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Abstract This paper investigates the unknown-input-observer-based fault estimation problem for a class

of discrete-time-delay Markovian jump systems under the dynamic event-triggered transmission scheme. The

dynamic event-triggered mechanism is used to decide whether the current information should be transmitted

to the estimator or not to save the limited communication resources. This study aims to design an event-

based fault estimator such that the estimation error is exponentially ultimately bounded in the mean square.

By adopting the Lyapunov-Krasovskii functional approach, sufficient conditions are obtained to guarantee

the existence of the desired estimator to achieve the prescribed performance requirement. The estimator

gains are derived based on the convex optimization technique. A numerical example is provided to illustrate

the effectiveness of the developed estimator design scheme.
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1 Introduction

Recent industrial systems are becoming more expensive and complex, leading to increasing demand for
reliability and safety. The so-called faults, generated when the characteristic attribute or parameter
of the system deviates from the standard condition, would potentially lead to a severe threat to the
industrial systems reliability and safety. Thus, giving rise to fault diagnosis requirements issues (e.g.,
fault detection, fault estimation, and fault isolation). As an advanced fault diagnosis technique, the main
idea of fault estimation is to estimate the size and type of the encountered fault signal. Such a technique
is of great importance for online fault-tolerant control and real-time decision-making. In recent decades,
the problem of fault estimation has attracted significant attention, and many studies have been reported
in the literature, see e.g., [1–8].

Model-based fault estimation is one of the most investigated fault estimation techniques developed
based on various observer techniques, such as the adaptive observer technique [9], sliding mode observer
technique [10–12], and other observer-based techniques [13, 14]. Among these techniques, the unknown-
input-observer-based (UIO-based) fault estimation is an effective scheme aimed to generate the desired
estimates by decoupling the undesired disturbances/uncertainties from the estimation process, thereby,
reducing/eliminating the effects of such disturbances/uncertainties on the estimation performance. So
far, UIO-based fault estimation method has received research on systems subject to an unknown input
(e.g., disturbances or uncertainties) [15, 16].

In practical applications, the dynamical behaviors of certain systems may suffer from switching changes,
whose properties are often modeled by Markov processes. Markovian jump systems (MJSs) are usually
used to model these systems. The corresponding research results have been widely applied in different
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engineering fields, such as power systems, communication systems, and aircraft control, see e.g., [17–
22]. Compared with other systems without switching features, the fault estimation for MJSs is more
challenging since the estimation performance depends on the switching behavior. It should be mentioned
that Most of the existing results about MJSs consider the control and filtering problems, while the fault
estimation issues of MJSs have gained little attention, that is due mainly to the difficulties in performance
analysis on the fault estimation. Thus, the motivation of this study is to shorten such a gap.

Most existing fault estimation schemes are typically designed as the time-triggered ones, where the
signal transmissions between the system and estimator are triggered once the measurements are generated
by sensors, thereby, leading to a heavy communication load. An attractive alternative way is to design
the fault estimation scheme based on an event-triggered nature, where the signals are only transmitted
when necessary to achieve better resource utilization efficiency. Such kind of signal transmission scheme
is called event-triggered transmission. It is an on-demand non-periodic signal transmission method to
reduce the transmissions over the network while ensuring satisfactory system performance. The core
idea of the event-triggered strategy is to design a reasonable event generator to determine whether the
current signal sampled by sensors should be transmitted or not. Thus, the event-triggered transmission
scheme is undoubtedly an effective solution to reduce energy consumption and has been widely used in the
analysis/design of various systems. Recently, event-based fault diagnosis issues have attracted significant
attention [23–30]. Among them, the event-triggered fault detection issues for nonlinear network systems
with time-delay has been studied [23]. In [24], an event-triggered mechanism has been introduced to
save resources in dealing with the problems of fault detection and fault isolation for discrete-time linear
systems. In [25], an event-triggered mechanism has been comprehensively investigated on multi-target
fault detection, isolation, and control.

It is worth noting that the static event-triggered mechanisms are widely used, where the triggering
thresholds (or threshold parameters) are constant values. The static event-triggered mechanism could
lead to unnecessary data transmissions. Recently, the so-called dynamic event-triggered mechanism has
attracted significant attention [31–36]. Among them, the dynamic event-triggered mechanism has been
introduced and studied for continuous-time nonlinear system [33]. It is shown in [34, 35] that the fault
detection problems for network systems have been investigated. In [37], the triggering frequency under
dynamic event-triggered mechanisms is significantly reduced compared with the static event-triggered
case. Thus, energy utilization is efficient. The dynamic event-triggered mechanisms further reduce the
system’s triggering times and improve the energy utilization efficiency compared with the static event-
triggered cases. Therefore, it is a natural idea to introduce the dynamic event-triggered mechanism into
a broader application prospect. However, as far as we know, the dynamic event-triggered mechanism has
not received enough attention to fault estimation issues.

Motivated by the above studies, we aim to address the UIO-based fault estimation problem for discrete-
time MJSs with time-delay under dynamic event-triggered schemes. The main contributions of this paper
are highlighted as follows:

(1) The fault estimation problem is, for the first time, investigated for discrete-time MJSs with time-
varying delay under dynamic event-triggered schemes.

(2) A novel UIO-based fault estimator is designed to ensure satisfactory fault estimation performance
subject to the unknown fault signal.

(3) Sufficient conditions are obtained to guarantee the existence of the desired estimator.
(4) The required estimator parameters are derived by solving a convex optimization problem.

2 Problem statement

Consider the following class of discrete-time-delay Markovian jump systems
xk+1 = Aθkxk +Aτθkxk−τk +Bθkωk + Eθkfk

yk = Cθkxk +Dθkνk

xk = φk, k ∈ [−τ̄ , 0]

(1)

where xk ∈ Rnx is the system state; yk ∈ Rny denotes the measurement output; ωk ∈ Rnω and νk ∈ Rnν

represent the process and measurement noises, respectively; fk ∈ Rnf stands for the fault to be estimated;
τk denotes the time-varying delay; φk is the initial condition in [−τ̄ , 0], where τ̄ is positive integer. It
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is assumed that the process noise ωk and the measurement noise νk belong to l∞[0,+∞). {θk} is a
discrete-time homogeneous Markov chain taking values in a finite state space S = {1, 2, · · · , N} with a
transition probability matrix Π = [πij ], for θk = i, θk+1 = j, and one has

πij = Pr{θk+1 = j|θk = i}

where πij > 0, ∀ i, j ∈ S and
∑N

j=1 πij = 1. We denote the matrices associated with θk = i ∈ S by

Aθk , Ai, Aτθk , Aτi, Bθk , Bi,

Eθk , Ei, Cθk , Ci, Dθk , Di

where Ai, Aτi, Bi, Ei, Ci, Di are all known real constant matrices with appropriate dimensions.

Assumption 1. ∥ωk∥∞ < d1, ∥νk∥∞ < d2, where d1 and d2 are known positive constants.

Assumption 2. rank(Ei) = rank(CiEi), rank(E
T
i C

T
i , I) = rank(ET

i C
T
i ).

Assumption 3. τk is time varying and satisfies 0 < τ 6 τk 6 τ̄ , where τ̄ and τ are constant positive
scalars representing the upper and lower bounds, respectively.

Remark 1. As is widely known, the phenomenon of time-delays happens in many real systems, and
in the past few decades, a great number of results have been reported in the literature concerning the
research on time-delay systems, see e.g. [38–46]. In this work, in order to make our research more general,
we consider the fault estimation problem for time-delay systems. Note that the results of our work can
be easily extended to the delay-free systems by setting τ̄ = τ = 0.

In this paper, the signal transmissions between the fault estimator and the plant are implemented via
a communication network with limited network bandwidth. In order to avoid unnecessary signal trans-
missions and reduce the communication burden, in this work, the signal transmissions are implemented
according to an event-triggered manner. A so-called dynamic event-triggered mechanism is put forward
to cope with the problem, which would determine whether the current measurement signal should be
transmitted or not. The triggering instants are determined the following triggering condition

ts+1 = min{k|k > ts,
1

θ
ηk + σ − εTk εk 6 0} (2)

where k is the sampling instant, k = 0, 1, . . . ,∞; ts and ts+1 are the triggering instants with s =
{0, 1, 2, . . . } denoting the triggering period, and the initial triggering instant t0 = 0; σ and θ are given
event parameters, which are positive scalars; εk is defined by εk , yk − yts , which represents the error
between the current sampled-data and the latest triggered sensor data; yk and yts represent the current
sampled-data and the latest triggered one, respectively. Once the event-triggering condition (2) is satis-
fied, the event generator releases yk to the communication channel and store yk as yts+1 ; otherwise, the
corresponding sampled data packet is discarded purposely; ηk is an internal dynamical variable satisfying

ηk+1 = ληk + σ − εTk εk (3)

where λ ∈ (0, 1) is a given constant and η0 > 0 stands for the initial condition.

Remark 2. We are aware that the triggering thresholds of the static event-triggered mechanisms are
preset constant values, which probably cause unnecessary data processing. However, the thresholds of the
dynamic event-triggered mechanisms can be dynamically adjusted according to the system. In this case,
the triggering times can be further decreased on the basis of the static type so as to save more system
resources. From (2), it is obvious that when the parameter θ tends to infinity, the triggering condition
(3) becomes the static one.

Remark 3. According to the triggering schemes (2)-(3), we have 1
θηk+σ−εTk εk > 0, ηk+1 > (λ− 1

θ )ηk >
. . . > (λ − 1

θ )
k+1η0. Obviously, the internal dynamic variable ηk > 0 for all k > 0 if η0 > 0, λθ > 1,

which guarantees σ− εTk εk > 0. Therefore, the triggering times are reduced and the energy can be saved
potentially.

Based on the transmission of the event-triggered mechanisms, the signal receiver can be modelled as
follows

ȳk ,yts , k ∈ [ts, ts+1) (4)
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where ȳk is latest available observation of fault estimator at time step k; ts denotes the event-triggered
transmission instant and [ts, ts+1) is the holding interval.

Based on this, an UIO-based fault estimator is constructed as follows
zk+1 = Fizk + Fτizk−τk +Kiȳk +Kτiȳk−τk

x̂k+1 = zk+1 +Hiȳk+1

f̂k = Mi(ȳk+1 − CiAix̂k − CiAτix̂k−τk)

(5)

where zk ∈ Rnz is the filter state; ȳk ∈ Rnȳ denotes the received signal; x̂k ∈ Rnx is the estimation of xk;
f̂k stands for the fault estimation. The matrices Fi, Fτi, Ki, Kτi, Hi, Mi are the filter parameters with
appropriate dimensions to be designed later.

Let ek = xk − x̂k. It follows from (1) and (5) that

ek+1 =xk+1 − x̂k+1

=xk+1 − (Fizk + Fτizk−τk +Kiȳk +Kτiȳk−τk)−Hiȳk+1

=xk+1 − Fi(x̂k −Hiȳk)− Fτi(x̂k−τk −Hiȳk−τk)−Kiȳk −Kτiȳk−τk −Hiȳk+1

=xk+1 − Fi(xk − ek) + FiHiȳk + FτiHiȳk−τk − Fτi(xk−τk − ek−τk)−Kiȳk

−Kτiȳk−τk −Hiȳk+1

=xk+1 − Fixk + Fiek + FiHiȳk − Fτixk−τk + Fτiek−τk + FτiHiȳk−τk −Kiȳk

−Kτiȳk−τk −Hiȳk+1. (6)

where ȳk can be rewritten as

ȳk = yk − εk. (7)

Let

Ki = Ki1 +Ki2, Kτi = Kτi1 +Kτi2. (8)

Substituting (7)-(8) into (6) yields

ek+1 =xk+1 − Fixk + Fiek + FiHiȳk − Fτixk−τk + Fτiek−τk + FτiHiȳk−τk − (Ki1 +Ki2)

× ȳk − (Kτi1 +Kτi2)Kτiȳk−τk −Hiȳk+1

=Fiek + Fτiek−τk + xk+1 − Fixk − Fτixk−τk −Ki1ȳk −Kτi1ȳk−τk + (FiHi −Ki2)

× ȳk + (FτiHi −Kτi2)ȳk−τk −Hiȳk+1

=Fiek + Fτiek−τk + xk+1 − Fixk − Fτixk−τk −Ki1(yk − εk)−Kτi1(yk−τk − εk−τk)

+ (FiHi −Ki2)ȳk + (FτiHi −Kτi2)ȳk−τk −Hi(yk+1 − εk+1). (9)

Observing (1), we can rewritten (9) as

ek+1 =Fiek + Fτiek−τk + xk+1 − Fixk − Fτixk−τk −Ki1(Cixk +Diνk − εk)−Kτi1

× (Cixk−τk +Diνk−τk − εk−τk) + (FiHi −Ki2)ȳk + (FτiHi −Kτi2)ȳk−τk

−Hi(Cixk+1 +Diνk+1 − εk+1)

=Fiek + Fτiek−τk + (I −HiCi)(Aixk +Aτixk−τk +Biωk + Eifk)− Fixk

− Fτixk−τk −Ki1Cixk −Ki1Diνk +Ki1εk −Kτi1Cixk−τk −Kτi1Diνk−τk

+Kτi1εk−τk + (FiHi −Ki2)ȳk + (FτiHi −Kτi2)ȳk−τk −HiDiνk+1 +Hiεk+1

=Fiek + Fτiek−τk +
(
(I −HiCi)Ai −Ki1Ci − Fi

)
xk +

(
(I −HiCi)Aτi −Kτi1Ci

− Fτi

)
xk−τk + (I −HiCi)Biωk + (I −HiCi)Eifk + (FiHi −Ki2)ȳk + (FτiHi

−Kτi2)ȳk−τk −Ki1Diνk −Kτi1Diνk−τk −HiDiνk+1 +Ki1εk +Kτi1εk−τk

+Hiεk+1. (10)

Noting HiCiEi = Ei, we further have

ek+1 =Fiek + Fτiek−τk +
(
(I −HiCi)Ai −Ki1Ci − Fi

)
xk +

(
(I −HiCi)Aτi −Kτi1Ci
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− Fτi

)
xk−τk + (I −HiCi)Biωk + (FiHi −Ki2)ȳk + (FτiHi −Kτi2)ȳk−τk −Ki1

×Diνk −Kτi1Diνk−τk −HiDiνk+1 +Ki1εk +Kτi1εk−τk +Hiεk+1. (11)

Thus, the state estimation error ek+1 is fully decoupled from fault fk, which implies that the attenuation
of disturbance νk and ωk plays an important role in guaranteeing the estimation performance.

It is noted that, since HiCiEi = Ei, the equation (10) can be solved when rank(CiEi) = rank(Ei), the
matrix Hi can be calculated by

Hi = Ei[(CiEi)
T (CiEi)]

−1(CiEi)
T . (12)

In view of (1), (5) and (11), we have

f̂k =Mi(yk+1 − εk+1 − CiAix̂k − CiAτix̂k−τk)

=Mi(Cixk+1 +Diνk+1 − εk+1 − CiAix̂k − CiAτix̂k−τk)

=Mi

(
Ci(Aixk +Aτixk−τk +Biωk + Eifk) +Diνk+1 − εk+1 − CiAix̂k − CiAτix̂k−τk

)
=Mi(CiAiek + CiAτiek−τk + CiBiωk + CiEifk +Diνk+1 − εk+1). (13)

In the case of MiCiEi = I, we rewrite f̂k as

f̂k =MiCiAiek +MiCiAτiek−τk +MiCiBiωk + fk +MiDiνk+1 −Miεk+1. (14)

Let f̃k = f̂k − fk. We have

f̃k =MiCiAiek +MiCiAτiek−τk +MiCiBiωk +MiDiνk+1 −Miεk+1. (15)

It is easy to find from our developed filter (5) that the estimation error on the fault signal is independent
on fk by setting MiCiEi = I. The rationality of such a setting is to guarantee that the fault estimation
performance is completely unimpeded by the fault signal (which might be unbounded). Note that the
condition MiCiEi = I holds if and only if rank(ET

i C
T
i , I) = rank(ET

i C
T
i ). As such, according to

Assumption 1, the value of the matrix Mi can be calculated by

Mi = [(CiEi)
T (CiEi)]

−1(CiEi)
T . (16)

Moreover, the interpretation of the exponentially ultimate bound is introduced in the following defini-
tion.

Definition 1. The solution of the system (10) is said to be exponentially ultimately bounded in mean
square if there exist constants α > 0, 0 < β < 1 and l̄ > 0 such that

E{∥ek∥2} 6 αβk + lk, and lim
k→+∞

lk = l̄. (17)

It is obvious that, with Assumption 1, the fault estimation error f̃k is bounded if and only if ek is
bounded. At this regard, the main objective of this paper is to design a fault estimator in the form of
(5) such that the estimation error is exponentially ultimately bounded and the design of the estimator
gains satisfy (17).

3 Main results

In this section, sufficient conditions are established to guarantee the stability and exponentially ultimately
bounded constraints on the estimation error of state and fault. Before proceeding further, the following
parameters are introduced firstly.

Consider the estimator (5) for the system (1) with fault and event-triggered measurements. If (8) and
the following relationships hold 

Ei = HiCiEi

Ti = I −HiCi

Fi = Ai −HiCiAi −Ki1Ci

Fτi1 = Aτi −HiCiAτi −Kτi1Ci

Ki2 = FiHi

Kτi2 = FτiHi

(18)
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then the state error estimation (11) reduces to

ek+1 =Fiek + Fτiek−τk + TiBiωk −Ki1Dνk −Kτi1Diνk−τk −HiDiνk+1 +Ki1εk

+Kτi1εk−τk +Hiεk+1 (19)

where Fi, Fτi, Ti, Ki1, Kτi1, Hi are parameters to be designed.

Theorem 1. Consider the system (1) with the given parameters λ, θ of the dynamical event-triggered
mechanism (2)-(3) and the gains Ki (i = 1, 2, · · · , N). The estimation error system (15) is exponentially
ultimately bounded if there exist positive scalars p, q, positive definite matrices Pi ∈ Rnp×np (i =
1, 2, · · · , N), Q ∈ Rnq×nq , and positive scalars κj (j = 1, 2, · · · , 5) satisfying

Γi ,
[
Σi Φi

∗ −P̄i

]
< 0, i = 1, 2, · · · , N (20)

where

Σi ,



−Pi + (1 + τ̄ + τ)Q 0 0 0 0

∗ −Q 0 0 0

∗ ∗ Λ11 0 0

∗ ∗ ∗ Λ22 0

∗ ∗ ∗ ∗ λ−q
θ I



Λ11 , diag{−κ1I,−κ2I,−κ3I,−κ4I,−
p+ κ5

θ
I,−1

θ
I,−κ5I}, Λ22 , κ5λ+ p(λ− 1) + (1 + τ̄ − τ)q

θ
I

Φi ,
[
Φi1 Φi2

]T
, Φi1 ,

[
P̄iFi P̄iFτi P̄iTiBi −P̄iKi1Di −P̄iKτi1Di −P̄iHiDi

]
Φi2 ,

[
−P̄iKi1 −P̄iKτi1 P̄iHi 0 0

]
, P̄i ,

N∑
j=1

πijPj ,

ρ , σ

θ

(
p+ 1 + κ5(1 + θ)

)
+ κ1d

2
1nω + (κ2 + κ3 + κ4)d

2
2nν .

Besides, if the inequality (20) holds, then, the ultimate bound of the error (19) can be given as

l̄ , u0

b5(u0 − 1)
ρ (21)

with

a , λmax(Σi +ΦiP̄i
−1

Φi
T ), b1 , max{(1 + τ̄ − τ)λmax(Q), (1 + τ̄ − τ)q}

b2 , max{λmax(Pi),
p

θ
}, b3 , ua+ (u− 1)b2 + b1τ̄u

τ̄

b4 , max{b1(1 + τ̄), b2(1 + τ̄)}, b5 , min{λmin(Pi),
p

θ
}

u0a+ (u0 − 1)b2 + b1τ̄u
τ̄ = 0.

Proof. Choose the following candidate functional

Vk , V1,k + V2,k

V1,k , eTk Pθkek +
k−1∑

l=k−τk

eTl Qel +

−τ∑
m=−τ̄+1

k−1∑
l=k+m

eTl Qel

V2,k , 1

θ
(pηk +

k−1∑
l=k−τk

qηl +

−τ∑
m=−τ̄+1

k−1∑
l=k+m

qηl)

(22)
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The difference ∆Vk of the system (1) is calculated as follows

E{∆V1,k|θk = i} =E{V1,k+1 − V1,k|θk = i}

=E{eTk+1Pθk+1
ek+1 − eTk Pθkek +

k∑
l=k+1−τk+1

eTl Qel −
k−1∑

l=k−τk

eTl Qel

+

−τ∑
m=−τ̄+1

k∑
l=k+1+m

eTl Qel −
−τ∑

m=−τ̄+1

k−1∑
l=k+m

eTl Qel|θk = i}

= eTk+1(

N∑
j=1

πijPj)ek+1 − eTk Piek + eTkQek +

k−1∑
l=k+1−τk+1

eTl Qel

−
k−1∑

l=k+1−τk

eTl Qel − eTk−τk
Qek−τk +

−τ∑
m=−τ̄+1

(eTkQek − eTk+mQek+m)

6 eTk+1(

N∑
j=1

πijPj)ek+1 − eTk Piek + eTkQek +

k−1∑
l=k+1−τ̄

eTl Qel

−
k−1∑

l=k+1−τ

eTl Qel − eTk−τk
Qek−τk +

k−τ∑
l=k−τ̄+1

(eTkQek − eTl Qel)

= eTk+1P̄iek+1 − eTk Piek + eTkQek − eTk−τk
Qek−τk +

k−τ∑
l=k+1−τ̄

eTl Qel

+ (τ̄ − τ)eTkQek −
k−τ∑

l=k−τ̄+1

eTl Qel

= eTk+1P̄iek+1 + eTk
(
− Pi + (1 + τ̄ − τ)Q

)
ek − eTk−τk

Qek−τk . (23)

E{∆V2,k|θk = i} =E{V2,k+1 − V2,k|θk = i}

=
1

θ
(pηk+1 − pηk +

k∑
l=k+1−τk+1

qηl −
k−1∑

l=k−τk

qηl +

−τ∑
m=−τ̄+1

k∑
l=k+1+m

qηl

−
−τ∑

m=−τ̄+1

k−1∑
l=k+m

qηl)

=
1

θ

(
pηk+1 − pηk + qηk +

k−1∑
l=k+1−τk+1

qηl − qηk−τk −
k−1∑

l=k+1−τk

qηl

+

−τ∑
m=−τ̄+1

(qηk − qηk+m)
)

6 1

θ

(
pηk+1 − pηk + qηk − qηk−τk +

k−1∑
l=k+1−τ̄

qηl −
k−1∑

l=k+1−τ

qηl

+ (τ̄ − τ)qηk −
k−τ∑

l=k+1−τ̄

qηl
)

=
1

θ

(
pηk+1 − pηk + qηk − qηk−τk + (τ̄ − τ)qηk

)
6 1

θ

(
p(ληk + σ − εTk εk)− pηk + (1 + τ̄ − τ)qηk − qηk−τk

+ (ληk−τk + σ − εTk−τk
εk−τk)

)
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= q1ηk + q2ηk−τk − p

θ
εTk εk − 1

θ
εTk−τk

εk−τk +
p+ 1

θ
σ (24)

where

q1 =
p(λ− 1) + (1 + τ̄ − τ)q

θ
, q2 =

λ− q

θ
.

Furthermore, by Assumption 1, the inequalities ∥ωk∥∞ < d1, ∥νk∥∞ < d2 can be rewritten as
κ1(d

2
1nω − ωT

k ωk) > 0

κ2(d
2
2nν − νTk νk) > 0

κ3(d
2
2nν − νTk−τk

νk−τk) > 0

κ4(d
2
2nν − νTk+1νk+1) > 0,

(25)

and according the triggering conditions (2) and (3), one has

κ5(
1

θ
ηk+1 + σ − εTk+1εk+1) =κ5(

1

θ
(ληk + σ − εTk εk) + σ − εTk+1εk+1)

=κ5(
λ

θ
ηk − 1

θ
εTk εk − εTk+1εk+1 + (1 +

1

θ
)σ) > 0. (26)

Considering (23)-(26) and noticing (19), it can be known that

E{∆Vk|θk = i} 6 (Fiek + Fτiek−τk + TiBiωk −Ki1Diνk −Kτi1Diνk−τk −HiDiνk+1

+Ki1εk +Kτi1εk−τk +Hiεk+1)
T P̄i(Fiek + Fτiek−τk + TiBiωk

−Ki1Diνk −Kτi1Diνk−τk −HiDiνk+1 +Ki1εk +Kτi1εk−τk +Hiεk+1)

+ eTk
(
− Pi + (1 + τ̄ − τ)Q

)
ek − eTk−τk

Qek−τk

+ q1ηk + q2ηk−τk − p

θ
εTk εk − 1

θ
εTk−τk

εk−τk +
p+ 1

θ
σ

+ κ1(d
2
1nω − ωT

k ωk) + κ2(d
2
2nν − νTk νk) + κ3(d

2
2nν − νTk−τk

νk−τk)

+ κ4(d
2
2nν − νTk+1νk+1) + κ5(

λ

θ
ηk − 1

θ
εTk εk − εTk+1εk+1 + (1 +

1

θ
)σ)

= ξk
T (Σi +ΦiP̄

−1
i ΦT

i )ξk +
σ

θ

(
p+ 1 + κ5(1 + θ)

)
+ κ1d

2
1nω + (κ2 + κ3 + κ4)d

2
2nν

= ξk
T (Σi +ΦiP̄

−1
i ΦT

i )ξk + ρ (27)

where

ξk ,
[
ξ1,k ξ2,k

]T
ξ1,k ,

[
eTk eTk−τk

ωT
k νTk νTk−τk

νTk+1 εTk εTk−τk
εTk+1

]
, ξ2,k ,

[
η

1
2

k η
1
2

k−τk

]
.

By the Schur complement lemma, the inequality (20) is true if and only if the following condition holds

Σi +ΦiP̄i
−1

Φi
T < 0. (28)

so we further have

E{∆Vk|θk = i} 6 a∥ϕk∥2 + ρ

(29)

where

ϕk ,
[
eTk η

1
2

k

]T
. (30)
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From (22), it can be obtained that

Vk 6 (1 + τ̄ + τ)λmax(Q)

k−1∑
l=k−τ̄

∥el∥2 + λmax(Pi)∥ek∥2 + (1 + τ̄ + τ)q

k−1∑
l=k−τ̄

ηl +
p

θ
ηk

= b1

k−1∑
l=k−τ̄

∥ϕl∥2 + b2∥ϕk∥2. (31)

For a given scalar u > 1, we have

uk+1Vk+1 − ukVk =uk+1(Vk+1 − Vk) + (u− 1)ukVk

6uk+1(a∥ϕk∥2 + ρ) + (u− 1)uk(b1

k−1∑
l=k−τ̄

∥ϕl∥2 + b2∥ϕk∥2)

=uk
(
ua+ (u− 1)b2

)
∥ϕk∥2 + (u− 1)ukb1

k−1∑
l=k−τ̄

∥ϕl∥2 + uk+1ρ. (32)

Let s > τ̄ + 1 be a positive integer. Summing up k from 0 to s− 1 on both sides of the (32), we have

s−1∑
k=1

E{uk+1Vk+1 − ukVk|θk = i} =
(
ua+ (u− 1)b2

) s−1∑
k=1

uk∥ϕk∥2 + (u− 1)b1

×
s−1∑
k=1

k−1∑
l=k−τ̄

uk∥ϕl∥2 +
s−1∑
k=1

uk+1ρ.

(33)

By simplifing (33), one has

usVs − V0 6
(
ua+ (u− 1)b2

) s−1∑
k=1

uk∥ϕk∥2 + b1
τ̄uτ̄

u− 1
max

−τ̄6l60
∥ϕl∥2(u− 1)

+ (u− 1)b1τ̄u
τ̄
s−1∑
l=0

ul∥ϕl∥2 +
u(1− us)

1− u
ρ

= b1τ̄u
τ̄ max
−τ̄6l60

∥ϕl∥2 + b3

s−1∑
k=0

uk∥ϕk∥2 +
u(1− us)

1− u
ρ

(34)

where b3 , ua+ (u− 1)(b2 + b1τ̄u
τ̄ ).

When u = 1, b3 = a < 0, and u = +∞, b3 = +∞, we can acquire a scalar u0 > 1 such that b3 = 0.
Thus, we eventually obtain

u0
sVs − V0 6 b1τ̄u

τ̄
0 max
−τ̄6l60

∥ϕl∥2 +
u0(1− us

0)

1− u0
ρ.

(35)

From (23), it is obvious that

V0 6 b1

−1∑
l=−τ̄

∥ϕl∥2 + b2∥ϕ0∥2 6 b4 max
−τ̄6l60

∥ϕl∥2 (36)

where b4 , max{(τ̄ + 1)b1, (τ̄ + 1)b2}. Moreover, according to the definition of the Vk one has

Vs > b5∥ϕs∥2 (37)
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where b5 , min{λmin(Pi),
p
θ}. Substituting (36) and (37) into (35), we have

∥ϕs∥2 6 b1τ̄u
τ̄
0 + b4

b5us
0

max
−τ̄6l60

∥ϕl∥2 +
u0(1− us

0)

b5us
0(1− u0)

ρ.

(38)

Finally, we have

E{∥e(k)∥2} 6 ∥ϕk∥2 6 αβk + lk, and lim
k→+∞

lk = l̄. (39)

By Definition 1, it is obvious that the error (19) is exponentially ultimately bounded when letting

α =
b1τ̄u

τ̄
0+b4
b5

, β = 1
u0
, lk =

u0(1−us
0)

b5us
0(1−u0)

ρ. Besides, the ultimate bound is

l̄ = lim
k→+∞

lk =
u0

b5(u0 − 1)
ρ. (40)

So far, ek has been proved exponentially ultimately bounded already.
For (15), it is easy to see that f̃k is relevant with ek, ek−τk , ωk, νk+1 and εk+1. Furthermore, note that

ωk and vk+1 are bounded, which implies that if the dynamics of ek, ek−τk and εk+1 are exponentially
ultimately bounded, then the dynamics of f̃k will be also exponentially ultimately bounded.

Furthermore, from (31) and (39) it is easy to see that Vk and ek are exponentially ultimately bounded.
Considering the dynamical function (2) we have introduced yet, one has

1

θ
ηk + σ − εTk εk > 0 (41)

i.e.,

εTk εk 6 1

θ
ηk + σ. (42)

According to (22), it is obvious that 1
θηk is exponentially ultimately bounded, for (42) we know that

εk is exponentially ultimately bounded. Thus, we have proved that the estimation error of fault f̃k is
exponentially ultimately bounded. The proof is now complete.

Based on the performance analysis in Theorem 1, the design method of the observer will be given in
the next theorem.

Theorem 2. Consider the system (1) with the given parameters λ, θ of the dynamical event-triggered
mechanism (2)-(3). The error dynamics (15) is exponentially ultimately bounded if there exist positive
scalars p, q, positive definite matrices Pi (i = 1, 2, · · · , N), Q, matrices Xi, Xτi (i = 1, 2, · · · , N) and
positive scalars κj (j = 1, 2, · · · , 5) satisfying

Ξi ,
[
Σi Ωi

∗ −P̄i

]
< 0, i = 1, 2, · · · , N (43)

where

Ωi ,
[
Ωi1 Ωi2

]T
, P̄i ,

N∑
j=1

πijPj ,

Ωi1 ,
[
(P̄iFi)

T (P̄iFτi)
T (P̄iTiBi)

T −(XiDi)
T −(XτiDi)

T −(P̄iHiDi)
T
]
,

Ωi2 ,
[
XT

i XT
τi (P̄iHi)

T 0 0
]
,

and Σi is given in Theorem 1. In this case, the required observer parameters are given by

Ki1 = P−1
i Xi, Kτi1 = P−1

i Xτi, i = 1, 2, · · · , N. (44)
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Proof. By adopting the Schur Complement Lemma and letting PiKi1 , Xi, PiKτi1 , Xτi, we can see
that (20) holds if and only if (43) is fulfilled. The proof is now completed.

Corollary 1. For given parameters λ, θ of the dynamical event-triggered mechanism (2)-(3), the error
dynamics (15) is exponentially ultimately bounded if there exist positive scalars p, q, positive definite ma-
trices Pi (i = 1, 2, · · · , N), Q, matrices Xi, Xτi (i = 1, 2, · · · , N) and positive scalars κj (j = 1, 2, · · · , 5)
such that (43) holds. Moreover, the minimum of the asymptotic upper bound of E{∥ek∥2} can be obtained
by solving the following optimization problem

min
{σ

θ

(
p+ 1 + κ5(1 + θ)

)
+ κ1d

2
1nω + (κ2 + κ3 + κ4)d

2
2nν

}
(45)

subject to (43).
Proof. According to Theorem 2, the results of this corollary are obvious, and thus the corresponding
proof is omitted.

Until now, a desired observer is designed in Theorem 2 such that the system (5) achieves exponentially
ultimately bound under the dynamic event-triggered mechanism (2)-(3).

4 Simulation results

In this section, a numerical example is given to demonstrate the correctness and effectiveness of our
developed estimator approach.

Example: Consider a class of discrete-time-delay Markovian jump system described by (1) with the
following parameters:

A1 =

[
0.1 0.2

0.5 −0.1

]
, Aτ1 =

[
0.01 0

0 0.02

]
, B1 =

[
0.2 −0.3

]
, C1 =

[
0.1 0.3

]
,

A2 =

[
0.73 0

0 −0.2

]
, Aτ2 =

[
0.01 0

0 0.02

]
, B2 =

[
0.2 −0.4

]
, C2 =

[
0.1 0.2

]
,

E1 =
[
2 2

]
, E2 =

[
1 1.5

]
, D1 = 0.1, D2 = 0.2.

Suppose that the discrete time homogeneous Markov chain takes values in a finite state space S = {1, 2}
with a transition probability matrix

Π =

[
0.9 0.1

0.3 0.7

]
.

The time-varying delay is taken as τk = 2+ sin(kπ), from which we have τ̄ = 3 and τ = 1. The noises
are given as ωk = 0.1 sin(0.5k) and νk = 0.1 sin(0.5k), respectively. For the dynamic triggering conditions
(2) and (3), the initial value of the internal dynamic variable is set as η0 = 0, and the threshold is chosen
as σ = 0.1 and other parameters are taken as λ = 0.1, θ = 20.

In the simulation, we consider the following piecewise fault:

fk =


2.5 sin(k), 10 6 k < 20

fk−1 + 0.8 sin(1.5k), 20 6 k < 30

fk−1 − 1, 30 6 k < 40

0, otherwise.

By utilizing the MATLAB LMI Toolbox, a set of feasible solutions of the inequalities (20), (43) are
acquired as follows

K1 =
[
−0.1875 0.0625

]
,K2 =

[
1.7438 −0.8719

]
,

Kτ1 =
[
−0.0188 0.0063

]
,Kτ2 =

[
−0.0187 0.0062

]
.



Du X T, et al. Sci China Inf Sci 12

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60
-5

0

5

10

15

20

Figure 1 The trajectories of x1k and x̂1k Figure 2 The trajectories of x2k and x̂2k
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Figure 3 The trajectories of the state estimation error e1k
and e2k

Figure 4 The trajectories of fk and f̂k

Set the simulation runs length to be 60. Based on the derived observer gain matrices, simulation results
are shown in Figures 1- 6. Figures 1- 2 concern the state trajectories and their estimates, respectively.
Figure 3 plots the estimation error trajectory of the state. Figure 4 shows the fault trajectory and its
estimate. Figure 5 displays the estimation error trajectory of the fault. All simulation results confirm
that the estimation performance is well achieved.

In order to show the superiority of the dynamic event-triggered mechanisms, the dynamic triggering
results are shown in Figure 6. From Figure 6, it can be seen that, by introducing the dynamic event-
triggered mechanism, the information transmission is reduced and network resources are saved effectively.

5 Conclusion

In this paper, the UIO-based fault estimation problem has been addressed for a class of discrete MJSs
with time-varying delay subject to the dynamic event-triggered schemes. A discrete-time version dynamic
event-triggering mechanism has been proposed to save energy. The fault estimator has been constructed
based on the UIO method. By adopting an appropriate Lyapunov-Krasovskii functional, sufficient condi-
tions have been established for the desired estimators to guarantee exponentially ultimate bound on the
estimation error. The estimator gains have been calculated by solving a set of matrix inequalities. Final-
ly, numerical examples have been provided to illustrate the correctness and effectiveness of the proposed
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Figure 5 The trajectory of the fault estimation error f̃k Figure 6 The dynamic triggering instants for estimator

estimation method.

The event-based fault diagnosis problem is still a hot yet challenging research area. Further research
topics include the extension of the main results to the fault diagnosis problem for time-varying systems
subject to the dynamic event-triggered mechanism, which has important theoretical significance and
broad application prospects.
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