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Event-Triggered Recursive State Estimation for
Stochastic Complex Dynamical Networks under
Hybrid Attacks

Yun Chen, Xueyang Meng, Zidong Wang and Hongli Dong

Abstract—In this paper, the event-based recursive state esti- control and synchronization for CDNs [5], [22], [27], [37],
mation problem is investigated for a class of stochastic complex [40], [41], [43]. It is worth mentioning that the SE problem for
dynamical networks under cyber-attacks. A hybrid cyber-attack N which serves as a key role in understanding the network

model is introduced to take into account both the randomly d . d fulill tai . . . s i
occurring deception attack and the randomly occurring denial-of- ynamics and fullifing certain engineering requirements, 1s a

service attack. For the sake of reducing the transmission rate and fundamental issue stirring persistent research attention.
mitigating the network burden, the event-triggered mechanism Different from the isolated systems, the CDNs exhibit some

is employed under which the measurement output is transmitted djstinctive features (e.g. large scale and strong coupling)
to the estimator only when a pre-set condition is satisfied. An that make the SE problem complicated and difficult. With

upper bound on the estimation error covariance on each node is .
first derived through solving two coupled Riccati-like difference hope to handle the SE problem for CDNs, some effective

equations. Then, the desired estimator gain matrix is recursively Methodologies have been developed in literature, see [11],
acquired that minimizes such an upper bound. By means of the [17], [18], [23], [44]. For example, in [23], [44], the Lyapunov

stochastic analysis theory, the estimation error is proved to be stability theory and the state augmentation technique have
stochastically bounded with probability 1. Finally, an illustrative  phean ysed to deal with the state estimator design issue for
example is provided to verify the effectiveness of the developed CDNs. For nonlinear stochastic CDNs, the extended Kalman
estimator design method. e ' )
filtering (EKF) has been put forward to tackle the covariance-
constrained SE problem in [11]. It should be stressed that the
estimation algorithms developed in above-mentioned literature
are based on the state augmentation technique. Nevertheless,
such an augmentation technique brings in certain drawbacks,
i.e., the computation complexity would be greatly increased
In the past decades, with the ever-increasing research intgiid the coupling relationship among the nodes is required
est on complex network theory and its applications, fruitfub be known. To avoid these two drawbacks, in [17], [18],
results have been published on complex networks [10], [3%]. non-augmentation method has been proposed with which
Generally speaking, a typical complex network is composefe recursive SE for stochastic CDNs with switching topology
of a great amount of nodes and edges which represent H#& been studied. The non-augmentation method proposed in
individuals and the coupling relationship among individual$17], [18] successfully avoids the increase of the computational
respectively. Due to the fact that the complex network can gemplexity stemming from augmentation [11].
used to characterize many real-world networks such as elecburing the data transmission through the shared commu-
trical power grids, communication networks, social networkaication channels, some network-induced phenomena (e.g.
neural networks and biological networks [1], [7], [31], [49]transmission delays, data collision and packet dropout) would
special attention has been paid on the dynamics analysis of ievitably occur due mainly to the limited network bandwidth-
complex dynamical networks (CDNs) to explore the evolutiog [3], [9], [11], [24]. In the past few decades, to reduce
law of the CDNs. Recently, a great number of research resutt® consumption of the limited network resources, various
have been reported on the state estimation (SE), pinnisgmmunication protocols have been introduced in the estima-

. . . _ tion/control for large-scale networked systems [8], [19], [24],
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paper. DoS attack and the randomly occurring deception attack as
In the networked environment, the cyber-attacks occur frepecial cases; 2) a non-augmentation technique is applied to
qguently which pose a serious threat on the network securiiycumvent the calculation of the cross-covariance matrices;
and the system performance [2], [6], [25], [46]. The widehand 3) by recursively solving two coupled Riccati-like differ-
investigated cyber-attacks include deception attack, denial-efice equations (RLDES), the EGM is obtained that minimizes
service (DoS) attack, and replay attack [20], [21], [39]. lthe upper bound on the EEC, and the stochastic boundedness
is worth noting that, due to the existence of the firewalkith probability 1 of the estimation error is analyzed.
software, the cyber-attacks cannot always be success, whicfihe remainder of this paper is organized as follows. In
leads to the randomly occurring cyber-attacks. Up to no®ection Il, the event-based recursive SE issue is formulated
special effort has been devoted to the SE problem under stochastic CDNs under the hybrid attacks. The main results
the randomly occurring cyber-attacks and plenty of researate given in Section Il and the boundedness analysis of the
results have been available [6], [26], [29]. In the existingstimation error is conducted in Section IV. A numerical
literature, it is often the case that onlysmgletype of attack example is given in Section V and the conclusion is drawn
has been considered. Nevertheless, in real practice, the attackSection VI.
are often hybrid. That is, different types of attacks occur Notation The notations in this paper are standard. For a ma-
alternatively with certain probabilities [20], [21], [39]. Suchtrix X, X > 0 means thafX is positive-definiteA~! denotes
a hybrid attack can effectively enhance the success possibititye inverse of the matri andA” denotes the transpose of the
of the attack. Note that, the system considered is only amatrix A. tr{ A} represents the trace of the matrix A block-
isolated system in most of the existing literature concernimiagonal matrix with diagonal elemenfS;, No,--- , N, is
SE problem under the hybrid attacks. When it comes to thepresented by digdvi, No,--- , N,,}. |z|| is the Euclidean
CDNs, the relevant results are relatively few, not to mentiamorm of a vector:. The probability of the event is denoted as
the simultaneous consideration of the ET protocol. Therefoie;{z}. E{z} refers to the expectation of a stochastic variable
another motivation of this paper is to shorten such a gap. =x.
In the stochastic control domain, the mean-square stability
and the stability in probability [14], [22], [33] are arguably  |I. PROBLEM FORMULATION AND PRELIMINARIES

two representative metrics in the system analysis. In particularCOnSider the following stochastic CDN witN nodes:
the mean-square stability, as one of most extensively used

stability concepts, has obtained persistent research attention N

due primarily to the close relation with the quadratic Lyapunov izt = f(2iz) + Z wijlwjz + Bi 2w L
function. For example, in [12], the mean-square exponential 9=l

boundedness analysis of the estimation error has been con- Yie = $(Ti,2) + Dizvi

ducted for stochastic CDNs with randomly occurring sensgfhere z;,, € R* (i = 1,2,...,N) andy;. € R™ denote

delays and random coupling strengths under the ET strategys state vector and the measurement output of ngde
In comparison with the mean-square stability, the performanﬁ%pectively.j(~) . R" —» R" and s(-) : R" — R™ are

analysis for stochastic systems in probability could provideigown nonlinear functions: 2 diag{71,72. - .., 7} denotes
milder perspective to characterize system dynamics enterip@ inner coupling matrix withy, > 0 (j = 1,2,...,n).
into a bounded domain in probability. Therefore, in this papeg, 2 wi;]n v represents the coupling configuration matrix,
we are going to investigate the boundedness of the estimatjgRere wy; is positive if the nodej links with the nodei.
error in probability in the SE problem for stochastic CDNS. . . andv; , are mutually independent zero-mean Gaussian
To respond to the above discussions, in this paper, the evepfiite noises with covariance®;. > 0 and R;, > 0,
based recursive SE issue is considered for a class of StOCha@%‘fJectively.Bi . and D, . are known real matrices with
CDNs under hybrid attacks. The difficulties encountered {pmpatible dimensions.
this paper include: 1) the establishment of a hybrid cyber- |, this paper, it is assumed that the nonlinear functipn:
attack model to account for the joint influences of randog. , , g» ands(-) : R* — R™ are continuously differentiable
DoS attack and random deception attack; 2) the reductigny satisfy the following Lipschitz conditions:
of the computational complexity resulting from the inversion

operation of high-dimensional matrices and the computation of [f(x) = f)l < ar]lz =yl @)
cross-covariance matrices among coupled nodes; 3) the devel-
opment of an algorithm to calculate the estimator gain matrix [s(z) = s(y)l| < ballz —yll 3)

(EGM) such that a certain upper bound on the estimation erwﬁere&1 andb, are known positive scalars.

covariance (EEC) is minimized; and 4) the consideration of theIn practical engineering, from the resource-saving perspec-

stochastic boundedness of estimation error in the probabilg\ye it is suggested to reduce the communication frequency
sense. '

. . T while preserving a satisfactory system performance. Therefore,
Corresponding to the above-mentioned difficulties, the mal b 9 y Sy b

N this paper, the ET strategy is employed in the sensor-to-

contributions of this paper can be outlined in the fO"OW'n%%imator channel. The event-triggering condition on the node

three aspects: 1) a unified cyber-attack model is propose designed as follows:

to take into account the joint impact from the randomly
occurring hybrid attack which covers the randomly occurring S(Yizr 004 2) e u;fzum — wmy'f,zym >0 4)
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whereu; . £ Yisi —Yi,2 with Yi,si being the latest transmittedmeasurement model under the randomly occurring DoS attack

measurementw; ., > 0 is a known time-varying scalar. model whene; . = 0 and the randomly occurring deception
With the event-triggering condition, the event-triggeringttack model wherr; , = d; . = 1. In particular, when
instants on nodeé are determined by ¢i,» = 1 andd; . = 0, the measurement output is successfully
, . , transmitted to the estimator without encountering any cyber-
siq = inf{z|s(yi, @i2) > 0,2 > s)}. ®)  attacks.

On the node, a zero-order holder is equipped to keep the Remark 3:By settingd; . = 0, (6) reduces to a model
latest transmitted measurement; when the event-triggering for the random DoS attack that has the similar effect as
condition is not satisfied. Hence, the measurement outph€ probabilistic packet loss phenomenon [3], [13], [15],
transmitted from the nodé to the estimator is described [44], [45], [47]. Actually, both the random DoS attack and

as follows: the probabilistic packet loss would lead to the measurement
A P ; missing problems in a probabilistic way. It should be noted
Yiz = Yisin Z € {stst+ 1, 8000 — 1) that, however, the causes of DoS attack and packet loss are

Remark 1:Up to now, in most existing results related to th&°mPpletely different. DoS attack is actively launched by the

recursive SE problem for stochastic CDNs, the measurem®&pglicious cyber attackers during communication transmission.

signal is assumed to be periodically transmitted to the esgn the other hand, the passive impact of packet loss results

mator [11], [12], [17], [18], [29], [44], [45]. Nevertheless, forgenera_lly.from the confllc'F Iqetween the large amount of
a large-scale CDN, frequent data transmissions would hea/fignsmission data and the limited networks resources.
increase the network loads and lead to a waste of the resource8ased on the received measurement signal the follow-
Hence, in this paper, the ET strategy is applied to redut state estimator is constructed for the nadat instant
unnecessary information transmissions [20], [26], [30], [34F, € st st41 — 1)
[51]. More specifically, it is known from (4) and (5) that the N
measurement output of nodds transmitted to the estimator - - -
if and only if the cF:)ndition (4) is satisfied. Consequently, the IZ’ZH‘Z_f(IZ’Z‘Z)Jr;w”FIJ’Z‘Z
information transmission is reduced and the resource of the . . _ TR
communication network is saved. e G DL CRUTR

It is notable that, although the prevailing network-based (7)
communication mechanism greatly facilitates the data ehere#; .. denotes the one-step predictionaf., Z; ..
changes among the components, the potential data safety isfi§otes the estimate of; . with initial value &; o, and
is arisen since the data may subject to malicious cyber-attaqk(%Z+1 is the EGM to be determined.
during the transmission. For the purpose of characterizing thepenote 7.

A - ~ A
X N i,241lz — Li,z+1 — Ii,z-&-l\z and Ii,z-‘rl\z-&-l =
cyber-attack as close to the reality as possible, the measwe: , — i, ..., as the prediction error and the estimation

ment received by the estimator is modeled as follows error, respectively. The prediction error covariance (PEC) and
: A - -1
gi7z _ Ci7z(gi,z + di7zgi,z) (6) EEC are deﬁned a?i’z+1|z+1 = E{xiwz+l‘z+lxi,z+l|z+l}

_ andP g, 2 E{Z;.11)22] ).}, respectively.
wherec; . andd; . are mutually independent Bernoulli dis- | this paper, the main objective is to develop the state
tributed variables satisfying the following statistical propertiegstimator (7) for the stochastic CDN (1) under the ET strategy
E{ci.} =Pr{ci.=1} =6 and the cyber-attacks such that:

E{d;.} = Pr{d;. =1} = d, o at each time instant, the EEC has an upper bound
' - ' ®; .4+1)2+1, Namely, there exists a time-varying positive
with 0 < ¢; <1 and0 < d; < 1 being positive scalars. definite matrix®; . .41 satisfying
In (6), 0i.- = —vi.» + {; . stands for the deceptive attack
signal injected by the hostile attacker, whéye is a bounded Pit1z41 < Qizpapzr1s
signal with¢F_¢; . < ¢; and/; being a given positive scalar. o _
Remark 2:1t should be mentioned that the measurement*® the upper boun®; . ;.. is minimized at each instant
model (6) is on the basis of the following engineering insights. 2 T 1 by the desired EGMK; ..
1) From the defenders’ viewpoint, most of the engineering To proceed further, several useful lemmas are introduced.
systems are equipped with anti-virus software to interceptLemma 1:For any vectorszy, 2o € R", 2122 + 2921 <
cyber-attacks. Thus, the attacks cannot always be implementegz! + o~'2,21 holds for any scalas > 0.
successfully but occur in a random way; 2) From the attackers’Lemma 2: [11] The compatibly dimensional matrices,
viewpoint, the attack behavior should be complicated enough F and G are given withGG™ < I. For a positive definite
(e.g. switching the attack behavior among various attaekatrix Y and a positive scalax > 0, if = '] — FYFT > 0,
mechanisms) to evade the attack detection and increase ttfen one has
successful ratio. Moreover, the model (6) is quite general that T
includes the measurement under the randomly occurring DoS (B+JGF)Y(B + JGF)
attack and the randomly occurring deception attack as special <BY '—aFF") BT + ot JJ".
cases. To be more specific, the model (6) is reduced to the
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Lemma 3: [11] For any compatibly dimensional matrices — + ¢; .41(1 — di 241)5(i,z41) — G(1 — di)s(%; .11)2)

O, P, Z andQ, the following equations hold + Ciog1dizi1linr + Ciog1 (1= diop1)Di oy 10 241)

orozp) oT pT ow(0zTP) PO =Ri 1% 241)2 — Cizp1 (1 = dizg1) Ki a1 Ui 11
97 - 07 —[cizr1(1 = di 1) — (1 — di)| Ki 2 15(%4 241)
H(OZPIQOZPY) o e
97 =20 OZPQP . Ci,z41Q4, 241484 24144, 241
— Ciap1(1 = diz1) K 241D 24105 241 (14)

IIl. ESTIMATOR DESIGN
Where%z 2+1 — £ I— Cz(l d )Kz z+1(SZ z+1+Gz z+1Hz z+l)

In this section, we are going to solve the design issue of|; is inferred from (12) that the PE®; . ,, . is calculated
the state estimator (7). First, we will derive upper bounds g

the PEC and EEC for each nodeThen, the EGM will be

derived which minimizes the upper bound on EEC. P 2t1)z
According to (1) and (7), the prediction err@g ... on (F” + Azzsz) P (Fs + A0 )T
nodei is calculated as
Tizr1)e =f(i2) = [(Ei22) + Z ZwijwilFE{fj,z\szz\z}FT +B;.Qi. B
N ®) j=11=1
+ Zwijr('rj,z - jjj,z\z) + Bi,zwi,z- N

: + ZwijE{[(Fi_; + A 2Ci 2T 2o T

Similarly, the estimation erraf; . |.41 iS computed as =1
| + 1% .3 (Fiz + A 2Ci2)" ) (15)

ji,erl\erl = i'i,z+1|z_Ki,z+l [gi,z-l-l_Ei(l_Ji)S(i'i,ZJer)]- L. i
(9) Moreover, it is evident from Lemma 1 that

Applying the Taylor series expansion method to the nonlin-

. 5 ~T T
ear functionf (z; .) aroundz; . . yields ZZwl.ﬂwllPE{xa,zlle,zlz}F
Jj=11=1
f(I’LZ) - .f(:&z z|z) + Ezjz 2|z + 0(|57i z\z|) (10) 1 N N
= wijwalB{E; 1,3, . + E12.8] 3T

whereF; . & af (@s, 2)|17 .—4,.,. Is the coefficient matrix and T2 ;; v R 21205212
o(|Z; -)-]) denotes the resulted high-order term. In addition, N
o(|%;,).]) is further represented as < Z I

~ ~ j=1

0(|xi,z|z|) - Ai,zci,zxi,ZIZ (11) !

- A N . .
where A4, . denotes the problem-based scaling matrix, arY&herewi = 2= wit- Also, one derives

the unknown time- -varying matrixC; . is used to describe N
the linearization error of the dynamical model that sa'usflesZwUE{ (Fi. + A 2Ci2)T; 2.0 i Z‘ZFT

C;, ZCT <. Jj=1
In view of (8), (10) and (11), we have + Fijz\z:i;rz‘z(Fi L+ ALCi)T
N N ’
i'iz z:Fi,z+Ai,zCi,z ji.zz"' wi'ri"zz < Wij Fiz+AizCiz Pizz Ez"l‘AizCizT
1)z =( )Zi | ;a = (19 _; il(FiatAi 2 Ci2) Pipa(Fi a4+ A 2 Ci ) (16)
+ Bi,zwi,z- +FP Z\ZF ]
Following the similar line of the treatment fof(z;.), [(Fz oA A2 Ci )P (Fra+ A Ci2) T
s(x;,.41) is rewritten as follows:
A ~ ~ wl Z z
S(xi,z-i—l) = S(xi,z+1|z) + Si,z-l—lxi,erl\z + O(|xi,z+1|z|) Z / ‘
(13)
s Be(@ires) It is concluded from (15)-(16) that
Wheresi,z-l-l = ax:;:rll |m,z+1:ii,z+1\z and Pi 1|2
0(|57i,z+1\z|) £ Gi,ZJrlHi-,erlji,z-l-lIz (1 +U_Ji)(Fzz +Az zcz z) zz|z(Ez +Az zOz z) (17)
with G, .11 being the problem-based scaling matrix, and T
H; .11 being an unknown time-varying matrix satisfying (1+ci) Zw” i+ BizQizB
Hi7z+1Hz z+1< I
Taking (9) and (13) into consideration, one has Next, in light of (14), the EECP; . ,|.4: is deduced as
ji,erl\erl Pi,z+1|z+1

- T _ -
= 241)> — Kizq1[cizr1(1 = di 241) Ui 211 =R 1Pz R F a1 — di) K 1 B{ui .1
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xuf KD+ (61— di) = & (1= di)*1K; 21
X B{s(2i 241)s" (i 21 J KL 1 + Cdi Ky 241

X ]E{&,erngzH}KiT,zH + (1 = di)Ki-41Di 211
X Ri,z+1DZZ+1KEZ+1 + itz + %z:i,z-i—l

+ iz 41 + S§72+1 + Qi3 21 + %z;,z+1

T T
+ Sid,e+1 + S o1 T Sisz1 + S5 00

where
Sit,e1 = — (1 — sz')E{%i,z+1fi,z+1|zUZZHKZZH}
Sigar1 = — EiJi]E{mi,z+1j7i,z+léz:z+1KZZ+1}
Sz ar1 = —erd;(1 — Czi)E{Kz‘,zHS(fCi,zﬂ)E;TF,ZHKZZH}
Sig o1 = [6(1 = di) =& (1 - dy)”]

X B{Ki o182 z1)ui 1 K40 }

A * T T T
Sis,zr1 = Gi(1 — di) B{K; zy1ui 1101 Di (1 K )

Taking the nonlinear constraint (3) into account, it is readily

seen that

E{s(2i-11)s" (€i211)}
<E{||s(zi,-+1)*}H
<SE{bF[|2s 241 (1P}
:bftf{E{fCi,zﬂisz PH.

By using the elementary inequality in Lemma 1, the UPPerg{x;,

bound onz; z+1xl .41 Is calculated as

xi,z+1z3:z+1

:(i'z z+1|z+i'i z+1|z)(i'i z+1|z+i'i,z+1|z)T
(1 + 0'1) T z+1|z i z+1\z
+ (140 h)d Zi 2412 g:z+1|z

whereo is a positive scalar. Then, we have

E{s(i-11)s" (i 211)}
Sbitr{(l'i_o'l)ﬂ,z-i-l\z + (1 +U;1)‘%i,z+l\zjg:z+1|z}l

A —
=Ei1,2+11.

Recalling the ET mechanism (4) and the definitiorut,
for any z € [s}, s;,; — 1], one has
E{ui zs1uf L1}
<E{u], 1wz}
<wi B{y} . 1Viz41
<w; »(Zi1,241 + E{DZZ+1DZZ+1Di,z+1vi,z+1})I-

(18)

Moreover, noting the fact that (Ir,I';) = tr(T'2T";) with

I'; and T’y being matrices with compatible dimensions, one

obtains
E{v], 1D, ;1 Dizs1viz41}
=E{tr{v; . 1D} .11 Diz110i241}}
:E{tr{DiysziﬁzﬂvszDZZ“}}
=tr{D; .11 Ri - 1D}, 1}

19)

5

It is observed from (18) and (19) that
E{Ui,z+1uzz+1} < w1l

A —
whereA; .11 = Ei1 41 + tr{Di,z+1Ri,z+ngjz+1}-

With the help of Lemma 1, the following inequalities hold:

Sit,z41 + sa,erl
<&i(1 = di)(02Ri o1 Piosn) o R1 .1
+ U;1Wi7zAi,z+1Ki,z+lng+l)7
Size41 + St
<c;d (03%1 4155, z+1|z%z z41
+ 03 Kip Bl o1 l], 3K, )
<é;d (0'39‘%Z Y z+l|zmz 21T 03 KiszrlZiKiT,ZJrl)’
Sig,e41+ S \fis,zﬂ
<&d;(1 - d;)K;, z+1(04E{5($z‘,z+1)
+ oy ' B{li il 0 DK
<Edi(1 = di)K; 241(04Z01 241 + 05 GV,
Sidet1 + Shai1
<[l —di) = & (1 = di)*) K o1 (05E{ (2 241)

X 5T (i 201)} + 05 @i A1) KL

sT(2i241)}

whereo; (i =2,3,4,5) are given positive scalars.

Note that(y; .1 — ¥i=+1)v].41 = 0 holds forz = si.
Moreover, forz # s}, it is known that
i1tz v) o DY K )

:E{Ki,zﬂ(yi,s;'ﬂ - yi,z+1)UZz+1DZz+1ng+1}
=E{—Ki-11[8(ziz11) + Diz1vi 1)), DL K0}
:E{—Ki 241Di 2 410;, z+1UiTz+1DiTz+1KiT,z+1}
=—Ki.1Diz1Ri- 1D}, K.

Therefore, it is concluded that

T
Sis,z+1 + Sis 41
— 7 T T
= =261 = di)Kiz41Di 241 Ri 211 D; . 1 K .11 < 0.

In combination of the above discussions, the upper bound

on the EECP; .. is calculated as follows:
H,z+1\z+l
T — T
<R o1 B o1 R g1 e KB a1 K L
+ n3wy, zAz z+1Kz z+1K1 z+1 + 7’L4£ Kz z+1Kz z+1
+ nSKz z+1Dz z+1Rz z+1Dz z+1K1 241

(20)

where
n 2 1+¢6(1 —d;)os + edios
n2 £ 6(1 = d)[(1 = &(1 = di))(1 + 05) + idiod]
n3 2 (1 —d)1+oy" + (1 —¢c(1—di))os ]
ny 2 Gdi[1 + a;l +ci(l- Ji)ail]

>

ns = 61(1 — (L)
In the following theorem, an upper bound &, 1., is

presented and the EGM minimized such an upper bound is

given.
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Theorem 1:For given positive scalarg; ., ;. and0 <
o¢ < 1/N, if the following two coupled RLDEs:

(I)i,z+l|z
2(1+@)[F (97, — (1 + 06)pi 1) Fr
+ Uglp;;Ai,zA;l:Z] + Bi,zQi,ng:z (21)
N

=+ (1 + (Di) Zwijl—‘q)j,ﬂzrrr

j=1
and
cI)i.,erl\erl
En[(I -1 - Ji)Ki,erlSi,erl)(q);zlJr”z

—(L+06) i,z D) T (I =8(1 — di) K; 2415 21) "

+ 06 iy a1C (L= di)2 K 201G o G K14 (22)
+ 2K o151 KL

+ n3wi,zAi,z+lKi,z+1KZZ+1 + n4é_iKi,z+1Ki];Z+1

+n5Ki 211 Di 1 Ri o1 D), K

with initial condition P; 5o < ®; o have positive definite
solutions®; .. and®; . .41 such that

o1 > (1+06)pi-T (23)
and
® . > (L 06)pizl (24)

hold, then®; ., |., is an upper bound oF; ... More-

6

where®; .|, is given in (21). Furthermore, it is obvious that

éRi,z-l-IPi,erHzészerl
<[I-¢&(1 - Ji)Ki7Z+1Si7Z+1][Pi,_zl-l-1|z
[[—ci(1 —di)K; .+1S8..11]"
+ (1 +06) it 6 (1= di)’ Ki o1 Gionn GF L KLy
<[I—e:(1 = di)Kiz1Sio1] [Py = (14 06) o1 1]
[I—ci(1 = di)K; o 15,41]"

11 =2 72 T T
+06 Mo 1C (1= di) Ki o 11Gio1Gy 1 KLy

—(1+o6) iz 1]t

(27)
Then, it is inferred from (20) and (27) that

Pii1z41 S @i aq1)2m1

where®; .., is defined in (22).
In terms of Lemma 3, taking the partial derivative of the
trace of®; ., .1 with respect toK; . results in

otr(®; .1 1)241)
0K »41

= —2m16(1 — Ji)[q{jﬂlz— (1+ o6)pi=11]7"S], 14
+ 2116 (1 — di)Ki 115 241
X [‘I)i_,z1+1|z -1+ Uﬁ)Mz‘,z+1I]715iT,z+1
+2mc (1 —di)?og iy 2y Kiz1Gi a1 Gy
+ 202K 211501 a g1 ] + 203K o100 2 A 1 ]
+ 204 K i 6] +2n5 K oy D oy Ri oa D]

Letting %ﬁ“) =0, the EGMK; .+, can be calcu-
lated by (25). The proof of this theorem is complete. m
Remark 4:1tis known from the third term of the right-hand

over, the EGMK; . that minimizes such an upper bound igide in (22) that the ET mechanism has a major influence

determined by

K1

:nléi(l

- Ji)[(b;,zl+1|z — (14 o6) iz 1)1 ST 44
X [n16(1—d;)Si, 21 ((P;zl-‘,-“z —(I+o6)pinl) ' SE
+ nléf(l — c{i)zaglugzl+lGi7z+1GZZ+1 + 1281 2411
+n3wi A s I +n4l: T+n5D; o Ri,z+1DEZ+1]71-

(25)

Proof: It follows from Lemma 2 that

(E,z + Ai,zci,z)ﬂ,z\z(}?i,z + Ai,zci,z)T
SFz',z[P-_l _(1+Uﬁ)pi,zl]_ngz+(1 + 06)_1p;;Ai,zA3:z

i,z|z

<F;.[P ), —(1+06)pi- 1] ' F 405 ' p; 1 Ai - AL

i,2|z

(26)

Then, using Lemma 3 in [13] and substituting (26) into (17),

we have

H,z+1\z S q)i,erl\z

on the estimation performance. More specifically, a small
thresholdw; . would lead to a small upper bound on the EEC.
Conversely, a largev; ., leads to a slow data transmission
frequency and a large upper bound on the EEC. Thus, it is
of vital importance to choose a suitable threshold to achieve
a proper balance between the estimation performance and the
resource consumption.

Remark 5:1t is well recognized that the augmentation
technique serves as an effective tool for the analysis and
synthesis of CDNs [11], [45]. Nevertheless, the augmentation
technique would unavoidably bring in the inversion operation
of high-dimensional matrices and the computation of cross-
covariance matrices among coupled nodes. Therefore, inspired
by [12], [17], [18], the non-augmentation method is adopted
in this paper to handle the event-based recursive SE problem
for stochastic CDNs with hybrid attacks, and the difficulties
caused by the augmentation technique are avoided.

IV. BOUNDEDNESSANALYSIS

In this section, we will analyze the boundedness of the
estimation error. First, some preliminaries are presented to
facilitate the subsequent boundedness analysis.
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Definition 1: For given positive scalars < 1 and§ < 1,
if there exists a positive scalax(e, §) with ||Zg0 < o(e, ),
where||Zo|| is the known initial condition, satisfying

2 : T
+ E{nlwl zB éRz Z+1(I)l Z+1|Z+1§Ri,z+lBi,zwi,z
i=1
T T T 1
+ n5vi,z+1Di,z+lKi,z+1q)z Z+1|Z+1Ki.,z+1Di,z+1Ui,z+1}

Pri{||z, .|| <e}>1-0,
{22121l < €} whereY; ., 2 F;, + A; .Ci ..

then the estimation errof. . is said to be stochastically Then, from Lemma 2 and (21)-(22), we have

bounded in probabilityl — 0. Furthermore, if there exists a _ 1 AT

) > . ) i

scalarg > 0 with ||Zg)o|| < o satisfying Dizpre 2 (L 0)Yi (P2, = pizd) Y,

Z (1 + wi)}/;,zq)i,z\zl/;‘,z

D q1): > (1 + @i)wi; D . T7T
thenz. . is stochastically bounded in probability 1. Qi g1z > B;.Q;.BY,

Lemma 4:(Chebyshev inequality [14]) For an arbitrary
random variabl&® > 0 with the meanE{X}, one has

]E{N} _
Pr{ > o} < D f1)zg1 = n2Ki,z+1:i1,z+1Ki7:z+1

T
Dit1jz41 = n3wWi 2 A1 K1 KLy

Pr{ lim [|Z..[| <} =1,

—1 —1pnT
(I)i,z+1|z+1 Z nléRi,z-i-l ((I)i,z-i-l\z - ,Ufi,z-l—ll) 8%1‘7z.|-1

T
>R 1Py 1R

whereo is a positive scalar. -
Assumption 1:The upper bounds of PEC and EEC satisfy  ®; .41j.41 > naliKi .1 K]
®- Zlﬂ‘z < BNy, .1 and @ lez < H8p; .1, where N <
A< 1jrfN and )\ is a positive scalar.
Assumption 2:There exist positive scalarsand¢ satisfy-
ing ¥ < p;. <&andd < p, . <. 5
It is easily known from Assumptions 1-2 and (23)-(24) thatznl 1+, Bz, 2|z Y §Rl =19 z+1|z+1%ivz+1}/ivzxiaz‘2}

T T
Qi oq1zr1 = 5K a1 Dippi R Dy Ky

In light of Assumption 1, it is directly obtained that

the lower bounds and upper bounds of matriégs ;. and =1 N
®; .41).41 are guaranteed. _ -
Theorem 2:For givenz; o, the estimation errog; .. of Z (1 + i E{xz =Y (I)z z+1\zYleIi=Z\z}
the CDN (1) under the state estimator (7) is bounded in ZE
probability 1. < 7 i,
Proof: Denotez.. £ [i],.,%] ..., %x..]" and ~ g BAEL1: (B3 — pusD)Bicte)
choose the Lyapunov function as N
1+ N— /\ o1
< Z zz\z zz|zx1Z‘Z}
1+ N
Zx (28) =1
Z‘Z i z|z i z|z i,z]z 14+ N —\
= —— v E{U.(2:.)}.
where®; .. is an upper bound on the EEC. 1+ N o
It follows from Assumptions 1-2 and (24) that On the other hand, it is easy to know that
N N
IE{H%\ZH }<E{U.(3..)} < )\2]E{||Iz|z” } (29) ZZ”1(1+@i)wijE{ngz|zFT%sz+1¢J Tl
where)\; 2 9(1+06) and )\, £ 5(1—1rN) =ti=1 )
According to (12), (14) and (28), it is obvious that X §Ri zHF%‘,z\z}
E{Uz41(Z241)24117212)} <ZZ 1+, oJUI[-E{:c7 2L o> 7Z+1|Z — i )T 0.}
N i=1j=1
<D om(+ @)E{ELLYIR @ T L1+ N - 1 s
- N N SE;WG—H‘)Z)Q}”E{% 2121 (I)J z+1\zl—‘xj=z‘Z}
X Ria1Yi @iz} + Z Z (1 + wi)wij I1+N—-X _
i=1 j=1 =N—V—75 E{U.(%..)}
~T T T —1 ~
x E{xj,zlzr 8%i,erl(I)j,erl\z+1a%iﬁrll—‘acj-,z\z} and
N
+ Z nQE{S ('rl Z+1)Kz z—l—l(I)z erl\erlKiszrlS(Ii'rZJrl)} ZTL?,E{’U% z+1K1 erl(I)z z+1|z+1Ki7Z+1ui’Z+1} < N.
=1 =1
N
+Zn3]E{u KT - Kiorttiosr) Recalling the relationshipb; i S LN i ol in
p et i @ Kt Assumption 1, one has
N N
+ Z B K @ g Kieri e} Z naB{s” (o4 1) K19 1y oy Kie18(Ti241) )

i=1 i=1
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N

< Z nz@i,z+1E{5T($i,z+1 )KiT,z+1Ki,z+13($i7z+l)}
i=1
N

=Y n2pi BT (@i o) K Ko s(wi,200) 1)
=1
N

- T
< E N 21 {21501 21 KL}
=1

£ M,

wherep; .11 £ 32 p; . 1. Also, one has that

N

Z n4E{Q’L z+1K1 z+1q)z Z+1|Z+1Ki.,z+l Qi,erl}
i=1

N

< Zn4gipi,z+1tr{Ki7Z+lng+l}
i1

£ M,

and

N

T T T —1
E E{”5Uz‘,z+1Dz‘,z+1Ki,z+1(I’i,zﬂ\ZHKi,erlDi,erlvi,erl}
i=1
N

T T
< Z ns59i 1 W{ K o1 Dip Ri o1 Dy KL}
i=1

£ Ms.

Furthermore, Assumption 1 implies

T
E E{njw} ZB L Z+1‘Z+1§Ri,z+13i,zwi,z}
i=1

N
SZE{’LU BT (1)7,;+1|Z 'szi,z}
=1
N
1+ N —
< . izE izBizBiZ 1,z
_; s Blw B Biewis}
N
1+ N
=3 Bl BB )
=1
£ M,

Based on the above analysis, we have

E{Uz+1(jz+l\z+l)|5jz|z}
4

NE{U.(E.1.)} + N + 3 M,

=1

<N (30)
= 5E{UZ(CZ'Z‘Z)} +H

whereéd =1+ N — A€ (0,1) andH = N + Z?Zl M.

8

By means of (29) and (30), it is easy to see

- 9 E{Uz(*%z\z)}
E{sz\z” } < T

- 5]E{UZ—1 (jzfl\zfl)} +H
= A\

(31)

- ME{Z00l}07 | HI &
- A1 A1
= BE{[|Zojo/|*}6% + v
where 8 £ 42 and y £ sz ik
Moreover, (29) implies

Pr{||5jz|z|| Z U} S Pr{UZ(jz\z) Z )\1U2}

are positive scalars.

and

Pri[|Z...|| — M1y = v} < Pr{U.(Z..) — M1y > A10?}

for any positive scalav. Then, in view of Lemma 4 and (31),
we obtain that

E{Uz(jz\z)} - A1'Y

A1U2

. 9*
SﬂE{onmHQ}—g
By denotingv £ /BE{[[Zoo[?}67 and ¢¢ & Ay =

HY 01 %, we immediately derive that

PrillZ.p.ll = Ay =2 v} <

Pr{||Z..| > eo + v} < 62
and
PI‘{HCZ‘Z‘ZH < € +’U} >1-— 5%
Notingv — 0 asz — oo, we have
Pr{zlggo Hl'z\z” <ep=1
wheree £ 2.

From Definition 1, it is concluded that the estimation error
7; .. is stochastically bounded in probability 1. The proof is
complete. [ |

Remark 6:Different from [12], [17] where the estimation
error has been proved to be mean-square exponentially bound-
ed, we guarantee that the estimation error is stochastically
bounded in probabilityl, which helps us to understand the
random feature of the estimation performance.

Remark 7:In this paper, the problem of ET recursive SE
is dealt with for stochastic CDNs under hybrid attacks. With
the help of the non-augmentation vector method and the
stochastic analysis method, the local estimator is designed for
each node based on the solutions to two RLDES. Moreover,
the estimation error is proved to be stochastically bounded
in probability 1. Compared with the existing literature, the
distinct features of this paper can be summarized as follows:
1) the underlying network model is quite comprehensive
that characterizes the hybrid attacks and the event-triggering
scheme in a unified framework; 2) a hybrid attack model is
proposed to account for the joint influence of DoS attack
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and deception attack on the estimation performance; and
a non-augmentation technique is used to establish the EES

each node, thereby avoiding the inversion operation of hig Actual state Xilk
dimensional matrices and the computation of cross-covariar 25y ™ - Estimation ofx;
matrices among coupled nodes.

2
Actual state Xk

2r - - - Estimation of X2, | |

V. AN ILLUSTRATIVE EXAMPLE

In this section, we will verify the effectiveness of the
proposed estimator design method by an illustrative examg
Consider the stochastic CDN (1) with four nodes, where tt
matrix W = (w;j)ax4 is set as

—03 i=j
Wij = . L.
0.1 i#j

States and their estimations

The matrixI" is set asl’ = 0.2/5 with v, = v = 0.2. -0-5O 5 1‘0 1‘5 2‘0 2‘5 o
The covariances ofv; ., andv; . areQ; . = 0.4, Q2. = Time(k)
02,Q3.=02,Q4,=04, R, .,=0.5, Ry, =06, R3, = ) . )
0.6, andR,4 . = 0.5, respectively. The parameter matrides. Fig. 1: State and its estimate on node 1 for CDN (1)
and D, . are chosen as
0.1 0.1 3
B, = , By, = T
L |: 0.1 ] 2 [ 0.15 ] Actualstatex;k
0.15 0.1 25 = = = Estimation of x;k
B3,z = |: 0.1 :| B4Z = |: 0.1 ] Actualstatex;k
Di,z -01 (2 _ 17 2’ 374) 2r -- -Estima\tionofxék

The nonlinear functiong(z; ) ands(x; ) are

0.9 sin(z 1, ) +0.4sin(z7 )
f(xiz) = { 0.7 sin(z} )+ 0.45sin(z; é 2) }

s(xi2) = O.lxiyz + O.lxiyz

=
P 3
T

States and their estimations
o
(4]

wherez; . = [z}, 7.]” denotes the state vector. Note tha

i,z

the above nonlinear functios(z; .) satisfies the nonlinear
constraint (3), andls(z; .)|| = 0.1(z} ,+22,) < 0.1v2|z; .||

with by = 0.1v/2. % 5 10 2 20 2 30
The matricesFi 2 Az, Si . andG; , are Time(k)

P 0.9 cos(& i Z‘Z) 0.4 cos(&; Z‘Z) Fig. 2: State and its estimate on node 2 for CDN (1)
"% 0.7 cos(; Z‘Z) 0.45 cos(Z; le)

A= [0.02 0 } Ay — { 0.02 0 } fa. = 0.001, o1 = 0.1, o5 = 0.2, 05 = 0.3, 04 = 0.4,
CoL 0002 0 0.02 o5 = 0.5 andog = 0.1.

Ao — 0.03 0 A, — 003 0 The initial conditions of the states and the estimates are
2710 003 77T 00 003 given as follows:

Si. =101 0.1],G;.=[0.01 0.01] 210 =1[1.00 —0.1]7 290 =[1.20 —0.20]7
where; .. = [#} . 27 ] is the estimate. r30=[140 —0.6)7,240=1[1.60 —0.48T
The event-triggering threshold in (4) is given with the #1000 = [0.80 0.21)7, &y o0 = [1.40 0.20]7

[

following form:
g F3000 = [1.60 0.20]7, 3400 = [1.80 0.25]7

Wil
Wi,z = Wio + > Dy gj0 = 412, P2 0j0 = 612, P3 910 = 912, Py0)0 = 10L2.
wherewig = 0.2, wag = 0.2, w3y = 0.3, sy = 0.15 and By recursively solving (21) and (22), we obtain the desired
wip =0.1 (i =1,2,3,4). estimator gain for each node. The corresponding state trajec-
The deception signal is given ds, = 0.2 4 0.2sin(x; ). tories of four nodes and their estimates are shown in Figs. 1-4.
It is easy to sed;fz&,z = 0.04(1 + sin(z; »))? < 0.16, and In Fig. 5, the triggering time sequences on four nodes are
we then obtair?; = 0.16. exhibited, from which we can find that only a small ratio of

The rest of the parameters are selectedias 0.9, d; = 0.2 measurement signals are transmitted to the estimator while the
Plz = P2,z = P3. = pa. = 0.002, uy1 . = po . = pg,, = estimation performance is still preserved.
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2The triggering instant of node 1 2The triggering instant of node 2

3
Actual state xé K
: =15 =15
|- . N 1 4
2.5 - = -Estimation of x; £ £
. Actualstatex;k lﬂg LHRR KK KK X KKK ¥ KX '% LHKPRRE PR Bk K RK K
% 2r - - -Estimation ofx;k 1 =05 =05
'% 0—— 0g———
© 15§ . - . 0 10 20 30 0 10 0 30
B - bl . .
@ ', KA "= N Time/k Time/k
é 1HL e e — ~ ] —— 2The triggering instant of node 3 2The triggering instant of node 4
- 1
g osp | o 15 > 15
! g 1% RIRK K KK * K Ky g LK RRRRRK RK K K X K]
2 2
0 1 =05 o5
05 . : . , 0 *—K KK 0 Kk KKK HRK
0 5 10 20 25 30 0 10 . 20 30 0 10 . 20 30
Time/k Time/k
Fig. 3: State and its estimate on node 3 for CDN (1) Fig. 5: The triggering instants on four nodes
3 2The deception attack of node 1 2The deception attack of node 2
Actual state Xj
y c 15 c 15
25 - = - Estimation of x}tk 1 o o
2 2 % % | R
0 Actual state x; 3 1 Q 1
5 2t - = -Estimation of x? | 3 S
.}% stimation o X4,k 0.5 05
E !
2 15 " J 0 0
Pl no,- I RS 0 10 20 30 0 10 20 3
2 Time/k Time/k
T 1 The deception attack of node 3 The deception attack of node
[
i)
g o5 c 15 c 15
o 2 B
g 1 = % e ony &1 G @ g
(5] (&
0 3 S
0.5 0.5
05 \ \ \ \ \ 0 0
o 5 10 15 20 25 30 0 10 20 30 0 10 20 30
Time/k Time/k

Time(k)

Fig. 4: State and its estimate on node 4 for CDN (1) Fig. 6: The deception attacks on four nodes

Figs. 6-7 show the occurrence of the deception attack aggh sake of alleviating network burdens and reducing energy
the DoS at_tack, respectively. It follows from Fig. 8 that _Whe_Eonsumption, the ET protocol has been applied to regulate the
the deception attack or the DoS attack occurs, the estimati@sta transmissions from the sensor to the estimator. Based on
errors undergo notably changes until the normal measuremef$ non-augmentation technique, a recursive state estimator
are received by the estimators again. _ . has been designed separately for each node by solving two

For nodei, the mean estimation error (MEE) is defined a8oupled RLDEs. A certain upper bound on the EEC has

1 M ® been derived and then minimized by choosing appropriate
MEE; . = In i Zem EGM. Moreover, the estimation error has been proved to be
t=1 stochastically bounded with probability 1. Finally, a numerical
where M = 500 is the number of Monte Carlo simulationsexample has been conducted to demonstrate the validity of the
and el(._tz) is the Euclidean norm of the estimation error in theresented estimator design scheme. In the future, we will be
t-th test. From the MEE on the four nodes depicted in Fig. Blevoted to investigating the recursive state estimation issue
we confirm that the proposed ET state estimator performs whidl stochastic CDNs with switching topology [28] under the
under cyber-attacks. dynamical event-triggered strategy [16], [48].

VI. CONCLUSION REFERENCES

. Th.e event-based recur_Sive SE problem ha_s been StUdiﬁﬁj M. S. Ali, M. Usha, Z. Orman, and S. Arik, “Improved result on state
in this paper for stochastic CDNs under hybrid attacks. For estimation for complex dynamical networks with time varying delays



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.31054009, IEEE Transactions on Neural Networks and Learning Systems

FINAL VERSION 11
The DoS attack of node 1 5 The DoS attack of node 2 o 0
15 15 05 . 05
o -1 ~-1
8 1 * * S I T * H ﬂ
) o S -15 = -15
0.5 05 2 2
0 e : = 0 Yeloke-Helototot ?ok 2.5 -2.5
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time/k Time/k Time/k Time/k
) The DoS attack of node 3 5 The DoS attack of node 4 o 0
s 15 ) -0.5 ) -0.5
o -1 <~ -1
S 1l 8 1 R L u i
a} o S -15 S -15
0.5 0.5 = 2
0 ool ~ 0 e Ao Aol Yok Ao Yol -2.5 2.5
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time/k Time/k Time/k Time/k
Fig. 7: The DoS attacks on four nodes Fig. 9: The MEE on four nodes
1 1 phase oscillators: A surveyAutomatica vol. 50, no. 6, pp. 1539-1564,
Jun. 2014.
[8] W.P. M. H. Heemels, K. H. Johansson and P. Tabuada, “An introduction
%05 %05 to event-triggered and self-triggered control,” IRrocedings of 51st
o o IEEE Conference on Decision and Contrpp. 3270-3285, 2012.
[9] J. P. Hespanha, P. Naghshtabrizi and Y. Xu, “A survey of recent results
in networked control systemsProceedings of the IEEE/0l. 95, no. 1,
0 0 : pp. 138-162, Jan. 2007.
0 10 20 30 0 10 20 30 [10] J. M. Hofman, A. Sharma and D. J. Watts, “Prediction and explanation
Time/k Time/k in social systems,Science vol. 355, pp. 486-488, Feb. 2017.
1 1 [11] J. Hu, Z. Wang, S. Liu and H. Gao, “A variance-constrained approach
’ to recursive state estimation for time-varying complex networks with
missing measurementsfutomatica vol. 64, pp. 155-162, Feb. 2016.
. . [12] J. Hu, G. Liu, H. Zhang and H. Liu, “On state estimation for nonlinear
05 o7 05 dynamical networks with random sensor delays and coupling strength
under event-based communication mechanisimirmation Sciences
vol. 511, pp. 265-283, Feb. 2020.
o ‘ o [13] J. Hu, Z. Wang, H. Gao and L. K. Stergioulas, “Extended Kalman filter-
0 10 20 20 0 10 20 20 ing with stochastic nonlinearities and multiple missing measurements,

Automatica vol. 48, no. 9, pp. 2007-2015, Sept. 2012.
[14] R. Khasminskii, Stochastic Stability of Differential Equations (2nd
. . . . Edition), Springer, Heidelberg, 2010.
Fig. 8: The Euclidean norm of estimation errors on four nodgs;) q. Li, B. Shen, z. Wang and W. Sheng, “Recursive distributed filtering
over sensor networks on Gilbert-Elliott channels: A dynamic event-
triggered approachAutomatica vol. 113, art. no. 108681, 2020.

[16] Q. Li, Z. Wang, N. Li, and W. Sheng, “A dynamic event-triggered
and stochastic sampling via sampled-data contrbléural Networks approach to recursive filtering for complex networks with switching
vol. 114, pp. 28-37, 2019. topologies subject to random sensor failurelEE Transactions on

[2] G. K. Befekadu, V. Gupta and P. J. Antsaklis, “Risk-sensitive control Neural Networks and Learning Systerasl. 31, no. 10, pp. 4381-4388,
under Markov modulated denial-of-service (DoS) attack strategies,” Oct. 2020.

IEEE Transactions on Automatic Controvol. 60, pp. 3299-3304, [17] W. Li, Y. Jia and J. Du, “State estimation for stochastic complex
Mar. 2015. networks with switching topology,IEEE Transactions on Automatic

[3] Y. Chen, Z. Chen, Z. Chen and A. Xue, “Observer-based passive control Control, vol. 62, no. 12, pp. 6377-6384, Dec. 2017.
of non-homogeneous Markov jump systems with random communicg8] W. Li, Y. Jia and J. Du, “Non-augmented state estimation for nonlin-
tion delays,”International Journal of Systems Sciens®l. 51, no. 6, ear stochastic coupling networksfutomatica vol. 78, pp. 119-122,
pp. 1133-1147, 2020. Apr. 2017.

[4] Y. Chen, Z. Wang, L. Wang and W. Sheng, “Finite-horizéh,., state [19] X. Li, H. Dong, Z. Wang and F. Han, “Set-membership filtering for
estimation for stochastic coupled networks with random inner couplings  state-saturated systems with mixed time-delays under weighted try-
using Round-Robin protocol/EEE Transactions on Cyberneticgol. once-discard protocol [EEE Transactions on Circuits and Systems |I:
51, no. 3, pp. 1204-1215, Mar. 2021. Express Briefsvol. 66, no. 2, pp. 312-316, Feb. 2019.

[5] Y. Chen, Z. Wang, J. Hu and Q.-L. Han, “Synchronization contro[20] J. Liu, Y. Gu, L. Zha, Y. Liu and J. Cao, “Event-triggerdd~. load
for discrete-time-delayed dynamical networks with switching topology  frequency control for multiarea power systems under hybrid cyber
under actuator saturationdEEE Transactions on Neural Networks and attacks,"IEEE Transactions on Systems, Man, and Cybernetics: Systems
Learning Systemsrol. 32, no. 5, pp. 2040-2053, 2021. vol. 49, no. 8, pp. 1665-1678, Aug. 2019.

[6] D. Ding, Z. Wang, D. W. C. Ho and G. Wei, “Distributed recursive[21] J. Liu, M. Yang, E. Tian, J. Cao and S. Fei, “Event-based security
filtering for stochastic systems under uniform quantizations and decep- control for state-dependent uncertain systems under hybrid-attacks and
tion attacks through sensor network8yitomatica vol. 78, pp. 231-240, its application to electronic circuits|EEE Transactions on Circuits and
Apr. 2017. Systems |: Regular Papergol. 66, no. 12, pp. 4817-4828, Dec. 2019.

[7] F. Dorfler and F. Bullo, “Synchronization in complex networks of[22] X. Liu, D. W. C. Ho, Q. Song and W. Xu, “Finite/fixed-time pinning

Time/k Time/k



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.31054009, IEEE Transactions on Neural Networks and Learning Systems
FINAL VERSION

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

synchronization of complex networks with stochastic disturbanceq44]
IEEE Transactions on Cyberneticyol. 49, no. 6, pp. 2398-2403,
Jun. 2019.

Y. Liu, Z. Wang, J. Liang and X. Liu, “Synchronization and state estima-
tion for discrete-time complex networks with distributed delayEEE  [45]
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
vol. 38, no. 5, pp. 1314-1325, Oct. 2008.

J. Mao, Y. Sun, X. Yi, H. Liu and D. Ding, Recursive filtering of
networked nonlinear systems: A surviayternational Journal of Systems [46]
Sciencevol. 52, no. 6, pp. 1110-1128, 2021.

Y. Mo, J. Hespanha and B. Sinopoli, “Robust detection in the presence of
integrity attacks,” In:Proceedings of the American Control Conference[47]
Montreal, 2012, pp. 3541-3546.

R. Pan, Y. Tan, D. Du and S. Fei, “Adaptive event-triggered synchroniza-
tion control for complex networks with quantization and cyber-attacks,”
Neurocomputingvol. 382, no. 21, pp. 249-258, Mar. 2020. [48]
M. Porfiri and M. Bernardo, “Criteria for global pinning-controllability

of complex networks,”Automatica vol. 44, no. 12, pp. 3100-3106,
Dec. 2008.

J. Qin, Q. Ma, X. Yu, and L. Wang, “On synchronization of dynamica[49]
systems over directed switching topology: An algebraic and geometric
perspective,"IEEE Transactions on Automatic Contralol. 65, no. 12,

pp. 5083-5098, Dec. 2020.

B. Shen, Z. Wang, D. Wang and Q. Li, “State-saturated recursive filt§50]
design for stochastic time-varying nonlinear complex networks under
deception attacksJEEE Transactions on Neural Networks and Learning
Systemsvol. 31. no. 10, pp. 3788-3800, Oct. 2020.

L. Sheng, Z. Wang, L. Zou and F. E. Alsaadi, “Event-bagdd, [51]
state estimation for time-varying stochastic dynamical networks with
state- and disturbance-dependent noissZE Transactions on Neural
Networks and Learning Systemsol. 28, no. 10, pp. 2382-2394,
Oct. 2017.

0. Sporns, “The human connectome: A complex netwolkihals of the

New York Academy of Scienceel. 1224, no. 1, pp. 109-125, Jan. 2011.

M. Tabbara and D. Nesic, “Input-output stability of networked control
systems with stochastic protocols and channeéEEZE Transactions on
Automatic Contral vol. 53, no. 5, pp. 1160-1175, Jun. 2008.

H. Tan, B. Shen, K. Peng and H. Liu, Robust recursive filtering for
uncertain stochastic systems with amplify-and-forward rel&yrna-
tional Journal of Systems Sciena®l|. 51, no. 7, pp. 1188-1199, 2020.
L. Wang, Z. Wang, T. Huang and G. Wei, “An event-triggered approac
to state estimation for a class of complex networks with mixed time
delays and nonlinearities[EEE Transactions on Cyberneticgol. 46,
no. 11, pp. 2497-2508, Nov. 2016.

D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Naturg vol. 393, no. 6684, pp. 440-442, Jun. 1998.

W. Xu, D. W. C. Ho, J. Zhong and B. Chen, “Event/self-triggered
control for leader-following consensus over unreliable network with DoS
attacks,”IEEE Transactions on Neural Networks and Learning System
vol. 30, no. 10, pp. 3137-3149, Oct. 2019.

12

D. Zhang, Q. Wang, D. Srinivasan, H. Li and L. Yu, “Asynchronous
state estimation for discrete-time switched complex networks with
communication constraintslEEE Transactions on Neural Networks and
Learning Systemssol. 29, no. 5, pp. 1732-1746, May 2018.

H. Zhang, J. Hu, H. Liu, X. Yu and F. Liu, “Recursive state estimation
for time-varying complex networks subject to missing measurements and
stochastic inner coupling under random access protobi@lirocomput-

ing, vol. 346, pp. 48-57, Jun. 2019.

H. Zhang, P. Cheng, L. Shi and J. Chen, “Optimal DoS attack scheduling
in wireless networked control systemEEE Transactions on Control
Systems Technologyol. 24, no. 3, pp. 843-852, May 2016.

L. Liu, L. Ma, J. Zhang and Y. Bo, “Distributed non-fragile set-
membership filtering for nonlinear systems under fading channels and
bias injection attacksnternational Journal of Systems Sciengel. 52,

no. 6, pp. 1192-1205, 2021.

G. Zhao and C.-C. Hua, “A hybrid dynamic event-triggered ap-
proach to consensus of multi-agent systems with external distur-
bances,”|IEEE Transactions on Automatic Contratarly access, doi:
10.1109/TAC.2020.3018437.

Z.Zhao, Z. Wang, L. Zou and J. Guo, Set-membership filtering for time-
varying complex networks with uniform quantisations over randomly
delayed redundant channelsternational Journal of Systems Science
vol. 51, no. 16, pp. 3364-3377, 2020.

L. Zou, Z. Wang, Q.-L. Han and D. Zhou, “Moving horizon estimation
for networked time-delay systems under Round-Robin prototBEE
Transactions on Automatic Contralol. 64, no. 12, pp. 5191-5198, Dec.
2019.

L. Zou, Z. Wang, H. Gao and X. Liu, “Event-triggered state estimation
for complex networks with mixed time delays via sampled data infor-
mation: The continuous-time caseZEE Transactions on Cybernetics
vol. 45, no. 12, pp. 2804-2815, Dec. 2015.

Yun Chen was born in Zhejiang, China. He received
the B.E. degree in thermal engineering in 1999 from
Central South University of Technology (Central
South University), Changsha, China, and the M.E.
degree in engineering thermal physics in 2002 and
Ph.D. degree in control science and engineering in
2008, both from Zhejiang University, Hangzhou,
China.

From August 2009 to August 2010, he was a
visiting fellow with the School of Computing, En-
gineering and Mathematics, University of Western

Y. Xu, R. Lu, H. Peng, K. Xie and A. Xue, "Asynchronous dissipativeSydney, Australia. From December 2016 to December 2017, he was an
state estimation for stochastic complex networks with quantized jumpirgademic visitor with the Department of Mathematics, Brunel University
coupling and uncertain measurement&EE Transactions on Neural |ondon, UK. In 2002, he joined Hangzhou Dianzi University, China, where
Networks and Learning Systenwel. 28, no. 2, pp. 268-277, Feb. 2017.he is currently a Professor. His research interests include stochastic and hybrid
Y. Xu, R. Lu, P. Shi, H. Li and S. Xie, “Finite-time distributed statesystems, robust control and filtering.

estimation over sensor networks with Round-Robin protocol and fading
channels,”IEEE Transactions on Cyberneticgol. 48, no. 1, pp. 336—
345, Jan. 2018.

Y. Xu, J.-Y. Li, R. Lu, C. Liu and Y. Wu, “Finite-horizonls — I~
synchronization for time-varying Markovian jump neural networks un-
der mixed-type attacks: Observer-based caHefE Transactions on
Neural Networks and Learning Systeresl. 30, no. 6, pp. 1695-1704,
Jun. 2019.

S. Yang, Z. Guo, and J. Wang, “Global synchronization of multiple
recurrent neural networks with time delays via impulsive interactions,’
IEEE Transactions on Neural Networks and Learning Systewls 28,

no. 7, pp. 1657-1667, 2016.

X. Yang, J. Lam, D. W. C. Ho and Z. Feng, “Fixed-time synchronization
of complex networks with impulsive effects via nonchattering control,”
IEEE Transactions on Automatic Controlol. 62, no. 11, pp. 5511—
5521, 2017.

X. Yin and D. Yue, “Event-triggered tracking control for heterogeneous
multi-agent systems with Markov communication delaydgjurnal of
the Franklin Institute vol. 350, no. 5, pp. 1312-1334, 2013.

D. Yue and H. Li, “Synchronization stability of continuous/discrete
complex dynamical networks with interval time-varying delayNgu-
rocomputing vol. 73, no. 4-6, pp. 809-891, 2010.

Xueyang Mengwas born in Jiangsu, China, in 1995.
He received the B.E. degree from Luoyang Institute
of Science and Technology, Luoyang, China, in
2017. He is currently pursuing the Ph.D. degree
in control science and engineering with Hangzhou
Dianzi University, Hangzhou, China. His research
interests include networked control systems and state
estimation.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.31054009, IEEE Transactions on Neural Networks and Learning Systems

FINAL VERSION 13

Zidong Wang (SM’03-F'14) was born in Jiang-
su, China, in 1966. He received the B.Sc. degree
in mathematics in 1986 from Suzhou University,
Suzhou, China, and the M.Sc. degree in applied
mathematics in 1990 and the Ph.D. degree in elec-
trical engineering in 1994, both from Nanjing Uni-
versity of Science and Technology, Nanjing, China.

He is currently Professor of Dynamical Systems
and Computing in the Department of Computer
Science, Brunel University London, U.K. From 1990
to 2002, he held teaching and research appointments
in universities in China, Germany and the UK. Prof. Wang'’s research interests
include dynamical systems, signal processing, bioinformatics, control theory
and applications. He has published more than 600 papers in international
journals. He is a holder of the Alexander von Humboldt Research Fellowship
of Germany, the JSPS Research Fellowship of Japan, William Mong Visiting
Research Fellowship of Hong Kong.

Prof. Wang serves (or has served) as the Editor-in-Chiefrfrnational
Journal of Systems Sciencéhe Editor-in-Chief for Neurocomputing the
Editor-in-Chief for Systems Science & Control Engineetirand an Asso-
ciate Editor for 12 international journals including IEEE Transactions on
Automatic Control, IEEE Transactions on Control Systems Technology, IEEE
Transactions on Neural Networks, IEEE Transactions on Signal Processing,
and IEEE Transactions on Systems, Man, and Cybernetics-Part C. He is a
Member of the Academia Europaea, a Member of the European Academy
of Sciences and Arts, an Academician of the International Academy for
Systems and Cybernetic Sciences, a Fellow of the IEEE, a Fellow of the Royal
Statistical Society and a member of program committee for many international
conferences.

Hongli Dong received the Ph.D. degree in control
science and engineering from the Harbin Institute of
Technology, Harbin, China, in 2012.

From 2009 to 2010, she was a Research Assistant
with the Department of Applied Mathematics, City
University of Hong Kong, Hong Kong. From 2010
to 2011, she was a Research Assistant with the De-
partment of Mechanical Engineering, The University
of Hong Kong, Hong Kong. From 2011 to 2012,
she was a Visiting Scholar with the Department of
Information Systems and Computing, Brunel Uni-
versity London, London, U.K. From 2012 to 2014, she was an Alexander von
Humboldt Research Fellow with the University of Duisburg—Essen, Duisburg,
Germany. She is currently a Professor with the Atrtificial Intelligence Energy
Research Institute, Northeast Petroleum University, Daging, China. She is also
the Director of the Heilongjiang Provincial Key Laboratory of Networking
and Intelligent Control, Daging. Her current research interests include robust
control and networked control systems.

Dr. Dong is a very active reviewer for many international journals.






