced surge. To enhance the real- 
time performance of the protection element, it will not trip the fault-identification process unless the fault is 
identified as a forward one. The fault-identification criterion is based on artificial intelligence (AI), and further 
determines whether the forward fault is internal, which only works if the start-up criterion trips. Simulation 
results indicate that the proposed protection element has satisfactory speed, sensitivity, and selectivity against 
internal DC faults and is quite secure under external fault conditions. The impact of disturbances, such as the 
white noise, abnormal samplings, etc., on the security of the proposed protection element is also discussed.   

1. Introduction 

Modular multilevel converter-based multi-terminal high-voltage 
direct-current transmission systems (MMC-MTDC) have great flexi-
bility for long-distance bulk-power transmission, integrations of 
renewable energy, connections of asynchronous power grids, etc. [1–3]. 
To build a cost-effective MMC-MTDC, a large number of half-bridge 
MMCs (HBMMCs) are employed, which makes the system quite 
vulnerable to DC faults. With the development of the high-speed DC 
Circuit Breaker (CB) [4], faults in the MMC-MTDC are allowed to be 
cleared without a permanent loss of power transmission. For this pur-
pose, a protection element should be developed to trip the DC CB before 
the blocking of the HBMMCs, which is merely 5–6 ms in most scenarios 
[5,6]. 

Protection elements using both the local measurement and the 
remote-end measurements, such as the current differential protection, 
show outstanding performance in conventional AC systems and several 

MMC-MTDCs with very short DC transmission lines, such as the Nan’ao 
MMC-MTDC project [7]. However, such a type of protection element has 
limited application perspectives on long-distance DC transmission lines 
because of the limitations of the communication volume [8] and the 
long time-delay that required to avoid the abnormal differential current 
due to the discharge of the shunt capacitance in external fault scenarios 
[9,10]. From recent advances, Reference [11] proposes a pilot protec-
tion element based on the polarities of the superimposed current in both 
terminals using the wavelet transform. In Reference [12], a pilot pro-
tection element is developed based on the arrival-time-difference of the 
forward traveling wave and the backward traveling wave. The time 
difference is almost zero in internal-fault scenarios while relatively high 
under external-fault conditions. Some have also proposed methods 
based on the S-transform [13], the cosine similarity [14], etc. In the 
above works, tremendous contributions have been made to eliminate 
the use of remote end measurements, communication, and computation. 
However, they cannot work if there is a communication failure. 

Due to the above limitations, there is an acute need for a fast 
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protection element based merely on local measurements. In this field, 
many have made significant contributions. In [15], a high-speed trav-
eling wave protection element is proposed by using very short time 
windows and high-frequency components, and the theory has been 
successfully applied in the Zhangbei four-terminal MMC-MTDC. In [16], 
a setting-less local measurement-based protection element is proposed 
using model recognition, based on which internal forward faults, 
external forward faults, and external reverse faults are classified. In 
[17], boundary characteristics are employed to identify internal faults 
using the wavelet transform. An improved local measurement-based 
protection element is proposed by comparing the attenuation rate of 
initial voltage traveling waves in both the internal and external fault 
scenarios in [18], and the theory is also based on the configuration of 
boundary components, i.e., the fault current-limiting reactor (CLR) on 
the DC line-terminals. Protection elements based on the harmonic cur-
rent [19], high/low frequency energy ratio [20], transverse differential 
current [21], nature frequency [22], and similar boundary characteris-
tics [23,24] are also proposed and show great performance. However, 
the universal shortfall is that the configuration of the CLR has a signif-
icant impact on the performance of the protection element, whereas the 
value of CLRs is not set to meet the sensitivity requirement of the 

protection but to make a compromise between the current-limiting 
capability and the dynamic behavior of the MMC-MTDC [25]. Taking 
the Zhangbei Four-terminal MMC-MTDC as an example, the typical 
value of CLRs is no more than 150 mH. As long as a certain algorithm is 
employed to extract the fault feature from local measurements artifi-
cially, there should be a balance between sensitivity and selectivity. 
Besides, the impact of disturbances, such as the white noise and 
abnormal samplings, on the performance of the protection element 
merits further investigation. 

Artificial intelligence (AI) and deep learning have witnessed signif-
icant development in recent years. As a popular form of deep learning, 
the convolutional neural network (CNN) has made notable contributions 
in fields like pattern recognition, face recognition, etc. In light of pioneer 
works, AI-based techniques are applied to identify grounding faults 
[26], locate different types of faults in the HVDC with extremely high 
resistive tolerance [27], etc. Arranging the measurement series into two- 
dimensional images can help achieve satisfactory performance. How-
ever, speed is quite critical to apply AI-based techniques to the MMC- 
MTDC because the protection element has to isolate DC faults within 
just a few milliseconds. For this reason, the framework of the AI should 
be as simple as possible to meet the requirement for high real-time 

Nomenclature 

Abbreviations 
MMC Modular Multilevel Converter 
MTDC Multi-Terminal Direct Current 
HBMMC Half-Bridge Modular Multilevel Converter 
DC Direct Current 
CB Circuit Breaker 
AI Artificial Intelligence 
HVDC High-Voltage DC systems 
CLR Current-Limiting Reactor 
SNR Signal-Noise Ratio 
CNN Convolutional Neural Network 
AMF Adaptive Median Filtering 

Symbols 
Wf/E1f The wave-front/energy of forward surges 
Wb/E1b The wave-front/energy of backward surges 
Z1 The aerial-modal surge impedance 
Δu1/Δi1 The aerial-modal superimposed voltage/current 
Enorm The surge energy threshold 
Eset1 The surge energy setting value 
rset The surge energy reliability coefficient 
cset The surge energy ratio confidence coefficient 
S0 The neighborhood of AMF with a center of xm 
Mmin The minimum in a neighborhood 
Mmax The maximum in a neighborhood 
Mmed The median in a neighborhood 
M1/M2 The median substruction coefficient 

N1/N2 The median comparison coefficient 
Y/Y* The original/z-score normalized data set 
μ/σ The mean/standard deviation 
Ua/U*

a Local/normalized aerial-modal voltage phasor 
Uz/U*

z Local/normalized zero-modal voltage phasor 
Ia/I*

a Local/normalized aerial-modal current phasor 
Iz/I*z Local/normalized zero-modal current phasor 
C/C* Local/normalized feeding data set for CNN 
X(m,n)

ij /x(m,n)
ij Convolution kernel/value of location (m,n) in the i-th 

convolutional layer, j-th feature map 
P/Q The height/width of convolution kernels 
u(w,w) A square window for pooling 
xw×w

i The selected pooling area 
VF The flatten vector 
VFC The output vector of fully connected layer 
w/b/λ The weight/bias/connection coefficient vector 
h/H The neuron/maximal neurons in softmax layer 
Ttotal The total time to isolate a DC fault 
ts The delay for surge energy calculation 
tu The delay of the start-up criterion 
tp The time window of the proposed protection 
tcb The delay for DC CB to interrupt a DC fault 
tal The additional delay for protection hardware 
r The radius of median filtering 
R The maximum order of AMF 
fp The sampling frequency  

Fig. 1. Traveling wave propagation with reflection/refraction.  
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performance. 
The contribution of this paper is to propose a semi AI-based pro-

tection element using merely the local measurement. The proposed 
protection element should feature: 1) high sensitivity – to protect 500- 
kV systems, a resistive tolerance of 300 Ω is needed under the single- 
line-to-ground fault condition [28], regardless of the value of the line 
CLR; 2) fast speed – the total time cost from the fault-arrival to the 
complete fault-interruption by DC CB should be<5 ms; 3) high security – 
the operation of the proposed protection element should be immune to 
disturbances like white noises and abnormal samplings; and 4) high real- 
time performance – the structure, scenario, setting principle, etc. of the 
AI should be simple enough and have industrial implementation merits. 

To achieve this, a measurement-based start-up criterion is proposed 
to determine the initial fault direction, and reverse faults are firstly 
excluded. Then, an AI-based fault-identification criterion using CNN is 
proposed to determine whether the forward fault is internal or external. 
Besides, adaptive median filtering (AMF) is introduced to make the 
proposed protection element robust to different types of disturbances. 
By the above means, the real-time performance of the proposed pro-
tection element is enhanced because: 1) the proposed protection 
element is semi AI-based since the fault-identification criterion does not 
work until the start-up criterion detects a forward fault, thus reducing 
the number of fault scenarios that have to be included in the training set; 
and 2) by erasing disturbances like the abnormal samplings using the 
AMF, the training set can be further simplified since there is no need to 
consider abnormal scenarios. 

The remainder of this paper is organized as follows. In Section 2, 
theoretical studies are conducted to describe the fundaments of the start- 
up criterion and the AI-based fault-identification criterion. In Section 3, 
the methodology is illustrated. Flowcharts and sequence diagrams are 
made to show the behavior of the proposed semi AI-based protection 

element under different fault scenarios. In Section 4, simulation cases 
are performed to evaluate the security and sensitivity of the proposed 
protection element. The performance of the above two criteria is 
examined under both pole-to-pole faults and single-line-to-ground 
faults. Section 5 quantitatively discusses the merit of the proposed 
method to work as a main protection element, comparing with several 
state-of-the-art methods, and the impact of AMF on the accuracy of the 
fault identification. Finally, contributions are concluded in Section 5. 

2. Theoretical analysis 

2.1. Start-up criterion 

Unlike the scenario in an AC system, for a DC system in the normal 
operating condition, electrical quantities like voltage, current, etc. are 
constants in an ideal situation when harmonics and noises are not 
considered. For this reason, a start-up criterion should be developed to 
calibrate the arrival of a disturbance since it is difficult to normalize a 
series of constant values and then use them as the input of a CNN. As 
shown in Fig. 1(a), assume that a fault on the DC line is a forward one for 
the protection element equipped at the relay point. Due to the discon-
tinuity of surge impedance at the line terminal, a reflected forward surge 
Wf is generated from the initial backward surge Wb. 

As the aerial-modal surge will appear in both the single-line-to- 
ground fault and the line-to-line fault, the following criterion is 
employed to represent the arrival of Wb: 

E1b > Eset1 (1)  

where E1b is the accumulated energy of the backward aerial-modal 
surge. The calculation of E1b is given by Equation (2), where ts is the 

Fig. 2. AMF against different numbers of abnormal samplings.  
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time window; Z1 is the aerial-modal surge impedance; Δu1 and Δi1 are 
the superimposed aerial-modal voltage and the superimposed aerial- 
modal current, respectively. Eset1 is the setting value of E1b. 

E1b =

∫ t

t - ts
|Δu1(t) − Z1Δi1(t) |dt (2) 

Using the above criterion, forward faults can be detected because Wb 
represents the initial arrival of a fault-induced surge. However, if the 
fault is a reverse one, as shown in Fig. 1(b), the initial arrival of the fault- 
induced surge should only have a forward component because the initial 
surge is a refracted one from the reverse fault. If Equation (1) is still 
employed to detect the reverse fault, the arrival time of the fault-induced 
surge will be inaccurate. For this reason, Equation (3) is used to deter-
mine the arrival of Wf: 

E1f > Eset1 (3)  

where E1f is the accumulated energy of the forward aerial-modal surge 
calculated by Equation (4). 

E1f =

∫ t

t - ts
|Δu1(t) + Z1Δi1(t) |dt (4) 

Combing Equations (1) and (3), a fault can be detected once any of 
them is true. To make them sensitive enough against all types of dis-
turbances, Eset1 should be set low enough. In this paper, Eset1 is set ac-
cording to the following equation: 

Eset1 = Enorm⋅rset (5)  

where Enorm is a threshold to exclude normal system operating condi-
tions such as the unblocking/blocking of the DC system, the fast change 
of the DC power, etc. As a reliability coefficient, rset is set higher than 1 
to ensure reliability. However, the direction of the fault cannot be 
determined by this means as Eset1 is set low enough for higher sensitivity. 
Thus, there are plenty of scenarios when Equations (1) and (3) are true at 
the same time. To prevent this, the ratio of surge energy is employed to 
obtain a determined fault direction. Note that in Fig. 1(a), the forward 
surge is generated by the reflection of the initial surge. For this reason, 
the calculated energy by Equation (2) will be higher than that by (4). 
Thus, within a short time window after the arrival of a forward fault, we 
have 0 < E1f/E1b < 1. In contrast, under reverse faults, the calculated 
energy E1b for the backward surge W1b is almost zero because there is no 
backward surge at the time of fault-arrivals. For this reason, E1f/E1b will 
be pretty high, which is ideally nearly infinite. The energy ratio E1f/E1b 
is multiplied by a confidence coefficient cset (higher than 1) to improve 
the sensitivity. For the following equations, the fault is determined to be 
a forward one if Equation (6) is true or reverse if Equation (7) is true. 

0 < E1f/E1b < 1 × cset (6)  

E1f/E1b⩾1 × cset (7)  

Fig. 3. Input layer data normalized and constructed.  
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2.2. Data pre-processing 

If a fault is determined to be a forward one, a series of local mea-
surements will be recorded from the fault arrival time to the end of the 
time window. The obtained data will be fed into the CNN for further 
identification. The pre-processing of the input data for the CNN includes 
the adaptive median filtering (AMF) and the data normalization, as 
follows:  

1) The AMF 

Conventionally, in the procedures of sampling, measurement, con-
verting, etc., two types of disturbances may be included, which are: 1) 
singular points caused by abnormal samplings, bit errors, packet losses, 
etc.; and 2) Gaussian background noises superimposed with the mea-
surements. For protection elements, the former one is more challenging. 

The core philosophy of the median filtering is to compare the value of 
each point in a certain range of neighborhood, calculate the median 
value as a new value, and then replace the former value with the 
calculated median value if there is a singular point located at the center 
of this neighborhood. For conventional median filtering algorithm, the 
neighborhood is set to: S0∈(xm-r, xm-r+1, …, xm-1, xm, xm+1, …, xm+r-1, 
xm+r), where xm is the center point of S0. The indicator r is a preset- 
constant. Within this neighborhood, the maximum Mmax, the mini-
mum Mmin, and the median Mmed are calculated. For each xm, Equation 
(8) is checked. If true, then output the original value xm. Otherwise, the 
corresponding point is replaced by Mmed. 

Mmin < xm < Mmax (8) 

The AMF is introduced according to the following steps:  

a) First, a default range of neighborhood is set to S0∈(xm-i, xm-i+1, …, 
xm-1, xm, xm+1, …, xm+i-1, xm+i), where xm is the center point of S0. 
The indicator i is initialized to i = 0. Within this neighborhood, the 
maximum Mmax, the minimum Mmin, and the median Mmed are 
calculated, based on which two coefficients M1 and M2 are 
calculated: 

{
M1 = Mmed − Mmin
M2 = Mmed − Mmax

(9)    

b) Second, substitute M1 and M2 into Equation (10). Go to step c) if the 
result is true. Otherwise, replace i with i + 1 (let the maximum value 
of i be R) and the neighborhood S0 with the new one. Then, go to step 
a) and repeat the above process. 

(M1 > 0)&(M2 < 0) (10)    

c) Finally, compare the center point xm with the maximum Mmax and 
the minimum Mmin according to Equations (11) and (12). Output the 
center point xm if Equation (12) is true. Otherwise, output the me-
dian Mmed. 

{
N1 = xm − Mmin
N2 = xm − Mmax

(11)  

(N1 > 0)&(N2 < 0) (12) 

For an illustrative purpose, the performance of the AMF against 
different numbers of abnormal samplings is shown in Fig. 2, where 
subfigures (a), (d), and (g) show the performance against a single 
abnormal sampling, subfigures (b), (e), and (h) show the performance 
against three continuous abnormal samplings, and subfigures (c), (f), 
and (i) show the performance against randomly-distributed multiple 

Fig. 4. CNN framework.  
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abnormal samplings. As demonstrated, in each case, the abnormal 
samplings are erased evidently. Meanwhile, the feature of the original 
waveform can be kept, no matter what type of abnormal sampling is 
added to the original measurements. 

According to the above, to eliminate a total of h abnormal samplings, 
the maximum order of the median filtering algorithm should be at least 
2 h + 1. However, the graphic feature of the waveform will be distorted 
if the order is too high, and this may leave negative impacts on the fault 
identification of the CNN in the next stage [29,30].  

2) The data normalization 

Below are the reasons why the data should be normalized before 
being fed into CNN. First, both the voltage and the current measure-
ments are used as input of the CNN, while the dimension and the 
magnitude of the two are not the same. If the original samplings are fed 
into the CNN directly without normalization, the voltage measurements, 
which have higher magnitude, will have higher weights, and this can 
cause a sharp decline in the characteristics of the current measurements. 

Fig. 5. The flowchart of the proposed protection.  

Fig. 6. Time sequence of the proposed protection.  
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Second, with a series of normalized data, the gradient descent algo-
rithm’s optimization process can be accelerated. 

In this paper, the z-score method uses Equation (13), where Y is the 
original matrix of samplings. μ stands for the mean value of the original 
data, and σ denotes the standard deviation of the original data. Y* is the 
matrix of samplings after normalization. Based on this, the normalized 
data has a mean value of 0 and a standard deviation of 1. The normal-
ization operation to the samplings will not start until the start-up cri-
terion is met to identify the arrival of a backward surge, indicating that 
there is a forward fault. For this reason, there will be no situation where 
the constant DC voltage, current, and other physical quantities are 
normalized, which will cause Equation (13) to lose its physical meaning. 

Y* = (Y − μ)/σ (13)  

2.3. Fault identification based on CNN 

After an occurrence of a fault, fault-induced surges will propagate in 

the MMC-MTDC with various electrical quantities such as voltage 
measurements, current measurements, etc. These fault components have 
abundant fault characteristics and are the keys to fault identification. To 
avoid the couplings between the positive pole and the negative pole, the 
post-fault aerial-modal voltage, the aerial-modal current, the zero- 
modal voltage, and the zero-modal current measurements are 
employed as inputs fed into the CNN. Conventionally, CNN is widely 
used in two-dimensional image recognition. Arranging the data into 
rectangles can facilitate the scanning of the convolution kernel, improve 
the local connection characteristics of CNN, and extract local features. 
Ua, Uz, Ia, and Iz are the phasors of the aerial-modal voltage, the zero- 
modal voltage, the aerial-modal current, and the zero-modal current, 
respectively. Matrix C is used to arrange the measurements according to 
Equation (14). In the above equation, tp is the length of the time window 
for the feeding data of CNN, and fp is the sampling rate. In each row, the 
total number of samplings is tp*fp. Finally, for each row of data in matrix 
C, normalization is conducted according to Equation (13), which forms 
the final matrix C* in Equation (15) that will be fed into the CNN. 

C =

⎡

⎢
⎢
⎣

Ua
Uz
Ia
Iz

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ua
m,Ua

m + 1,⋯⋯Ua
m + tp fp − 1

Uz
m,Uz

m + 1,⋯⋯Uz
m + tp fp − 1

Ia
m, I

a
m + 1,⋯⋯Ia

m + tp fp − 1

Iz
m, I

z
m + 1,⋯⋯Iz

m + tp fp − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)  

C* =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

U*
a

U*
z

I*
a

I*
a

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

(Ua − μua)/σua(
Uz − μuz

)/
σuz

(Ia − μia)/σia(
Iz − μiz

)/
σiz

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ua*
m ,Ua*

m + 1,⋯⋯Ua*
m + tp fp − 1

Uz*
m ,Uz*

m + 1,⋯⋯Uz*
m + tp fp − 1

Ia*
m , Ia*

m + 1,⋯⋯Ia*
m + tp fp − 1

Iz*
m , Iz*

m + 1,⋯⋯Iz*
m + tp fp − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15) 

For instance, the arranging of the feeding data sets is shown in Fig. 3, 
where the sampling rate is 50 kHz and the time window is 1 ms. Thus, 
the total number of samplings in each channel is 50. After detecting the 
arrival of the fault-induced surge, a dataset is acquired, including the 
aforementioned four types of local measurements, as shown in Fig. 3(a). 
Then, the samplings in each channel are normalized according to 
Equation (13), as shown in Fig. 3(b), based on which a 2-dimensional 
feature map is generated in Fig. 3(c). A training set, composed of a 
large number of samples, is generated and fed into CNN to train the 
CNN. Each sample is assigned a corresponding label. There are four 
types of labels, namely the internal positive-pole-to-ground fault, the 
internal negative-pole-to-ground fault, the internal pole-to-pole fault, 
and the external fault. 

The structure of the CNN in this paper is constructed as shown in 
Fig. 4. When a specific convolution kernel sweeps the above vector 
matrix, all the local features of the sample are extracted, and the cor-
responding feature map is formed. Therefore, using a determined 
number of convolution kernels, a corresponding number of feature maps 
will be generated, and the set of these feature maps is called a con-
volutional layer. The pooling layer is used to reduce the size of the 
matrix. Through the pooling layer, the number of nodes in the fully 
connected layer can be further reduced to reduce the parameters of the 
entire neural network. The use of the pooling layer is to speed up the 
calculation speed and prevent overfitting. The convolutional and pool-
ing layers can work together to extract the feeding data features better. 
This work employs a two-layer convolutional layer and a two-layer 
pooling layer. In the flatten layer, the extracted features are laid out 
into flatten vectors, used as the input of the fully connected layer. 
Finally, a softmax layer works as a classifier to identify the feeding data, 
obtain a classification result, and output the classified label in a one-hot- 
coding manner. 

During the convolution, the mathematical form of convolution 
kernel is as follows: 

Fig. 7. MMC-MTDC construction.  

Fig. 8. The profile of DC line frequency-dependent model.  

Table 1 
Arrangement of the training set.  

Parameter Parameter scope Amount 

Fault type P-G, N-G, P-N, EF 4 
Location [km] [0, 10, 247.4] 25 
Fault resistance [Ω] [0,10,300] 31 
Note: [a, n, b] in parameter scope means the minimal and the maximal values are 

taken into consideration are a and b, and the interval is n. The total number of values 
is (b-a)/n + 1.  
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International Journal of Electrical Power and Energy Systems 142 (2022) 108310

8

X(m,n)
ij = f

(
∑

l

∑Pi − 1

p=0

∑Qi − 1

q=0
x(m+p)(n+q)
(i− 1)l wpq

ijl + bij

)

(16)  

where x(m,n)
ij represents the value of location (m,n) in the i-th convolu-

tional layer, j-th feature map. l denotes the number of feature maps 

connected to the j-th feature map, i-th layer in the (i-1)-th layer. w is the 
weight of the l-th feature map, (i-1)-th layer, where Pi and Qi are the 
height and the width of the convolution kernel. b is the bias of the j-th 
feature map, i-th layer. f is the activation function of the i-th layer. In this 
paper, the ReLU function is employed as the activation function in each 
layer, which is expressed as: 

f (x) = ReLU(x) =
{

x, x > 0
0, x⩽0 (17) 

Using pooling layers after a convolution layer can help reduce the 
data dimension and the size of feature maps and accelerate the speed of 
training by increasing the generalization of the CNN model. In this 
paper, the Maximum pooling is applied in each pooling layer, which is 
given by: 

Pi = max
w×w

(xw×w
i u(w,w)) (18)  

where Pi is the output of the Maximum pooling. u(w,w) is a square 

Fig. 9. Variation of accuracy and loss in each epoch.  

Table 2 
Study cases included in this manuscript.  

Fault location Fault resistance [Ω] Fault type Fault time [ms] 

F1 0 P-N 0 
F1 0, 150, 300 P-G 0 
F2 0 P-N 0 
F2 0, 150, 300 N-G 0 
F31 0 P-N 3 
F31 0, 150, 300 N-G 3 
F32 0, 150, 300 P-G 2 
F33 0, 150, 300 P-G 0  

Fig. 10. Reverse faults security test.  
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window with a mean value of 1. xw×w
i is the selected pooling area, and 

the maximal value in this area is the output Pi. In the flatten layer, the 
outputs of poolings are arranged as a vector VF and connected to the 
fully connected layer, as follows: 

VFC = f (wkVF + bk) (19)  

where VFC is the output vector of the fully connected layer. wk is the 
weight of the k-th neuron. bk is the bias of the k-th neuron. Also, the 

activation function of the fully connected layer is ReLU, which is 
expressed in Equation (17). 

Finally, the vector VFC is sent to the softmax classification layer, 
where the probability of each class is calculated according to Equation 
(20): 

P(T = t|VFC) =
exp(λtVFC)

∑H
h=1exp(λhVFC)

(20) 

Fig. 11. Forward external faults security test.  

Fig. 12. An abnormal point superimposed onto the samplings.  

Fig. 13. Performance of the AMF against abnormal samplings.  
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where H is the number of neurons in the softmax layer and is set to 4 in 
this paper because there are 4 types of labels. λ is the connection coef-
ficient vector. If the output of a specific neuron is the largest one, it is 
most possible that the result is classified as the corresponding label. In 
this paper, the cross-entropy loss function (Categorical Cross-entropy) is 
employed in the training process, and the backpropagation algorithm is 
used to minimize the loss function and optimize the CNN model pa-
rameters, where the loss function is expressed by: 

Loss = −
∑K

i=1
yilog(P(T = t|VFC)) (21)  

where K is the number of classes, and y represents the label. P(T = t|VFC) 
is the output of the CNN calculated from the aforementioned softmax. In 
addition, the Adam algorithm is used to optimize the backpropagation 
process since it works well in terms of many engineering applications 
[31]. 

3. Methodology 

The proposed protection element includes an offline and an online 
part, where the CNN is trained offline and applied online. The start-up 
criterion is also applied in an online manner. The flowchart for the 

Fig. 14. Internal faults sensitivity test.  

Fig. 15. Confusion matrix.  

Fig. 16. Fault identification accuracy with varied fault resistances.  
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methodology is shown in Fig. 5. Also, for illustrative purposes, how the 
proposed protection element operates under different scenarios is 
described in Fig. 6. 

3.1. The application of the semi AI-based protection  

1) Offline training part 

The training set and testing set include a large number of samples, 
70% of which are in the training set, and 30% are in the testing set. The 
training set includes different data sets (matrix C*) from various fault 
locations, fault types, and fault resistances. The following issues are 
considered. 

a) The highest fault resistance that needs to be considered in terms of 
engineering applications should be 100 Ω for 220-kV systems and 300 Ω 
for 500-kV systems. 

b) To improve the accuracy of the CNN, the size of samples and the 
number of labels should be kept from being too large. Fortunately, the 
setting of the start-up criterion is for this purpose. The generated data set 
for each fault scenario will not be included, either for training or pre-
diction, unless the start-up criterion trips. For instance, in the reverse 
fault scenario in Fig. 1(b), Equation (7) is true rather than Equation (6), 
indicating that the fault is a reverse one because the amplitude of the 
forward surge is far higher than that of the backward surge. For this 
reason, CNN will not work. According to the above, at least half of 
external fault scenarios can be excluded before the application of CNN, 
which not only simplifies the number of scenarios that the CNN needs to 
consider but also simplify the structure, setting, and inner connection of 
the CNN.  

2) Online application part 
a) For each protection element in the MMC-MTDC, voltage mea-

surements and current measurements are recorded in real-time. 
Using the phase-modal decomposition equation, Ua, Uz, Ia, and 
Iz are obtained. Then, after the AMF denoising, the energy of the 
aerial-modal backward surge and that of the aerial-modal for-
ward surge in a short time window of ts are obtained from 
Equations (2) and (4).  

b) According to Equations (1) and (3), whether there is an arrival of 
a fault-induced initial surge is monitored in real-time. Once any of 
them is true, Equations (6) and (7) are calculated. In the time 
window of tu, an occurring of a forward fault is detected if 
Equation (6) is true. Then, a data series including Ua, Uz, Ia, and Iz 
in a time window of tp is recorded. If Equation (7) stays true 
throughout the time window of tu, the protection element returns 
to step a).  

c) To eliminate noises and abnormal samplings, AMF is adopted 
again on the recorded measurements of Ua, Uz, Ia, and Iz because 
they are measured in a totally different time window of tp rather 
than the former one in the time window of ts. Then, measurements 
are arranged in the form of Equation (15) with a size of 4tp × fs, 
which is used as the feeding data (2-d feature map C*) of the CNN 
in the next step.  

d) The aforementioned 2-d feature map is fed into the trained CNN. 
The local DC CB will be tripped if the output is an internal 
positive-pole-to-ground fault, internal negative-pole-to-ground 
fault, or internal pole-to-pole fault. Otherwise, the protection 
element will return to step a). 

Fig. 17. Accuracies and losses under different SNRs.  

Table 3 
Time-cost comparison among state-of-the-art works.   

ts 
[ms] 

tu 

[ms] 
tp 

[ms] 
tcb 

[ms] 
tal 

[ms] 

Reference [13] N/A N/A 2 2 1 
Reference [32] N/A N/A 2 2 1 
Reference [33] N/A N/A 2.56 2 0.44 
Reference [34] N/A ≈ 0 1 2 ≈ 2 
Proposed one 0.5 0.5 1 2 1  

Table 4 
The configuration of the simulation platform.  

CPU inter(R) Core(TM) i5-7500 cpu@ 3.40 GHz 
GPU NVIDIA GeForce 920MX 
RAM SODIMM 8 GB 2400 MHz  

Fig. 18. The computation burden of different methods.  
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Fig. 19. The solution for practical implementation of the proposed method.  
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3.2. The operation of the semi AI-based protection  

a) The logic of the protection operation against a forward internal fault 
is shown in Fig. 6(a). In this scenario, the initial surge that arrived at 
the relay location is a backward one. Once any of the two Equations 
(1) and (3) is true, the ratio of E1f/E1b will be continuously calculated 
in the time window of tu. In this scenario, Equation (6) is true because 
the fault is a forward one. Then, the window of the CNN starts and 
ends after a duration of tp. In the time window of CNN, a data set with 
a size of 4tp × fs is obtained using local measurements. The data set is 
arranged in the form of Equation (15) and fed into CNN. Finally, the 
protection element trips the local DC CB.  

b) In Fig. 6(b), similar to the scenario of a), the CNN will work because 
the fault is a forward one. However, the protection element will not 

trip the local DC CB because the output result of the CNN indicates an 
external fault.  

c) As shown in Fig. 6(c), the arrived initial surge is a forward one, which 
means the fault is reverse. At the end of the time window of the start- 
up criterion, the protection element will return to the default status 
without tripping the fault-identification process. 

According to the above, after the arrival of the fault-induced surge 
and the observation of a DC line fault, to isolate the fault before the 
blocking of HBMMCs, the total time cost should follow Equation (22): 

Ttotal⩽ts + tu + tp + tcb + tal (22)  

where Ttotal is the total time cost of the protection element to isolate the 
faulted line, which is at most the summation of the surge energy 
calculation delay ts, the delay of start-up criterion time window tu, the 
fault identification time delay of the CNN tp, the typical fault interrup-
tion time of a high voltage DC CB tcb, and the computation delay of the 
protection hardware tal. To isolate the faulted line before the blocking of 
the HBMMC, Ttotal should be no more than 5–6 ms. In Reference [6], the 
transient characteristics of MMC under the pole-to-pole fault condition 
are analyzed, showing that the minimal blocking time of an HBMMC is 
about 5 ms, and this is the most severe case that should be taken into 
consideration. For this reason, the endurance time Ttotal is set to 5 ms. 
Typically, tcb is regarded as 2 ms [23]. As long as we ensure that ts + tu +

tp + tal < 3 ms, the speed is sufficient to meet the requirement of an 
MMC-MTDC. 

4. Simulation studies 

4.1. Protection settings 

A 500-kV MMC-MTDC is built on the PSCAD/EMTDC software, as 
shown in Fig. 7. The profiles of the HBMMC and the system can be found 
in Table A1 in the appendix. The length of each DC line is 184.4 km, 101 
km, 131.1 km, and 78.3 km, which is the same as the Zhangbei four- 
terminal MMC-MTDC. To have accurate results, the frequency- 
dependent model is employed for each DC line with profiles shown in 
Fig. 8. 

According to Section 3, the constraint of ts + tu + tp + tal < 3 ms 
should be met if the proposed protection works as a main protection 
element. In this paper, both ts (energy calculation window) and tu (fault 
direction determination window) are set to 0.5 ms. tp is set to 1 ms. Thus, 
theoretically, a time margin of 1 ms is left for the protection hardware to 

Fig. 20. Aerial-modal voltage with different continuous abnormal samplings.  

Table 5 
The parameters of the expanded fault set.   

Fault cases Number of faults 

Fault location Fault type Fault resistance [Ω] 

F33, F32 P-N [1,1,9] 18 
F31, F2 P-N [0,1,10] 22 
F1 N/A N/A 0 
F2 P-G, N-G [0,5,300] 122 
F33 P-G, N-G [5,10,295] 60 
F32 P-G, N-G [5,10,295] 60 
F31 P-G, N-G [0,5,300] 122 

Note: [a, n, b] in parameter scope means the minimal and the maximal values 
are taken into consideration are a and b, and the interval is n. The total number 
of values is (b-a)/n + 1. 

Table A1 
The profile of MMC-MTDC.  

System parameters Value 

Rated DC voltage [kV] 
Number of sub-modules 

±500 
200 

Current-limiting reactor [mH] 100 
Arm reactance [mH] Station-1: 61.7; Station-2: 61.7; Station-3: 30.8; 

Station-4: 30.8 
Capacitance of sub-module 

[μF] 
Station-1: 16292; Station-2: 16292; Station-3: 
32584; Station-4: 32,584 

Converter station base 
capacity [MW] 

Station-1: 1500; Station-2: 1500; Station-3: 3000; 
Station-4: 3000  
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compute. The sampling rate fp is set to 50 kHz for typical industrial 
applications. Thus, the size of the data set fed into the CNN is 4 × 50, 
which is the same as the one in Fig. 3. To ensure absolute reliability, rset 
is set to 10 in Equation (5). Via groups of simulation results, it shows that 
Enorm is no more than 80 kV2 during the unblocking/blocking of the DC 

system and the fast change of the DC power. As a result, Eset is set to 800 
kV2. Also, to improve the sensitivity of fault direction determination 
according to Equations (6) and (7), cset is set to 2, since the value of E1f/ 
E1b can be extremely high in a reverse fault scenario while<1 in a for-
ward fault scenario. 

Fig. 21. Performance visualization based on T-SNE.  

Fig. 22. The accuracy rate using different orders of AMF.  
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For illustrative purposes, the protection element at the relay location 
of B12 is taken as the main focus in this paper. As reverse faults will be 
excluded by the start-up criterion, which is mentioned before, the 
setting of the training set should only include faults that occur on DC 
line-12 and those on DC line-23 within the first 63 km. Considering 
different fault types and fault resistances, the total number of samples in 
the training set is 4*25*31 = 3100. Details are listed in Table 1. The total 
number of epochs is set to 20, and the number of feeding data is set to 
200 groups in each epoch. As shown in Fig. 9, for both the training and 
testing sets, accuracy increases fast and approaches 100% at the end of 
the training, whereas the loss declines sharply. 

4.2. Measurement-based start-up criterion performance in identifying 
forward faults 

On the above platform, case studies are firstly conducted to examine 
the performance of the start-up criterion. As illustrated in Fig. 7, F1 
represents a reverse fault. F2 is a forward external fault. F31, F32, and 
F33 are forward internal faults with different locations on the DC line. 
Also, the fault resistance, the fault type, and the fault inception time are 
considered in the cases, as listed in Table 2. 

Case-1: Security under reverse faults. 
First, the security of the proposed protection element under reverse 

fault conditions is assessed. Assume that a pole-to-pole bolted fault oc-
curs at t = 0 ms at the backside of station MMC1 (Fault F1), reverse for 
relay B12. The performance of the start-up criterion is shown in Fig. 10. 
As indicated, the start-up criterion will not begin to work until t = 0.38 
ms. As shown by the green box in Fig. 10(b), the ratio of E1f/E1b is always 
higher than cset within the 0.5-ms time window of tu. The start-up cri-
terion determines that the fault is a reverse one and then blocks the 
protection from entering the CNN identification process. As a result, 
security can be ensured in the reverse fault scenario. 

To further assess the security of the proposed protection element 
under reverse fault scenarios, more cases are studied. The variation of 
the surge energies and energy ratio is shown in Fig. A1, Fig. A2, and 
Fig. A3, where the fault resistance for the grounding fault is 0 Ω, 150 Ω, 
and 300 Ω, respectively. According to the results, the start-up criterion 
will block the protection immediately after the fault occurrence, 
ensuring the security of the proposed protection. 

Case-2: Selectivity under adjacent line faults. 
Assume that a pole-to-pole bolted fault occurs at the head of the 

adjacent line, located at 0 km from the station MMC2 on DC Line-23 
(Fault F2) when t = 0 ms. The performance of the start-up criterion is 
shown in Fig. 11. The energy of the backward surge exceeds the 
threshold at t = 1.34 ms. As illustrated, E1f/E1b keeps below cset 
throughout the time window of tu because the fault is forward, which 
makes Equation (6) true, and the fault is determined as forward. In 
additional cases shown in Fig. A4, Fig. A5, and Fig. A6, where the fault 
resistance for the grounding fault is 0 Ω, 150 Ω, and 300 Ω, respectively, 
the start-up criterion also works well. In these cases, the CNN will 
further determine whether the fault is internal or external, which will be 
discussed in detail later. Under this condition, the start-up criterion of 
the proposed protection element has high selectivity. 

Case-3: Security against abnormal samplings. 
Under the normal operating condition, electrical quantities like the 

voltage, current, etc., are ideally constants for DC systems and Equations 
(2) and (4) should be quite low. However, significant errors may be 
caused when calculating the above equations if errors like abnormal 
voltage samplings and abnormal current samplings are involved; 

without loss of generality, assuming that an abnormal sampling is added 
onto the voltage sampling, and the current sampling is kept unchanged. 
As a result, the abnormal sampling will be involved in the surge wave-
form, as shown in Fig. 12(a). The profile of the calculated surge energy is 
shown in Fig. 13(a). Clearly, the proposed protection element will enter 
into the CNN fault identification process if no countermeasure is taken, 
and the CNN will not output a correct result because the normal oper-
ating condition is not introduced into the training set of the CNN, partly 
due to the difficulty to normalize a series of constants for DC systems. In 
contrast, after the application of AMF, the abnormal sampling is well 
eliminated in Fig. 12(b). As a result, the start-up criterion will not mal- 
operate in Fig. 13(b), and thus the CNN will not work to identify a fault 
scenario not included in the training set. By this means, the employed 
CNN does not need to work to recognize the normal operating condition, 
which solves the difficulty of normalization and dramatically reduces 
the complexity of the setting of the training set, and avoids the over-
fitting phenomenon that may occur during the training process. 

Case-4: Sensitivity under the internal fault conditions. 
To assess the performance of the start-up criterion against internal 

faults, several cases are studied when the fault is located at F31, F32, and 
F33, where F31 and F32 are remote-end faults that are not beneficial for 
conventional protection elements to identify. Assume that a pole-to-pole 
bolted fault occurs at F31, located at the end of the DC line 12 at t = 3 
ms, as an example. As shown in Fig. 14, the backward surge energy 
exceeds the threshold at t = 3.64 ms, when the ratio of E1f/E1b begins to 
be calculated for 0.5 ms. Apparently, as shown in Fig. 14(b), the result 
always stays below cset in this duration, indicating that this is a forward 
fault that the CNN should further identify. Repeated assessments are 
conducted for single-line-to-ground faults with various fault resistances 
and fault locations. In Fig. A7, Fig. A8, and Fig. A9, the internal fault is a 
close-in one, located at 0 km from the converter station MMC1 (Fault 
F33). Fig. A10, Fig. A11, and Fig. A12 represent the results of a fault at 
80% of the DC line (Fault F32), but the fault type is positive-pole-to- 
ground rather than pole-to-pole. In Fig. A13, Fig. A14, and Fig. A15, 
the performance of the start-up criterion under a remote-end negative- 
pole-to-ground fault (Fault F31) with various fault resistances is studied. 
Results show that the start-up criterion can identify all forward faults 
with different values of fault resistances, internal or external, according 
to Equation (6), since the ratio of E1f/E1b is always below cset in the time 
window of tu. 

4.3. AI-based fault identification criterion performance in identifying 
internal faults 

To assess the performance of the AI-based fault identification crite-
rion using CNN, a total of 1500 fault scenarios, which are different from 
those in the training set, are set and fed into the CNN. As the start-up 
criterion can exclude reverse faults in advance, the fault location is set 
to a random point on Line-12 or the first 63 km on Line-23. The fault 
type is randomly chosen from positive-pole-to-ground, negative-pole-to- 
ground, and pole-to-pole with a random fault resistance of 0–300 Ω. The 
results are shown in Fig. 15, where the classification results (x-axis, 
predicted labels) and the real results (y-axis, true labels) are compared, 
and the accuracy is illustrated. The value of (x, y) shows the probability 
of fault-type identification of a type-x fault to type-y. As indicated, no 
fault is misidentified as long as the fault resistance is within 300 Ω. One 
step further, the fault scenario is extended by setting the range of fault 
resistance to 0–800 Ω, where there are 820 cases for 0–300 Ω, 1060 
cases for 301–500 Ω, 1120 cases for 501–800 Ω, and the result is shown 
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in Fig. 16. It can be seen that with the increase of the fault resistance, the 
accuracy of fault identification decreases from 100% to 94%. Although 
the established CNN has a certain error level in some specific scenarios, 
these scenarios are hardly seen in typical engineering application situ-
ations. For this reason, the proposed protection element can meet the 
requirements in terms of industrial applications. 

In addition, the accuracy of the proposed CNN under different levels 
of white noise is studied, and Fig. 17 shows the result. It can be seen that 
as long as the local measurements have an SNR higher than 20 dB, the 
accuracy of the CNN and the correctness of the fault identification can be 
very close to 100%, which is adequate in terms of engineering appli-
cation as the SNR of measurements are required to be higher than 30 dB. 
This is because the e0mployed CNN can extract the local feature of the 
feeding data, and the impact caused by the change of details (Gaussian 
noise) is weakened by a low weight in the process of convolution kernel 
pooling. Thus, high robustness is ensured against white noises. 

5. Discussions 

5.1. Speed for the proposed method to work as a main protection element 
in terms of engineering applications 

According to Equation (22) and the analysis in Section 3, to interrupt 
an internal fault before the blocking of the MMC converter, the sum-
mation of time delays of ts, tu, tp, and tal should be no more than 3 ms. 
Apparently, the greater tal is, the higher speed the corresponding pro-
tection element will have because a more extended time margin can be 
left for computation. To compare the speed of the proposed protection 
with other types of main protection elements, the above indicators of 
several state-of-the-art methods in References [32–35] are listed and 
compared, as shown in Table 3. As indicated, the speed of the proposed 
one is in the same order of magnitude. However, for the proposed pro-
tection element, there is no absolute superiority over other works in 
terms of speed. Meanwhile, the following issues are noteworthy: 

First of all, although a time window of 0.5 ms is used to calculate the 
surge energy in Equations (2) and (4), E1f or E1b usually do not need a 
complete 0.5 ms to exceed the threshold of Eset1, leaving much more 
time margin for the computation delay of tal. As indicated in the ap-
pendix, from Fig. A1 to Fig. A15, it is evident that the calculated surge 
energy will rise above the threshold immediately, which costs far<0.5 
ms, especially in internal fault conditions. For this reason, the estimation 
of the surge energy calculation delay ts is conservative. In reality, tal has 
a range from 1 to 1.5 ms. 

According to the above analysis, the computation speed of hardware 
is essential for the proposed method to perform as a main protection 
element. To analyze the problem quantitatively, the methodologies lis-
ted in Table 3 are reconducted using the same personal computer (PC), 
and the configuration of the PC is listed in Table 4. Taking the time delay 
of the method in [33] as 1p.u. as it has the simplest form of criterion, the 
relative time-delays of other methods, including the proposed one, are 
shown in Fig. 18. 

It is found that the proposed method has the highest computation 
time–cost on the same platform. The reason is that CNN’s computation 
burden and complexity to process fault information are more significant 
than that of other methods. Also, programming with Python under the 
same hardware configuration can significantly reduce the time cost. 
Python better packages and optimizes the CNN model than Matlab 
language. When programming with Python, the time cost can reach the 
same order of magnitude as the other four numerical-calculation-based 

criteria. 
Fig. 19 shows the solution for the implementation of the proposed 

method, including a group of sensors, an analog/digital (A/D) transfer 
module, a field-programmable gate array (FPGA) based processing unit, 
and a trip relay to send tripping signals to the local circuit breaker, as 
shown in Fig. 19 (a). 

For DC systems, the DC electronic voltage transformer (EVT) and the 
DC shunt are the common types of sensors. In Reference [36], a 
machine-learning framework based on Zynq series FPGA is designed, 
including a process system module and a programmable logic module, as 
shown in Fig. 19 (b). In this framework, the processing system works as 
the control center, communicating with the programmable logic module 
at a speed of up to 50 Gb/s. The fault direction calculation and the CNN 
computation are performed in the direct memory accesses (DMAs) 
embedded in the programmable logic module. Based on the above in-
formation, the processing system could renew the CNN parameters and 
decide whether to trip the fault-identification process according to the 
information from the start-up criterion. Programming with underlying 
languages in such a system, the required time–cost can be further 
reduced than using Matlab or Python on a PC. 

To sum up, both the hardware configuration and the software pro-
gramming are critical to the speed performance of the proposed pro-
tection element. With high-performance hardware configuration and 
efficient underlying-language-based programming, the proposed pro-
tection can be used as a main protection, as long as tal is short enough. 
Otherwise, in the best case, it can be used as a back-up protection 
element. 

5.2. Performance of fault-identification criterion considering random 
multiple abnormal samplings 

In this paper, AMF is introduced to avoid the impact of abnormal 
samplings. Thus, the complexity of the established CNN and the 
computation burden are reduced, benefiting from a reduced size of the 
training set. However, to balance between the capability of keeping the 
original graphical feature and that against multiple abnormal samplings, 
there should be quantitative analysis to select the maximum order R 
(maximum capability against multiple abnormal samplings) of the AMF. 
The following issues are taken into consideration.  

1) To enhance the capability against multiple abnormal samplings, the 
order of AMF should be high enough. According to the information in 
Section 2.2, multiple abnormal samplings could not be erased if R 
is<5. For this reason, we should have R ≥ 5.  

2) The maximum order of AMF should have an upper limit to prevent it 
from being too high. This is because, in a very short time window, the 
feature of the wave-front is imperative for fault identification based 
on CNN. Conventionally, the standard operating surge in power 
systems is 250/2500 μs, and a wave-front has at least 12 points. To 
keep the feature of wave-front from being erased, we should have R 
< 25. 

To illustrate the above, a case of a positive-pole-to-ground bolted 
fault is conducted, and the obtained aerial-modal voltage with different 
numbers of abnormal samplings are shown in Fig. 20. In comparison 
with the filtered waveforms, it is evident that a 5-order AMF can 
perfectly erase the abnormal samplings in Fig. 20(a) without distorting 
the original feature. In Fig. 20(b), an 11-order AMF is capable of erasing 
more numbers of abnormal samplings, but the original waveform is 
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slightly distorted. In Fig. 20(c), however, the filtered waveform loses its 
original feature heavily because the order of AMF is too high. For this 
reason, an optimal R should be further determined in the range of 5 ≤ R 
< 25. 

To quantify this, further investigation is undertaken using an 
expanded fault set based on Table 2. The arrangement of the expanded 
fault set is shown in Table 5. 

Fig. 21 visualizes the distribution of fault features in the above fault 
set without considering the impact of abnormal samplings using t- 
distributed stochastic neighbor embedding (t-SNE). As shown, the four 
types of fault scenarios are mixed in the original feature space, whereas 
clustered clearly and linearly after the extraction of compressed features 
by the CNN. Comparing the vectors of row data with the feature vectors 
obtained after convolution and pooling of the CNN model, the latter 
shows the significant distinction in different fault types. When there are 
no abnormal samplings, the fault identification by the CNN has a robust 
feature extraction capability. 

When different levels of abnormal samplings are considered, the 
performance of the AI-based fault-identification is shown in Fig. 22. By 
comparing Fig. 22 (a) with (b), it is found that although the discrimi-
nation of different fault types stays very clear for both scenarios when R 
= 5 and R = 11, respectively, the fault feature is lightly affected in 
Fig. 22 (b) because the distortion of fault features after applying a higher 
order of AMF. When there are 7 continuous abnormal samplings with an 
R of 15, the fault-identification criterion marginally works. In the sce-
nario when there are 11 continuous abnormal points and R = 23, there is 
a sharp decline of the discrimination of fault features. In some cases, 
different types of faults are overlapped. This is because the transient 
waveform distorted too heavily due to an extremely high-order AMF. 
Especially in some high-resistance fault cases, the transient signal be-
comes a flat one, causing the mis-identification. Further studies are 
made to obtain the accuracy of fault-identification under different or-
ders of AMF, and the result is shown in Fig. 22. The accuracy rate can be 
up to 100% as long as R ≤ 15. To leave some space, R is set to 11 in this 
paper. 

6. Conclusion 

In this paper, a semi AI-based protection element is proposed to trip 
DC line faults for the MMC-MTDC. The conclusions are as follows.  

1) A local measurement-based start-up criterion is employed in advance 
before adopting the fault identification by CNN. The configuration of 
the start-up criterion can: a) eliminate the negative impact of 
abnormal samplings with the help of the AMF, b) reduce the 
complexity of the CNN structure and the arrangement of the training 
set, and c) make the protection element more suitable for online 
applications because the CNN is not working unless the start-up 
criterion identifies a forward fault.  

2) The AI-based fault-identification criterion using CNN is powerful in 
distinguishing between internal faults and external ones. As long as 
the fault resistance is under 300 Ω and the SNR of white noises is 
above 30 dB, very high accuracy can be achieved, which is sufficient 
for engineering applications. To keep the fault-identification crite-
rion working accurately, the largest number of continuous abnormal 
samplings that the AMF can erase is set to 5 according to a balanced 
setting principle.  

3) Theoretically, the speed of the proposed protection is sufficient for 
HBMMC-based MMC-MTDCs because both the start-up criterion and 
the CNN-based fault identification use very short time windows. 

With high-speed hardware configurations and efficient underlying- 
language-based programming, the proposed protection can then 
work as a main protection element. 

CRediT authorship contribution statement 

Ning Tong: Conceptualization, Methodology, Software, Writing – 
original draft, Funding acquisition. Zhenjie Tang: Methodology, Data 
curation, Writing – review & editing, Writing – original draft. Yu Wang: 
Writing – review & editing, Visualization. Chun Sing Lai: Conceptual-
ization, Writing – review & editing, Supervision. Loi Lei Lai: Concep-
tualization, Writing – review & editing, Supervision, Funding 
acquisition, Resources. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work is supported by the National Natural Science Foundation 
of China under Grant No. 51907069 and the Natural Science Foundation 
of Guangdong Province under Grant No. 2022A1515011079 and 
2020A1515010766. 

Data Access Statement 

Data supporting this study cannot be made available due to the 
research data are confidential, because of the arrangement the research 
groups have made with the commercial partner supporting the research. 

Appendix  

Fig. A1. Reverse, P-G, bolted fault at t = 0 ms.  
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Fig. A2. Reverse, P-G, fault resistance = 150 Ω at t = 0 ms.  

Fig. A3. Reverse, P-G, fault resistance = 300 Ω at t = 0 ms.  
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Fig. A4. Forward external, N-G, bolted fault at t = 0 ms.  

Fig. A5. Forward external, N-G, fault resistance = 150 Ω at t = 0 ms.  
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Fig. A6. Forward external, N-G, fault resistance = 300 Ω at t = 0 ms.  

Fig. A7. Forward internal, 0%, P-G, bolted fault at t = 0 ms.  
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Fig. A8. Forward internal, 0%, P-G, fault resistance = 150 Ω at t = 0 ms.  

Fig. A9. Forward internal 0%, P-G, fault resistance = 300 Ω at t = 0 ms.  
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Fig. A10. Forward internal 80%, P-G, bolted fault at t = 2 ms.  

Fig. A11. Forward internal 80%, P-G, fault resistance = 150 Ω at t = 2 ms.  
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Fig. A12. Forward internal 80%, P-G, fault resistance = 300 Ω at t = 2 ms.  

Fig. A13. Forward internal 100%, N-G, bolted fault at t = 3 ms.  
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Fig. A14. Forward internal, 100%, N-G, fault resistance = 150 Ω t = 3 ms.  

Fig. A15. Forward internal, 100%, N-G, fault resistance = 300 Ω t = 3 ms.  
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