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Multi-Sensor Multi-Rate Fusion Estimation for
Networked Systems: Advances and Perspectives

Yuxuan Shen, Zidong Wang, Hongli Dong and Hongjian Liu

Abstract—In industrial systems, the multi-rate sampling strat- advantages of low cost, easy maintenance, and high reliability.
egy has been widely used due to the advantage in balancing costNevertheless, the introduction of the communication network
and performance as well as the psychical characteristics of the largely increases the complexity of the networked systems,

hardware. Accordingly, the analysis and synthesis problems of the dh bri . hall to the stat timati f
multi-rate systems (MRSs) have received considerable research@Nd NENCE brings major challenges 1o the state estimalion o

attentions owing to the significant engineering background. the networked systems. Consequently, the problem of state
Among others, the state estimation problem, aims to estimate the estimation for networked systems has been attracting ever-

system state baged on the cqntaminated measurement signa}ls, i$ncreasing research interest [5], [15], [40], [78], [141], [142].
one of the most important topics in the area of signal processing. Due to the large scale, it is often the case that the networked

In the past decades, plenty of research results have been obtained . . -
on the state estimation problems for MRSs. The intent of this system contains numerous spatially distributed system com-

survey is to provide a timely and systematic review with respect Ponents (including multiple sensors). As mentioned before,
to the available state estimation algorithms for networked MRSs the continuous signals from the system components are first

and the corresponding fusion methods. First, a general state- sampled into discrete signals with fixed sampling periods
space model of the MRSs is given and the methods that transform before being transmittedraditionally, to simplify the design

the MRSs into single-rate ones are introduced. Then, the recent f the stat timati lqorith it i d that ified
advances on the state estimation as well as fusion estimation©' (N€ Stateé esumation algorithms, 1t 1S assume at a unine

problems for MRSs are discussed based on the performance Sampling period is chosen for different signals [20], [70],
indices used. Finally, some future research topics are given in [94], [95], [117]. Unfortunately, such an assumption is not

the MRS state estimation problems. realistic in real practice. Since different system components
Index Terms—Multi-rate systems, networked systems,H, own different phySical CharaCteriStiCS, it is quite difficult (lf
state estimation, Kalman filtering, multi-sensor information fu- not impossible) to unify the sampling periods for different
sion. components. Furthermore, setting different sampling periods
for different system components (i.e., multi-rate sampling)
according to the importance of their signals is preferable in
engineering practice [4], [88], [98], [99]. As such, the state
With the rapid development of the wireless communicatiagstimation problems for networked multi-rate systems (MRSSs),
technology and the digital technology, the networked systemjich reflect the real situation in the practical engineering,
have been widely applied in the practical applications such ggye stirred attentions form researchers.
process monitoring, power grids, industrial control systems, |y the state estimation problems for MRSs, due to the
traffic systems, and etc [24], [30], [45], [86], [107], [118].existence of the multiple time sequences, it is quite difficult
[126]. In the networked systems, the signals generated fy directly design state estimators for the considered MRSs.
the system components, including the sensors, the underlyjRdother words, the state estimation methods developed for
plant, and the controllers, are first sampled and then tralfngle-rate systems (SRSs) can not be directly applied to
mitted through the communication networks. Compared {aRSs. Therefore, much research effort has been devoted to
the traditional systems, the networked systems provide tggh,ing state estimation problems for MRSs [1], [17], [19],
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systems under network-induced phenomena, see [46], [85],
measurement fusion process state estimation process| 19971 [124] for missing measurements, see [14], [60], [111
[125] for communication delays, see [35], [38], [77], [136}
channel fading, and see [18], [21], [75] for packet disosder
Generally speaking, in the existing literature, there are
mainly two ways to deal with the network-induced challenges
plant | : fusion ed _ in the state estimation problems. The first one is to pagsivel
: center fement | SN design state estimation algorithms that are robust to the
network-induced phenomena. That is, with the existence of
the network-induced phenomena, designing state estimatio
algorithms such that the desired performance requirensent i
achieved, see for examples [13], [53], [66], [110]. The othe
way is to actively introduce communication protocols into
Fig. 1: The architecture of the centralized fusion processthe communication networks to alleviate/aviod the network
induced phenomena, and then develop state estimation al-
gorithms whilst considering the influence of the introduced

 sensorl
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state estimation process estimate fusion process communication protocols. Some of the widely used commu-
nication protocols are the static event-triggered pratficty],
— semsor1 f— o [122], [123], [154], the dynamic event-triggered protog8),

[90], [138], [149], the self-triggered protocol [127], [8R the
Round-Robin protocol [104], [156], the weighted Try-Once-
Discard protocol [54], [148], and the random access prdtoco
plant : : fusion [25], [58], [147], [155]
conter In this paper, we aim to provide a systematic review
of the existing results on the state estimation problems for
/‘“ networked MRSs and the applied multi-sensor information
L ensorn f— ol fusion methods. The remainder of this paper is outlined as
follows. In Section I, a general state-space model of the
MRSs is presented and various methods that transform the
Fig. 2: The architecture of the distributed fusion process MRSs into SRSs are surveydd. Section Ill, research results
are discussed on the state estimation problems for MRSs
where the methods in Section Il are used to transmit the
In general, the multi-sensor information fusion methods caMRSs. Moreover, the multi-sensor information fusion meiho
be categorized into two types: the centralized fusion nighoapplied are also reviewe&ection IV provides the conclusion
and the distributed fusion methods [6], [7], [23], [72], #]1 and the future research topics.
In the centralized fusion methods, the measurements from
the multiple sensors are transmitted to a fusion center evher [I. MULTI-RATE SYSTEMS

the measurements are fused to a new measurement. Thefy, ihis section, we first introduce a general state-space mod
the system state is estimated based on the obtained ngw the discrete-time MRSs. Then, some effective methods
measurement. In the distributed fusion methods, each logak; transform the MRSs into SRSs are presented. Moreover

estimator first gives a local estimate based on its measutemg, corresponding estimators are designed for the transfbr
and then transmits the estimate to a fusion center wheipgg

the local estimates are fused to an optimal/suboptimalajlob
estimate. The architectures of the centralized fusion ggec
and the distributed fusion process are shown in Fig. 1 aﬁd State-space model of the MRSs

local

| sensor2 [~ .
estimator 2

local

1 sensorn—1 [ .
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Fig. 2, respectively. Consider a discrete-time multi-sensor MRS described as
On the other hand, due to the limited communicatiof@!lows:

resources of the communigatio_n net\{vorks, some network- 2(sp11) = A(sk)x(sk) + B(sk)w(sk),

induced phenomena arise inevitably in the networked sys- { yi(t?c) _ Ci(t};)a?(t};)JrDi(t};)vi(t};) 1)

tems. Such network-induced challenges include, but are not

limited to, the missing measurements, the communicatiorhere z(s;) € R" and y;(t}) € R™ (i € [1,N]) are
delays, the channel fading, and the packet disorders. If rthe system state and the measurement output from-the
properly handled, these network-induced phenomena wowslehsor, respectivelyo(s;) and v;(ti) are the process noise
deteriorate the estimation performance in the state eStima and the measurement noise on théh sensor, respectively.
of the networked systems. Therefore, it is of great impaganA(sy), B(sy), C;(ti), and D;(ti) are constant matrices with
to find effective solutions to handle the above mentionemmpatible dimensions.

network-induced problems. Up to now, plenty of results have The state update period of the system (1} & sp1 — sk
been obtained for state estimation problems for networkadd the sampling period of thieth sensor ish;h £ t§;+1 —t
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whereb; > 1 (i € [1,N]) are allowed to be different. Thatwhere
is, in the MRS (1), the state update period of the system

is allowed to be different with the sampling period of the 0 0 411(752?)

sensor, while the sampling periods of different sensors are Aty 2 0 0 As(ty) ’

also allowed to be different. An illustration of the multte Poor :

sampling scheme is given in Fig. 3. Moreover, the MRS (1) 0 - 0 A(t)

can be seen as a combination &f multi-rate subsystems i A i D i i

where thei-th subsystem consists of the state equation and ?i( (C) = col{Bi (), By (ty,), -+, B, (1)},

the measurement equation of théh sensor. Ci(t) = [0 0 Ci(ty)]

Following the similar process, the MRS (1) is transformed
. ;z;;l‘[’]‘ia‘;‘;n‘i";:Sem1 into N SRSs with uniform periods;h (i = 1,2,...,N). For
A sampling instants of sensor 2 thei-th SRS, thei-th local estimator is designed as
1 Ya " L Bi(th1) = Aa(t) 2 (8,) + K (8,) (9 () — Ci(ty) i (8,))

where &;(t}) is the estimate ofz;(¢}) and K,(t}) is the

estimator gain to be designed.

&% u 4 4 t From the above process, we can see that the lifting technique
is able to transform the linear MRSs to equivalent linear
SRSs. Nevertheless, due to the augmentation of the stages, t

5o s s, S5 s, ss ss S5 S5 S designed estimation algorithm will have a high computation
cost. On the other hand, when applying the lifting technique

: : : ame/h : : : : to the nonlinear MRSs, the transformation will be compkbciat

) . ] ) ) _ due to the iteration of the nonlinear function.

Fig. 3: An illustration of the multi-rate sampling schemeiwi 2) Iterating the state equatiorBy simply iterating the state

by =2 andb; =3 equation in (1), we have the following new state equatiotwit

a state update peridgh:
B. Transformatfon from MRSs to SRSs o o(thyr) = Al (th)x(th) + Bl (t0)a (tL).

After presenting the state-space model of the MRSs, in this
subsection, we are going to introduce some effective mathoiccordingly, we have the following SRS:
that convert the MRSs into single-rate ones. , o , L .

1) Using the lifting techniqueThe lifting technique pro- T(thy1) = Ay, (G)z(ty) + By, () wi(ty,), 3)
posed in [87] is one of the popular methods that are used to yi(th) = Ci(th)a;(th) + Dy(th)vi(t).
transform the MRSs. The main idea of the lifting technique ) ) )
is to obtain equivalent SRSs by increasing the state upd&@ the SRS (3), thé-th local estimator is designed as
Cxample, e Staten(f_ 4 Py oalth . a(it) I e (thi) = A GDR() + K () lth) — Gt (eh)
interval (#;,_,,t;] are first augmented into a vectas(t}). where #;(ti) is the estimate ofr(ti) and K;(ti) is the
Then, a new state equation with the state update péfio®s astimator gain to be designed.
obtained by the aid of the original state equation. Accayljin By iterating the state equation, theh multi-rate subsystem
the MRSS are transformed into SRSs. In the following, thg (1) is transformed into the SRS (Ifompared to the SRS
detailed Process Is presented. , . (2) obtained by using the lifting technique, the computagio

Denotez;(t},) = col{a(ty_y + h),....x(ty — h),2(t})}.  cost of the estimation algorithm designed for the SRS (3)
By recurring to (1), it is derived that is low. Nevertheless, the designed estimation algorithfly on
x(th +mh) = AL (t8)x(th) + BY (t8)w;(tL) estimates the states at the measurement sampling instants (

i (k=10,1,2,...)) and other states are not estimated.

where m 3) Compensating measurements with zeh:the above
Al ()2 HA( L4 (m—Dh), Bl (th) 2 FL(t1)By(th), o approaches, the MRSs are transformed into SRSs by

" Pl " " increasing the state update period of the state equatitu. In
Fi(tiy 2[4 £Y) Al FY o AP 0 .- 0], itively, we can also complete the transformation by dedneps
Vm(ik)A [ m-1 f) 7"1,_2( 2 11,( ) } the sampling period of the measurement equation. A method
Bi(t{c) = dlag{B_(tk)v B_(tk +h),-- ,3( k1 — R} to achieve this goal is compensating the measurements at non
w;(ty,) = col{w(t},), w(ty, +h), ..., w(th,, —h)} sampl_ing insta_mts with_zero.
Then, it is obtained that By introducing a variable

i(thsr) = Ailt))Ti(t),) + By(ty)wi(t),), @ Xi(sg) = { (1)’ ift;md(.s’“’bih) =0
i A (i e (4 i i , otherwise
yi(ty) = Ci(t,)@i(ty,) + Di(ty)vi(ty,)
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with mod(z, y) being the unique nonnegative remainder on di-11l. ESTIMATION PROBLEMS FOR MULTFRATE SYSTEMS
vision of = by y, the compensated measurement is formulatedp e o the practical engineering significance of the multi-

as rate sampling, the state estimation problem for MRSs has
i(sk) = Ni(sk)Ci(sp)z(sx) 4+ Mi(sk)Di(sk)vi(sk).- become an active research topic. Up to now, a number of
estimation approaches have been applied on MRS state estima
tion problems. According to the performance indices udesl, t
2(spa1) =A(sk)x(sk) + B(sk)w(sk), applied estimation approaches can be categorized inté/the
31(58) =\ (50)Culs)als) + Mi(sx) Di( i), ) estimation approach [49), 50, [62], [63), 82], the Kalma
) ) ) filtering approach and its variants [43], [121], [133], thet-s
For the SRS (4), the-th local estimator is designed as membership filtering approach [12], [76], [151], the moving
i(sps1) =A(sk)Zi(sk) horizon estimati_on a_pproach [134] and etc. On the oth_er,hand
+ K (50) (Wi(sk) — Ni(51)Ci(s1)@1(5) in the st_ate es’_ﬂmanon problems for MRSs, the mulU-sensor
¢ ¢ ¢ ! ! information fusion methods are widely used that include the
where z;(s;) is the estimate ofr(s;) and K;(s;) is the weighted by matrix fusion method, the weighted by scalar
estimator gain to be designed. fusion method, the covariance intersection fusion methioel,
The advantages of such an approach are that the compsgtguential covariance intersection fusion method and $@]pn
tional cost is low and the designed estimation algorithm c§81], [37], [81], [113]. The weighted by matrix fusion method
estimate the state at all state update instants. Unfoelynttie and the weighted by scalar fusion method can obtain the opti-
estimation accuracy may be low since the estimate is oldtain@al fused estimate but need the cross-covariances amaalg loc
by prediction at non-measurement-sampling instants. estimation errors. The covariance intersection fusionhoekt
4) Compensating measurements with the zero-order holdefid the sequential covariance intersection fusion mettaod c
Suppose that a zero-order holder is used to compensate dheid the calculation of the cross-covariances but can not
measurements at the non-sampling instants. After the cosbtain optimal fused estimate.
pensation, the measurement available is In the following, the available results on state estimation
Gilse) 2 y(tl), < sy < tin—ﬁ-l' problems for MRSs are reviewed and the corresponding fusion

methods are also discussed.
Inspired by the input delay approach which has been used to

transform the discrete-time control input into delayedtozin
input [29], we define a variablﬁék as follows:

Then, a SRS is derived as follows:

A. H,, estimation approach
In the past few decades, thé,, estimation approach has

i A 1 i 0
P = Sk —tms by = Sk <lpyq received particular research interest since it is abletemagte
Noting thatti, = sy — (s, — ti,) = sk — pi, holds fort}, < the infl_uenc_e of the energy-bounded e_xternal disturb_annes 0
s, < th, .1, the measuremeng(s,) is reformulated as the estimation performance. The core idea of thg estima-
. tion is to design an estimator such that a predefined distggba
Yi(sk) = yilsk — Pé_k) _ attenuation level (i.e. thél, performance index) is achieved.
= Ci(sk — ps, )x(sk — P, Based on the methods like the linear matrix inequality, the
+ Di(sy, — pt, Jvi(sk — pl, ) Hamilton-Jacobi inequality as well as the Riccati equation

] . the H,, state estimation problems have been concerned for
Therefore, the-th multi-rate subsystem of (1) is transformeq,arious systems [41], [61].

into a SRS In the MRS state estimation problems, the, estimation
z(spy1) = A(sk)z(sk) + B(sk)w(sk), approach has been widely used and a large body of literature
i(sk) = Ci(sy —Pik)x(sk _Pik) (5) has been available [28], [71], [79], [105], [109], [120]. In
+ Di(si — o Yoslsk — pi) [105], the Ho and H, filtering problems have been studied
! sk Sk for multi-rate linear time-invariant systems with a stapelate
For the SRS (5), thé-th local estimator is designed as period 4 and a sampling periogh. First, a standard filter
i(sps1) = Als)@i(sk) with a periodic filter gain and an update periadhas been

Do - roposed to cater for the multi-rate sampling. Then, theesta
+ Ki(s) (9i(sk) — Cilsk — pg, )& (s = p3,) Spdgte period, the sampling period andpthg estimate update
where #;(sg) is the estimate ofr(s;) and K;(s;) is the period have been uniformed by iterating the system state
estimator gain to be designed. equation and the filter equation. Finally, thé, and H.,
filters have been designed by solving certain linear matrix
Remark 1:In this section, for simplification of the formu- inequalities where nonconvex constraints have been inted
las, we only consider the case that the system state upddde to the multi-rate sampling. Subsequently, the authors
period and the sampling period are different. Note that, tloé [105] has extended the results to multi-rate linear time-
transformation methods provided in this section can bdyeasinvariant systems with packet dropouts in [71] where thé&esta
extended to the case where the system state update pegodufidate period, the sampling period as well as the estimate
sampling period and the estimate update period are mutuallydate period are different. A sufficient condition has been
different. provided on the existence of a stable filter. In [109], the
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H,, estimation problem has been concerned for multi-senddevertheless, when applied to nonlinear systems or systems
multi-rate linear time-invariant systems where the estémawith non-Gaussian noises, the classic Kalman filtering is no
update period is integer multiple of the sampling periadést longer applicableTherefore, some modified Kalman filtering
update period. The measurements of the sensors have bamgproaches have been developed that includes the extended
transmitted to a fusion centre in a competitive way. By fgsinkalman approach [64], [119], the unscented Kalman approach
the measurements received in one estimate update pered,[69], [112], the cubature Kalman approach [11], [57] and so
estimator in the fusion centre has estimated the syster. stan.

A sufficient condition has been obtained on the mean-squard-or state estimation problems concerning the MRSs, the
stability as well as théi, performance and thH ., estimator classic Kalman filtering approach is another popular apgroa
has been characterized. that has been widely studied [22], [33], [47], [56], [84]2H],

For time-varying MRSs, the quantized finite-horizéh,, [130]. In [129], the fusion estimation problem has been isttid
filtering problem has been studied in [79] under the stodhastor multi-sensor systems by using the traditional Kalman
communication protocol. The lifting technique has beert firltering approach where the sampling periods of the sensors
applied to handle the MRSs, and then the deshledfilter has are asynchronous. By using the lifting technique, the multi
been designed by solving certain Riccati different equatio sensor MRS has been transformed into synchronous single-
Similar to [79], the variance-constrained finite-horizéh, rate single-sensor systems. Local Kalman filters has besn fir
state estimation problem has been considered in [120] fdesigned to obtain the local estimates which have been then
time-varying MRSs. In [28], the sequential fusidh,, filtering fused to a global estimate with the help of the fusion method
problem has been investigated for time-varying MRSs wheire [9]. In [130], the problem in [129] has been reconsidered
p asynchronous sensors are used to measure the systemagada novel fusion estimation algorithm has been proposed
send the measurements to a fusion center asynchronouslywhich fuses the local estimates in a recursive form and is
the fusion center, the estimator updates the estimate onceptimal in the linear minimum variance sense. In [47], the
measurement is received. With such a multi-rate samplingsult in [129] has been extended to multi-sensor systems
strategy, a sequential fusidi,,, filter has been designed baseadvith arbitrary number of sensors and arbitrary samplinggat
on the Krein-space approach. Both the centralized asynchronous fusion estimation éfyor

The fault detection problem is a long-standing researemd the distributed asynchronous fusion estimation elyori
topic that has been widely studied [51], [55], [137], [150]have been developed based on the Kalman filtering. It has
[153]. In the MRSs, due to reasons like sensor aging, randdraen verified that the estimation performances of both fusio
sensor failure, or harsh environment, the fault may occestimation algorithms are equivalent under the full-radgme
which largely degrades the system performance. Therefomgnication assumption, while the centralized one outpar$o
it is of great importance to design fault detection algarith the distributed one when the communications are consttaine
to detect the faultRecently, thef ., fault detection problems In [132], the federated Kalman filtering problem has been
for MRSs have received initial research interest. In [1416¢, investigated for asynchronous multi-sensor MRSs with oamd
H, fault detection problem has been investigated for MR$8iSSing measurements.
with asynchronous state update rate and sampling rate. Byl'he Kalman fusion estimation algorithm has been developed
iterating the state equation, the equivalent SRSs have béer{140] for MRSs over the sensor networks. The system
derived, and then an observer-based fault detection fitisr Istate update period, the measurement transmission paridd,
been designed. With the help of the linear matrix inequalite estimate update period have been allowed to be different
method, sufficient conditions have been developed such tfidte local Kalman filters have been first designed based on
the H., norm from the noises and faults to the fault estimatiothe SRSs derived by the lifting technique. Then, the local
error is less that a given attenuation level. In [143], thestimates have been fused with the weighted by matrix fusion
intermittent fault detection problem has been concerned fmethod. Due to the asynchronism of the local estimates, at a
a class of nonuniformly sampled MRSs. The nonuniforgertain time instant, only the available estimates havenbee
sampling interval is governed by a Markov process witfused. In [139], the hierarchical fusion estimation praoble
partly unknown and uncertain transition probabilities.eDuhas been coped with for MRSs over sensor networks. The
to the existence of the Markov process, the MRSs has bagrderlying sensor network consists &f sensor clusters and
transformed into SRSs with Markovian jumping parametersach sensor cluster contains multiple sensors and a cluster
Sampling-interval-dependent fault detection filters haeen head. First, the estimator in the cluster head has generated
designed such that the residual estimation error satidfies @ local estimate based on the fused measurement which has
H_ and H,, performances simultaneously. been obtained by fusing the available measurements from
the sensors in this cluster with the sequential fusion ntktho
Then, the cluster head has communicated with other cluster
heads to generate the fused estimate. In the estimate fusion

The classic Kalman filtering approach is one of the mogrocess, only the available local estimates have been Used a
celebrated filtering approaches. For linear systems withsGadue to the asynchronism of the local estimates. In [92], the
sian noises whose statistics are exactly known, the claskiaiman fusion estimation problem has been also investigate
Kalman filtering is an optimal filtering approach under whiclior MRSs over sensor networks where the state update period
the filtering error covariance is minimized at each timedanst and the sampling period are different. Different from [140]

B. Kalman filtering approach and its variants
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the estimates at the non-sampling instants have been ebtailinear systems with multi-rate measurements and coritlate
through prediction based on the state equation. Theretftoee, noises. By introducing a switching variable, the multierat
estimates from all local estimators have been availabl&én tmeasurements have been combined in a new measurement
estimation fusion process at each time instant. The diggtb model. Based on the obtained SRSs, the desired moving
fusion estimation problem has been considered in [52] fborizon estimator has been designed.
multi-rate linear systems where the estimation procesdt@d The particle filtering approach, roots on the sampling-Base
fusion process are similar to those in [140]. approximation techniques, is an effective filtering apptofor

The fault detection problems for MRSs based on the Kalmaonlinear systems or systems with non-Gaussian nolses.
filtering approach have received little research attestion [42], both the particle filtering and extended Kalman filgri
[68], the Kalman filtering problem has been investigatedaforhave been applied to an intensified chemical process subject
class of non-uniformly sampled MRSs. After transforming thasynchronous measurements. The., filtering problem has
MRSs into SRSs with the lifting technique, a filter has bedpeen studied in [135] for MRSs. The lifting technique hasbee
designed for the obtained SRSs and the stability as welleas tised to handle the MRSs and the ., filter has been designed
convergence of the filtering error has been analyzed. Then, aiccording to the solution of linear matrix inequalities lwi
fault detection and isolation problems have been concediored nonconvex constraint. The set-membership filtering proble
the underlying non-uniformly sampled MRSs. has been concerned in [80] for MRSs over sensor networks.

Other than the classic Kalman filtering approach, the mo#é-set of local filters have been designed such that the filjerin
ified Kalman filtering approaches have also been wide8frors have been constrained in a given ellipsoid. In [914, t
used in the state estimation problems for MRSs. In [34%2pnotopes-based distributed set-membership filteringleno
the extended Kalman filtering problem has been discusdeais been investigated for MRSs where the state estimates
for nonlinear systems where the availability of themary belong to the computed sets.
and thesecondarymeasurements are asynchronous. Several
methods that effective for the asynchronous measuremeBts
have been discussed and modified in the extended Kalman
filtering framework. In [131], the state estimation problem In the networked systems, due to the limited resources of
has been dealt with for nonlinear multi-sensor MRSs H{ie communication networks, the network-induced phen@men
using the modified sigma point Kalman filtering approactievitably occur [44], [96]. Up to now, considerable resiar
A modified unscented Kalman filter has been proposed aitentions have been paid on the state estimation problems f
[27] for the multi-rate INS/GPS integrated navigation syss. networked MRSs subject to network-induced phenomena and
The state estimation problem has been investigated in [38gnty of results have been available. In the following, som
for nonlinear systems with a normal measurement and Bfpical network-induced phenomena are introduced and the
infrequent integral measurement. The systems have beéen figrresponding state estimation problems for networked MRS
reformulated to equivalent variable dimension systemsnTh are summarized.
variable dimension unscented Kalman filter has been designe The packet dropout is one of the most frequently occurred
In [89], a joint-unscented Kalman filtering algorithm hashe network-induced phenomena which may be caused by many
proposed for a continuous stirred-tank reactor system witkasons such as intermittent sensor failures, networkemng
asynchronous sensors. tion and so on. In [32], the linear-minimum-mean-square+er
observer design problem has been considered for multesens
MRSs with multiple packet dropouts. The observer has been
designed by minimizing the estimation error covariancas. |

In the state estimation problems for MRSs, the moving52], the almost surely state estimation problem has been
horizon estimation approach, the particle filtering apphpa studied for MRSs subject to both Markovian packet dropouts
the I5-1, filtering approach and the set-membership filteringnd random packet dropouts characterized by the bernoulli
approach have been taken into consideration either [2], [8]stributed random variables. An estimator has been dedign
[26], [74], [83], [157]. In the moving horizon estimation, thesuch that the estimation error is almost surely exponéwtial
estimate is generated by solving a predefined optimizatistable. The non-fragile distributeH,, filtering problem has
problem based on the measurements in a moving time interbaken concerned in [102] for MRSs with packet dropouts char-
with fixed length. Due to its efficiency in handling nonlineaacterized by the Gilbert-Elliott model. A sufficient condit
systems, the moving horizon estimation has received evbas been derived on the exponential stability and thg
increasing research interest in the past decade [36],[I/3]]. performance.
In [74], the state estimation problem has been solved forThe signal quantization and saturation are two ubiquitous
mobile robot systems with asynchronous sensors accordmgfwork-induced phenomena due to the inherent nature of
to the moving horizon estimation. The sampling rates of thke digital transmission and the physical constraints & th
sensors have been uniformed by compensating the meashardware, respectively [10], [16], [93]. In [144], the \aanCe-
ments from the slow-rate sensor with a prediction valuenTheconstrainedd ., state estimation problem has been studied for
a moving horizon estimation algorithm has been develop&RSs subject to measurement quantization. The quantizatio
by solving a regularized least-squares problem. The movieffect has been characterized by a logarithmic quantizdr an
horizon estimation problem has been concerned in [157] foansformed to sector-bounded uncertainties. The degitgd

Handling the network-induced challenges

C. Other estimation approaches
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filter has been designed by resorting to the stochastic sisaly
approach and the Lyapunov theory. In [59], the multi-ohyect
filtering problem has been concerned for MRSs with random
sensor saturations. The saturation function has beenttemri
as a combination of a linear term and a nonlinear function
satisfying the sector condition.

In the above results, the state estimation algorithms have
been developed such that, with the existence of the network-
induced phenomena, the estimation performance stillfistis
given performance requirements. In another way, we can
also introduce certain communication protocols to redhee t
occurrence of the network-induced phenomena. In [48], the
event-triggered protocol has been introduced in the fusign
timation problem for MRSs with sensor degradations. In [79]
the stochastic communication protocol has been considered!
in H., state estimation for MRSs. The round-robin protocol 2
has been discussed in [104] and [80] where the recursive
state estimation problem and the distributed set-memlgersh
filtering problem have been coped with for MRSs, respedtivel
The weighted try-once-discard protocol has been introdiirce

[103] for recursive filtering problem of MRSs.

IV. CONCLUSIONS AND FUTURE WORK

5)

estimate information are not fully used which would
lead to deterioration of the estimation accuracy. To this
end, a trend for future research is to propose novel
fusion strategies that make full use of the asynchronous
estimates.

Another promising research topic is to study the fault
detection, diagnosis, and isolation problems for MRSs.
Although some initial results have been obtained, the
corresponding theories for MRSs are far from mature.
Hence, it is of great importance to develop fault detec-
tion, diagnosis, and isolation theories for MRSs.
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