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Abstract

In this paper, the H∞ observer design problem is investigated for discrete-time Hamiltonian systems
subject to missing measurement and sensor saturations governed by Bernoulli distributed random
variables. Our purpose is to design an observer such that the error dynamics of the state estimation
is exponentially mean-square stable with prescribedH∞ performance. By resorting to the Lyapunov
function and the Hamiltonian system property, sufficient conditions are derived to guarantee the
existence of the desired observer. Moreover, observer gains are designed in forms of the solutions
to certain matrix inequalities. Finally, an illustrative example is utilized to testify the effectiveness
of our observer design scheme.

Keywords: H∞ observer, discrete-time Hamiltonian systems, missing measurement, sensor
saturations, mean-square stability.

1. Introduction

For a few decades, Hamiltonian dynamical systems have attracted considerable research interest
due to their extensive applications in modeling port-based networks of complex real world systems
(e.g., satellites, robot manipulators, electrical networks and electric vehicles), see [24, 32, 35, 43]
and the references therein. As a matter of fact, the Hamiltonian function (i.e., the entire energy
of energy storing elements) in port-Hamiltonian systems, which is often seen as a satisfactory
Lyapunov function candidate, is capable of reflecting essential system properties and facilitating
the stability analysis of the underlying system. Motivated by such an appealing advantage of
the Hamiltonian dynamical systems, a great deal of research attention has been paid towards the
analysis/synthesis of practical control problems under the Hamiltonian system framework, see e.g.,
[20, 28, 29, 30, 31, 44].
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A noticeable point is that most existing results about port-Hamiltonian systems have restrained
themselves to the continuous-time case, despite the fact that the computer-controlled discrete-time
case has gained more and more attention in physical scenarios. Recently, the discrete-time Hamilto-
nian systems have begun to draw some initial research attention, see e.g. [1, 19, 17, 14, 27, 42]. For
example, a passive integrator dedicated to input/output Hamiltonian systems approximation has
been presented in [1], where the discrete-time model has admitted a Dirac structure representation.
The finite-time H∞ control problem has been investigated in [17] for the nonlinear discrete-time
Hamiltonian descriptor system. Very recently, a novel state representation has been exploited in [19]
for the port-Hamiltonian dynamics in a discrete-time setting by proposing an energy management
strategy.

Owing to their merits of low maintenance costs and high operation reliability, networked systems
have found a wide range of applications in many realms including industrial automation, information
collection, and smart grid (see e.g., [47, 18, 16, 15, 23, 6, 11]). In networked systems, the signal
transmissions between different components are carried out via shared communication networks,
and the resultant competition on limited network resource would give rise to network-induced
phenomena. In comparison with other network-induced phenomena, the missing measurement
is more often encountered in reality which, if not well addressed, are likely to degrade system
performances or even provoke instability. On the other hand, it is often the case in engineering
practice that a sensor can only produce measurements with limited amplitude, and such an issue is
customarily referred to as sensor saturation in existing literature. So far, much effort has been made
towards investigating filtering problems subject to missing measurement and/or sensor saturations
with representative results reported in [8, 21, 26, 22, 33, 39, 40, 34]. Nevertheless, the corresponding
investigation on Hamiltonian systems has received inadequate research attention and this gives rise
to the main motivation of this paper.

Summarizing our discussions, we focus on dealing with the H∞ state observer design problem
for discrete-time Hamiltonian systems subject to missing measurement and sensor saturations. A
state observer is designed such that the estimation errors satisfy not only the exponentially mean-
square stability constraints but also the prescribed H∞ performance index. Furthermore, observer
gains are derived through resorting to the approach of linear matrix inequalities (LMIs). Finally,
simulations are provided to testify the effectiveness of our observer scheme.

The main contributions we achieved lie in three aspects: 1) a novel discrete-time Hamiltonian
system model is presented to characterize the dynamics of nonlinear systems; 2) we make one of
the first attempts towards the observer design problem for discrete-time networked Hamiltonian
systems with missing measurement and sensor saturations; and 3) a new H∞ observer approach is
proposed under the Hamiltonian system framework.

Notation: For a matrix M , MT denotes its transpose and the asterisk “∗” in a matrix is used
to denote the term induced by symmetry. The notation M > 0 (respectively, M < 0) for M ∈ R

n×n

means that matrix M is real symmetric positive definite (respectively, negative definite). λmax{M}
(respectively, λmin{M}) represents the largest (respectively, smallest) eigenvalue of the matrix M .
The notation “sign” denotes the signum function. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation

2.1. Port-Hamiltonian systems and its discretization

To study the discrete-time Hamiltonian systems, we recall the following definitions first.
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Definition 1. ([38]) The dynamic system

ż = f(z), z ∈ R
n (1)

has a constant Hamiltonian realization if the Hamiltonian function H(z) and the suitable coordinate
chart exist such that (1) can be constructed as

ż = J∇H(z) (2)

where J ∈ R
n×n is called the structure matrix and

∇H(z) :=
∂H(z)

∂z

is the gradient of H(z).

From (2), the derivative of H(z) is expressed as

Ḣ(z) = ∇TH(z)J∇H(z). (3)

It is obvious that, if the structure matrix satisfies JT + J 6 0 (i.e., it is expressed by J = F −R

where F is skew-symmetric and R is positive semi-definite), then we are able to rewrite (3) as a
passivity equation with storage function H(x) with

Ḣ(z) = −∇TH(z)R∇H(z) 6 0. (4)

Here, the term ∇TH(z)R∇H(z) is the dissipation rates of systems, and the realization (2) under
the condition JT + J 6 0 is called a dissipative Hamiltonian realization. Clearly, the total stored
energy H(z) is a good Lyapunov function candidate for investigating the stability of the system’s
equilibrium points, which is actually a common practice in the analysis of system stability.

Remark 1. So far, a number of effective approaches have been reported to solve the general (dissi-
pativity) Hamiltonian realization problem for nonlinear systems. It is worth noting that, the Hamil-
tonian method can be employed to solve control problems for nonlinear systems by transforming
such systems into dissipative Hamiltonian systems [37]. Within the Hamiltonian system frame-
work, there has been a wealth of literature concerning the modelling and passivity-based control of
practical systems.

As stated in [27], the discrete-time port-Hamiltonian systems can be described as continuous
ones where port variables are frozen within a sample interval T . For convenience of subsequen-
t derivation, we denote z(s) as the discrete counterpart of z(t) in the interval t ∈ [sT, (s +
1)T ), and then the discrete-time Hamiltonian function is described as H(z(s)), where z(s) =
[
z1(s) z2(s) · · · zn(s)

]
T

. Accordingly, we present the following definitions of the discrete
gradients.

Definition 2. ([1, 12]) A discrete gradient ∇̄H(·) : R
n × R

n 7→ R
n is an approximation of the

gradient of discrete-time Hamiltonian system H(·) : R
n 7→ R, which satisfies:

(∇̄H(s, s′))T(s′ − s) = H(s′)−H(s), (5)

where s, s′ ∈ R
n and ∇̄H(s, s) = ∇H(s).
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In case of small sampling periods, model (2) becomes

z(s+ 1)− z(s) = J∇̄H(z(s)), (6)

where ∇̄H(z(s)) is the discrete gradient of H(z(s)) given by

∇̄H(z(s)) :=







H(z1(s+1),z2(s),··· ,zn(s))−H(z(s))
z1(s+1)−z1(s)

...
H(z1(s),··· ,zn−1(s),zn(s+1))−H(z(s))

zn(s+1)−zn(s)






. (7)

Here, the derived system (6) is customarily referred to as the so-called discrete-time Hamiltonian
system.

Note that, when JT + J 6 0, one has

H(z(s+ 1))−H(z(s))

= ∇̄TH(z(s))(z(s+ 1)− z(s))
= −∇̄TH(z(s))R∇̄H(z(s)) (8)

which shows that system (6) is lossless and energy conservative when R ≡ 0.

2.2. Hamiltonian system of incomplete sensor information

In this paper, we consider the following Hamiltonian system:
{

△z(s) = f(z(s)) +Bw(s)
ξ(s) = Mz(s),

(9)

where △z(s) := z(s+1)− z(s); ξ(s) ∈ R
p is the signal that needs to be estimated; w(s) ∈ R

q is the
external disturbance satisfying L2([0,∞),Rq); A, B and M are constant matrices. The nonlinear
function f(x(s)) is represented by A∇̄H(z(s)), where ∇̄H(·) is the discrete gradient described in
(7) and H(·) : R

n 7→ R is the discrete-time Hamiltonian function satisfying H(z(s)) > 0 for z 6= 0
and H(0) = 0.

The measurement output of the plant (9) is

y(s) = α(s)σ(Gz(s)) + (I − α(s))β(s)Gz(s) +Dv(s), (10)

where y(s) =
[
y1(s) y2(s) · · · ym(s)

]
T ∈ R

m; yi(s) (i = 1, 2, · · · ,m) is the measurement out-
put of the i-th sensor; v(s) ∈ R

m denotes the measurement noises satisfying L2([0,∞),Rm); G and
D are constant matrices; α(s) = diag{α1(s), α2(s), · · · , αm(s)} and β(s) = diag{β1(s), β2(s), · · · , βm(s)}
are diagonal matrices in which αi(s), βi(s) ∈ R (i = 1, 2, · · · ,m) are Bernoulli distributed variables
satisfying

{
Prob{αi(s) = 1} = µi

Prob{αi(s) = 0} = 1− µi

and
{

Prob{βi(s) = 1} = νi
Prob{βi(s) = 0} = 1− νi

respectively; and σ(·) is the saturation function to be introduced later. αi(s) and βi(s) are assumed
to be mutually independent for all i = 1, 2, · · · ,m.
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Remark 2. In practical engineering (especially networked control systems), the sensor saturation
often occurs in a probabilistic way due to the random abrupt changes. In addition, probabilistically
missing measurements is also inevitable in a networked environment due to the limited bandwidth
of the channels for signal transmission. The proposed sensor model (10) is capable of accounting
for the two phenomena in a unified representation. Specifically, if αi(s) = 1, it can be seen that
the sensor i is subject to saturation only; if αi(s) = 0 and βi(s) = 1, it means that the sensor i

works normally; if αi(s) = 0 and βi(s) = 0, the sensor i receives the noise only, implying that the
information transmitted from system (9) to sensor i is missing.

The saturation function is given by

σ(Gz(s)) =
[
σ(g1z(s)) σ(g2z(s)) · · · σ(gmz(s))

]
T

,

where gi represents the ith row of the matrix G and the saturation function σ : R → R is defined
as

σ(u) = sign(u)min{1, |u|}. (11)

Here, we have slightly abused notations through using σ to stand for both vector- and scalar-valued
functions.

In this paper, the state observer of the following form is adopted to for the purpose of state
estimation:

{ △ẑ(s) = AH ẑ(s) +K[y(s)−Gẑ(s)]

ξ̂(s) = Mẑ(s),
(12)

where ξ̂(s) and ẑ(s) are estimates of ξ(s) and z(s), and AH and K are observer parameters to be
determined.

Let the estimation error be
ξ̃(s) = ξ(s)− ξ̂(s)

and define

ζ(s) =

[
z(s)
ẑ(s)

]

, △ζ(s) =

[
△z(s)
△ẑ(s)

]

,

η(s) =

[
∇̄H(z(s))
∇̄H(ẑ(s))

]

, w̄(s) =

[
w(s)
v(s)

]

.

Then, one has the following augmented system:






△ζ(s) = (Ā− I)ζ(s) + Cη(s) + K̄σ(GEζ(s))

+B̄w̄(s) + Σm
i=1

(

(1 − αi(s))βi(s)

−(1− µi)νi

)

C̄GEζ(s)

+Σm
i=1

(

αi(s)− µi

)

C̄σ(GEζ(s))

ξ̃(s) = M̄ζ(s),

(13)

where C̄ =
[
0 (KEi)

T
]T

, E =
[
I 0

]
,

Ā =

[
I 0

K(I − Λα)ΛβG I −KG+AH

]

,
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B̄ =

[
B 0
0 KD

]

, C =

[
A 0
0 0

]

, K̄ =

[
0

KΛα

]

,

Ei = diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0
︸ ︷︷ ︸

m−i

}, M̄ =
[
M −M

]
,

Λα = diag{µ1, µ2, · · · , µm}, Λβ = diag{ν1, ν2, · · · , νm}.

Remark 3. System (13) is essentially stochastic because of the existence of stochastic parameters
αi(k) (i = 1, 2, · · · ,m) and βi(k). As such, we are motivated to assess the system stability along
with estimation performance in the mean-square sense.

In this paper, our objective is to design the observer (12) for the system (9) with

f(z(s)) := A∇̄H(z(s))

and measurement (10). More specifically, we endeavor to find the observer gains AH and K such
that system (13) achieves the following two performance requirements.

i) The estimation error system (13) with w̄(s) = 0 is exponentially stable in the mean-square sense,
i.e., there exist constants ρ > 0 and 0 < τ < 1 such that

E{‖ζ(s)‖2} 6 ρτsE{‖ζ(0)‖2} (14)

for all initial value ζ(0);

ii) Given the scalar γ > 0 and zero initial condition, ξ̃(s) satisfies

∞∑

s=0

E{‖ξ̃(s)‖2} 6 γ2
∞∑

s=0

‖w̄(s)‖2 (15)

for all w̄(k) > 0.

Assumption 1. The Hamiltonian function H(z(s)) and its discrete gradient ∇̄H(z(s)) satisfy

1. H(z(s)) 6 ι1‖z(s)‖2;
2. ‖∇̄H(z(s))‖2 6 ι2‖z(s)‖2,

where ι1 and ι2 are positive scalars.

Lemma 1. ([39]) For the saturation function σ(u) defined in (11), there exists a scalar l such that

[σ(u)− lu][σ(u)− u] 6 0, (16)

where the scalar l can be calculated based on the maximum of u.

It should be noted that the scalar l is very important for the observer design issue discussed in
this paper. Lemma 1 provides an effective method to deal with the difficulties induced by nonlinear
function σ(u) through the well-known “sector-bounded” technique. In practical applications, the
system states are always bounded due to their physical constraints. Without loss of generality,
we assume that the scalar variable u is bounded with the constraint |u| ≤ ū where ū is a known
positive scalar. Then, it is easy to see that the condition (16) holds with the scalar l , 1

ū
.
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Lemma 2. (Young’s Inequality [2]) Let constants a > 0, b > 1 and c > 1 be given such that
(b− 1)(c− 1) = 1. For any z, y ∈ R

n, we have

zTy 6
ab

b
‖z‖b + 1

cac
‖y‖c. (17)

Lemma 3. (Schur Complement [2]) The linear matrix inequality

[
Υ1 Υ2

∗ Υ3

]

> 0 (18)

holds if and only if

{
Υ1 −Υ2Υ

−1
3 ΥT

2 > 0
Υ3 > 0,

(19)

where Υi (i = 1, 2, 3) are constant matrices.

3. Main Results

3.1. Performance analysis

In this subsection, we first establish a stability condition for system (13) satisfying w̄(s) = 0.
Then, we discuss theH∞ performance. For convenience of subsequent developments, some notations
are defined as zs = z(s), ẑs = ẑ(s), ζs = ζ(s), ηs = η(s), αs = α(s), βs = β(s), w̄s = w̄(s).

Choose a Lyapunov function as

V (s) = V1(s) + V2(s) (20)

where V1(s) = ζT

s Pζs, V2(s) = 2λ1H(zs) + 2λ2H(ẑs), and λ1 and λ2 are positive scalars to be
determined.

Based on (13) and (7), we have

E{△V1(s)} := E{V1(s+ 1)− V1(s)}
= E{ζT

s+1Pζs+1 − ζT

s Pζs}

= E

{

ζT

s Ā
TPĀζs + ζT

s

m∑

i=1

(

(1 − αi
s)β

i
s − (1 − µi)νi

)2

ETGTC̄TPC̄GEζs

+2ζT

s Ā
TPCηs + 2ζT

k ĀP K̄σ(GEζs) + 2ζT

s

m∑

i=1

(

(1 − αi
s)β

i
s − (1 − µi)νi

)

×(αi
s − µi)E

TGTC̄TPC̄σ(GEζs) + ηT

sC
TPCηs + 2ηT

sC
TPK̄σ(GEζs)

+σT(GEζs)K̄
TPK̄σ(GEζs) + σT(GEζs)

m∑

i=1

(αi
s − µi)

2C̄TPC̄

×σ(GEζs)− ζT

s Pζs

}

(21)

and

E{△V2(s)} := E{V2(s+ 1)− V2(s)}

7



= E{2λ1(H(zs+1)−H(zs)) + 2λ2(H(ẑs+1)−H(ẑs))}
= E{2ηT

sΛ△ζs}
= 2ηT

sΛ(Ā− I)ζs + 2ηT

sΛCηs + 2ηT

sΛK̄σ(GEζs), (22)

where Λ = diag{λ1I, λ2I}.
It follows from Assumption 1 and Lemma 1 that

ǫ1(η
T

s Ēηs − ι2ζ
T

s Ēζs) 6 0, (23)

ǫ2[σ(GEζs)− LGEζs]
T[σ(GEζs)−GEζs] 6 0, (24)

where L = diag{l1, l2, · · · , lm}, 0 < li < 1 (i = 1, 2, · · · ,m), Ē =

[
I 0
0 0

]

, ǫ1 and ǫ2 are positive

scalars.
Taking (21)-(24) into consideration, we have

E{△V (s)}

6 ζT

s

[

ĀTPĀ− P +

m∑

i=1

δiE
TGTC̄TPC̄GE

]

ζs

+ 2ζT

s [Ā
TPC + (ĀT − I)Λ]ηs

+ 2ζT

s

[

ĀTP s̄−
m∑

i=1

εiE
TGTC̄TPC̄

]

σ(GEζs)

+ ηT

s (C
TPC + 2ΛC)ηs + 2ηT

s (C
TPK̄ + ΛK̄)

× σ(GEζs) + σT(GEζs)
[

K̄TPK̄ +

m∑

i=1

̺iC̄
TPC̄

]

× σ(GEζs)− ǫ1(η
T

s Ēηs − ι2ζ
T

s Ēζs)
− ǫ2[σ(GEζs)− LGEζs]

T[σ(GEζs)−GEζs],

(25)

where δi = (1 − µi)νi − (1− µi)
2ν2i , εi = (1 − µi)µiνi, and ̺i = µi(1− µi).

By using Lemma 2 and setting b = c = 2, one has

−2ζT

s E
TGTC̄TPC̄σ(GEζs)

6 a2ζT

s E
TGTC̄TPC̄GEζs + a−2σT(GEζs)C̄

TPC̄σ(GEζs). (26)

Denoting ξs =
[
ζT

s ηT

s σT(GEζs)
]
T

, one has

E{△V (s)} 6 ξT

sΘξs, (27)

where

Θ =





ϑ11 ϑ12 ϑ13

∗ ϑ22 ϑ23

∗ ∗ ϑ33



 , (28)

ϑ11 = ĀTPĀ− P +

m∑

i=1

(δi + a2εi)E
TGTC̄TPC̄GE
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−ǫ2E
TGTLTGE + ǫ1ι2Ē,

ϑ12 = ĀTPC + (ĀT − I)Λ,

ϑ13 = ĀTPK̄ +
1

2
ǫ2E

TGT(L+ I),

ϑ22 = CTPC + 2ΛC − ǫ1Ē,

ϑ23 = CTPK̄ + ΛK̄,

ϑ33 = K̄TPK̄ +

m∑

i=1

(̺i + a−2εi)C̄
TPC̄ − ǫ2I.

Based on the above analysis, we are in a position to present a sufficient condition for the
exponential mean-square stability of the system (13) with w̄s = 0.

Theorem 1. Let positive scalars µi, νi (i = 1, 2, · · · ,m) and observer gains AH and K be given.
If there exist a positive definite matrix P , a diagonal matrix L (0 < L < I) and positive scalars λ1,
λ2, ǫ1, ǫ2, a such that

Θ < 0, (29)

then system (13) with w̄s = 0 is exponentially mean-square stable.

Proof. Choose Lyapunov candidate (20) and denote ~ = λmax(P )+2max{λ1, λ2}ι1. Then, based
on Assumption 1, we have

λmin(P )‖ζs‖2 6 V (s) 6 ~‖ζs‖2. (30)

For all nonzero ρs, it follows from (29) that E{△V (s)} < 0. Therefore, one obtains

E{△V (s)} 6 −λmin(−Θ)‖ρs‖2. (31)

Given scalars τ̄ > 1 and N > 1, one verifies

E{τ̄NV (N)} − E{V (0)}

=

N−1∑

s=0

(
E{τ̄s+1V (s+ 1)} − E{τ̄sV (s)}

)

=

N−1∑

s=0

(
τ̄s+1

E{△V (s)} + τ̄s(τ̄ − 1))E{V (s)}
)

6 −λmin(−Θ)τ̄

N−1∑

s=0

τ̄s‖ρs‖2 + (τ̄ − 1)~

N−1∑

s=0

τ̄s‖ζs‖2

6
(
− λmin(−Θ)τ̄ + (τ̄ − 1)~

)
N−1∑

s=0

τ̄s‖ζs‖2. (32)

Noting that λmin(−Θ) > 0 and ~ > 0, there exists τ̄0 > 1 such that −λmin(−Θ)τ̄0+(τ̄0−1)~ = 0.
Then, one has

E{τ̄N0 V (N)} 6 E{V (0)}. (33)

Furthermore, in view of (30), we have

λmin(P )E{‖ζs‖2} 6 E{V (N)} 6 τ̄−N
0 ~E{‖ζ0‖2}, (34)
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which implies that

E{‖ζs‖2} 6
~

λmin(P )
(
1

τ̄0
)NE{‖ζ0‖2}. (35)

Letting

ρ =
~

λmin(P )
, τ =

1

τ̄0
,

we arrive at (14).

Next, we are ready to analyze theH∞ performance. To this end, a sufficient condition is provided
in the following theorem for the exponential mean-square stability and the H∞ performance of the
system (13) with w̄k 6= 0.

Theorem 2. Let the positive scalars µi, νi (i = 1, 2, · · · ,m) and observer gains AH , K be given.
If there exist a positive definite matrix P , a diagonal matrix L satisfying 0 < L < I, and positive
scalars λ1, λ2, ǫ1, ǫ2, a such that

Ψ < 0, (36)

where

Ψ =







ϑ11 + M̄TM̄ ϑ12 ϑ13 ĀTPB̄

∗ ϑ22 ϑ23 (CTP + Λ)B̄
∗ ∗ ϑ33 K̄TPB̄

∗ ∗ ∗ −γ2I + B̄TPB̄






,

then the system (13) with w̄k = 0 is exponentially mean-square stable while satisfying the require-
ment (15).

Proof. Note that inequality (29) can be implied by (36) under zero initial conditions. Then,
system (13) with w̄k = 0 is exponentially mean-square stable.

Choosing Lyapunov function as in (20), it follows from the inequalities (23), (24) and (26) that

E{△V (s)} + E{‖ξ̃s‖2} − γ2‖w̄s‖2

6 ζT

s [Ā
TPĀ− P +

m∑

i=1

(δi + a2εi)E
TGTC̄TPC̄GE

− ǫ2E
TGTLGE + ǫ1ι2Ē + M̄TM̄ ]ζs + 2ζT

s [Ā
TPC + (ĀT − I)Λ]ηs

+ 2ζT

s (Ā
TPK̄ +

1

2
ǫ2E

TGT(L + I))σ(GEζs)

+ ηT

s (C
TPC + 2ΛC − ǫ1Ē)ηs + 2ηT

s (C
TPK̄ + ΛK̄)

× σ(GEζs) + σT(GEζs)[K̄
TPK̄ +

m∑

i=1

(̺i + a−2εi)

× C̄TPC̄ − ǫ2I]σ(GEζs) + 2ζT

s Ā
TPB̄w̄s

+ 2ηT

s (C
TP + Λ)B̄w̄s + 2σT(GEζs)K̄

TPB̄w̄s

− γ2w̄T

s w̄s + w̄T

s B̄
TPB̄w̄s

6 E{ℓTsΨℓs} (37)

where ℓs =
[
ζT

s ηT

s σT(GEζs) w̄T

s

]
T

. Then, it follows from (36) that E{ℓTsΨℓs} < 0 holds for
all ℓs > 0.

By considering zero initial values, it is easy to verify that (15) holds for any w̄s > 0, s ∈ [0,∞).

10



Remark 4. In case of H(z(s)) = zT(s)z(s) and A 6= I, the corresponding discrete gradient is
z(s+ 1) + z(s), and then system (9) is rewritten as

{
z(s+ 1) = Ãz(s) + B̃w(s)
ξ(s) = Mz(s)

(38)

where

Ã =
I +A

I −A
, B̃ =

B

I −A
.

Note that the results presented in Theorems 1-2 are also applicable to the system (38).

Remark 5. Clearly, based on the given observer gain matrix, Theorems 1 and 2 provide some
sufficient conditions for the exponential mean-square stability and the H∞ performance of the system
(13) with w̄k 6= 0. As the design of the gain parameter matrix is the main objective of this work,
the corresponding H∞ observer design method will be given in following subsection.

3.2. A solution to the H∞ observer design

In this subsection, we are going to provide an H∞ observer design method to satisfy the pre-
scribed requirements in Section 2. Specifically, a gain parameter matrix is designed to guarantee
the exponentially mean-square stability of system (13) with the given H∞ performance index.

Theorem 3. For Hamiltonian system (9) and measurement model (10), the addressed H∞ observer
design problem is solvable if there exist the observer gain matrices AH and K, positive definite matrix
P = diag{Q1, Q2}, positive scalars λ1, λ2, ǫ1, ǫ2, a such that

Π =







Π1 Π2 Π3 Π4

∗ Q2 − 2I 0 0
∗ ∗ Q̄2 − 2I 0
∗ ∗ ∗ Q̄2 − 2I






< 0, (39)

where

Π1 =













π11 −MTM Q1A π41 ǫ2G
T(L+ I) Q1B 0

∗ −Q2 +MTM 0 π42 0 0 0
∗ ∗ π33 0 0 λ1B +ATQ1B 0
∗ ∗ ∗ 0 λ2KΛα 0 λ2KD

∗ ∗ ∗ ∗ −ǫ2I 0 0
∗ ∗ ∗ ∗ ∗ −γ2I +BTQ1B 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I













,

Π2 =
[
K(I − Λα)ΛβG I −KG+AH 0 0 KΛα 0 KD

]
T

,

Π3 =
[
SδεG 0 0 0 0 0 0

]
T

, Π4 =
[
0 0 0 0 S̺ε 0 0

]
T

,

π11 = −Q1 +MTM + ǫ1ι2I − ǫ2G
TLG, π33 = λ1(A+AT) +ATQ1A− ǫ1I,

π41 = λ2G
TΛT

β(I − ΛT

α)K
T, Sδε =

[ √
δ1 + a2ε1E1K

T · · ·
√
δm + a2εmEmKT

]
T

,

π42 = λ2(AH −GTKT), S̺ε =
[ √

̺1 + a−2ε1E1K
T · · ·

√

̺m + a−2εmEmKT

]T
,

Q̄2 = diag{Q2, · · · , Q2
︸ ︷︷ ︸

m

}.
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Proof. Due to the fact that −Q−1
2 < Q2 − 2I, it is easy to show that (39) implies the following

inequality:

Π̌ =







Π1 Π2 Π3 Π4

∗ −Q−1
2 0 0

∗ ∗ −Q̄−1
2 0

∗ ∗ ∗ −Q̄−1
2






< 0. (40)

Recalling that P = diag{Q1, Q2}, the inequality (40) is equivalent to

Π̂ =







Π̄1 Π̄2 Π̄3 Π̄4

∗ −P−1 0 0
∗ ∗ −P̄−1 0
∗ ∗ ∗ −P̄−1






< 0 (41)

with P̄ = diag{P, · · · , P
︸ ︷︷ ︸

m

},

Π̄1 =







π̄11 −Λ + ĀTΛ ǫ2E
TGT(L + I) 0

∗ 2ΛC − ǫ1Ē ΛK̄ ΛB̄
∗ ∗ −ǫ2I 0
∗ ∗ ∗ −γ2I






, Π̄2 =







ĀT

CT

K̄T

B̄T






,

π̄11 =

[
π11 −MTM

∗ −Q2 +MTM

]

, Π̄3 =

[
0 0 0 0

SδεGE 0 0 0

]
T

, Π̄4 =

[
0 0 0 0
0 0 S̺ε 0

]
T

.

Note that Ψ in Theorem 2 can be rewritten as follows:

Ψ = Π̄1 + Π̄2P Π̄T

2 + Π̄3P̄ Π̄T

3 + Π̄4P̄ Π̄T

4 . (42)

It follows from Lemma 3 that Π̂ < 0 holds if and only if Ψ < 0 is true. The rest of the proof is
similar to that of Theorem 2.

Remark 6. So far, the design of the H∞ state observer has been accomplished for Hamiltonian
systems subject to missing measurement and sensor saturations. A state observer has been con-
structed such that estimation errors are exponentially mean-square stable with the prescribed H∞

performance. Furthermore, the desired state observer gains have been calculated by exploiting the
LMI approach. Within the established framework, our results can be directly generalized to more
general systems with more complicated dynamics with more complex network-induced phenomena.

Remark 7. In comparison to the rich body of existing literature on observer design problems
[13, 9, 5, 10, 48, 41, 45], our results have two distinguishing features: 1) the solved Hamilto-
nian system model is new, which can capture the characteristics of the dynamics of Lipschitz-like
nonlinear systems; and 2) the proposed observer design problem is new in the sense that both missing
measurement and sensor saturation issues are addressed under networked Hamiltonian frameworks.

4. Numerical Example

Consider a normalized undamped pendulum with small external disturbance, where the dynam-
ics of the system is characterized by the following Hamiltonian system:

[
ż1
ż2

]

=

[
−0.6 0.3
0.2 −0.7

] [
sin z1
z2

]

+

[
0.05
0.05

]

w. (43)
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Here, z1 is the vertical angle (i.e., the generalized position) and z2 is the generalized momentum.
Denoting z = [z1, z2]

T ∈ R
2, the Hamiltonian function is expressed as

H(z) =
1

2
z22 + 1− cos z1.

By approximating the derivatives with respect to state variables in (43) and replacing gradient
terms with ∇̄H(z(s)) as defined as (7), the discrete-time representation of (43) can be written as
(9) where M = diag{1, 1}. Then, we easily verify that Assumption 1 is satisfied by the Hamiltonian
function.

The measurement model (10) is specified with the following parameters:

G =

[
0.1 0.2
−0.2 0.1

]

, D =

[
0.1 0.2
0 0.1

]

.

The occurring probabilities of the incomplete measurements are chosen as µ1 = ν1 = 0.7, µ2 = 0.6,
and ν2 = 0.75. We set the H∞ performance index as γ = 0.8.

Referring to Theorem 3, LMI (39) can be solved with the following H∞ observer parameters:

K =

[
−0.0021 −0.0130
0.0467 0.1111

]

,

AH =

[
−0.3469 −0.0046
0.0124 −0.3462

]

with P = diag{Q1, Q2} > 0 being given by

P =







6.8109 2.5724 0 0
2.5724 5.7960 0 0

0 0 2.2196 −0.0176
0 0 −0.0176 2.2333






. (44)

In addition, we set

w(s) = sin(s) exp(−0.1s),

v(s) =
[

sin(10s+1)
3s+1

cos(10s+1)
3s+1

]
T

,

z(0) = [0.5, 0.8]T and ẑ(0) = [0.5, 1]T.
Simulation results are given in Figs. 1-5 where true and estimated trajectories of the Hamiltonian

system states are depicted in Figs. 1-2. Figs. 3 and 4 display the trajectories of ξ(s) and its estimates.
Moreover, the trajectory of the error estimate ξ̃(s) is depicted in Fig. 5. The above results confirm
the good performance of the designed H∞ observer.

5. Conclusion

In this paper, an H∞ observer design problem has been investigated for generalized discrete-
time Hamiltonian systems subject to missing measurement and sensor saturations. The underlying
system under consideration is nonlinear with external disturbance along with sensor noises. An
H∞ observer has been constructed whose existence has been guaranteed by sufficient conditions
derived through the Lyapunov function method. Finally, examples have been provided to testify
the observer effectiveness. Future work would focus on the filtering and/or control problems for
Hamiltonian systems with multiple network-induced complex phenomena caused by limited com-
munication resources.
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Figure 1: State trajectory of z1 and its estimate.
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Figure 2: State trajectory of z2 and its estimate.
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Figure 3: Output ξ1 and its estimate.
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Figure 4: Output ξ2 and its estimate.

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 5: Errors for output ξ1 and ξ2.
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