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Multi-Sensor Multi-Rate Fusion Estimation for
Networked Systems: Advances and Perspectives

Yuxuan Shen, Zidong Wang, Hongli Dong and Hongjian Liu

Abstract—In industrial systems, the multi-rate sampling strat-
egy has been widely used due to the advantage in balancing cost
and performance as well as the psychical characteristics of the
hardware. Accordingly, the analysis and synthesis problems of the
multi-rate systems (MRSs) have received considerable research
attentions owing to the significant engineering background.
Among others, the state estimation problem, aims to estimate the
system state based on the contaminated measurement signals, is
one of the most important topics in the area of signal processing.
In the past decades, plenty of research results have been obtained
on the state estimation problems for MRSs. The intent of this
survey is to provide a timely and systematic review with respect
to the available state estimation algorithms for networked MRSs
and the corresponding fusion methods. First, a general state-
space model of the MRSs is given and the methods that transform
the MRSs into single-rate ones are introduced. Then, the recent
advances on the state estimation as well as fusion estimation
problems for MRSs are discussed based on the performance
indices used. Finally, some future research topics are given in
the MRS state estimation problems.

Index Terms—Multi-rate systems, networked systems,H∞

state estimation, Kalman filtering, multi-sensor information fu-
sion.

I. I NTRODUCTION

With the rapid development of the wireless communication
technology and the digital technology, the networked systems
have been widely applied in the practical applications such as
process monitoring, power grids, industrial control systems,
traffic systems, and etc [24], [30], [45], [86], [107], [118],
[126]. In the networked systems, the signals generated by
the system components, including the sensors, the underlying
plant, and the controllers, are first sampled and then trans-
mitted through the communication networks. Compared to
the traditional systems, the networked systems provide the
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advantages of low cost, easy maintenance, and high reliability.
Nevertheless, the introduction of the communication network
largely increases the complexity of the networked systems,
and hence brings major challenges to the state estimation of
the networked systems. Consequently, the problem of state
estimation for networked systems has been attracting ever-
increasing research interest [5], [15], [40], [78], [141], [142].

Due to the large scale, it is often the case that the networked
system contains numerous spatially distributed system com-
ponents (including multiple sensors). As mentioned before,
the continuous signals from the system components are first
sampled into discrete signals with fixed sampling periods
before being transmitted.Traditionally, to simplify the design
of the state estimation algorithms, it is assumed that a unified
sampling period is chosen for different signals [20], [70],
[94], [95], [117]. Unfortunately, such an assumption is not
realistic in real practice. Since different system components
own different physical characteristics, it is quite difficult (if
not impossible) to unify the sampling periods for different
components. Furthermore, setting different sampling periods
for different system components (i.e., multi-rate sampling)
according to the importance of their signals is preferable in
engineering practice [4], [88], [98], [99]. As such, the state
estimation problems for networked multi-rate systems (MRSs),
which reflect the real situation in the practical engineering,
have stirred attentions form researchers.

In the state estimation problems for MRSs, due to the
existence of the multiple time sequences, it is quite difficult
to directly design state estimators for the considered MRSs.
In other words, the state estimation methods developed for
single-rate systems (SRSs) can not be directly applied to
MRSs. Therefore, much research effort has been devoted to
solving state estimation problems for MRSs [1], [17], [19],
[73], [97], [100], [106], [108], [116], [145]. In literature, a
widely accepted way to deal with the state estimation problems
for MRSs is that we first transmit the MRSs into equivalent
SRSs, and then design state estimators for the equivalent SRSs
by using the renowned state estimation methods such as the
H∞ estimation method, the Kalman filtering method, and the
set-membership filtering method. Once the estimate of the state
of the transmitted SRSs is obtained, the estimate of the state
of the MRSs can be easily obtained by some simple matrix
operations.

The multiple sensors in the networked systems provide
complementary or redundant information about the plant of
interest. To achieve an accurate estimation performance, it
is suggested to utilize the multi-sensor information fusion
methods to fuse the information from the multiple sensors.
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Fig. 1: The architecture of the centralized fusion process
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Fig. 2: The architecture of the distributed fusion process

In general, the multi-sensor information fusion methods can
be categorized into two types: the centralized fusion methods
and the distributed fusion methods [6], [7], [23], [72], [114].
In the centralized fusion methods, the measurements from
the multiple sensors are transmitted to a fusion center where
the measurements are fused to a new measurement. Then,
the system state is estimated based on the obtained new
measurement. In the distributed fusion methods, each local
estimator first gives a local estimate based on its measurement
and then transmits the estimate to a fusion center where
the local estimates are fused to an optimal/suboptimal global
estimate. The architectures of the centralized fusion process
and the distributed fusion process are shown in Fig. 1 and
Fig. 2, respectively.

On the other hand, due to the limited communication
resources of the communication networks, some network-
induced phenomena arise inevitably in the networked sys-
tems. Such network-induced challenges include, but are not
limited to, the missing measurements, the communication
delays, the channel fading, and the packet disorders. If not
properly handled, these network-induced phenomena would
deteriorate the estimation performance in the state estimation
of the networked systems. Therefore, it is of great importance
to find effective solutions to handle the above mentioned
network-induced problems. Up to now, plenty of results have
been obtained for state estimation problems for networked

systems under network-induced phenomena, see [46], [85],
[101], [124] for missing measurements, see [14], [60], [111],
[125] for communication delays, see [35], [38], [77], [136]for
channel fading, and see [18], [21], [75] for packet disorders.

Generally speaking, in the existing literature, there are
mainly two ways to deal with the network-induced challenges
in the state estimation problems. The first one is to passively
design state estimation algorithms that are robust to the
network-induced phenomena. That is, with the existence of
the network-induced phenomena, designing state estimation
algorithms such that the desired performance requirement is
achieved, see for examples [13], [53], [66], [110]. The other
way is to actively introduce communication protocols into
the communication networks to alleviate/aviod the network-
induced phenomena, and then develop state estimation al-
gorithms whilst considering the influence of the introduced
communication protocols. Some of the widely used commu-
nication protocols are the static event-triggered protocol [115],
[122], [123], [154], the dynamic event-triggered protocol[8],
[90], [138], [149], the self-triggered protocol [127], [128], the
Round-Robin protocol [104], [156], the weighted Try-Once-
Discard protocol [54], [148], and the random access protocol
[25], [58], [147], [155].

In this paper, we aim to provide a systematic review
of the existing results on the state estimation problems for
networked MRSs and the applied multi-sensor information
fusion methods. The remainder of this paper is outlined as
follows. In Section II, a general state-space model of the
MRSs is presented and various methods that transform the
MRSs into SRSs are surveyed.In Section III, research results
are discussed on the state estimation problems for MRSs
where the methods in Section II are used to transmit the
MRSs. Moreover, the multi-sensor information fusion methods
applied are also reviewed.Section IV provides the conclusion
and the future research topics.

II. M ULTI -RATE SYSTEMS

In this section, we first introduce a general state-space mod-
el of the discrete-time MRSs. Then, some effective methods
that transform the MRSs into SRSs are presented. Moreover,
the corresponding estimators are designed for the transformed
SRSs.

A. State-space model of the MRSs

Consider a discrete-time multi-sensor MRS described as
follows:

{
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the system state and the measurement output from thei-th
sensor, respectively.w(sk) and vi(t
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compatible dimensions.
The state update period of the system (1) ish , sk+1 − sk

and the sampling period of thei-th sensor isbih , ti
k+1

− ti
k
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wherebi ≥ 1 (i ∈ [1, N ]) are allowed to be different. That
is, in the MRS (1), the state update period of the system
is allowed to be different with the sampling period of the
sensor, while the sampling periods of different sensors are
also allowed to be different. An illustration of the multi-rate
sampling scheme is given in Fig. 3. Moreover, the MRS (1)
can be seen as a combination ofN multi-rate subsystems
where thei-th subsystem consists of the state equation and
the measurement equation of thei-th sensor.
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Fig. 3: An illustration of the multi-rate sampling scheme with
b1 = 2 andb2 = 3

B. Transformation from MRSs to SRSs

After presenting the state-space model of the MRSs, in this
subsection, we are going to introduce some effective methods
that convert the MRSs into single-rate ones.

1) Using the lifting technique:The lifting technique pro-
posed in [87] is one of the popular methods that are used to
transform the MRSs. The main idea of the lifting technique
is to obtain equivalent SRSs by increasing the state update
period. Taking thei-th multi-rate subsystem of (1) as an
example, the statesx(ti

k−1
+ h), . . . , x(ti

k
− h), x(ti

k
) in the

interval (ti
k−1

, ti
k
] are first augmented into a vector̄xi(t

i

k
).

Then, a new state equation with the state update periodbih is
obtained by the aid of the original state equation. Accordingly,
the MRSs are transformed into SRSs. In the following, the
detailed process is presented.
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Following the similar process, the MRS (1) is transformed
into N SRSs with uniform periodsbih (i = 1, 2, . . . , N). For
the i-th SRS, thei-th local estimator is designed as
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estimator gain to be designed.
From the above process, we can see that the lifting technique

is able to transform the linear MRSs to equivalent linear
SRSs. Nevertheless, due to the augmentation of the states, the
designed estimation algorithm will have a high computational
cost. On the other hand, when applying the lifting technique
to the nonlinear MRSs, the transformation will be complicated
due to the iteration of the nonlinear function.

2) Iterating the state equation:By simply iterating the state
equation in (1), we have the following new state equation with
a state update periodbih:
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Accordingly, we have the following SRS:
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For the SRS (3), thei-th local estimator is designed as
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estimator gain to be designed.
By iterating the state equation, thei-th multi-rate subsystem

of (1) is transformed into the SRS (3).Compared to the SRS
(2) obtained by using the lifting technique, the computational
cost of the estimation algorithm designed for the SRS (3)
is low. Nevertheless, the designed estimation algorithm only
estimates the states at the measurement sampling instants (i.e.,
ti
k
(k = 0, 1, 2, . . .)) and other states are not estimated.
3) Compensating measurements with zero:In the above

two approaches, the MRSs are transformed into SRSs by
increasing the state update period of the state equation. Intu-
itively, we can also complete the transformation by decreasing
the sampling period of the measurement equation. A method
to achieve this goal is compensating the measurements at non-
sampling instants with zero.

By introducing a variable

λi(sk) =

{

1, if mod(sk, bih) = 0;
0, otherwise
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with mod(x, y) being the unique nonnegative remainder on di-
vision of x by y, the compensated measurement is formulated
as

yi(sk) = λi(sk)Ci(sk)x(sk) + λi(sk)Di(sk)vi(sk).

Then, a SRS is derived as follows:
{

x(sk+1) =A(sk)x(sk) +B(sk)w(sk),

yi(sk) =λi(sk)Ci(sk)x(sk) + λi(sk)Di(sk)vi(sk).
(4)

For the SRS (4), thei-th local estimator is designed as

x̂i(sk+1) =A(sk)x̂i(sk)

+Ki(sk)(yi(sk)− λi(sk)Ci(sk)x̂i(sk))

where x̂i(sk) is the estimate ofx(sk) and Ki(sk) is the
estimator gain to be designed.

The advantages of such an approach are that the computa-
tional cost is low and the designed estimation algorithm can
estimate the state at all state update instants. Unfortunately, the
estimation accuracy may be low since the estimate is obtained
by prediction at non-measurement-sampling instants.

4) Compensating measurements with the zero-order holder:
Suppose that a zero-order holder is used to compensate the
measurements at the non-sampling instants. After the com-
pensation, the measurement available is

ȳi(sk) , yi(t
i

m
), ti

m
≤ sk < ti

m+1.

Inspired by the input delay approach which has been used to
transform the discrete-time control input into delayed control
input [29], we define a variableρisk as follows:

ρisk , sk − tim, tim ≤ sk < tim+1.

Noting thattim = sk − (sk − tim) = sk − ρisk holds for tim ≤
sk < tim+1, the measurement̄yi(sk) is reformulated as

ȳi(sk) = yi(sk − ρi
sk
)

= Ci(sk − ρisk)x(sk − ρisk)

+Di(sk − ρi
sk
)vi(sk − ρi

sk
).

Therefore, thei-th multi-rate subsystem of (1) is transformed
into a SRS











x(sk+1) = A(sk)x(sk) +B(sk)w(sk),

ȳi(sk) = Ci(sk − ρi
sk
)x(sk − ρi

sk
)

+Di(sk − ρisk)vi(sk − ρisk).

(5)

For the SRS (5), thei-th local estimator is designed as

x̂i(sk+1) = A(sk)x̂i(sk)

+Ki(sk)(ȳi(sk)− Ci(sk − ρisk)x̂(sk − ρisk))

where x̂i(sk) is the estimate ofx(sk) and Ki(sk) is the
estimator gain to be designed.

Remark 1:In this section, for simplification of the formu-
las, we only consider the case that the system state update
period and the sampling period are different. Note that, the
transformation methods provided in this section can be easily
extended to the case where the system state update period, the
sampling period and the estimate update period are mutually
different.

III. E STIMATION PROBLEMS FOR MULTI-RATE SYSTEMS

Due to the practical engineering significance of the multi-
rate sampling, the state estimation problem for MRSs has
become an active research topic. Up to now, a number of
estimation approaches have been applied on MRS state estima-
tion problems. According to the performance indices used, the
applied estimation approaches can be categorized into theH∞

estimation approach [49], [50], [62], [63], [82], the Kalman
filtering approach and its variants [43], [121], [133], the set-
membership filtering approach [12], [76], [151], the moving
horizon estimation approach [134] and etc. On the other hand,
in the state estimation problems for MRSs, the multi-sensor
information fusion methods are widely used that include the
weighted by matrix fusion method, the weighted by scalar
fusion method, the covariance intersection fusion method,the
sequential covariance intersection fusion method and so on[7],
[31], [37], [81], [113].The weighted by matrix fusion method
and the weighted by scalar fusion method can obtain the opti-
mal fused estimate but need the cross-covariances among local
estimation errors. The covariance intersection fusion method
and the sequential covariance intersection fusion method can
avoid the calculation of the cross-covariances but can not
obtain optimal fused estimate.

In the following, the available results on state estimation
problems for MRSs are reviewed and the corresponding fusion
methods are also discussed.

A. H∞ estimation approach

In the past few decades, theH∞ estimation approach has
received particular research interest since it is able to attenuate
the influence of the energy-bounded external disturbances on
the estimation performance. The core idea of theH∞ estima-
tion is to design an estimator such that a predefined disturbance
attenuation level (i.e. theH∞ performance index) is achieved.
Based on the methods like the linear matrix inequality, the
Hamilton-Jacobi inequality as well as the Riccati equation,
the H∞ state estimation problems have been concerned for
various systems [41], [61].

In the MRS state estimation problems, theH∞ estimation
approach has been widely used and a large body of literature
has been available [28], [71], [79], [105], [109], [120]. In
[105], theH2 andH∞ filtering problems have been studied
for multi-rate linear time-invariant systems with a state update
period h and a sampling periodnh. First, a standard filter
with a periodic filter gain and an update periodh has been
proposed to cater for the multi-rate sampling. Then, the state
update period, the sampling period and the estimate update
period have been uniformed by iterating the system state
equation and the filter equation. Finally, theH2 and H∞

filters have been designed by solving certain linear matrix
inequalities where nonconvex constraints have been introduced
due to the multi-rate sampling. Subsequently, the authors
of [105] has extended the results to multi-rate linear time-
invariant systems with packet dropouts in [71] where the state
update period, the sampling period as well as the estimate
update period are different. A sufficient condition has been
provided on the existence of a stable filter. In [109], the
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H∞ estimation problem has been concerned for multi-sensor
multi-rate linear time-invariant systems where the estimate
update period is integer multiple of the sampling period/state
update period. The measurements of the sensors have been
transmitted to a fusion centre in a competitive way. By fusing
the measurements received in one estimate update period, the
estimator in the fusion centre has estimated the system state.
A sufficient condition has been obtained on the mean-square
stability as well as theH∞ performance and theH∞ estimator
has been characterized.

For time-varying MRSs, the quantized finite-horizonH∞

filtering problem has been studied in [79] under the stochastic
communication protocol. The lifting technique has been first
applied to handle the MRSs, and then the desiredH∞ filter has
been designed by solving certain Riccati different equations.
Similar to [79], the variance-constrained finite-horizonH∞

state estimation problem has been considered in [120] for
time-varying MRSs. In [28], the sequential fusionH∞ filtering
problem has been investigated for time-varying MRSs where
p asynchronous sensors are used to measure the system and
send the measurements to a fusion center asynchronously. In
the fusion center, the estimator updates the estimate once a
measurement is received. With such a multi-rate sampling
strategy, a sequential fusionH∞ filter has been designed based
on the Krein-space approach.

The fault detection problem is a long-standing research
topic that has been widely studied [51], [55], [137], [150],
[153]. In the MRSs, due to reasons like sensor aging, random
sensor failure, or harsh environment, the fault may occur
which largely degrades the system performance. Therefore,
it is of great importance to design fault detection algorithm
to detect the fault.Recently, theH∞ fault detection problems
for MRSs have received initial research interest. In [146],the
H∞ fault detection problem has been investigated for MRSs
with asynchronous state update rate and sampling rate. By
iterating the state equation, the equivalent SRSs have been
derived, and then an observer-based fault detection filter has
been designed. With the help of the linear matrix inequality
method, sufficient conditions have been developed such that
theH∞ norm from the noises and faults to the fault estimation
error is less that a given attenuation level. In [143], the
intermittent fault detection problem has been concerned for
a class of nonuniformly sampled MRSs. The nonuniform
sampling interval is governed by a Markov process with
partly unknown and uncertain transition probabilities. Due
to the existence of the Markov process, the MRSs has been
transformed into SRSs with Markovian jumping parameters.
Sampling-interval-dependent fault detection filters havebeen
designed such that the residual estimation error satisfies the
H− andH∞ performances simultaneously.

B. Kalman filtering approach and its variants

The classic Kalman filtering approach is one of the most
celebrated filtering approaches. For linear systems with Gaus-
sian noises whose statistics are exactly known, the classic
Kalman filtering is an optimal filtering approach under which
the filtering error covariance is minimized at each time instant.

Nevertheless, when applied to nonlinear systems or systems
with non-Gaussian noises, the classic Kalman filtering is no
longer applicable.Therefore, some modified Kalman filtering
approaches have been developed that includes the extended
Kalman approach [64], [119], the unscented Kalman approach
[69], [112], the cubature Kalman approach [11], [57] and so
on.

For state estimation problems concerning the MRSs, the
classic Kalman filtering approach is another popular approach
that has been widely studied [22], [33], [47], [56], [84], [129],
[130]. In [129], the fusion estimation problem has been studied
for multi-sensor systems by using the traditional Kalman
filtering approach where the sampling periods of the sensors
are asynchronous. By using the lifting technique, the multi-
sensor MRS has been transformed into synchronous single-
rate single-sensor systems. Local Kalman filters has been first
designed to obtain the local estimates which have been then
fused to a global estimate with the help of the fusion method
in [9]. In [130], the problem in [129] has been reconsidered
and a novel fusion estimation algorithm has been proposed
which fuses the local estimates in a recursive form and is
optimal in the linear minimum variance sense. In [47], the
result in [129] has been extended to multi-sensor systems
with arbitrary number of sensors and arbitrary sampling rates.
Both the centralized asynchronous fusion estimation algorithm
and the distributed asynchronous fusion estimation algorithm
have been developed based on the Kalman filtering. It has
been verified that the estimation performances of both fusion
estimation algorithms are equivalent under the full-rate com-
munication assumption, while the centralized one outperforms
the distributed one when the communications are constrained.
In [132], the federated Kalman filtering problem has been
investigated for asynchronous multi-sensor MRSs with random
missing measurements.

The Kalman fusion estimation algorithm has been developed
in [140] for MRSs over the sensor networks. The system
state update period, the measurement transmission period,and
the estimate update period have been allowed to be different.
The local Kalman filters have been first designed based on
the SRSs derived by the lifting technique. Then, the local
estimates have been fused with the weighted by matrix fusion
method. Due to the asynchronism of the local estimates, at a
certain time instant, only the available estimates have been
fused. In [139], the hierarchical fusion estimation problem
has been coped with for MRSs over sensor networks. The
underlying sensor network consists ofN sensor clusters and
each sensor cluster contains multiple sensors and a cluster
head. First, the estimator in the cluster head has generated
a local estimate based on the fused measurement which has
been obtained by fusing the available measurements from
the sensors in this cluster with the sequential fusion method.
Then, the cluster head has communicated with other cluster
heads to generate the fused estimate. In the estimate fusion
process, only the available local estimates have been used also
due to the asynchronism of the local estimates. In [92], the
Kalman fusion estimation problem has been also investigated
for MRSs over sensor networks where the state update period
and the sampling period are different. Different from [140],
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the estimates at the non-sampling instants have been obtained
through prediction based on the state equation. Therefore,the
estimates from all local estimators have been available in the
estimation fusion process at each time instant. The distributed
fusion estimation problem has been considered in [52] for
multi-rate linear systems where the estimation process andthe
fusion process are similar to those in [140].

The fault detection problems for MRSs based on the Kalman
filtering approach have received little research attentions. In
[68], the Kalman filtering problem has been investigated fora
class of non-uniformly sampled MRSs. After transforming the
MRSs into SRSs with the lifting technique, a filter has been
designed for the obtained SRSs and the stability as well as the
convergence of the filtering error has been analyzed. Then, the
fault detection and isolation problems have been concernedfor
the underlying non-uniformly sampled MRSs.

Other than the classic Kalman filtering approach, the mod-
ified Kalman filtering approaches have also been widely
used in the state estimation problems for MRSs. In [34],
the extended Kalman filtering problem has been discussed
for nonlinear systems where the availability of theprimary
and thesecondarymeasurements are asynchronous. Several
methods that effective for the asynchronous measurements
have been discussed and modified in the extended Kalman
filtering framework. In [131], the state estimation problem
has been dealt with for nonlinear multi-sensor MRSs by
using the modified sigma point Kalman filtering approach.
A modified unscented Kalman filter has been proposed in
[27] for the multi-rate INS/GPS integrated navigation systems.
The state estimation problem has been investigated in [39]
for nonlinear systems with a normal measurement and an
infrequent integral measurement. The systems have been first
reformulated to equivalent variable dimension systems. Then, a
variable dimension unscented Kalman filter has been designed.
In [89], a joint-unscented Kalman filtering algorithm has been
proposed for a continuous stirred-tank reactor system with
asynchronous sensors.

C. Other estimation approaches

In the state estimation problems for MRSs, the moving
horizon estimation approach, the particle filtering approach,
the l2-l∞ filtering approach and the set-membership filtering
approach have been taken into consideration either [2], [3],
[26], [74], [83], [157]. In the moving horizon estimation, the
estimate is generated by solving a predefined optimization
problem based on the measurements in a moving time interval
with fixed length. Due to its efficiency in handling nonlinear
systems, the moving horizon estimation has received ever-
increasing research interest in the past decade [36], [74],[157].
In [74], the state estimation problem has been solved for
mobile robot systems with asynchronous sensors according
to the moving horizon estimation. The sampling rates of the
sensors have been uniformed by compensating the measure-
ments from the slow-rate sensor with a prediction value. Then,
a moving horizon estimation algorithm has been developed
by solving a regularized least-squares problem. The moving
horizon estimation problem has been concerned in [157] for

linear systems with multi-rate measurements and correlated
noises. By introducing a switching variable, the multi-rate
measurements have been combined in a new measurement
model. Based on the obtained SRSs, the desired moving
horizon estimator has been designed.

The particle filtering approach, roots on the sampling-based
approximation techniques, is an effective filtering approach for
nonlinear systems or systems with non-Gaussian noises.In
[42], both the particle filtering and extended Kalman filtering
have been applied to an intensified chemical process subjectto
asynchronous measurements. Thel2-l∞ filtering problem has
been studied in [135] for MRSs. The lifting technique has been
used to handle the MRSs and thel2-l∞ filter has been designed
according to the solution of linear matrix inequalities with a
nonconvex constraint. The set-membership filtering problem
has been concerned in [80] for MRSs over sensor networks.
A set of local filters have been designed such that the filtering
errors have been constrained in a given ellipsoid. In [91], the
zonotopes-based distributed set-membership filtering problem
has been investigated for MRSs where the state estimates
belong to the computed sets.

D. Handling the network-induced challenges

In the networked systems, due to the limited resources of
the communication networks, the network-induced phenomena
inevitably occur [44], [96]. Up to now, considerable research
attentions have been paid on the state estimation problems for
networked MRSs subject to network-induced phenomena and
plenty of results have been available. In the following, some
typical network-induced phenomena are introduced and the
corresponding state estimation problems for networked MRSs
are summarized.

The packet dropout is one of the most frequently occurred
network-induced phenomena which may be caused by many
reasons such as intermittent sensor failures, network conges-
tion and so on. In [32], the linear-minimum-mean-square-error
observer design problem has been considered for multi-sensor
MRSs with multiple packet dropouts. The observer has been
designed by minimizing the estimation error covariances. In
[152], the almost surely state estimation problem has been
studied for MRSs subject to both Markovian packet dropouts
and random packet dropouts characterized by the bernoulli
distributed random variables. An estimator has been designed
such that the estimation error is almost surely exponentially
stable. The non-fragile distributedH∞ filtering problem has
been concerned in [102] for MRSs with packet dropouts char-
acterized by the Gilbert-Elliott model. A sufficient condition
has been derived on the exponential stability and theH∞

performance.
The signal quantization and saturation are two ubiquitous

network-induced phenomena due to the inherent nature of
the digital transmission and the physical constraints of the
hardware, respectively [10], [16], [93]. In [144], the variance-
constrainedH∞ state estimation problem has been studied for
MRSs subject to measurement quantization. The quantization
effect has been characterized by a logarithmic quantizer and
transformed to sector-bounded uncertainties. The desiredH∞
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filter has been designed by resorting to the stochastic analysis
approach and the Lyapunov theory. In [59], the multi-objective
filtering problem has been concerned for MRSs with random
sensor saturations. The saturation function has been rewritten
as a combination of a linear term and a nonlinear function
satisfying the sector condition.

In the above results, the state estimation algorithms have
been developed such that, with the existence of the network-
induced phenomena, the estimation performance still satisfies
given performance requirements. In another way, we can
also introduce certain communication protocols to reduce the
occurrence of the network-induced phenomena. In [48], the
event-triggered protocol has been introduced in the fusiones-
timation problem for MRSs with sensor degradations. In [79],
the stochastic communication protocol has been considered
in H∞ state estimation for MRSs. The round-robin protocol
has been discussed in [104] and [80] where the recursive
state estimation problem and the distributed set-membership
filtering problem have been coped with for MRSs, respectively.
The weighted try-once-discard protocol has been introduced in
[103] for recursive filtering problem of MRSs.

IV. CONCLUSIONS AND FUTURE WORK

In this survey, the state estimation approaches developed
for MRSs and the corresponding multi-sensor information
fusion methods have been discussed and reviewed. First, a
general state-space model has been given to characterize the
MRSs. The methods that transform the MRSs into SRSs have
been summarized. Then, the recent advances on the fusion
estimation problems for MRSs have been reviewed based on
the applied estimation approach. According to the literature
review, some future research topics are given as follows:

1) In the existing literature, the state estimation problems
are mostly investigated for linear MRSs or nonlinear
MRSs with strict assumption on the nonlinear function.
It would be an interesting and challenging topic to
investigate the state estimation problems for MRSs with
general nonlinearities.

2) The complex networks can characterize plenty of real-
world dynamical systems and have received consistent
research interest in the past decades [65], [67]. Unfortu-
nately, the studies on the state estimation problems for
complex networks with multi-rate sampling strategy are
quite few. Therefore, the state estimation problem for
multi-rate complex networks will be an attractive area.

3) Other than the communication protocols discussed in
this survey, there are also some effective communication
protocols, e.g. the FlexRay protocol, introduced in the
networked systems and the corresponding state estima-
tion algorithms have been developed. Nevertheless, how
to modify the existing results to make them applicable
to MRSs or how to develop novel estimation algorithms
suitable for MRSs with above-mentioned protocols re-
main open and challenging.

4) In the estimate fusion process, due to the asynchronism
of the local estimates, only the estimates available at
the current time instant are fused. As such, the valuable

estimate information are not fully used which would
lead to deterioration of the estimation accuracy. To this
end, a trend for future research is to propose novel
fusion strategies that make full use of the asynchronous
estimates.

5) Another promising research topic is to study the fault
detection, diagnosis, and isolation problems for MRSs.
Although some initial results have been obtained, the
corresponding theories for MRSs are far from mature.
Hence, it is of great importance to develop fault detec-
tion, diagnosis, and isolation theories for MRSs.

REFERENCES

[1] D. Andrisani and C.-F. Gau, Estimation using a multiratefilter, IEEE
Transactions on Automatic Control, vol. 32, no. 7, pp. 653–656, 1987.

[2] L. Armesto, J. Tornero and M. Vincze, On multi-rate fusion for non-
linear sampled-data systems: Application to a 6D tracking system,
Robotics and Autonomous Systems, vol. 56, no. 8, pp. 706–715, 2008.

[3] J. Bae, Y. Kim and J. M. Lee, Multirate moving horizon estimation
combined with parameter subset selection,Computers & Chemical
Engineering, vol. 147, art. no. 107253, 2021.

[4] T. Bonargent, T. Ḿenard, O. Gehan and E. Pigeon, Adaptive observer
design for a class of Lipschitz nonlinear systems with multirate
outputs and uncertainties: Application to attitude estimation with gyro
bias, International of Robust and Nonlinear Control, vol. 31, no. 8,
pp. 3137–3162, 2021.

[5] R. Caballero-́Aguila, A. Hermoso-Carazo and J. Linares-Pérez, Op-
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