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Abstract: Multi-view subspace clustering has drawn significant attention in the pattern recognition
and machine learning research community. However, most of the existing multi-view subspace
clustering methods are still limited in two aspects. (1) The subspace representation yielded by the
self-expression reconstruction model ignores the local structure information of the data. (2) The con-
struction of subspace representation and clustering are used as two individual procedures, which
ignores their interactions. To address these problems, we propose a novel multi-view subspace clus-
tering method fusing local and global information for one-step multi-view clustering. Our contri-
bution lies in three aspects. First, we merge the graph learning into the self-expression model to
explore the local structure information for constructing the specific subspace representations of dif-
ferent views. Second, we consider the multi-view information fusion by integrating these specific
subspace representations into one common subspace representation. Third, we combine the sub-
space representation learning, multi-view information fusion, and clustering into a joint optimiza-
tion model to realize the one-step clustering. We also develop an effective optimization algorithm
to solve the proposed method. Comprehensive experimental results on nine popular multi-view
data sets confirm the effectiveness and superiority of the proposed method by comparing it with
many state-of-the-art multi-view clustering methods.

Keywords: multi-view learning; subspace representation; graph learning; one-step clustering

1. Introduction

Clustering is a fundamental unsupervised learning problem that is widely used in
the tasks of machine learning [1], computer vision [2], and data mining [3]. It attempts to
help to understand the structure of unlabeled data by dividing the entire unlabeled sam-
ples into clusters, where the samples in the same cluster are not similar to samples in the
other clusters [4-6].

With the continuous development of information technology, different features of
the object can be easily acquired by different feature extractors, data sources or sensors.
For example, an image can be depicted by the color, texture, and edge features. A news
report is usually composed of text descriptions and pictures. In the field of autonomous
driving, an obstacle can be captured by different types of sensors. These different features
can be viewed as multi-view data. Since each view commonly contains view-specific in-
formation about the object, using only one view for clustering may yield poor results [7].
Therefore, it is reasonable and appropriate to fuse different views for clustering. It is
known that multiple views come from the same object. Hence, multi-view data contain
not only the consistency but also the diversity across views. How to reasonably utilize the

Appl. Sci. 2022, 12, 5094. https://doi.org/10.3390/app12105094

www.mdpi.com/journal/applsci



Appl. Sci. 2022, 12, 5094

2 of 21

consistency and diversity to find the underlying clustering structure of multi-view data
has become an important research topic .

To deal with the multi-view data, a natural idea is to concatenate these different fea-
ture vectors into a new vector and then adopt some existing single-view clustering meth-
ods to group the multi-view data. Although this idea is intuitive and simple to deal with
multi-view data, it ignores the consistency and complementary information across these
views. To address this problem, lots of multi-view clustering methods have been devel-
oped to obtain the good clustering performance. For background reading, the reader can
refer to the surveys on multi-view clustering [8-10]. In this paper, we mainly focus on the
multi-view subspace clustering, which has received extensive attention due to its ad-
vanced clustering performance and good mathematical interpretability.

Multi-view subspace clustering attempts to construct an ideal subspace representa-
tion to describe the multiple linear subspace structure, and the clustering results are then
obtained by utilizing the spectral clustering for this obtained subspace representation. The
mechanism for computing the subspace representation is based on the self-expressive re-
construction model, where each sample is reconstructed by entire samples. Hence, sub-
space representation yielded by the self-expressive reconstruction model can exploit the
global information but may ignore the local information of multi-view data. Nevertheless,
exploring the local structure has been confirmed to improve the learning performance
[11]. Moreover, most multi-view subspace clustering methods divide the learning sub-
space representation and clustering into two individual procedures, which ignores their
communications.

To address the above-mentioned issues, in this paper, we propose a novel subspace
clustering method fusing local and global information for one-step multi-view subspace
clustering (LGOMSC). The proposed method combines the procedures of constructing
subspace representation, multi-view information fusion, and clustering into a unified op-
timization framework. In this framework, as shown in Figure 1, to exploit the local and
global information of multi-view data, we integrate graph learning into the self-expressive
reconstruction model by adaptively exploring the local structure information for the con-
struction of subspace representation. To capture latent consistency information across
views, the proposed method adopts a multi-view information fusion to learn the common
subspace representation from these specific subspace representations of different views.
Meanwhile, in graph learning, a rank constraint is applied to the Laplacian matrix yielded
by the common subspace representation to directly produce the clustering result. There-
fore, the proposed method is a one-step multi-view subspace clustering method. The main
contributions of the work are summarized as follows:

e A novel one-step multi-view subspace clustering method is proposed, which fuses
the subspace representation (exploring local and global information), multi-view in-
formation fusion (constructing a common subspace representation by fusing differ-
ent view-specific subspace representations), and clustering (imposing rank con-
straint on the Laplacian matrix from the common subspace representation) as a uni-
fied optimization framework to realize the end-to-end clustering.

e  Wedevelop an effective optimization algorithm to solve the proposed method. Com-
prehensive experiments on nine popular multi-view data sets confirm the effective-
ness and superiority of the proposed method by comparing it with some state-of-the-
art multi-view clustering methods.
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Figure 1. Framework of proposed LGOMSC.

The rest of this paper is organized as follows. In Section 2, we review the related
works. In Section 3, we introduce the formulation of the proposed LGOMSC method. In
Section 4, we provide the optimization algorithm to solve the proposed LGOMSC method,
including the analysis of the convergence and computation complexity. In Section 5, we
conduct the experiments on nine popular multi-view data sets and analyze the experi-
mental results. Finally, we provide the conclusion in Section 6.

2. Related Work

Multi-view clustering is a very powerful data analysis tools for unsupervised learn-
ing of data with heterogeneous features. In the past two decades, many multi-view clus-
tering methods have been proposed to achieve robust clustering performance. In the fol-
lowing, we will briefly introduce several multi-view clustering methods from different
perspectives.

Subspace-based methods have recently become the mainstay of multi-view cluster-
ing research, aiming to discover potential subspace structures across different views. For
example, Gao et al. [12] propose a multi-view subspace clustering method that utilizes a
common cluster structure to exploit the consistency information across multiple views.
Cao et al. [13] propose a diversity-induced multi-view subspace clustering method that
adopts the Hilbert-Schmidt independence criterion as the diversity term to explore the
complementary information of multi-view data. Luo et al. [14] propose a multi-view sub-
space clustering method that simultaneously considers the consistency and specificity for
learning the subspace representation. Wang et al. [15] propose a multi-view subspace clus-
tering method that considers the complementarity of multi-view data by adopting a posi-
tion-aware exclusivity term. Guo et al. [16] propose a rank consistency induced multi-
view subspace clustering model that learns a consistent subspace structure. Brbi¢ and
Kopriva [17] propose a multi-view subspace clustering method that adopts an agreement
term to ensure the consistency among these subspace representations. To capture the
high-order correlations underlying multi-view data, the tensor technique is adopted to
exploit the complementary information among different views. For example, Zhang et al.
[18] propose a low-rank tensor constrained multi-view subspace clustering model that
adopts a low-rank tensor constraint for the obtained subspace representations. Xie et al.
[19] utilize the subspace representations of multiple views as a tensor data and then utilize
the tensor-singular value decomposition on the rotated tensor to guarantee the consensus
among different views. Zhang et al. [20] propose a tensorized multi-view subspace repre-
sentation learning that adopts a low-rank constraint model for the subspace representa-
tion tensor. Yin et al. [21] propose a multi-view subspace clustering model by organizing
the multi-view data as tensorial data, and the tensorial data can be represented by a t-
linear combination with sparse and low-rank penalty. Recently, researchers considered
partition-level multi-view information fusion and proposed a partition-based clustering
model to construct joint optimization of multi-view subspace clustering. For example,
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Kang et al. [22] propose a unified multi-view subspace clustering model that implements
the graph construction, the generation of basic partitions, and the fusion of consensus
clustering in an interactive way. Lv et al. [23] propose a partition fusion-based multi-view
subspace clustering method that utilizes the different partitions to find a shared partition.
Zhang et al. [24] develop a consensus one-step multi-view subspace clustering method
that fuses the subspace representation learning, partition learning, and clustering into a
whole to iteratively optimize. Kang et al. [25] propose to integrate multi-view information
in the partition space and obtain clustering results by assigning each partition with a re-
spective rotation matrix. Furthermore, each view is assigned a weight to consider the dif-
ferences in the clustering capacity of the views. The anchor-based model is proposed to fit
for the large-scale multi-view data. Kang et al. [26] propose a large-scale multi-view sub-
space clustering method by integrating the anchor graphs from different views for spec-
tral clustering. Wang et al. [27] propose a fast parameter-free multi-view subspace clus-
tering by adaptively learning the anchors and graph structure. Sun et al. [28] propose to
combine anchor learning and graph construction into a unified optimization framework,
allowing the learned anchors to represent the actual latent data distribution more accu-
rately, leading to a more discriminative clustering structure.

Matrix factorization-based methods refer to obtaining consistent latent representa-
tions through matrix factorization. Specifically, a given data matrix can be represented by
the product of two or more low-dimensional matrices. Liu et al. [29] extended the tradi-
tional single-view non-negative matrix factorization algorithm to multi-view application
scenarios and proposed a multi-view clustering algorithm based on non-negative matrix
factorization. Guo et al. [30] propose to exploit group sparsity inducing norm in a matrix
factorization framework to learn shared sparse subspace representations. Recently, Wang
et al. [31] proposed a diversity non-negative matrix factorization multi-view clustering
method by introducing a new diversity term to increase the diversity among multi-view
representations and linearize the running time. Nie et al. [32] propose a new joint cluster-
ing method named Fast Multi-view Matrix Tri-Factorization to reduce the information
loss in the matrix factorization process, while reducing the computational complexity and
improving the operational efficiency. Liu et al. [33] propose a novel multi-view matrix
factorization-based clustering method, which proposes to consider the higher-order rela-
tionships among features using an optimal graph regularization strategy and introduces
the Hilbert-Schmidt independence criterion (HSIC) to fully explore the complementary
information in different views. In addition, researchers have extended matrix factoriza-
tion from the perspective of intact space learning [34]. For example, Zhang et al. [35] pro-
pose a latent multi-view subspace clustering that utilizes the latent representation for sub-
space clustering. Li et al. [36] propose a flexible multi-view representation learning that
utilizes the kernel dependence measure to obtain a latent representation from different
views for subspace clustering. Xie et al. [37] propose a multi-view subspace clustering
method that fuses graph learning, latent representation, and clustering into a unified op-
timization framework.

Graph-based methods provides an effective way to solve the nonlinearly separated
problems. For example, Tang et al. [38] propose a fusion process using linked matrix fac-
torization to fuse the graph matrices corresponding to all views with multiple sources of
information. Nie et al. [39] propose a multi-view graph clustering method based on the
idea of manifold learning that can perform local structure learning and multi-view clus-
tering at the same time and can also adaptively learn the weights corresponding to each
view. Meanwhile, Nie et al. [40] propose an automatic weighting method to fuse a series
of view-specific low-quality graphs into a high-quality unified graph, while extending the
Laplacian rank approach to multi-view learning. Similarly, Zhan et al. [41] further design
a notable clustering method based on twostep multiple graph fusion strategy. Recently,
Zhan et al. [42] proposed a method to learn a consensus graph matrix by all views by
minimizing disagreement between different views and constraining the rank of the La-
placian matrix. Wang et al. [43] propose another graph-based multi-view clustering
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method that automatically fuses multiple graph matrices to generate a unified graph ma-
trix. The learned unified graph matrix can help the graph matrices of all views and gives
the clustering indicator matrix. Recently, Zhao et al. [44] proposed to minimize the diver-
gence between graphs using tensor Schatten p-norm regularization and integrate the ten-
sor Schatten p-norm regularization and the manifold learning regularization into a unified
framework to learn a shared common graph.

Although most of existing multi-view subspace clustering methods have achieved
good clustering performance, they still have some limitations. First, the subspace repre-
sentation generated by the self-expression reconstruction model usually ignores the local
structure of the data set. Second, most multi-view subspace clustering methods usually
divide the subspace representation learning process and the subsequent clustering task
into two separate processes, ignoring the interactions between them. To address these is-
sues, in this paper we propose an LGOMSC method that considers adding graph learning
to explore local information adaptively for obtaining subspace representations. Moreover,
LGOMSC performs multi-view information fusion directly on the subspace representa-
tion and introduces rank constraints on the Laplacian matrix of the common subspace
representation matrix, which helps to naturally partition the data points into the desired
number of clusters. Our approach integrates similarity learning, multi-view information
fusion and clustering as a unified framework to achieve multi-view clustering in an end-
to-end manner.

Duan et al. [45] propose a multi-view subspace clustering (MVSCLG) that also uti-
lizes the local and global information to achieve the end-to-end clustering. The main dif-
ferences between MVSCLG and LGOMSC include: (1) to explore the consistency between
different views, MVSCLG adopts the spectral matrix fusion, but LGOMSC adopts the
graph matrix fusion; (2) to achieve end-to-end clustering, MVSCLG adopts a rotation ma-
trix to map the common spectral matrix to the final cluster label matrix, but LGOMSC
adopts a rank constraint on the common Laplacian matrix to directly achieve clustering.
Moreover, compared with MVSCLG, LGOMSC has some advantages. Firstly, MVSCLG
involves many singular value decomposition procedures and contains many variables,
which leads to longer running times and more memory usage than LGOMSC. Secondly,
LGOMSC contains fewer hyperparameters than MVSCLG, which is more suitable for
practical applications.

3. Proposed Method
3.1. Notations

For convenience, we list important mathematic notations that are used throughout
the paper in Table 1. Matrices are represented in bold uppercase, while vectors are repre-
sented in bold lowercase.

Table 1. Notations and abbreviations.

Notation Definition

I, » x » ldentity matrix

1 All-ones column vector

n Number of data sample

c Number of clusters

Vv Number of views

q Feature dimension of the v-th view

X e RV Feature matrix of the v-th view

Represented as the i-th row, j-th column, and 7j-th element of matrix
X, respectively

X The transpose of a matrix

S’ eR™ Subspace representation matrix of the v-th view
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UeR™ Common subspace representation matrix
Il The Frobenius norm

Tr() Trace operator of a matrix

diag() Vector of the diagonal elements of a matrix
rank(") The rank of a matrix

3.2. Formulation
In this section, we provide the detailed modeling process of the proposed LGOMSC

method. For a multi-view data set with V views, let e be the data matrices of

v v v d,xn
the V views and X' = {xl e "x"} <R be the v-th view data, where 4, s the di-
mensionality of the v-th view, and 7 is the number of data points. Since each view contains
view-specific information about the object, we respectively compute the view-specific
subspace representation of each view to capture the diversity across views. The objective
function of the self-expression model for the multi-view data can be formulated as:

L+ Xl
ot 1)
st.0<s; <1, (S")H'1=1,diag(S")=0

min iux -X'Ss’
v=l

—f(aY v v nXxn
where S'={s’,s,..,s teR

v v
Y is the j-th element of 7, 1 denotes a column vector with all entries of one, diag(’)
denotes a vector of the diagonal elements of a matrix.
Since Model (1) adopts the entire data set to linearly reconstruct each data sample,

is the subspace representation matrix of the v-th view,

the subspace representation matrix S captures the global information of the v-th view
data. However, this subspace representation obtained by Model (1) ignores the local struc-
ture to construct the subspace representations. In other words, two closed data samples
should have similar subspace representations. Hence, to exploit the local information of
multi-view data, we integrate the graph learning into Model (1) to compute the subspace
representation. Hence, the objection function can be formulated as:

2 |4 P V n n
+2 2|8+ 222
F v=1 F v=l i=l j=1

51.0<s; < 1,(8")'1=1,diag($")=0

v

2
2S’7

,
minZ:HXV—XVSV X —X;
s’

v=1

)

Since multi-view data come from the same object, they should have latent con-
sistency. To characterize this consistency, we adopt a multi-view information fusion term

nxn
to obtain a common subspace representation matrix UeR™ from the subspace repre-

1 2 Vv
{87,875} This term can be represented as:

s e P
min3 5" -],

st.U>0,U'1=1

sentation matrices

®)

U

Through minimizing Model (3), this common subspace representation matrix

1 2 4

can make these the subspace representation matrices {87,878} {5 have latent con-
sistency. Hence, we add this multi-view information fusion term into Model (2) as:
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V V V n n
. 2 2 2
min ZHXV—XVSV +&ZHS” +Z x; = x;||,;
STUFIT £ =1 L s
st — ol 4)
2|8 v,
v=l

51.0<s; <1L1's' =1,diag($*)=0,U>0,U"1=1

After obtaining the common subspace structure, we can get the affinity matrix

_ T
W=12(U+U") ang perform spectral clustering on such a subspace affinity matrix.

However, the constructions of subspace representation and clustering are divided into
two individual procedures, which ignore their interactions. To address this problem, we
L,=D-W

consider introducing a rank constraint [46] on the Laplacian matrix v , where

the degree matrix D is defined as a diagonal matrix whose i-th diagonal element is
d, = Z”-_ Wi . ..U

/=% If the common subspace representation matrix
the Laplacian matrix has the following theorem.

is non-negative, then

Theorem 1. The number of connected components in the graph with U is equal to the
multiplicity of zero eigenvalue of the Laplacian matrix L, [47].

According to Theorem 1, we consider making the number of zero eigenvalues of the

Laplacian matrix Ly to be equal to the number of clustering -clusters, i.e.,
I’Cﬂlk( =n— I"Cﬂ]]d =n—c
LU) LU) into Model (4), the

common subspace representation matrix U will have the ideal property. Therefore, we

Cc
. By adding the rank constraint

can directly obtain the cluster result from U without discretization.

7”071]{( =n—c
However, it is difficult to directly solve the rank constraint lv) Ctis

rank(Ly) =n—c PIACHEL

the i-th smallest eigenvalues of L, . Since L, is positive semi-definite, o,(L,)=0 Ac-
Y. 0i(Ly)=min  Tr(F'L,F)

known that is equivalent to , where i (Lv) denotes

cording to Ky Fan’s Theorem [48], . Therefore, to hold

Z.C:l O-L(Lu) =0 N . . .
i , the objective function of the proposed LGOMSC is formulated as:
Vv 2 |4 2 V. n n P
SI‘n[l/I}D;HX -X'§ F +2";HS F +;;;Hx’ YL, S
o gl T 5)
+> |8 - UHF +2ATr(F L, F)
v=]
s1.0<s; < l,lTsl.V =1,diag(8$")=0,U>0,U"1=1,F'F =1,
where 4>0 s a parameter, F=fis S5 e R™ §o the embedding matrix, and
IC ERCXC

denotes the identity matrix.

In Model (5), when 7 is large enough, the obtained common subspace representation
U ok > o(Ly) rank(L,)=n—c

erate the optimization procedure, we determine the value of A in a heuristic way. More-
over, in Model (5), we integrate subspace representation learning, multi-view information

zero. Hence, is satisfied. To effectively accel-
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fusion, and clustering into a unified framework. The aim is to exploit the internal relation-
ships of the three procedures to obtain a good clustering performance.

4. Optimization

There are several variables and constraints in the proposed method. To effectively
solve these variables from LGOMSC, we developed an alternate optimization algorithm.

4.1. Update s

When U and F are fixed, the objective function about §” becomes:

: v v v 2 v 2 : X v v 2 v v 2
H}%HHX -X'S FJ”%HS F+;;‘xi_xj 2Sij+“s _UHF ©)
s1.0<s; < 1,1's) =1, diag(S")=0
In this paper, we adopt a two-step approximation strategy [25] to optimize S
Firstly, we ignore the constraints in Model (6) to solve S as:
b XV XVSV 2 SV 2 - \ v v 2 v SV U 2
n}mH B F+21H F+Zzl‘xi =Y 2Sﬁ+“ B HF @)
i=l j=
Through making the derivative of Model (7) of §" as zero, we have:
5 1
SV=((XV)TXV+IH+ZIIH)’1((XV)TX”+U—EBV) (8)
V=l — X" ’ v nxn I eR™
where 7 17" 7Vl js the ij-th element of B €R™ and "n denotes the identity
matrix.

Secondly, through adding the constraints of $”, the solution of $" can be obtained
by:
2

nﬁn

S;

v o_ v T v _
st.s;=0,5,20,1"s; =1

v Ay
S —8.
i i

©)

Model (9) is a constrained quadratic optimization problem, which can be effectively
solved by the iterative algorithm in the work [49].

4.2. Update v
When S" and F are fixed, the objective function about U s represented as:
V. n_ n
. v 2 T
miny > > (s; —u,)" +2ATr(F' L, F)

] (10)
st.u,; 20, lTul. =1

nxl

where is a column vector, 7 is the j-th elementof ~’.

Tr(F L F)=12%" 3" | f.- £y,

2
h.=\f.—f.
the j-th element "’ "f’ f’"2
be rewritten as follows:

Noting that , we denote h, be a vector with

. Through simple mathematical derivation, problem (10) can
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2
A
u—s +—h

4
min z
v
! v=1

2V ) (11)
stou, 20,1"u, =1
. v_w A .
We define ¢q¢" =5, —Whi , we can obtain:
3[4
min ) (lu,—q"
i ? (12)

stou; 2017w, =1

Model (12) is effectively optimized by an iterative algorithm referring to the work

[50].
4.3. Update F
When U and §" are fixed, the objective function about F' is represented as:
minTr(F 'L, F)
’ (13)
st. F'F =1,

The optimal solution F' yielded by Model (13) is formed by the ¢ eigenvectors of
L, corresponding to the ¢ smallest eigenvalues. Finally, the procedure for optimizing
Model (5) is described in Algorithm 1.

4.4. Convergence Analysis

In this paper, we adopt an alternate updating algorithm (Algorithm 1) to solve the
objective function in Model (5). Since A is changed during the iteration to accelerate the
procedure in the experiment, the objective function of Model (5) is varied during each
iteration. Hence, it is difficult to guarantee convergence theoretically. However, in the ex-
periments, the results show that Algorithm 1 for optimizing Model (5) has good conver-
gence.

4.5. Computational Complexity Analysis
According to the optimization process described in Algorithm 1, the computational
complexity of LGOMSC consists of updating S, U, and F . First, the update of §"

takes O(n® + Vn?). Second, the update of U needs O(n?). Third, the update of F costs
O(n?) for compute eigenvectors of the Laplacian matrix. Overall, the complexity of Algo-
rithm 1is O((2n® + (V +1)n*))T), where T is the total number of iterations.
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Algorithm 1: Optimization Algorithm for Model (5)
V

1 4 v d,xn
Input: given view data XX with X" €R™ the number of clusters ¢,

parameters 4 and 4.

Output: U with exact ¢ connected components.

Initialize S~ by the optimization problem [51]:

2
. n n v v
n}vlaniﬂZj:l‘ 2 Sij + /11 HS

st.s;=0,0<s; <L1's’ =1

2
F

v v
X; —xj

Iitialize U and F basedon 585"
Repeat

Update S” by model (9).

Update U by model (12).

Update F by model (13).

Until X 6,(L,)<1.0¢ " gpa X" o.(L,)>1.0e™"

5. Experiments

In this section, we use nine popular multi-view data sets to assess the clustering per-
formance of LGOMSC.

5.1. Data Set Descriptions

In the experiments, the nine public multi-view benchmark data sets were 3Sources,
100leaves, BBC, Caltech101, COIL-20, NottingHill, Webkb, Cornell, and Wikipedia Arti-
cles. All the data sets are summarized in Table 2.

Table 2. Summary of nine multi-view benchmark data sets (d» denotes the dimensionality of the v-
th view).

Data Set Point Class View d1 d2 d3 d4 ds5 de

3sources 169 6 3 3560 3631 3068
100leaves 1600 100 3 64 64 64
BBC 685 5 4 4659 4633 4665 4684
Caltech101 1474 7 6 48 40 254 1984 512 928
COIL-20 1440 20 3 1024 3304 6750
NottingHill 4660 5 3 6750 3304 2000
Webkb 1051 2 2 1840 3000
Cornell 195 5 2 195 1703
Wikipedia 693 10 2 128 10

5.2. Experimental Setting
In this paper, LGOMSC is compared with twelve relevant methods including

e  FeatConcate: Concatenate the features of different views into a vector and utilize k-
means to acquire the clustering result. It is regarded as the baseline method.

e Co-reg_c and Co-reg_p: Centroid-based co-regularization [52] and pairwise co-reg-
ularization [52].

e LMSC: Latent multi-view subspace clustering [35].

e  FMR: Flexible multi-view representation learning for subspace clustering [36].

e MLRSSC: Multi-view low-rank sparse subspace clustering [17].

e  RMKMC: Robust multi-view k-means clustering [53].

e mPAC: Multiple partitions aligned clustering [25].
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e  LMVSC: Large-scale multi-view subspace clustering in linear time [26].

e  PMSC: Partition level multi-view subspace clustering [22].

e  COMVSC: Consensus one-step multi-view subspace clustering [24].

e  GMC: Graph-based multi-view clustering [43].

e  MVSCLG: Multi-view subspace clustering with local and global information [45].

We conduct these comparison methods from corresponding open-source codes and

A

follow their papers to set the optimal parameters. LGOMSC contains two parameters
and *1 . For /1, it is first set with a proper value in a heuristic way, then in each iteration,
A s divided by two if the number of zero eigenvalues of L s greater than ¢ and mul-
tiplied by two if it is smaller than c. For A , we adopt the grid search method to empiri-
cally choose it in the range of {1,10,20,..., 100} 1) hig paper, we use L2 norm for data

() =

normalization, i.e., ‘

X,

i

2 .

5.3. Experiment Results and Analysis

In the experiments, four popular metrics including accuracy (ACC), normalized mu-
tual information (NMI), F-score and adjusted Rand index (ARI) are utilized to assess the
clustering result. These evaluation metrics reflect different natures of the clustering re-
sults, thus providing a comprehensive analysis from multiple perspectives. For all four of
the evaluation metrics, higher values indicate better results. The comparison results are
shown in Tables 3-6. The best result is highlighted in red font, and the second best result
is reported in blue font.

Table 3. The clustering performance comparison in terms of ACC on nine multi-view data sets.

100leave Cal- Nottin- Wikipe-
0, -
ACC (%) 3sources s BBC tech101 COIL-20 oHill Webkb Cornell dia
Feeztafeon- 65.09 71.00 61.46 54.27 67.50 91.93 94.77 43.08 57.72

Coreg_c 69.17 78.53 34.74 42.00 70.36 74.77 80.42 38.41 38.59
Co-reg_ p 66.18 75.60 35.99 42.14 72.42 72.14 83.24 36.26 20.70
LMSC 71.60 77.00 86.28 53.80 75.35 83.78 95.34 43.59 56.85
FMR 70.41 69.25 85.11 47.69 72.01 82.85 93.24 43.08 56.85
MLRSSC  34.88 1.44 33.14 54.21 5.07 30.11 78.02 43.08 15.22
RMKMC  54.44 1.00 60.44 54.14 61.60 75.43 94.01 43.59 61.04
mPAC 76.92 47.06 58.10 59.36 73.40 90.28 78.12 45.64 56.71
LMVSC  63.31 71.06 84.38 56.72 74.17 89.25 95.62 55.90 59.16
PMSC 63.85 22.46 34.45 44.45 49.09 70.21 78.02 45.44 19.70
COMVSC  65.09 70.88 69.49 77.54 77.64 81.70 82.87 55.38 60.46
GMC 65.09 86.38 69.05 65.74 87.57 31.24 77.64 38.97 31.89
Ours 83.43 94.31 88.47 79.85 92.08 100.00 98.38 64.62 62.63

Table 4. The clustering performance comparison in terms of NMI on nine multi-view data sets.

100leave Cal- Nottin- Wikipe-
In (9 BB IL-2 K 1
NMIn (%) 3sources s C tech101 CcoO 0 oHill Webkb Corne dia
Fei;feon 5653  87.64 60.63 5618 7915 8666 6618  19.02  54.04

Co-reg_c  55.03 92.04 13.38 43.68 81.69 69.79 8.79 12.60 26.22
Co-reg_p 50.85 90.04 6.59 43.59 82.17 67.73 18.91 11.57 7.54
LMSC 69.18 89.22 65.70 51.85 84.54 78.57 70.36 18.89 52.60
FMR 57.34 85.44 66.04 46.77 78.53 66.38 59.59 21.44 51.81
MLRSSC  5.75 13.33 1.03 2.11 2.66 0.23 0.08 4.86 2.31
RMKMC  40.23 0.00 54.38 63.16 79.06 75.28 63.81 27.99 55.09
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mPAC 64.13 73.96 47.41 50.56 85.86 83.14 16.79 15.48 47.53
LMVSC  59.35 87.49 69.45 55.70 82.24 82.33 69.41 27.84 52.81
PMSC 48.75 64.02 4.19 21.38 70.31 65.73 7.95 10.42 6.47
COMVSC  50.69 87.19 57.67 52.70 87.50 75.16 23.73 24.51 53.58
GMC 53.73 95.37 55.62 53.77 96.31 9.23 0.17 15.90 29.98
Ours 77.74 97.43 75.20 54.23 97.44 100.00 84.84 39.40 56.06

Table 5. The clustering performance comparison in terms of F-score on nine multi-view data sets.

100leave Cal- Nottin- Wikipe-
F-score (%) 3sources s BBC tech101 COIL-20 eHill Webkb Cornell diap
FeatConcate  66.61 63.54 60.32 5691 61.05 88.77 92.78 33.27 50.34
Co-reg_c 69.04 7446 37.00 4283 68.20 72.38 79.66 32.06 26.96
Co-reg_p 66.01 69.67 37.74 4234 69.67 69.08 81.71 31.12 13.00
LMSC 65.58 68.72 76.81 53.58 71.33 83.04 93.02 42.59 48.96
FMR 63.89 59.07 76.55 47.24 66.58 72.19 90.08 34.50 48.22
MLRSSC 37.49 1.97 3788 5593 9.42 36.03 79.27 42.88 19.57
RMKMC 47.89 1.86 5746 55.64 58.84 72.58 91.87 35.94 51.85
mPAC 76.93 36.61 59.10 61.19 68.73 88.17 79.18 43.34 45.81
LMVSC 55.85 61.67 7844 5190 69.29 85.36 93.83 49.57 50.13
PMSC 57.05 18.77 38.48 43.46 49.56 66.84 79.27 43.55 19.67
COMVSC 56.74 6295 6272 7183 71.79 80.11 81.47 46.18 51.02
GMC 52.88 66.27 63.05 61.54 85.31 36.94 78.67 37.06 23.00
Ours 78.34 8891 82.83 75.72 91.86 100.00 97.58 57.32 52.48

Table 6. The clustering performance comparison in terms of ARI on nine multi-view data sets.

Cal- Nottin- Wikipe-
ARI (° 1001 BB IL-2 K 1
(%) 3sources100leaves C tech101 CcoO 0 eHill Webkb Corne dia
Fei;fsn 5690  63.17 4920 4194 5889 8567 7699 1233  44.28

Co-reg_ ¢ 58.38 74.20 6.05 27.03 66.46 64.70 16.20 6.57 18.39
Coreg p 5481 69.36 1.52 26.46 68.03 60.71 27.19 247 2.80
LMSC 56.72 68.41 69.70 37.80 69.74 78.20 80.79 10.18 42.89
FMR 53.70 58.66 69.13 31.86 64.83 64.68 72.84 12.01 42.12
MLRSSC  0.33 0.12 -0.04 0.93 0.03 0.04 -0.14 1.33 -0.09
RMKMC  34.27 0.00 45.61 41.21 56.45 64.69 73.61 15.73 45.97
mPAC 69.79 35.87 40.27 45.19 67.08 84.79 28.17 8.97 38.86
LMVSC  43.16 61.36 71.75 34.48 67.67 81.15 80.81 32.54 44.24
PMSC 36.70 17.47 1.17 17.58 46.33 57.26 0.18 10.44 1.96
COMVSC  36.94 62.55 47.36 50.17 70.28 74.50 25.52 17.68 44.69
GMC 32.87 65.86 47.46 39.64 84.45 2.21 1.02 3.47 6.07
Ours 70.63 88.79 77.06 57.54 91.42 100.00 92.92 35.08 46.13

Experiment Analysis. Through observing the clustering results from Tables 3-6, one
can see that our proposed method can obtain the best results on all multi-view data sets
except Caltech101. For the Caltech101 data set, LGOMSC is lower than FeatConcate and
RMKMC in terms of NMI. However, in terms of ACC, our proposed method exceeds the
second best results on the data sets including 3sources, 100leaves, BBC, Caltech101, COIL-
20, NottingHill, Webkb, Cornell, and Wikipedia by 6.51%, 7.93%, 2.19%, 2.31%, 4.51%,
8.07%, 2.76%, 8.72% and 1.59%, respectively. For NMI, our proposed method is 8.93%
lower than the best method, RMKMC, on the Caltech101 data set. For F-score, our pro-
posed method exceeds the second best method by 1.41%, 14.45%, 4.39%, 3.89%, 6.55%,
11.23%, 3.75%, 7.75% and 0.63% for the corresponding data sets, respectively. In terms of
ARI, our proposed method exceeds the second best method by 0.84%, 14.59%, 5.31%,
7.37%, 6.97%, 14.33%, 12.11%, 2.54% and 0.16% for the corresponding data set, respec-
tively. The above results demonstrate the effectiveness and superiority of the proposed
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method. Hence, our LGOMSC method is a valuable multi-view subspace clustering
method.

From the results in these tables, one can see that the baseline method (i.e., FeatCon-
cate) sometimes exhibits comparable performance to the multi-view subspace method and
even exceeds some multi-view clustering methods. However, in most cases, this baseline
method still has a big gap in comparison with multi-view clustering methods. It confirms
that multi-view clustering methods that consider the consistency or complementary in-
formation can obtain a good multi-view clustering performance. However, in some data
sets, e.g., 3sources and 100leaves, the multi-view k-means method RMKMC, produces
even worse results than FeatConcate. This phenomenon has been observed by some pre-
vious researchers [18,54].

Multi-view subspace clustering based on intact space learning methods like LMSC
and FMR performs clustering on the latent representation space. However, there is a large
gap between these methods and our approach, probably because they separate the repre-
sentation learning and clustering processes, leading to suboptimal clustering results.

Compared with similar multi-view information fusion methods like GMC and
LMVSC, our approach achieves a more impressive performance. This is mainly because
we fuse graph learning into the self-expression model to jointly explore local and global
structural information in the data. More information is used to serve the clustering task
and therefore better performance is obtained.

Compared with the partition-based models to construct multi-view subspace clus-
tering for joint optimization methods like COMVSC, mPAC, and PMSC, our approach
achieves more impressive performance. This is mainly because we make the clustering
structure of the multi-view data revealed while generating the common subspace repre-
sentation under the rank constraint of Laplacian matrix. Thus, the end-to-end clustering
approach facilitates a better clustering performance.

Compared with the MVSCLG method, the overall results from the nine data sets
show that our method achieves the best results on all evaluation criteria, except for the
Caltech101, Cornell and Wikipedia data sets. It states that using rank constraint can obtain
an ideal graph matrix fitting for direct clustering. Our method also has superiorities in
terms of running time and memory usage, which will be discussed in the next subsection.
Thus, our method is more effective than MVSCLG.

Compared with these state-of-the-art clustering methods, the proposed method can
achieve a more impressive clustering performance. The main reason is that it considers
the local and global information from the original multi-view data to learn the subspace
representation. Moreover, the proposed LGOMSC is an end-to-end model, which fuses
the construction of subspace representation, multi-view information fusion, and cluster-
ing into a seamless whole. The purpose for this is to dig into their potential correlations.

Statistical Analysis. To demonstrate the statistical properties of our proposed
method, we conducted the Friedman test and Nemenyi post-hoc test.

The Friedman test assumes that all the k compared methods hold the same perfor-
mance on H data sets. Specifically, this model performance evaluation consists of the fol-
lowing two main steps. In the first step, first, sort all methods on each data set from high
to low according to the clustering performance index and assign corresponding ordinal
values (e.g., 1, 2, ...), and then calculate each method on all data sets average rank. In par-
ticular, the ordinal values are averaged if the performance of the two methods is the same.

2
Finally, # and F are calculated, and their mathematical expressions are as follows:

(H-DT

Fr =H(k—1)—rlz (14)
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TRk

i=1 ¢ 4 )

r
where , ! represents the average rank of the i-th

I
method over all data sets. Besides, ~ ¥ obeys the F-distribution with the degree of free-
dom k-1 and (k-1)(H-1). The correctness of the hypothesis is eliminated by comparing the

F with its corresponding threshold (the thresholds of the Friedman test can be calcu-

lated by qf 1—a,k=1(k=D(H -1)) 3 g programming language). If the hypothesis
is rejected, this indicates a significant difference in the performance of the compared meth-
ods. A further Nemenyi post-hoc test is then required to further distinguish between the
methods.

In the second step, the Nemenyi post-hoc test calculates the critical distance by Equa-
tion (15) to reflect the difference between the average ordinal results of various methods.

CD=-q, % (15)

qtukey(1—a, k, Inf) / sqre(2)

where e can be calculate by
guage.

In our case, the number of compared methods, k, equals 13 and H equals 9. We sort
the ACC, NM]I, F-score, and ARI of the compared methods from high to low and obtain
the average ranking of each method in terms of all data sets.

When @ =0.05, the threshold for the Friedman test was 1.8544. According to Equa-

in R programming lan-

tion (14), the Ly values can be calculated for different clustering evaluation metrics
(ACC, NMI, F-score, and ARI), which are 8.4348, 13.0826, 5.9892 and 11.3655, respectively.

These L values are all greater than the threshold of the Friedman test, which rejects the
hypothesis that all the methods being compared hold the same performance. Then, we
perform the Nemenyi post-hoc test to further distinguish multiple methods. After obtain-
ing the critical distance, CD = 6.2982, according to Equation (15), we can draw the Fried-
man test chart as Figure 2. For each method, the blue dot marks its average rank. The
horizontal lines with the dot at the center indicate the critical distance, CD. If the lines do
not have overlapping areas this indicates a significant difference in the comparison meth-
ods.

From the figure, we can see that there are significant differences between the method
in this paper and Co_reg_c, Co_reg_p, MLRSSC, and PMSC, and that the other methods
do not differ from one another significantly. Compared with other methods, our method
has the best average ranking regardless of the clustering evaluation index. In summary,
our proposed method holds statistical advantages.
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Figure 2. Friedman test charts. (a) Friedman test on ACC, (b) Friedman test on NMI, (c¢) Friedman
test on F-score, (d) Friedman test on ARL

5.4. Running Time Analysis

We used MATLAB 2018b to run each clustering method independently and recorded
the running time of each clustering method under one hyperparameter combination on
each data set in Figure 3. From these results, one can see that FeatConcate is the fastest
among most of multi-view data sets. To explore the consistency or complementary infor-
mation of the multi-view data, these multi-view clustering methods generally need a rel-
atively long running time to produce the final clustering. Our LGOMSC method is faster
than Co_reg_c, Co_reg_p, LMSC, FMR, MLRSSC, RMKMC, mPAC, PMSC, and COMVSC
on most data sets. On the Caltech101 data set, our LGOMSC method is 4.35 s slower than
MLRSSC, and on the Wikipedia data set, our LGOMSC method is 1.89 s slower than
MLRSSC and 0.21 s slower than RMKMC. On these data sets, LMVSC and GMC are the
fastest, and they are more suitable for solving large-scale clustering problems. They are
more concerned with efficiency rather than effectiveness. Therefore, the clustering perfor-
mance is relatively poor. Although our proposed method is slower than the methods de-
signed specifically for large-scale scenarios, our method is still comparable to LMVSC and
GMC for the NottingHill data set. In Table 7, MVSCLG costs more running times than our
method. In the NottingHill data set, LGOMSC costs 4744.49 s under one hyperparameter
combination. However, since MVSCLG contains three hyperparameters, we need to con-
duct the grid search strategy to select the optimal one from 420 hyperparameter combina-
tions, which may need 553.52 h. Hence, we ignore it.
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Table 7. Comparing LGOMSC with MVSCLG on nine multi-view data sets.
Meth- 3sourc 100leav Cal- COIL- Nottin- Cor- Wikipe-
ods es es PPC pecntor 20 gHill VPP qenl  dia
ACC 7870 7338 80.88 8256 7861 - 91.82 70.77 63.49
NMI 65.13 8854 58.14 58.06 90.28 - 56.49 49.88 59.09
MVSCL F-score 76.13 66.10 69.95 79.07 72.94 - 88.04 6540 56.16
G ARI 6810 6574 61.18 6176 71.34 - 67.89 51.35 49.69
Tzlsr)le 59.77 947.71 2069'8 76476 44321 474449 163.05 4027 107.10
ACC 8343 9431 8847 79.85 92.08 100.00 98.38 64.62 62.63
NMI 7774 9743 7520 5423 9744 100.00 84.84 3940 56.06
Ours F-score 78.34 8891 8283 7572 91.86 100.00 9758 57.32 5248
ARI 70.63 8879 77.06 5754 9142 100.00 92.92 35.08 46.13
Tge 053 1703 391 2787 779 1023 454 056 415

“-" indicates that MVSCLG requires more than 553.52 h on the NottingHill data set.

I coconcare [Mcoree o [Co-ree » [ ivse vk [MiRsse [rvkvc [veac [l ovvse [0 evse [lllcomvse [ ove [lovs

time(s)

050 0.53

3sources

L

100leaves

28872

24762

6929

13334

10668

257 391

507.60

Caltech101

22333

854 7.79

COIL-20

8000

7000

6000

5000

time(s)

4000

3000

2000

1000

6388.11

NottingHill

p325.41

23,64 10230

1975 21.28

6891

12671

Cornel

14.56

048 0.56

2213 2285 2305

47.64

Wikipedia

Figure 3. Running time of different methods on nine multi-view data sets.
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5.5. Memory Usage Analysis

We use MATLAB 2018b to run each clustering method independently and recorded
the memory usage of each clustering method. Specifically, we recorded the current matlab
memory usage once before we ran the program. After the program has finished, we rec-
orded the current matlab memory usage again. Subtracting the first reading from the sec-
ond reading gives us the memory usage of the method. For example, on the 3sources data
set, as can be seen in Figure 4, the memory usage of our method is small compared with
the LMVSC, PMSC, COMVSC and MVSCLG methods. The memory usage of our method
is slightly larger than the other remaining methods, but there is no significant difference
between our method and the other remaining methods in terms of memory usage by an
order of magnitude. Therefore, our method has an appropriate space complexity.

-FeatConcate
8000 T T T T T T T T T T T T T
77300 B
7000 Blco-res »
LMSC
6000 [
5 v
m
% 5000 EMLrssc
(0]
50
)
2 4000 - [ Jrvkme
g [ mpac
g L
é’ 3000 B vvse
2000 [pmsc
Il comvsc
1000 B ove
" 370 810 830 700 840 760 510 64.0 —
Methods
-Ours

Figure 4. The memory usage representation of compared methods on 3sources.

5.6. Convergence Study

The objective function of LGOMSC has multiple variables and constraints. We have
developed an effective iterative optimization algorithm to solve the proposed method. We
conduct the convergence experiment in Figure 5, which provides the convergence curves
of LGOMSC on nine multi-view data sets. The x-axis displays the number of iterations,
and the y-axis displays the corresponding objective function value. From these results,
one can see that the proposed method is well convergent and converges quickly. Within
10 iterations, the objective function value can converge to a stable value.
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5.7. Parameter Tuning
We conducted an experiment to analyze the hyperparameter
. A .
experiment, we tuned “' from a candidate set o
keeps a relatively robust clustering performance under a large range of
to easily select a proper parameter.
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Figure 5. Convergence performance on nine multi-view data sets. (a) 3sources, (b) 100leaves, (c)
BBC, (d) Caltech101, (e) COIL-20, (f) NottingHill, (g) Webkb, (h) Cornell, (i) Wikipedia.
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Figure 6. The parameter sensitivity of A on nine multi-view data sets. (a) 3sources, (b) 100leaves,
(c) BBC, (d) Caltech101, (e) COIL-20, (f) NottingHill, (g) Webkb, (h) Cornell, (i) Wikipedia.

6. Conclusions

In this paper, we propose a novel one-step multi-view subspace clustering method,
which integrates the self-expression model and graph learning to simultaneously exploit
the local and global information of subspace representations from multi-view data. More-
over, to further exploit the hidden relationships between different steps to achieve an end-
to-end clustering, our method integrates the subspace representation learning, multi-view
information fusion, and clustering tasks into a joint framework. Experimental results on
nine popular multi-view data sets confirm the effectiveness of our method by comparing
with many baseline methods.

In the future, we have two directions to improve our method. First, since our method
is a linear model, we will consider expanding our model to non-linear cases to deal with
complex multi-view data. Second, for better fitting for large-scale multi-view subspace
clustering, we will adopt anchor-based ideas to improve our method.
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