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Abstract 

Large-scale optimization, which has received much attention in recent years, is inherently a 

challenging problem. This paper proposes a particle swarm optimizer with multi-level 

population sampling and dynamic p-learning mechanisms to address the problem. The multi-

level sampling mechanism in the proposed method is developed for supporting a balanced 

evolutionary search. The mechanism works by partitioning the particles of swarm into multi-

levels based on their fitness before each generation of evolution. A subset of swarm is then 

dynamically sampled from the particles at various levels for evolution such that encouraging 

exploration at the beginning of evolution while exploitation towards the end of evolution, thus 

appropriately searching the space. The dynamic p-learning mechanism, on the other hand, is 

introduced to allow efficient particle learning while preserving the swarm diversity during 

evolution. In this mechanism, each particle is devised to learn from one of the top 100p% 

particles of the sub-swarm and the value of p associated with each particle is dynamically 

adjusted during evolution. By employing the above two mechanisms, the resulting method 

aims to appropriate search the solution space of large-scale global optimization problem for 

identifying the optimal or near-optimal solution. The performance of the proposed method has 

been evaluated on CEC’2010 and CEC’2013 benchmark suites for large-scale optimization 

and compared with related methods. Our results confirm the merits of the devised 

mechanisms in the proposed method. The results also show that our method can achieve a 

superior performance and outperform related methods.  
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1. Introduction 

Particle swarm optimization (PSO) [1], which simulates swarm behaviors of birds flocking, 

is a popular global optimization scheme. In PSO, each particle of swarm has a historical best 

position named pBest, which records the best position it has searched, and the best of these 

pBests is called gBest. Each particle is guided by its own pBest and the gBest to search for the 5 

optimal position in solution space. This scheme has shown to be efficient and successfully 

applied in various fields [2], [3], [4], [5], [6], [7], [8]. However, it could perform poorly when 

the optimization problem to be addressed involves a large number of local optima and has a 

high-dimensionality, generally referred to as large-scale global optimization (LSGO) [9]. This 

issue is mainly attributed to the premature convergence exerted by the pBest and gBest based 10 

particle learning in PSO as well as its limited capability to achieve a balanced evolutionary 

search [2], [10]. 

To improve the performance of PSO, many variants of the algorithm have been proposed 

[2], [3], [16], [17], [18]. Kennedy and Mendes [23] argued that the gBest based particle 

learning strategy as adopted in the traditional PSO could cause a rapid loss of swarm diversity, 15 

thus leading to premature convergence. Instead of gBest, the authors proposed to update each 

particle during evolution using the information of local best (lbest), which is defined as the 

best of pBest of the particle’s neighborhoods determined by a given topology. Such a strategy 

allows the particle’s learning to be influenced by its neighborhoods and can be used to 

preserve the swarm diversity to a certain extent. This scheme represents the first approach, 20 

which employs lbest rather than gBest for particle learning, to enhance the traditional PSO 

and is followed by several researchers to design their PSO variants [23], [24], [33]. The 

second approach tends to get rid of both pBest and gBest and introduce inter-particle learning 

strategies to implement PSO. For example, Cheng et al. [11] proposed a variant of PSO based 

on an inter-particle learning strategy, which works by first randomly selecting a pair of 25 

particles from the swarm. Then, the one with a higher fitness (i.e., the winner) will directly 

enter into the swarm for evolution, while the other one will learn from the winner before it 

can enter into the swarm. Yang et al. [14] introduced another inter-particle learning strategy, 

in which particles are first divided into multiple levels according to their fitness values. Each 

particle then learns from two predominant particles, which are from different higher levels. 30 

Comparing with lbest based strategies, inter-particle learning strategies are generally able to 

preserve more appropriate swarm diversity. However, they could lead to inefficient particle 

learning, as elite individuals are usually not considered for particle learning. Further, in 

existing particle learning strategies, fixed rules are typically employed to update all particles 

in the swarm. Since different particles possess different properties, it would be desirable to 35 

have a particle learning strategy with flexible rules, which can consider different properties of 
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the particles. Additionally, the above PSO variants generally tend to enhance the traditional 

PSO by improving the particle learning strategy alone. As the particle learning strategy could 

have a limited capability to help PSO achieving a balanced evolutionary search, this may also 

restrict the performance of these methods. 40 

To address above issues, here we first devise a multi-level population sampling mechanism 

to support a balanced evolutionary search. The mechanism tries to divide the particles of 

swarm into multi-levels based on their fitness before each generation of evolution. A subset of 

swarm is then dynamically sampled from the particles at various levels for evolution such that 

encouraging exploration at the beginning of evolution while exploitation towards the end of 45 

evolution, thus appropriately searching the space. Further, a dynamic p-learning mechanism is 

introduced to allow efficient particle learning while preserving the swarm diversity during 

evolution. In this mechanism, each particle is devised to learn from one of the top 100p% 

particles of the sub-swarm and the value of p associated with each particle is dynamically 

adjusted during evolution. By incorporating these two mechanisms into PSO, a swarm 50 

optimizer with multi-level population sampling and dynamic p-learning mechanisms is thus 

proposed. We evaluate the proposed algorithm on CEC’2010 and CEC’2013 benchmark 

suites for LSGO and compare its performance with related methods. The results show that the 

proposed method is well suited to address LSGO and outperforms related methods. The 

results also confirm the significance of the devised mechanisms in our method.  55 

The remainder of the paper is organized as follows. Following a brief review of related 

work in Section 2, we present the proposed method in Section 3. Subsequently, in Section 4, a 

series of experiments on CEC’2010 and CEC’2013 LSGO benchmark suites are conducted to 

evaluate the performance of proposed method and to compare with related methods. Finally, 

we conclude the paper with a summary in Section 5. 60 

2. Related Work 

2.1 Canonical PSO 

Canonical PSO, proposed by Kennedy et al. [1], is a swarm-based stochastic optimization 

algorithm, which starts with N randomly initialized particles. For an D-dimensional 

optimization problem, each particle in the swarm maintains a velocity vector Vi={vi,1, vi,2, ..., 65 

vi,D}, a position vector Xi={xi,1, xi,2, ..., xi,D} and a historical best position pBesti={pBesti,1, 

pBesti,2, ..., pBesti,D}, where i=1, 2, ..., N. Among these pBests, the best one is called gBest. 

At each generation, each particle i updates the velocity and position according to its own 

pBesti and gBest. The updating rules are defined as: 

 70 
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𝑣𝑣𝑖𝑖,𝑗𝑗 = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝑐𝑐1 ∙ 𝑟𝑟1,𝑗𝑗 ∙ �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗� + 𝑐𝑐2 ∙ 𝑟𝑟2,𝑗𝑗 ∙ �𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗�,   (1) 

𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑣𝑣𝑖𝑖,𝑗𝑗,  (2) 

 

where j=1, 2, ..., D represents the jth dimension of the optimization problem, w is an inertia 

weight, c1 and c2 denote acceleration coefficients, r1 and r2 are random numbers uniformly 75 

distributed in [0, 1]. After updating the position of the particle, if pBesti is worse than the 

current position Xi, then it will be replaced by Xi. Due to its simplicity and efficiency, PSO 

has been widely applied to deal with optimization problems [3]. However, it may not perform 

well on optimization problems, which involve complex search spaces. This is mainly due to it 

suffers from premature convergence and has a limited capability to achieve a balanced 80 

evolutionary search [2], [10]. 

2.2 PSO Variants 

To improve the performance of canonical PSO, many variants of the algorithm have been 

developed in literature [2], [3], [25], [26]. In [23], Kennedy and Mendes proposed a PSO 

variant, in which, rather than gBest, lbest is employed for particle learning. Specifically, in 85 

this method, the velocity of the particle is updated as: 

 

𝑣𝑣𝑖𝑖,𝑗𝑗 = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝑐𝑐1 ∙ 𝑟𝑟1,𝑗𝑗 ∙ �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗� + 𝑐𝑐2 ∙ 𝑟𝑟2,𝑗𝑗 ∙ �𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗�,  (3) 

 

where lBesti is the best pBest of ith particle’s neighborhoods defined by a given topology. In 90 

[24], Liang et al. extended the above scheme by allowing each particle to learn from different 

lBests on different dimensions of the data. Specifically, the learning rule in this method is 

defined as: 

 

 𝑣𝑣𝑖𝑖,𝑗𝑗 = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝑐𝑐 ∙ 𝑟𝑟𝑗𝑗 ∙ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑖𝑖(𝑗𝑗),𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗),        (4) 95 

 

where fi(j) is the winner’s pBest of two randomly selected particles. In [33], Liang et al. 

proposed a dynamic multi-swarm PSO, in which the particles are first randomly divided into 

multiple groups and each group then evolves using the lbest based learning strategy given in 

[23]. By employing lbest rather than gBest for particle learning, the above methods can avoid 100 

rapid loss of swarm diversity during evolution and have shown to be more effective than the 

canonical PSO. However, their performance is still limited on optimization problems with 

complex search spaces [2]. 

To improve the situation further, inter-particle learning strategies, in which neither pBest 

nor gBest is employed, have also been proposed to implement PSO. For example, in [11], 105 
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Cheng et al. devised a competitive swarm optimizer (CSO), in which the updating of particles 

is driven by a pairwise random competition between particles. After each competition, the 

winner will directly pass to the swarm of next generation, while the loser Xl be updated 

according to the information from the winner using the following rules: 

  110 

𝑣𝑣𝑙𝑙,𝑗𝑗 = 𝑟𝑟1,𝑗𝑗 ∙ 𝑣𝑣𝑙𝑙,𝑗𝑗 + 𝑟𝑟2,𝑗𝑗 ∙ �𝑥𝑥𝑤𝑤,𝑗𝑗 − 𝑥𝑥𝑙𝑙,𝑗𝑗� + 𝜑𝜑 ∙ 𝑟𝑟3,𝑗𝑗 ∙ ��̅�𝑥𝑗𝑗 − 𝑥𝑥𝑙𝑙,𝑗𝑗�,  (5) 

 𝑥𝑥𝑙𝑙,𝑗𝑗 = 𝑥𝑥𝑙𝑙,𝑗𝑗 + 𝑣𝑣𝑙𝑙,𝑗𝑗,     (6) 

 
where r1, r2 and r3 are random numbers uniformly distributed within [0, 1], x  is the mean 

position of all particles in the swarm, φ is a control parameter. In [12], a social learning PSO 115 

(SL-PSO) was developed, in which each particle Xi is set to learn from a randomly selected 

particle Xk in the swarm, which has a better fitness. In this method, the updating rule of 

velocity is defined as:  

 

𝑣𝑣𝑙𝑙,𝑗𝑗 = 𝑟𝑟1,𝑗𝑗 ∙ 𝑣𝑣𝑙𝑙,𝑗𝑗 + 𝑟𝑟2,𝑗𝑗 ∙ �𝑥𝑥𝑘𝑘,𝑗𝑗 − 𝑥𝑥𝑙𝑙,𝑗𝑗� + 𝜑𝜑 ∙ 𝑟𝑟3,𝑗𝑗 ∙ ��̅�𝑥𝑗𝑗 − 𝑥𝑥𝑙𝑙,𝑗𝑗�.   (7) 120 

 

Yang et al. proposed a segment-based predominant learning swarm optimizer (SPLSO) [13] 

and a level-based learning swarm optimizer (LLSO) [14]. In SPLSO, the variables of particles 

are randomly divided into multiple segments and different segments learn from different 

predominant particles. While in LLSO, particles are divided into multiple levels according to 125 

their fitness values. Each particle learns from two predominant particles, which are from 

different higher levels. 

The above methods are generally able to outperform the lbest based PSO variants as well as 

traditional cooperative coevolutionary algorithms (CCEAs) [13], [14] for addressing LSGO. 

However, in these methods, elite individuals are usually not considered during particle 130 

learning. This could lead to an inefficient particle learning, thus restricting the performance of 

the algorithm. Further, the particle learning strategies in existing PSO methods typically tend 

to update all particles using the same rules. As different particles possess different properties, 

a flexible learning rule, which can take into account such information, may be preferred in 

order to achieve a good performance. Additionally, to enhance the traditional PSO, the above 135 

methods generally focus on improving the particle learning strategy alone, which could have 

a limited capability to help PSO achieving a balanced evolutionary search. To address the 

above issues, this work first devises a multi-level population sampling mechanism, which is 

employed to encourage exploration at the beginning of evolution while exploitation towards 

the end of evolution, thus achieving a balanced evolutionary search. Further, we consider 140 

different properties of the particles and introduce a flexible particle learning mechanism to 

allow efficient particle learning while preserving the swarm diversity during evolution. 
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2.3 Other Related Work 

The LSGO problem could be dealt using the divide-and-conquer strategy, which 

decomposes the problem into multiple sub-problems and solves them separately [29], [30], 145 

[31], [32]. The best partial solutions obtained for these sub-problems are then assembled 

together to form a full solution. This approach is generally referred to as the decomposition-

based approach. Employing this strategy, PSO based methods have also been proposed in 

literature [15], [21], [27], [28]. These methods generally adopt the cooperative coevolutionary 

(CC) framework to evolve multiple swarms, each of which is used to encode one partial 150 

solution of the problem. For example, Bergh et al. [27] proposed a CC based PSO called 

CPSO-Sk for LSGO. In this method, sub-problems are formed by dividing variables of a given 

problem into k groups and each of which is dealt with a swarm. In [21], Li and Yao devised 

another CC based PSO named CCPSO2 for LSGO, in which the sizes of variables of sub-

problems are determined dynamically during evolution. These methods are promising for 155 

LSGO problems. However, how to make swarms work cooperatively to deliver partial 

solutions, which can be used to form an optimal or near optimal full solution, is typically a 

difficult problem [22]. Further, it has been shown that CCEAs may not perform well on non-

separable problems with more than 100 real-valued variables [19]. 

Apart from PSO, many other evolutionary algorithms (EAs) have also been proposed to 160 

handle LSGO [37], [38]. For example, Molina et al. [34] proposed a memetic algorithm 

named MA-SW-Chains, which combines a steady-state genetic algorithm with a local search 

method, for LSGO. LaTorre et al. developed a multiple offspring sampling framework [35], 

[36], which hybridizes multiple EAs to handle LSGO. Yang et al. [19] developed a CC based 

differential evolution (DE) for LSGO, in which a random grouping scheme and adaptive 165 

weighting are introduced for problem decomposition. Zhang et al. [20] introduced a 

multilevel cooperative coevolution, which is incorporated into DE for LSGO. While, 

Omidvar et al. [29] devised a CC based DE with an automatic decomposition scheme, which 

tries to decompose the problem into sub-problems with minimum interdependences. In this 

work, the performance of several representative algorithms of above approach will be 170 

compared with our proposed method. 

3. Proposed method 

This section presents a PSO with multi-level population sampling and dynamic p-learning 

mechanisms (denoted as mlsdpl_PSO) for LSGO. In the proposed method, a multi-level 

sampling mechanism is developed and incorporated to dynamically sample a sub-swarm 175 

before each generation of evolution. The sampled subset subsequently evolves using the 

devised dynamic p-learning mechanism based swarm optimizer. The above process will 
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repeat until a termination condition is met. The procedure of the proposed algorithm is shown 

in Algorithm 1. 

In the following sections, we shall describe the details of multi-level sampling and dynamic 180 

p-learning mechanisms in the proposed method. 

3.1 Multi-level Sampling Mechanism 

The multi-level sampling (MLS) mechanism is devised for supporting a balanced PSO 

evolution. In the devised mechanism, before each generation of evolution, particles of swarm 

are first partitioned into multi-levels based on their fitness. Then, a subset of swarm is 185 

dynamically selected from the particles at various levels such that encouraging exploration 

during the early phase of evolution while exploitation towards the end of evolution. The 

primary rationale behind this mechanism is that, during evolution, the exploitation and 

exploration behaviors of a swarm optimizer depend on the particles subjected to evolve. If 

most of the particles subjected to evolve possess relative low fitness values, then the swarm 190 

optimizer will be biased to explore the solution space. Otherwise, it will be biased for 

exploitation. In order to achieve a proper performance, generally, the task of evolutionary 

Step 1. Initialize a swarm P with N particles. 

Step 2. Employ the proposed multi-level sampling mechanism (see Section 3.1) to sample 

a sub-swarm SP from P. 

Step 3. Sort the particles of SP in ascending order according to their fitness values. 

Step 4. For each particle m in SP, perform the dynamic p-learning mechanism (see 

Section 3.2) as follows: 

i. Randomly select a particle e from the top pm (pm is associated with the particle 

m) percent of particles in SP. 

ii. If e has a better fitness than m, then: 

a) Update the velocity of m according to equation (9). 

b) Update the position of m according to equation (10). 

c) If the updated m has a better fitness than the original m, then update pm 

according to equation (13), otherwise update it according to equation (14). 

Step 5. Go to Step 2 if the maximum number of function evaluations is not reached. 

Otherwise, terminate the evolution. 

Step 6. Output the solution with the best fitness. 

 

Algorithm 1.  A PSO with multi-level population sampling and dynamic p-learning 

mechanisms for LSGO. 
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search should focalize more on exploration during the early phase of evolution, thus 

discovering promising areas of the space. While along with the progress of evolution, the 

evolutionary search should gradually switch to exploitation, therefore locating the optimal 195 

solution with high accuracy. According to the above rationale, dynamically sampling an 

appropriate subset of swarm for evolution at each generation is thus desirable in order to 

properly implement the evolutionary search. 

Specifically, the devised MLS mechanism works as follow. At the beginning of each 

generation, the entire particles in the swarm are firstly sorted based on their fitness values in 200 

descending order. The sorted particles are then partitioned evenly to L levels, indexed 0 to L-1, 

such that a higher level (associated with a smaller index) will contain particles of higher 

fitness. Subsequently, we calculate the sampling probability pri for the particles at level i as: 

 

𝑝𝑝𝑟𝑟𝑖𝑖 = 𝑝𝑝𝑟𝑟𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 + (𝑝𝑝𝑟𝑟𝑖𝑖,𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 − 𝑝𝑝𝑟𝑟𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙) ∙
𝐹𝐹𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹_𝑀𝑀𝑖𝑖𝑀𝑀
,    (8) 205 

 

where FEs denotes the number of function evaluations consumed so far during evolution and 

FE_Max is a user-specified maximum number of function evaluations. The initial and final 

sampling probability pri,initial and pri,final are defined as pri,initial=i/(L-1) and pri,final=1-pri,initial, 

respectively. According to the calculated probabilities, a sub-swarm is finally sampled from 210 

particles at different levels. Based on the above procedure, during the early stage of evolution, 

particles from lower levels will have higher probabilities to be selected for evolution, 

therefore encouraging exploration aspect of evolution to identify potential regions of the 

space. While, during the later stage of evolution, particles from higher levels will have higher 

probabilities to be sampled, thus encouraging exploitation of the space to locate the optimum 215 

with high accuracy. 

3.2 Dynamic p-Learning Mechanism 

To appropriately search the space, it is also desirable to have a particle learning scheme, 

which can support efficient evolutionary search while preserving the swarm diversity during 

evolution. Here, we propose a dynamic p-learning mechanism (DPL) for this purpose. The 220 

DPL will be implemented on the sub-swarm selected by the MLS mechanism at each 

generation. In the proposed DPL, each particle is devised to learn from one of the top 100p% 

particles of the sub-swarm and the value of p associated with each particle is dynamically 

adjusted during evolution. 

Specifically, to update a particle m during particle learning, the proposed mechanism works 225 

as follows. Firstly, the pm value associated with particle m is extracted to determine top 100pm% 

particles of the sub-swarm. Then, one particle e will be randomly selected from these top 
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particles. If the selected particle e has a better fitness than m, then updating m according to the 

following rules: 

 230 

𝑣𝑣𝑚𝑚,𝑗𝑗 = 𝑟𝑟1,𝑗𝑗 ∙ 𝑣𝑣𝑚𝑚,𝑗𝑗 + 𝑟𝑟2,𝑗𝑗 ∙ �𝑥𝑥𝑒𝑒,𝑗𝑗 − 𝑥𝑥𝑚𝑚,𝑗𝑗� + 𝜑𝜑 ∙ 𝑟𝑟3,𝑗𝑗 ∙ ��̅�𝑥𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑚𝑚,𝑗𝑗�,   (9) 

 𝑥𝑥𝑚𝑚,𝑗𝑗 = 𝑥𝑥𝑚𝑚,𝑗𝑗 + 𝑣𝑣𝑚𝑚,𝑗𝑗,    (10) 

 

where xe is the position of particle e. It should be noted that, rather than the centroid of swarm, 

as typically used to define the updating rule, a weighted centroid has been adopted here to 235 

increase the efficiency of particle learning. Specifically, we define the term �̅�𝑥𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑖𝑖  in 

equation (9), which denotes the weighted centroid of particles of the sub-swarm, as: 

 

 �̅�𝑥𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑖𝑖,𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖,𝑗𝑗
|𝑆𝑆𝑆𝑆|
𝑖𝑖=1 ∑ 𝑓𝑓𝑖𝑖

|𝑆𝑆𝑆𝑆|
𝑖𝑖=1� ,     (11) 

 240 

where fi is the fitness of ith particle and |SP| denotes the number of individuals in the sub-

warm SP. 

Obviously, the setting of parameter p for each particle is critical for the performance of the 

proposed mechanism. A small value of p will lead the particle to learn from very top particles, 

thus resulting efficient particle learning and promoting exploitation of the evolutionary search. 245 

Increasing the value of p will allow it to learn from particles with relatively low fitness thus 

encouraging a diverse search and preserving the population diversity. To support an 

efficiently particle learning while preserving the swarm diversity during evolution, the 

following scheme has been introduced to dynamically control the value of p for each particle. 

Firstly, the parameter pi associated with ith particle in the swarm is initialized as: 250 

 

𝑝𝑝𝑖𝑖 = (1−𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚)(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑖𝑖)
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚

+ 𝑝𝑝𝑚𝑚𝑖𝑖𝑖𝑖,
    

(12) 

 

where fi is the fitness of ith particle, fmax and fmin denotes the maximum and minimum fitness of 

particles in the initial swarm, pmin is a user-specified minimum value of p and is set to be 0.05. 255 

As a result, a particle with a high fitness will be assigned with a small value of p to encourage 

it for exploitation during particle learning. Otherwise, a high value of p will be assigned to 

encourage it for a diverse search. Further, during the process of particle learning, the value p 

of each particle is set to learn from its paired particle. Specifically, for a particle m to be 

learned from the particle e, after updating its position, if m is improved, then its associated 260 

parameter pm is updated as: 

 

 𝑝𝑝𝑚𝑚 = (𝑝𝑝𝑚𝑚 + 𝑝𝑝𝑒𝑒)/2,     (13) 
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Otherwise, it will be computed as: 265 

 

 𝑝𝑝𝑚𝑚 = 2 ∙ 𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑒𝑒,     (14) 
 
where pe is the parameter p associated with particle e. The resulting pm will be truncated into 

[pmin, 1]. According to the above rules, if particle e has a guiding effect on m, then the value of 270 

pm will be set close to value of pe, which is typically smaller than pm, to increase its 

probability for exploitation during particle learning. Otherwise, the value of pm will be set far 

away from value of pe to increase its probability for exploration during particle learning.  

By employing the above scheme, particles with high fitness will tend to have a small value 

of p and could be used to efficiently exploit the search space during particle learning. While 275 

for particles with low fitness, they generally carry with a high value of p and could be used to 

promote a diverse search. By employing such a scheme, the resulting particle learning 

mechanism is thus able to support an efficient evolutionary search while preserving the 

swarm diversity during evolution. 

4. Experiments 280 

In this section, experiments have been carried out to evaluate the devised MLS and DPL 

mechanisms, and to compare our proposed method with related algorithms. All algorithms 

used in the experiments are coded using C++ and tested on a workstation with an Intel (R) 

CoreTM i7-3630QM CPU at 2.40GHz and 8 GB RAM running WindowsTM 7 operation 

system. Unless otherwise stated, 30 trials of each algorithm are performed and the average 285 

results of which are reported. 

4.1 Data Sets and Parameter Settings 

The CEC’2010 and CEC’2013 benchmark suits for LSGO, which contain 20 (denoted as 

F1 to F20) and 15 functions (denoted as M1 to M15), respectively, have been used for 

experiments. The characteristics of these two sets of functions can be found in [39] and [40], 290 

respectively. In our experiments, the dimension D of these functions is set to be 1000 and the 

maximum number of function evaluations (FE_Max) is set to be 3000×D. For the swarm size 

of our proposed method, it is configured as 2*(100+D/10.0). The level number L in the 

devised MLS mechanism and the control parameter φ in the particle updating rule are set to 

be 20 and D/100*0.01, respectively. 295 
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4.2 Exploring the Proposed Mechanisms 

We first assess the significance of MLS and DPL mechanisms in the proposed algorithm. 

For this purpose, two sets of experiments have been carried out. In the first set of experiments, 

we compare the performance of our proposed algorithm, mlsdpl_PSO, with its variant: 300 

mlsdpl_PSO without MLS mechanism (denoted as dpl-PSO). In the second set of experiments, 

we compare the performance of dpl-PSO, in which the DPL mechanism is used for particle 

learning, with two recently proposed methods, CSO [11] and SL-PSO [12], which employ 

different inter-particle learning mechanisms. The results of the two sets of experiments are 

shown in Tables I and II, respectively. The last rows of Tables I and II report a summary in 305 

terms of the number of wins, losses and ties on the test functions of the pairwise comparisons. 

Comparing mlsdpl_PSO with dpl-PSO, the results show that the MLS mechanism could 

greatly improve the performance of mlsdpl_PSO. Specifically, the results in Table I show that, 

by incorporating the MLS mechanism, mlsdpl_PSO is able to locate better or comparable 

TABLE I. Comparing the Results Delivered By mlsdpl_PSO and its Variant dpl-PSO in Term of Mean Fitness of the Best 

Solutions over Thirty Trials. 
Method F1 F2 F3 F4 F5 F6 F7 F8 F9 

mlsdpl_PSO 1.98e-19 6.07e02 5.12e-13 1.51e11 3.58e06 5.22e-08 1.09e01 6.48e04 1.94e07 
dpl_PSO 2.95e-20 1.16e03 3.61e-02 3.32e11 1.05e07 8.22e-02 3.15e-01 2.17e07 3.40e07 

 F10 F11 F12 F13 F14 F15 F16 F17 F18 
mlsdpl_PSO 6.60e02 9.66e-12 3.23e03 4.35e02 5.81e07 8.82e02 7.31e-12 5.17e04 1.18e03 

dpl_PSO 9.39e02 2.00e00 1.03e04 7.21e02 9.74e07 9.69e03 9.85e00 1.12e05 2.25e03 
 F19 F20 M1 M2 M3 M4 M5 M6 M7 

mlsdpl_PSO 2.45e06 1.17e03 6.92e-19 6.91e02 2.16e01 1.64e09 6.17e05 1.06e06 8.01e04 
dpl_PSO 4.74e06 1.85e03 3.17e-20 1.30e03 2.16e01 5.25e09 7.12e05 1.06e06 7.41e05 

 M8 M9 M10 M11 M12 M13 M14 M15 Null 
mlsdpl_PSO 4.45e13 9.16e07 9.14e07 9.28e11 1.16e03 1.77e07 2.13e07 6.17e06 Null 

dpl_PSO 9.21e13 1.56e08 9.33e07 9.30e11 1.89e03 5.39e08 1.94e08 1.13e07 Null 
w/l/t 30/3/2 

 
 
 

 
 
 

TABL II. Comparing the Results Delivered By dpl-PSO, CSO and SL-PSO in Term of Mean Fitness of the Best Solutions over 

Thirty Trials. 
Method F1 F2 F3 F4 F5 F6 F7 F8 F9 

dpl_PSO 2.95e-20 1.16e03 3.61e-02 3.32e11 1.05e07 8.22e-02 3.15e-01 2.17e07 3.40e07 
CSO 4.50e-12 7.42e03 2.60e-09 7.25e11 2.86e06 8.21e-07 2.01e04 3.87e07 7.03e07 

SL-PSO 8.73e-18 1.93e03 1.88e00 2.99e11 3.17e07 2.08e01 6.49e04 7.81e06 3.30e07 
 F10 F11 F12 F13 F14 F15 F16 F17 F18 

dpl_PSO 9.39e02 2.00e00 1.03e04 7.21e02 9.74e07 9.69e03 9.85e00 1.12e05 2.25e03 
CSO 9.60e03 4.02e-08 4.37e05 6.29e02 2.49e08 1.01e04 5.89e-08 2.20e06 1.73e03 

SL-PSO 2.56e03 2.32e01 1.75e04 9.59e02 8.41e07 1.12e04 2.51e01 9.00e04 2.77e03 
 F19 F20 M1 M2 M3 M4 M5 M6 M7 

dpl_PSO 4.74e06 1.85e03 3.17e-20 1.30e03 2.16e01 5.25e09 7.12e05 1.06e06 7.41e05 
CSO 1.01e07 1.05e03 7.71e-12 8.55e03 2.16e01 1.32e10 5.91e05 1.06e06 5.88e06 

SL-PSO 5.10e06 1.85e03 1.09e-17 2.13e03 2.16e01 4.35e09 8.41e05 1.06e06 1.63e06 
 M8 M9 M10 M11 M12 M13 M14 M15 Null 

dpl_PSO 9.21e13 1.56e08 9.33e07 9.30e11 1.89e03 5.39e08 1.94e08 1.13e07 Null 
CSO 2.60e14 6.06e07 9.40e07 9.30e11 1.07e03 6.67e08 3.62e09 7.87e07 Null 

SL-PSO 1.03e14 8.25e07 9.25e07 9.33e11 1.78e03 4.65e08 3.28e08 5.86e07 Null 
w/l/t  

(dpl_PSO vs. 
CSO) 

21/11/3 

w/l/t  
(dpl_PSO vs. 

SL-PSO) 
22/10/3 
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solutions than dpl-PSO on all functions, except F1, F7 from CEC’2010 and M1 from 310 

CEC’2013. Comparing dpl-PSO with CSO and SL-PSO, the results reveal that dpl-PSO could 

TABLE III. Comparing the Results Delivered by Different Methods on CEC’2010 Test Suit in Terms of Mean Fitness and Standard 

Deviation Along with Two Tailed t-Tests Between Our Proposed Method and Each of The Related Methods. The Symbol “*” Indicates 

That the Performance of Our Proposed Method Is Significantly Better Than the Method to be Compared with a Confidence Level of 

95%. 

Function Index mlsdpl_PSO CSO SL-PSO SPLSO LLSO MA-SW-
Chains DECC-DG CCPSO2 MLCC DECC-G 

F1 
Mean 1.98e-19 4.50e-12 8.73e-18 7.73e-20 3.13e-22 9.75e-20 1.88e04 2.96e00 8.65e-13 3.54e-07 
Std 1.39e-19 5.94e-13 3.30e-18 7.07e-21 8.03e-23 3.33e-19 4.66e04 6.68e00 2.97e-12 1.44e-07 

t-test - 4.15e01* 1.41e01* -4.75e00 -7.79e00 -1.53e00 2.21e00* 2.43e00* 1.60e00 1.35e01* 

F2 
Mean 6.07e02 7.42e03 1.93e03 4.45e02 9.82e02 5.74e02 4.43e03 4.30e00 2.89e00 1.33e03 
Std 2.51e01 2.86e02 1.12e02 1.65e01 4.39e01 1.41e02 1.87e02 1.11e00 1.52e00 2.55e01 

t-test - 1.30e02* 6.31e01* -2.95e01 4.06e01* -1.26e00 1.11e02* -1.31e02 -1.32e02 1.11e02* 

F3 
Mean 5.12e-13 2.60e-09 1.88e00 2.52e-13 2.76e-14 1.12e-12 1.66e01 4.51e-03 2.10e-07 1.10e00 
Std 8.24e-14 2.62e-10 3.30e-01 1.89e-14 2.38e-15 5.73e-13 3.02e-01 1.66e-03 1.12e-06 3.35e-01 

t-test - 5.43e01* 3.12e01* -1.68e01 -3.22e01 5.75e00* 3.01e02* 1.49e01* 1.03e00 1.80e01* 

F4 
Mean 1.51e11 7.25e11 2.99e11 4.30e11 4.40e11 2.74e11 5.22e12 1.70e12 1.71e13 2.59e13 
Std 2.99e10 1.23e11 7.16e10 8.31e10 1.10e11 7.24e10 1.89e12 1.04e12 5.47e12 8.14e12 

t-test - 2.48e01* 1.04e01* 1.73e01* 1.39e01* 8.60e00* 1.47e01* 8.15e00* 1.70e01* 1.73e01* 

F5 
Mean 3.58e06 2.86e06 3.17e07 6.30e06 1.22e07 3.42e07 1.55e08 4.14e08 4.99e08 2.69e08 
Std 1.28e06 1.79e06 6.21e06 1.76e06 3.43e06 6.69e06 2.15e07 1.38e08 1.07e08 6.84e07 

t-test - -1.79e00 2.43e01* 6.85e00* 1.29e01* 2.46e01* 3.85e01* 1.63e01* 2.54e01* 2.13e01* 

F6 
Mean 5.22e-08 8.21e-07 2.08e01 9.45e-09 5.20e-01 1.41e05 1.63e01 1.71e07 1.78e07 5.00e06 
Std 1.39e-08 2.68e-08 2.63e00 1.20e-09 7.46e-01 3.67e05 3.45e-01 5.20e06 4.37e06 1.03e06 

t-test - 1.39e02* 4.33e01* -1.68e01 3.82e00* 2.10e00* 2.59e02* 1.80e01* 2.23e01* 2.66e01* 

F7 
Mean 1.09e01 2.01e04 6.49e04 4.76e02 7.19e02 1.04e01 1.41e04 2.06e08 1.51e08 8.14e08 
Std 3.83e01 3.86e03 5.60e04 1.31e02 2.59e03 4.02e00 1.26e04 4.31e08 1.45e08 5.40e08 

t-test - 2.85e01* 6.35e00* 1.87e01* 1.50e00 -7.11e-02 6.12e00* 2.62e00* 5.70e00* 8.26e00* 

F8 
Mean 6.48e04 3.87e07 7.81e06 3.11e07 2.34e07 1.15e07 2.75e07 4.13e07 6.59e07 8.56e07 
Std 5.71e03 6.81e04 1.56e06 9.36e04 2.46e05 2.04e07 2.63e07 3.84e07 3.40e07 2.64e07 

t-test - 3.10e03* 2.72e01* 1.81e03* 5.19e02* 3.07e00* 5.71e00* 5.88e00* 1.06e01 1.77e01* 

F9 
Mean 1.94e07 7.03e07 3.30e07 4.59e07 4.36e07 3.07e07 5.59e07 1.02e08 2.43e08 4.40e08 
Std 1.45e06 5.73e06 4.46e06 3.04e06 4.28e06 3.19e06 6.45e06 3.30e07 2.16e07 4.87e07 

t-test - 4.72e01* 1.59e01* 4.31e01* 2.93e01* 1.77e01* 3.02e01* 1.37e01* 5.66e01* 4.73e01* 

F10 
Mean 6.60e02 9.60e03 2.56e03 7.99e03 8.91e02 1.33e03 4.49e03 5.09e03 4.24e03 1.03e04 
Std 2.89e01 7.67e01 2.17e02 1.28e02 3.66e01 5.67e01 1.29e02 7.81e02 1.45e03 3.13e02 

t-test - 5.97e02* 4.75e01* 3.06e02* 2.71e01* 5.77e01* 1.59e02* 3.10e01* 1.35e01* 1.68e02* 

F11 
Mean 9.66e-12 4.02e-08 2.32e01 3.04e-12 5.80e00 8.66e00 1.02e01 1.98e02 1.98e02 2.59e01 
Std 7.30e-12 5.12e-09 2.10e00 2.89e-13 5.40e00 3.25e00 8.71e-01 2.12e00 1.12e00 1.73e00 

t-test - 4.30e01* 6.05e01* -4.96e00 5.88e00* 1.46e01* 6.41e01* 5.12e02* 9.68e02* 8.20e01* 

F12 
Mean 3.23e03 4.37e05 1.75e04 9.52e04 1.25e04 6.34e04 2.84e03 3.39e04 1.03e05 9.55e04 
Std 5.46e02 6.22e04 9.07e03 6.69e03 1.46e03 1.00e04 1.08e03 1.19e04 1.57e04 9.55e03 

t-test - 3.82e01* 8.60e00* 7.50e01* 3.26e01* 3.29e01* -1.77e00 1.41e01* 3.48e01* 5.28e01* 

F13 
Mean 4.35e02 6.29e02 9.59e02 5.48e02 7.35e02 9.89e02 6.27e03 1.34e03 4.22e03 5.96e03 
Std 6.40e01 2.32e02 3.74e02 1.69e02 1.93e02 4.52e02 3.65e03 1.72e02 4.70e03 4.16e03 

t-test - 4.42e00* 7.56e00* 3.42e00* 8.08e00* 6.65e00* 8.75e00* 2.70e01* 4.41e00* 7.27e00* 

F14 
Mean 5.81e07 2.49e08 8.41e07 1.60e08 1.24e08 1.70e08 3.42e08 3.06e08 5.70e08 9.78e08 
Std 2.40e06 1.53e07 6.31e06 8.50e06 7.38e06 1.29e07 2.42e07 1.19e08 5.50e07 7.52e07 

t-test - 6.75e01* 2.11e01* 6.32e01* 4.65e01* 4.67e01* 6.39e01* 1.14e01* 5.09e01* 6.70e01* 

F15 
Mean 8.82e02 1.01e04 1.12e04 9.91e03 8.33e02 2.66e03 5.86e03 1.08e04 8.90e03 1.23e04 
Std 5.97e01 5.23e01 8.65e01 6.70e01 4.31e01 1.50e02 1.05e02 1.35e03 2.07e03 8.24e02 

t-test - 6.36e02* 5.38e02* 5.51e02* -3.64e00 6.03e01* 2.26e02* 4.02e01* 2.12e01* 7.57e01* 

F16 
Mean 7.31e-12 5.89e-08 2.51e01 4.68e-12 4.25e00 5.94e01 7.53e-13 3.96e02 3.81e02 6.96e01 
Std 1.09e-11 5.61e-09 1.16e01 4.49e-13 2.41e00 1.37e01 6.25e-14 5.73e-01 5.76e01 6.43e00 

t-test - 5.75e01* 1.19e01* -1.32e00 9.66e00* 2.37e01* -3.29e00 3.79e03* 3.62e01* 5.93e01* 

F17 
Mean 5.17e04 2.20e06 9.00e04 6.84e05 9.05e04 1.07e05 4.03e04 1.25e05 3.49e05 3.11e05 
Std 4.32e03 1.55e05 1.58e04 3.63e04 3.53e03 6.75e04 2.29e03 5.25e04 3.11e04 2.24e04 

t-test - 7.59e01* 1.28e01* 9.47e01* 3.81e01* 4.48e00* -1.28e01 7.62e00* 5.19e01* 6.23e01* 

F18 
Mean 1.18e03 1.73e03 2.77e03 1.35e03 2.55e03 2.53e03 1.47e10 3.07e03 1.81e04 3.83e04 
Std 1.52e02 5.22e02 8.33e02 3.87e02 8.32e02 6.86e02 2.03e09 2.45e02 9.48e03 1.53e04 

t-test - 5.54e00* 1.03e01* 2.24e00* 8.87e00* 1.05e01* 3.97e01* 3.59e01* 9.77e00* 1.33e01* 

F19 
Mean 2.45e06 1.01e07 5.10e06 8.20e06 1.80e06 5.46e05 1.75e06 1.52e06 2.04e06 1.14e06 
Std 1.18e05 5.64e05 7.05e05 4.69e05 9.96e04 2.80e04 1.10e05 7.10e04 1.42e05 6.23e04 

t-test - 7.27e01* 2.03e01* 6.51e01* -2.31e01 -8.60e01 -2.38e01 -3.70e01 -1.22e01 -5.38e01 

F20 
Mean 1.17e03 1.05e03 1.85e03 1.06e03 1.88e03 1.39e03 6.41e10 2.11e03 2.30e03 4.58e03 
Std 9.92e01 1.49e02 2.59e02 1.79e02 1.90e02 1.47e02 6.97e09 1.79e02 2.26e02 8.25e02 

t-test - -3.67e00 1.34e01* -2.94e00 1.81e01* 6.79e00* 5.04e01* 2.52e01* 2.51e01* 2.25e01* 
w/l/t - 18/1/1 20/0/0 13/6/1 15/4/1 16/1/3 16/3/1 18/2/0 16/2/2 19/1/0 
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significantly outperform CSO and SL-PSO. For example, the results in Table II show that 

dpl-PSO is able to deliver better or comparable solutions than CSO and SL-PSO on 24 and 25, 

respectively, out of 35 functions to be tested. Since the only difference among the three 

algorithms to be compared is that they employ different particle learning strategies. These 315 

results thus indicate the significance of the proposed DPL. 

4.3 Comparing with Related Algorithms 

Then, we compare our proposed algorithm, mlsdpl_PSO, with related algorithms. The 

algorithms to be compared consist of recently proposed PSO variants for LSGO (including 

TABLE IV. Comparing the Results Delivered by Different Methods on CEC’2013 Test Suit in Terms of Mean Fitness and Standard 

Deviation Along with Two Tailed t-Tests Between Our Proposed Method and Each of The Related Methods. The Symbol “*” 

Indicates That the Performance of Our Proposed Method Is Significantly Better Than the Method to be Compared with a Confidence 

Level of 95%. 

Function Index mlsdpl_PSO CSO SL-PSO SPLSO LLSO MA-SW-
Chains DECC-DG CCPSO2 MLCC DECC-G 

M1 
Mean 6.92e-19 7.71e-12 1.09e-17 1.18e-19 3.99e-22 1.19e-20 6.42e03 4.11e01 8.60e-10 3.14e-06 
Std 1.22e-18 1.31e-12 2.50e-18 1.06e-20 1.32e-22 1.11e-20 1.81e04 3.14e01 4.38e-09 4.27e-06 

t-test - 3.22e01* 2.01e01* -2.58e00 -3.10e00 -3.05e00 1.94e00 7.17e00* 1.08e00 4.03e00* 

M2 
Mean 6.91e02 8.55e03 2.13e03 1.06e03 1.14e03 6.97e02 1.27e04 3.50e01 3.82e00 1.31e03 
Std 3.65e01 2.65e02 1.36e02 4.45e02 5.78e01 5.51e01 7.20e02 4.85e00 1.73e00 3.63e01 

t-test - 1.61e02* 5.60e01* 4.53e00* 3.60e01* 4.97e-01 9.12e01* -9.76e01 -1.03e02 6.59e01* 

M3 
Mean 2.16e01 2.16e01 2.16e01 2.16e01 2.16e01 2.03e01 2.14e01 2.00e01 2.00e01 2.02e01 
Std 8.64e-03 6.15e-03 1.45e-02 7.53e-03 4.07e-03 4.36e-02 1.45e-02 1.25e-04 2.76e-04 6.18e-03 

t-test - 0.00e00 0.00e00 0.00e00 0.00e00 -1.60e02 -6.49e01 -1.01e03 -1.01e03 -7.22e02 

M4 
Mean 1.64e09 1.32e10 4.35e09 9.40e09 6.68e09 5.13e09 7.70e10 3.49e10 2.34e11 2.35e11 
Std 5.57e08 2.54e09 9.48e08 1.89e09 1.68e09 1.33e09 2.82e10 2.17e10 1.26e11 1.22e11 

t-test - 2.43e01* 1.35e01* 2.16e01* 1.56e01* 1.33e01* 1.46e01* 8.39e00* 1.01e01* 1.05e01* 

M5 
Mean 6.17e05 5.91e05 8.41e05 6.30e05 7.00e05 1.76e06 5.78e06 1.40e07 1.27e07 8.26e06 
Std 1.01e05 1.07e05 1.75e05 1.02e05 1.28e05 3.26e05 3.83e05 4.81e06 3.46e06 1.14e06 

t-test - -9.68e-01 6.07e00* 4.96e-01 2.79e00* 1.83e01* 7.14e01* 1.52e01* 1.91e01* 3.66e01* 

M6 
Mean 1.06e06 1.06e06 1.06e06 1.06e06 1.06e06 1.05e06 1.06e06 1.05e06 1.05e06 1.06e06 
Std 8.59e02 1.10e03 1.48e03 8.05e02 8.28e02 7.00e03 1.07e03 5.24e03 4.13e03 1.84e03 

t-test - 0.00e00 0.00e00 0.00e00 0.00e00 -7.77e00 0.00e00 -1.03e01 -1.30e01 0.00e00 

M7 
Mean 8.01e04 5.88e06 1.63e06 5.50e06 1.60e06 2.91e06 4.78e08 4.15e08 1.43e09 1.04e09 
Std 3.27e04 2.58e06 7.05e05 2.26e06 8.38e05 1.30e06 1.92e08 9.38e08 1.07e09 4.48e08 

t-test - 1.23e01* 1.20e01* 1.31e01* 9.93e00* 1.19e01* 1.36e01* 2.42e00* 7.32e00* 1.27e01* 

M8 
Mean 4.45e13 2.60e14 1.03e14 1.55e14 1.20e14 1.28e14 3.57e15 1.18e15 9.59e15 7.50e15 
Std 1.06e13 5.87e13 3.62e13 2.96e13 3.35e13 3.44e13 1.85e15 9.99e14 6.18e15 3.18e15 

t-test - 1.98e01* 8.49e00* 1.92e01* 1.18e01* 1.27e01* 1.04e01* 6.23e00* 8.46e00* 1.28e01* 

M9 
Mean 9.16e07 6.06e07 8.25e07 8.07e07 1.30e08 1.09e08 4.90e08 3.76e09 9.55e08 5.96e08 
Std 2.99e07 1.60e07 2.03e07 2.24e07 3.97e07 1.96e07 3.18e07 1.02e09 2.92e08 9.76e07 

t-test - -5.01e00 -1.38e00 -1.60e00 4.23e00* 2.67e00* 5.00e01* 1.97e01* 1.61e01* 2.71e01* 

M10 
Mean 9.14e07 9.40e07 9.25e07 9.39e07 9.40e07 9.34e07 9.45e07 9.30e07 9.27e07 9.29e07 
Std 1.39e06 1.51e05 1.67e06 2.26e05 2.11e05 3.55e05 2.46e05 7.01e05 6.07e05 6.16e05 

t-test - 1.02e01* 2.77e00* 9.72e00* 1.01e01* 7.64e00* 1.20e01* 5.63e00* 4.69e00* 5.40e00* 

M11 
Mean 9.28e11 9.30e11 9.33e11 9.27e11 9.30e11 9.59e08 4.83e10 9.37e11 2.28e11 1.28e11 
Std 9.63e09 1.03e10 1.46e10 9.48e09 9.50e09 1.68e09 4.33e10 1.53e10 1.53e11 7.15e10 

t-test - 7.77e-01 1.57e00 -4.05e-01 8.10e-01 -5.19e02 -1.09e02 2.73e00* -2.50e01 -6.07e01 

M12 
Mean 1.16e03 1.07e03 1.78e03 1.05e03 1.79e03 1.33e03 1.71e11 2.10e03 2.49e03 4.35e03 
Std 7.18e01 7.78e01 1.74e02 5.37e01 1.39e02 1.00e02 2.24e10 1.78e02 7.51e02 7.83e02 

t-test - -4.66e00 1.80e01* -6.72e00 2.21e01* 7.56e00* 4.18e01* 2.68e01* 9.66e00* 2.22e01* 

M13 
Mean 1.77e07 6.67e08 4.65e08 1.20e09 3.35e08 1.04e09 2.05e10 4.02e09 1.06e10 9.35e09 
Std 7.29e06 2.45e08 2.35e08 4.99e08 1.71e08 3.28e08 5.53e09 2.31e09 3.73e09 2.78e09 

t-test - 1.45e01* 1.04e01* 1.30e01* 1.02e01* 1.71e01* 2.03e01* 9.49e00* 1.55e01* 1.84e01* 

M14 
Mean 2.13e07 3.62e09 3.28e08 8.31e09 1.72e08 6.53e09 1.92e10 9.10e10 2.21e11 1.42e11 
Std 4.26e06 1.44e09 5.17e08 6.67e09 1.38e08 5.70e09 1.44e10 8.53e10 8.54e10 5.86e10 

t-test - 1.37e01* 3.25e00* 6.81e00* 5.98e00* 6.25e00* 7.29e00* 5.84e00* 1.42e01* 1.33e01* 

M15 
Mean 6.17e06 7.87e07 5.86e07 4.13e07 4.48e06 8.48e06 9.90e06 4.75e06 1.61e07 1.16e07 
Std 5.14e05 6.50e06 6.11e06 3.11e06 3.32e05 2.25e06 2.30e06 5.07e06 1.90e06 1.26e06 

t-test - 6.09e01* 4.68e01* 6.10e01* -1.51e01 5.48e00* 8.67e00* -1.53e00 2.76e01* 2.19e01* 
w/l/t - 9/2/4 11/0/4 8/2/5 10/2/3 10/4/1 11/2/2 11/3/1 10/4/1 12/2/1 
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CSO [11], SL-PSO [12], SPLSO [13] and LLSO [14]) and CCEAs for LSGO (including 320 

DECC-DG [29], CCPSO2 [21], MLCC [20] and DECC-G [19]) as well as the winner 

algorithm of CEC’2010 LSGO (i.e., MA-SW-Chains [34]). To facilitate a fair comparison, 

the same FE_Max value (i.e., 3000×D) is used for all methods. For the rest parameters of the 

methods to be compared, they are set according to the original papers with the best 

performance.  325 

Tables III and IV show the comparison results of different methods on CEC’2010 and 

CEC’2013 benchmark suits, respectively. To statistically justify the comparisons between our 

proposed method and the related algorithms, two-tailed t-tests are performed at a significance 

level of α = 0.05 and the results have also been reported in Tables III and IV. In addition, the 

number of wins, losses and ties on the test functions for each pairwise comparison between 330 

our algorithm and related methods have been summarized in the last rows of Tables III and 

IV. From the results, we can see that our proposed method could significantly outperform 

related algorithms to be compared. For example, the results show that, comparing to the PSO 

variants of CSO, SL-PSO, SPLSO and LLSO, mlsdpl_PSO can deliver better solutions on 27, 

31, 21 and 25, respectively, out of 35 functions to be tested. Similar results can also be found 335 

by comparing our proposed method to CCEAs including DECC-DG, CCPSO2, MLCC and 

DECC-G that the mlsdpl_PSO is able to provide better solutions on most of the functions. 

While, comparing to MA-SW-Chains, which is a winner algorithm of CEC’2010 LSGO, our 

method gives better solutions on 26 out of 35 functions. Clearly, based the results, 

mlsdpl_PSO shows the best performance among the ten algorithms. The superiority is mainly 340 

due to the incorporation of MLS mechanism, which helps balance the exploitation and 

exploration of PSO evolution, as well as the DPL mechanism, which could be used to support 

efficient particle learning while preserving the swarm diversity during evolution. Equipped 

with these two mechanisms, the resulting mlsdpl_PSO could achieve a superior performance 

for addressing LSGO. 345 

4.4 Scalability Evaluation and Comparison 

To evaluate the scalability of our proposed algorithm, experiments have also been 

conducted on CEC’2010 functions with various dimensions including 200, 500, 800 as well 

as 2000 and the performance are compared with related methods. Same as previous 

experiments, a FE_Max value of 3000×D is used for all methods to make the comparison fair. 350 

The results are reported in Tables V, VI, VII and VIII for problem dimensions of 200, 500, 

800 and 2000, respectively. 
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From the results, we can see that our proposed algorithm can outperform the related 

methods across all dimensions to be tested, except LLSO on 2000 dimensions. On the 

TABLE V. Comparing the Results Delivered by Different Methods on CEC’2010 Test Suit with Dimension D=200 in Terms of Mean 

Fitness and Standard Deviation Along with Two Tailed t-Tests Between Our Proposed Method and Each of The Related Methods. 

The Symbol “*” Indicates That the Performance of Our Proposed Method Is Significantly Better Than the Method to be Compared 

with a Confidence Level of 95%. 

Function Index mlsdpl_PSO CSO SL-PSO LLSO MA-SW-
Chains DECC-DG CCPSO2 MLCC DECC-G 

F1 
Mean 4.84e-27 6.45e-17 2.41e-21 0.00e00 6.73e-22 2.43e-21 2.44e02 3.88e-18 1.02e-12 
Std 2.00e-26 2.18e-17 2.07e-22 0.00e00 5.11e-22 1.73e-21 4.58e02 9.37e-18 4.32e-13 

t-test - 1.62e01* 6.38e01* -1.33e00 7.21e00* 7.69e00* 2.92e00* 2.27e00* 1.29e01* 

F2 
Mean 1.05e02 9.70e02 3.29e02 1.00e02 7.56e00 2.11e02 1.86e00 1.08e-11 3.22e01 
Std 1.47e01 1.10e02 3.73e01 1.13e01 6.40e00 1.53e01 1.10e00 7.75e-12 5.29e00 

t-test - 4.27e01* 3.06e01* -1.48e00 -3.33e01 2.74e01* -3.83e01 -3.91e01 -2.55e01 

F3 
Mean 3.98e-14 1.89e-11 4.99e-14 1.45e-14 2.40e-14 2.38e00 1.12e-02 3.04e-13 1.37e-07 
Std 3.48e-15 2.75e-12 1.30e-15 6.49e-16 3.43e-15 3.29e-01 6.71e-03 7.68e-13 5.71e-08 

t-test - 3.76e01* 1.49e01* -3.91e01 -1.77e01 3.96e01* 9.14e00* 1.88e00 1.31e01* 

F4 
Mean 7.00e11 1.99e12 1.46e12 1.72e12 1.57e12 4.31e13 4.05e12 5.66e12 9.76e12 
Std 1.55e11 3.67e11 4.04e11 4.08e11 3.53e11 9.55e12 1.62e12 1.65e12 3.31e12 

t-test - 1.77e01* 9.62e00* 1.28e01* 1.24e01* 2.43e01* 1.13e01* 1.64e01* 1.50e01* 

F5 
Mean 2.26e07 3.03e08 3.23e08 2.39e07 1.09e08 2.50e08 4.36e08 3.06e08 2.80e08 
Std 4.89e06 8.87e06 1.37e07 4.46e07 3.78e07 2.40e07 1.33e08 1.31e08 3.78e07 

t-test - 1.52e02* 1.13e02* 1.59e-01 1.24e01* 5.09e01* 1.70e01* 1.18e01* 3.70e01* 

F6 
Mean 7.44e-09 1.67e-07 2.10e01 2.00e00 2.31e05 1.43e00 1.80e07 9.34e06 2.32e06 
Std 6.36e-10 6.55e-09 1.51e-01 5.29e00 4.98e05 2.37e-01 4.83e06 8.10e06 3.33e05 

t-test - 1.33e02* 7.62e02* 2.07e00* 2.54e00* 3.30e01* 2.04e01* 6.32e00* 3.82e01* 

F7 
Mean 1.62e04 3.33e05 3.71e05 4.29e04 4.92e04 1.19e10 4.30e08 1.45e05 1.41e08 
Std 1.90e04 1.09e05 8.21e04 3.01e04 2.17e04 2.02e09 1.01e09 1.16e05 1.50e08 

t-test - 1.57e01* 2.31e01* 4.11e00* 6.27e00* 3.23e01* 2.33e00* 6.00e00* 5.15e00* 

F8 
Mean 1.90e07 4.25e07 4.38e07 4.15e07 6.92e07 1.10e08 7.34e07 1.18e07 4.07e07 
Std 2.44e06 9.50e04 3.35e07 1.62e07 8.93e07 2.02e07 5.46e07 1.36e07 4.74e07 

t-test - 5.27e01* 4.04e00* 7.52e00* 3.08e00* 2.45e01* 5.45e00* -2.85e00 2.50e00* 

F9 
Mean 3.45e06 8.49e06 6.71e06 6.74e06 5.86e06 1.71e07 1.59e07 1.69e07 3.83e07 
Std 5.50e05 1.57e06 1.48e06 1.20e06 1.04e06 4.76e06 2.78e06 4.31e06 1.03e07 

t-test - 1.66e01* 1.13e01* 1.37e01* 1.12e01* 1.56e01* 2.41e01* 1.70e01* 1.85e01* 

F10 
Mean 1.21e02 1.52e03 1.64e03 9.36e01 1.50e02 6.41e02 8.18e02 4.99e02 1.29e03 
Std 1.47e01 4.16e01 2.45e02 8.40e00 2.34e01 2.38e01 1.84e02 1.29e02 5.96e01 

t-test - 1.74e02* 3.39e01* -8.86e00 5.75e00* 1.02e02* 2.07e01* 1.59e01* 1.04e02* 

F11 
Mean 4.69e-14 8.17e-11 9.29e00 2.25e-14 1.20e00 2.27e-01 3.27e01 7.22e00 3.35e00 
Std 7.29e-15 1.06e-11 7.87e00 1.14e-15 1.09e00 4.21e-01 1.19e01 8.43e00 7.61e-01 

t-test - 4.22e01* 6.47e00* -1.81e01 6.03e00* 2.95e00* 1.51e01* 4.69e00* 2.41e01* 

F12 
Mean 7.20e01 3.22e03 7.58e03 1.02e02 9.29e02 1.28e03 8.25e03 9.77e02 2.08e03 
Std 2.45e01 6.93e02 1.04e04 3.45e01 4.55e02 2.52e02 3.84e03 3.63e02 9.57e02 

t-test - 2.49e01* 3.95e00* 3.88e00* 1.03e01* 2.61e01* 1.17e01* 1.36e01* 1.15e01* 

F13 
Mean 7.51e01 9.53e01 1.37e02 9.30e01 1.69e02 9.85e03 2.84e02 3.52e02 6.85e02 
Std 1.89e01 1.82e01 1.04e02 2.20e01 1.17e02 1.57e03 6.83e01 2.21e02 1.01e03 

t-test - 4.22e00* 3.21e00* 3.38e00* 4.34e00* 3.41e01* 1.61e01* 6.84e00* 3.31e00* 

F14 
Mean 1.20e07 3.51e07 2.01e07 2.03e07 2.06e07 5.73e07 3.52e07 3.91e07 9.93e07 
Std 1.94e06 4.81e06 3.23e06 2.60e06 2.12e06 1.07e07 6.13e06 7.05e06 1.80e07 

t-test - 2.44e01* 1.18e01* 1.40e01* 1.64e01* 2.28e01* 1.98e01* 2.03e01* 2.64e01* 

F15 
Mean 5.54e02 1.75e03 1.92e03 1.69e03 3.37e02 1.17e03 1.87e03 1.05e03 2.02e03 
Std 6.25e02 2.44e01 3.61e01 6.70e01 2.62e01 4.02e01 3.82e02 2.17e02 9.96e01 

t-test - 1.05e01* 1.20e01* 9.90e00* -1.90e00 5.39e00* 9.84e00* 4.11e00* 1.27e01* 

F16 
Mean 6.03e-14 7.89e-11 1.97e00 2.94e-14 4.26e02 3.64e-11 7.65e01 1.58e01 1.01e01 
Std 5.50e-15 1.05e-11 3.37e00 1.53e-15 5.04e-01 7.93e-12 6.08e00 2.14e01 3.57e00 

t-test - 4.11e01* 3.20e00* -2.96e01 4.63e03* 2.51e01* 6.89e01* 4.04e00* 1.55e01* 

F17 
Mean 1.11e04 1.14e05 5.31e04 4.81e03 2.86e04 7.87e03 2.07e04 1.23e04 1.35e04 
Std 1.78e03 1.70e04 1.12e04 8.69e02 8.02e03 1.04e03 5.90e03 2.07e03 2.41e03 

t-test - 3.30e01* 2.03e01* -1.74e01 1.17e01* -8.58e00 8.53e00* 2.41e00* 4.39e00* 

F18 
Mean 1.66e02 1.94e02 3.46e02 1.87e02 3.28e02 6.44e02 6.09e02 4.90e02 1.68e03 
Std 2.44e01 2.48e01 1.45e02 3.00e01 1.64e02 8.92e01 1.55e02 2.09e02 1.64e03 

t-test - 4.41e00* 6.71e00* 2.97e00* 5.35e00* 2.83e01* 1.55e01* 8.43e00* 5.06e00* 

F19 
Mean 7.59e04 3.58e05 3.43e05 4.11e04 1.07e04 9.50e04 9.67e04 4.83e04 3.58e04 
Std 1.25e04 2.82e04 5.34e04 5.09e03 1.99e03 9.49e03 1.92e04 5.12e03 6.63e03 

t-test - 5.01e01* 2.67e01* -1.41e01 -2.82e01 6.67e00* 4.97e00* -1.12e01 -1.55e01 

F20 
Mean 1.94e02 2.39e02 3.62e02 2.82e02 3.44e02 3.57e02 5.23e02 3.52e02 6.37e02 
Std 4.09e01 1.58e02 2.32e02 1.98e02 1.20e02 6.32e01 1.11e02 8.24e01 1.99e02 

t-test - 1.51e00 3.91e00* 2.38e00* 6.48e00* 1.19e01* 1.52e01* 9.41e00* 1.19e01* 
w/l/t - 19/0/1 20/0/0 11/6/3 16/3/1 19/1/0 19/1/0 16/3/1 18/2/0 
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functions with a dimension of 2000, the results in Table VIII show that, comparing to the four 355 

CCEAs (i.e., DECC-DG, CCPSO2, MLCC and DECC-G), mlsdpl_PSO can provide better 

TABLE VI. Comparing the Results Delivered by Different Methods on CEC’2010 Test Suit with Dimension D=500 in Terms of 

Mean Fitness and Standard Deviation Along with Two Tailed t-Tests Between Our Proposed Method and Each of The Related 

Methods. The Symbol “*” Indicates That the Performance of Our Proposed Method Is Significantly Better Than the Method to 

be Compared with a Confidence Level of 95%. 

Function Index mlsdpl_PSO CSO SL-PSO LLSO MA-SW-
Chains DECC-DG CCPSO2 MLCC DECC-G 

F1 
Mean 2.17e-21 2.52e-17 4.61e-19 0.00e00 2.79e-21 2.37e-07 7.24e00 5.98e-17 1.68e-17 
Std 2.44e-21 7.46e-18 2.99e-20 0.00e00 3.71e-21 3.33e-07 1.12e01 2.19e-16 9.42e-18 

t-test - 1.85e01* 8.38e01* -4.87e00 7.65e-01 3.90e00* 3.54e00* 1.50e00 9.77e00* 

F2 
Mean 3.05e02 2.77e03 1.08e03 4.05e02 4.39e01 1.32e03 1.04e00 3.17e-11 8.03e-02 
Std 2.23e01 3.40e02 9.01e01 2.80e01 3.64e01 7.65e01 4.92e-01 2.22e-11 2.52e-01 

t-test - 3.96e01* 4.57e01* 1.53e01* -3.35e01 6.98e01* -7.46e01 -7.49e01 -7.49e01 

F3 
Mean 1.18e-13 8.37e-12 1.06e00 2.16e-14 5.20e-14 1.03e01 2.08e-03 1.98e-12 9.00e-10 
Std 6.42e-15 1.34e-12 5.54e-01 6.49e-16 6.65e-15 8.63e-01 1.52e-03 6.50e-12 3.21e-10 

t-test - 3.37e01* 1.05e01* -8.18e01 -3.91e01 6.54e01* 7.50e00* 1.57e00 1.54e01* 

F4 
Mean 4.22e11 1.73e12 1.13e12 1.29e12 1.10e12 1.83e13 4.40e12 1.08e13 2.58e13 
Std 8.22e10 3.68e11 2.94e11 3.64e11 2.30e11 3.91e12 2.09e12 3.94e12 6.54e12 

t-test - 1.90e01* 1.27e01* 1.27e01* 1.52e01* 2.50e01* 1.04e01* 1.44e01* 2.13e01* 

F5 
Mean 1.06e07 2.88e08 1.54e08 1.71e07 4.57e07 1.93e08 5.00e08 4.30e08 2.45e08 
Std 2.98e06 8.87e06 1.34e08 2.92e06 7.60e06 2.49e07 1.59e08 1.04e08 8.05e07 

t-test - 1.62e02* 5.86e00* 8.53e00* 2.36e01* 3.98e01* 1.69e01* 2.21e01* 1.59e01* 

F6 
Mean 1.00e-08 2.38e-07 2.13e01 1.74e00 3.42e05 9.07e00 1.88e07 1.84e07 5.18e06 
Std 2.65e-09 1.15e-08 1.19e-01 9.85e-01 5.49e05 8.73e-01 3.18e06 4.16e06 9.99e05 

t-test - 1.06e02* 9.80e02* 9.68e00* 3.41e00* 5.69e01* 3.24e01* 2.42e01* 2.84e01* 

F7 
Mean 8.33e01 5.16e03 1.03e05 1.48e04 4.11e01 2.61e08 7.18e08 1.73e06 7.23e08 
Std 2.08e02 1.37e03 4.53e04 1.66e04 1.85e01 9.95e07 1.02e09 2.38e06 3.69e08 

t-test - 2.01e01* 1.24e01* 4.86e00* -1.11e00 1.44e01* 3.86e00* 3.98e00* 1.07e01* 

F8 
Mean 7.72e05 3.89e07 2.59e07 2.66e07 2.15e07 4.97e07 4.80e07 5.41e07 9.03e07 
Std 6.81e05 1.03e05 1.22e07 2.59e05 2.79e07 2.10e07 4.34e07 2.40e07 1.53e08 

t-test - 3.03e02* 1.13e01* 1.94e02* 4.07e00* 1.28e01* 5.96e00* 1.22e01* 3.20e00* 

F9 
Mean 8.73e06 2.55e07 1.76e07 1.55e07 1.28e07 2.21e07 4.38e07 5.57e07 2.00e08 
Std 1.49e06 3.53e06 3.66e06 2.26e06 1.33e06 3.88e06 1.47e07 8.36e06 2.94e07 

t-test - 2.40e01* 1.23e01* 1.37e01* 1.12e01* 1.76e01* 1.30e01* 3.03e01* 3.56e01* 

F10 
Mean 3.62e02 4.56e03 4.25e03 3.79e02 4.88e02 1.85e03 2.37e03 2.10e03 3.47e03 
Std 2.14e01 5.29e01 1.55e03 2.27e01 6.31e01 6.03e01 4.48e02 5.26e02 4.88e02 

t-test - 4.03e02* 1.37e01* 2.98e00* 1.04e01* 1.27e02* 2.45e01* 1.81e01* 3.49e01* 

F11 
Mean 9.73e-13 1.02e-10 2.23e01 1.29e00 4.58e00 3.66e00 9.89e01 9.81e01 1.43e01 
Std 4.26e-13 2.43e-11 5.33e00 3.85e00 1.59e00 5.08e-01 3.44e-01 2.85e00 8.11e-01 

t-test - 2.28e01* 2.29e01v 1.84e00 1.58e01* 3.95e01* 1.57e03* 1.89e02* 9.66e01* 

F12 
Mean 2.01e03 7.10e04 5.62e04 1.26e03 1.71e04 1.26e03 1.84e04 1.19e04 1.87e04 
Std 2.78e02 1.25e04 2.87e04 2.64e02 4.73e03 2.47e02 3.45e03 2.40e03 3.41e03 

t-test - 3.02e01* 1.03e01* -1.07e01 1.74e01* -1.10e01 2.59e01* 2.24e01* 2.67e01* 

F13 
Mean 2.14e02 3.17e02 6.61e02 2.92e02 4.69e02 4.62e05 7.14e02 1.62e03 3.12e03 
Std 4.71e01 1.79e02 1.22e03 1.05e02 2.27e02 4.92e04 1.29e02 2.09e03 4.98e03 

t-test - 3.05e00* 2.01e00 3.71e00* 6.02e00* 5.14e01* 1.99e01* 3.68e00* 3.20e00* 

F14 
Mean 3.06e07 1.00e08 4.92e07 4.41e07 6.97e07 1.71e08 1.24e08 1.51e08 4.19e08 
Std 2.65e06 1.06e07 5.53e06 4.35e06 5.44e06 1.70e07 4.69e07 1.88e07 4.52e07 

t-test - 3.48e01* 1.66e01* 1.45e01* 3.54e01* 4.47e01* 1.09e01* 3.47e01* 4.70e01* 

F15 
Mean 5.95e02 4.91e03 5.42e03 4.78e03 1.11e03 2.94e03 5.06e03 4.18e03 4.42e03 
Std 2.42e02 4.55e01 5.37e01 5.84e01 7.39e01 4.90e01 6.37e02 9.95e02 1.51e03 

t-test - 9.60e01* 1.07e02* 9.21e01* 1.11e01** 5.20e01* 3.59e01* 1.92e01* 1.37e01* 

F16 
Mean 1.24e-12 1.06e-10 2.30e01 6.71e-01 1.33e01 1.28e-13 1.98e02 1.73e02 2.54e01 
Std 2.44e-13 2.25e-11 1.53e01 9.83e-01 5.96e00 7.88e-15 2.10e00 5.63e01 1.76e00 

t-test - 2.55e01* 8.23e00* 3.74e00* 1.22e01* -2.49e01 5.16e02* 1.68e01* 7.90e01* 

F17 
Mean 4.96e04 7.45e05 1.21e05 2.26e04 4.53e04 2.15e04 6.74e04 6.73e04 6.88e04 
Std 5.47e03 7.55e04 3.26e04 2.30e03 6.11e03 2.21e03 1.77e04 9.33e03 8.25e03 

t-test - 5.03e01* 1.18e01* -2.49e01 -2.87e00 -2.61e01 5.26e00* 8.96e00* 1.06e01* 

F18 
Mean 5.10e02 8.45e02 1.41e03 7.78e02 1.14e03 1.20e06 1.42e03 2.57e03 1.59e04 
Std 7.68e01 4.32e02 1.20e03 2.78e02 5.14e02 4.63e05 1.42e02 3.17e03 9.70e03 

t-test - 4.18e00* 4.10e00* 5.09e00* 6.64e00* 1.42e01* 3.09e01* 3.56e00* 8.69e00* 

F19 
Mean 8.05e05 2.89e06 1.68e06 5.85e05 1.21e05 5.56e05 4.77e05 3.97e05 2.19e05 
Std 7.07e04 2.28e05 2.58e05 5.00e04 1.10e04 3.23e04 4.39e04 3.41e04 2.08e04 

t-test - 4.78e01* 1.79e01* -1.39e01 -5.24e01 -1.75e01 -2.16e01 -2.85e01 -4.36e01 

F20 
Mean 4.91e02 5.49e02 7.38e02 7.63e02 7.11e02 1.60e10 1.09e03 9.53e02 1.63e03 
Std 4.00e01 8.90e01 1.19e02 1.42e02 8.47e01 2.92e09 1.55e02 1.32e02 1.00e03 

t-test - 3.26e00* 1.08e01* 1.01e01* 1.29e01* 3.00e01* 2.05e01* 1.83e01* 6.23e00* 
w/l/t - 20/0/0 19/0/1 14/5/1 14/4/2 16/4/0 18/2/0 16/2/2 18/2/0 
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solutions on at least 15 out of 20 functions. While, comparing to CSO, SL-PSO and LLSO, 

mlsdpl_PSO delivers better solutions on 11, 20 and 8, respectively, out of 20 functions. For 

TABLE VII. Comparing the Results Delivered by Different Methods on CEC’2010 Test Suit with Dimension D=800 in Terms 

of Mean Fitness and Standard Deviation Along with Two Tailed t-Tests Between Our Proposed Method and Each of The 

Related Methods. The Symbol “*” Indicates That the Performance of Our Proposed Method Is Significantly Better Than the 

Method to be Compared with a Confidence Level of 95%. 

Function Index mlsdpl_PSO CSO SL-PSO LLSO MA-SW-
Chains DECC-DG CCPSO2 MLCC DECC-G 

F1 
Mean 8.45e-20 6.93e-12 3.71e-18 2.36e-23 8.61e-21 3.60e00 3.93e00 1.91e-11 8.28e-07 
Std 3.99e-20 1.06e-12 4.96e-19 1.43e-23 1.44e-20 5.68e00 7.27e00 8.61e-11 4.10e-07 

t-test - 3.58e01* 3.99e01* -1.16e01 -9.80e00 3.47e00* 2.96e00* 1.22e00 1.11e01* 

F2 
Mean 4.96e02 5.95e03 1.69e03 6.96e02 2.69e02 3.08e03 2.38e00 2.65e00 1.15e03 
Std 2.17e01 1.99e02 1.28e02 3.66e01 8.74e01 1.46e02 7.74e-01 1.08e00 2.04e01 

t-test - 1.49e02* 5.04e01* 2.57e01* -1.38e01 9.59e01* -1.25e02 -1.24e02 1.20e02* 

F3 
Mean 3.03e-13 3.46e-09 1.59e00 2.29e-14 1.54e-13 1.51e01 3.17e-03 2.70e-07 9.78e-01 
Std 1.50e-13 2.59e-10 2.56e-01 2.53e-15 1.40e-13 4.37e-01 9.17e-04 1.36e-06 4.05e-01 

t-test - 7.32e01* 3.40e01* -1.02e01 -3.98e00 1.89e02* 1.89e01* 1.09e00 1.32e01* 

F4 
Mean 1.99e11 9.73e11 4.29e11 7.12e11 4.06e11 2.64e12 2.02e12 1.28e13 2.24e13 
Std 5.23e10 1.79e11 1.89e11 1.71e11 8.77e10 8.93e11 1.01e12 3.64e12 8.98e12 

t-test - 2.27e01* 6.42e00* 1.57e01* 1.11e01* 1.49e01* 9.86e00* 1.90e01* 1.35e01* 

F5 
Mean 5.71e06 3.36e06 5.96e07 1.28e07 3.58e07 1.60e08 4.06e08 4.17e08 1.88e08 
Std 1.83e06 1.56e06 7.84e07 3.10e06 6.49e06 1.83e07 1.45e08 9.27e07 4.58e07 

t-test - -5.35e00 3.76e00* 1.08e01* 2.44e01* 4.60e01* 1.51e01* 2.43e01* 2.18e01* 

F6 
Mean 2.79e-08 8.26e-07 2.14e01 1.55e-01 2.55e05 1.44e01 1.84e07 1.90e07 3.74e06 
Std 2.01e-08 2.10e-08 1.46e-01 4.17e-01 5.93e05 5.14e-01 4.02e06 2.48e06 7.50e05 

t-test - 1.50e02* 8.03e02* 2.04e00 2.36e00* 1.53e02* 2.51e01* 4.20e01* 2.73e01* 

F7 
Mean 6.02e02 2.64e04 5.15e04 7.04e02 4.44e00 1.40e08 3.70e08 7.63e07 6.46e08 
Std 3.26e03 8.03e03 3.76e04 3.51e03 1.94e00 5.48e07 4.96e08 7.88e07 4.93e08 

t-test - 1.63e01* 7.39e00* 1.17e-01 -1.00e00 1.40e01* 4.09e00* 5.30e00* 7.18e00* 

F8 
Mean 1.94e06 6.41e07 3.57e07 5.84e07 3.86e08 9.87e07 1.34e08 7.01e08 3.71e08 
Std 4.66e06 3.59e07 5.85e07 5.16e07 3.52e08 6.35e07 6.14e07 2.58e09 1.85e09 

t-test - 9.40e00* 3.15e00* 5.97e00* 5.98e00* 8.32e00* 1.17e01* 1.48e00 1.09e00 

F9 
Mean 1.51e07 5.67e07 2.53e07 3.56e07 2.18e07 4.99e07 7.29e07 1.84e08 3.05e08 
Std 1.58e06 4.87e06 2.73e06 3.19e06 1.83e06 7.25e06 2.44e07 2.19e07 3.54e07 

t-test - 4.45e01* 1.77e01* 3.15e01* 1.52e01* 2.57e01* 1.29e01* 4.21e01* 4.48e01* 

F10 
Mean 5.65e02 7.50e03 4.54e03 6.19e02 9.43e02 3.39e03 4.06e03 2.99e03 8.04e03 
Std 2.53e01 5.26e01 3.13e03 2.91e01 8.00e01 1.16e02 6.10e02 1.07e03 2.38e02 

t-test - 6.51e02* 6.96e00* 7.67e00* 2.47e01* 1.30e02* 3.14e01* 1.24e01* 1.71e02* 

F11 
Mean 4.18e-12 4.59e-08 2.32e01 5.72e-01 7.64e00 7.73e00 1.58e02 1.50e02 1.92e01 
Std 2.83e-12 3.62e-09 2.27e00 7.00e-01 2.50e00 1.12e00 4.81e-01 3.19e01 1.47e00 

t-test - 6.94e01* 5.60e01* 4.48e00* 1.67e01* 3.78e01* 1.80e03* 2.58e01* 7.15e01* 

F12 
Mean 3.03e03 2.51e05 3.08e04 8.97e03 4.46e04 1.61e03 3.07e04 7.06e04 6.87e04 
Std 5.44e02 3.01e04 1.47e04 1.01e03 1.02e04 1.79e02 8.46e03 1.16e04 9.01e03 

t-test - 4.51e01* 1.03e01* 2.84e01* 2.23e01* -1.36e01 1.79e01* 3.19e01* 3.98e01* 

F13 
Mean 4.04e02 7.15e02 1.91e03 6.73e02 9.62e02 8.25e04 1.11e03 3.68e03 5.02e03 
Std 8.36e01 4.02e02 4.53e03 3.00e02 4.17e02 4.81e04 1.70e02 3.59e03 4.57e03 

t-test - 4.15e00* 1.82e00 4.73e00* 7.19e00* 9.35e00* 2.04e01* 5.00e00* 5.53e00* 

F14 
Mean 4.35e07 2.04e08 6.90e07 1.01e08 1.44e08 2.69e08 2.18e08 4.43e08 7.69e08 
Std 2.32e06 1.27e07 7.80e06 6.21e06 1.09e07 2.24e07 7.36e07 3.53e07 7.01e07 

t-test - 6.81e01* 1.72e01* 4.75e01* 4.94e01* 5.48e01* 1.30e01* 6.19e01* 5.67e01* 

F15 
Mean 8.03e02 7.92e03 8.95e03 6.08e02 1.97e03 4.67e03 8.48e03 7.33e03 9.87e03 
Std 5.90e01 5.39e01 9.01e01 3.30e01 1.08e02 7.07e01 1.10e03 1.85e03 6.28e02 

t-test - 4.88e02* 4.14e02* -1.58e01 5.19e01* 2.30e02* 3.82e01* 1.93e01* 7.87e01* 

F16 
Mean 4.83e-12 6.10e-08 2.45e01 8.40e-01 3.10e01 5.81e-12 3.17e02 2.93e02 5.32e01 
Std 2.85e-12 5.18e-09 1.13e01 1.13e00 1.34e01 6.70e-13 5.18e-01 7.01e01 5.77e00 

t-test - 6.45e01* 1.19e01* 4.07e00* 1.27e01* 1.83e00 3.35e03* 2.29e01* 5.05e01* 

F17 
Mean 5.68e04 1.67e06 9.63e04 6.79e04 6.64e04 3.05e04 1.07e05 2.58e05 2.16e05 
Std 5.51e03 1.00e05 2.00e04 3.93e03 7.78e03 2.61e03 3.77e04 2.76e04 1.81e04 

t-test - 8.82e01* 1.04e01* 8.98e00* 5.52e00* -2.36e01 7.22e00* 3.92e01* 4.61e01* 

F18 
Mean 9.46e02 1.37e03 1.99e03 2.10e03 2.04e03 1.05e09 2.51e03 7.46e03 1.90e04 
Std 8.69e01 4.92e02 6.62e02 6.09e02 5.07e02 3.00e08 2.66e02 4.95e03 1.15e04 

t-test - 4.65e00* 8.56e00* 1.03e01* 1.16e01* 1.92e01* 3.06e01* 7.21e00* 8.60e00* 

F19 
Mean 1.84e06 6.31e06 3.76e06 1.17e06 3.29e05 1.24e06 1.06e06 1.39e06 7.97e05 
Std 1.40e05 4.06e05 6.28e05 5.63e04 2.38e04 6.76e04 6.75e04 8.96e04 4.49e04 

t-test - 5.70e01* 1.63e01* -2.43e01 -5.83e01 -2.11e01 -2.75e01 -1.48e01 -3.89e01 

F20 
Mean 8.99e02 8.46e02 1.35e03 1.36e03 1.10e03 5.05e09 1.70e03 2.05e03 3.56e03 
Std 8.33e01 1.82e02 2.04e02 2.49e02 1.19e02 1.12e09 2.19e02 5.32e02 4.78e02 

t-test - -1.45e00 1.12e01* 9.62e00* 7.58e00* 2.47e01* 1.87e01* 1.17e01* 3.00e01* 
w/l/t - 18/1/1 19/0/1 14/4/2 15/4/1 16/3/1 18/2/0 15/2/3 18/1/1 
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the MA-SW-Chains, which has a relatively better performance than most of the rest methods 

to be compared, however, is still outperformed by our proposed algorithm on 11 functions. 360 

TABLE VIII. Comparing the Results Delivered by Different Methods on CEC’2010 Test Suit with Dimension D=2000 in Terms 

of Mean Fitness and Standard Deviation Along with Two Tailed t-Tests Between Our Proposed Method and Each of The 

Related Methods. The Symbol “*” Indicates That the Performance of Our Proposed Method Is Significantly Better Than the 

Method to be Compared with a Confidence Level of 95%. 

Function Index mlsdpl_PSO CSO SL-PSO LLSO MA-SW-
Chains DECC-DG CCPSO2 MLCC DECC-G 

F1 
Mean 2.69e-14 2.63e-11 1.40e08 1.75e-20 1.01e-19 5.48e07 2.81e01 2.04e-15 2.39e-09 
Std 1.46e-13 2.53e-12 2.89e07 8.86e-22 8.20e-20 5.59e07 5.09e01 8.41e-15 4.62e-10 

t-test - 5.68e01* 2.65e01* -1.01e00 -1.01e00 5.37e00* 3.02e00* -9.31e-01 2.83e01* 

F2 
Mean 3.66e03 5.31e03 4.15e03 1.40e03 1.90e03 1.22e04 2.80e01 7.08e00 2.30e03 
Std 9.82e01 8.14e02 1.75e02 5.17e01 3.20e02 3.19e02 8.99e00 3.32e00 5.66e01 

t-test - 1.10e01* 1.34e01* -1.12e02 -2.88e01 1.40e02* -2.02e02 -2.04e02 -6.57e01 

F3 
Mean 1.46e00 3.46e-09 6.34e00 3.94e-14 2.80e-08 1.90e01 1.78e-02 7.94e-02 1.23e00 
Std 1.30e-01 1.83e-10 3.24e-01 6.49e-16 6.45e-08 8.24e-02 7.77e-03 3.02e-01 1.11e-01 

t-test - -6.15e01 7.66e01* -6.15e01 -6.15e01 6.24e02* -6.07e01 -2.30e01 -7.37e00 

F4 
Mean 1.18e11 6.29e11 2.32e12 3.62e11 2.97e11 1.35e12 2.00e12 1.95e13 1.94e13 
Std 2.26e10 8.73e10 3.97e11 7.02e10 8.19e10 3.34e11 9.79e11 6.50e12 6.32e12 

t-test - 3.10e01* 3.03e01* 1.81e01* 1.15e01* 2.02e01* 1.05e01* 1.63e01* 1.67e01* 

F5 
Mean 1.20e07 4.62e06 2.02e07 6.00e06 3.36e07 1.51e08 4.43e08 4.34e08 2.73e08 
Std 2.21e06 1.54e06 5.90e06 1.74e06 5.01e06 2.62e07 1.15e08 8.06e07 1.08e08 

t-test - -1.50e01 7.13e00* -1.17e01 2.16e01* 2.90e01* 2.05e01* 2.87e01* 1.32e01* 

F6 
Mean 6.77e00 2.15e-06 1.99e01 4.00e-09 1.88e05 1.94e01 1.62e07 1.96e07 9.30e06 
Std 1.09e00 4.66e-08 2.33e-02 8.24e-14 5.10e05 1.41e-01 5.87e06 4.34e05 3.84e06 

t-test - -3.40e01 6.60e01* -3.40e01 2.02e00 6.29e01* 1.51e01* 2.47e02* 1.33e01* 

F7 
Mean 2.76e05 3.64e04 2.45e08 1.17e01 3.67e01 1.96e02 1.20e08 3.09e08 1.43e09 
Std 8.04e04 1.07e04 1.05e08 5.74e00 1.56e01 1.69e02 3.20e08 2.32e08 8.79e08 

t-test - -1.62e01 1.28e01* -1.88e01 -1.88e01 -1.88e01 2.05e00 7.29e00* 8.91e00* 

F8 
Mean 1.15e06 3.78e07 6.82e07 3.15e07 7.25e08 4.83e07 1.11e08 3.04e07 2.45e07 
Std 2.47e06 6.02e04 3.49e07 2.11e07 1.77e09 3.13e07 5.27e07 1.19e07 1.43e07 

t-test - 8.12e01* 1.05e01* 7.82e00* 2.24e00* 8.23e00* 1.14e01* 1.32e01* 8.81e00* 

F9 
Mean 3.52e07 1.67e08 1.60e09 1.06e08 7.43e07 2.76e08 2.11e08 5.05e08 9.68e08 
Std 2.09e06 7.57e06 1.10e08 6.93e06 4.33e06 5.02e07 1.09e08 3.21e07 6.63e07 

t-test - 9.19e01* 7.79e01* 5.36e01* 4.45e01* 2.63e01* 8.83e00* 8.00e01* 7.70e01* 

F10 
Mean 3.40e03 1.85e04 4.27e03 1.16e03 3.75e03 1.16e04 1.06e04 8.71e03 6.58e03 
Std 9.49e01 1.61e02 3.62e02 5.00e01 1.47e02 2.91e02 1.43e03 2.48e03 1.87e02 

t-test - 4.43e02* 1.27e01* -1.14e02 1.10e01* 1.47e02* 2.75e01* 1.17e01* 8.31e01* 

F11 
Mean 2.08e01 1.19e-07 1.06e02 5.72e-13 1.81e01 1.78e01 3.97e02 3.96e02 6.81e01 
Std 2.50e00 7.22e-09 9.55e00 2.10e-14 5.58e00 3.34e-01 4.67e-01 8.02e-01 3.05e00 

t-test - -4.56e01 4.73e01* -4.56e01 -2.42e00 -6.51e00 8.10e02* 7.83e02* 6.57e01* 

F12 
Mean 2.62e04 4.39e05 1.38e06 1.12e05 2.43e05 1.26e05 8.01e04 1.94e05 3.29e05 
Std 4.25e03 1.21e04 7.82e04 5.91e03 2.72e04 1.80e04 3.91e04 1.31e04 2.11e04 

t-test - 1.76e02* 9.47e01* 6.46e01* 4.31e01* 2.96e01* 7.51e00* 6.67e01* 7.71e01* 

F13 
Mean 2.58e03 1.79e03 1.07e07 1.48e03 2.99e03 1.92e09 3.19e03 8.82e03 2.12e04 
Std 3.53e02 7.28e02 2.53e06 3.13e02 8.43e02 6.06e08 8.37e02 6.44e03 1.11e04 

t-test - -5.35e00 2.32e01 -1.28e01 2.46e00* 1.74e01* 3.68e00* 5.30e00* 9.18e00* 

F14 
Mean 1.06e08 5.19e08 3.35e09 2.88e08 6.87e08 6.42e08 6.54e08 1.06e09 2.00e09 
Std 4.67e06 1.53e07 5.69e08 9.71e06 3.32e07 3.13e07 3.24e08 5.07e07 9.91e07 

t-test - 1.41e02* 3.12e01* 9.25e01* 9.49e01* 9.28e01* 9.26e00* 1.03e02* 1.05e02* 

F15 
Mean 2.80e03 2.02e04 4.86e03 2.06e04 6.31e03 1.17e04 2.19e04 1.84e04 1.36e04 
Std 8.59e01 8.04e01 5.25e02 7.63e01 1.64e02 1.25e02 2.51e03 4.84e03 5.20e03 

t-test - 8.10e02* 2.12e01* 8.49e02* 1.04e02* 3.21e02* 4.17e01* 1.77e01* 1.14e01* 

F16 
Mean 7.70e01 1.66e-07 3.17e02 8.51e-01 1.85e02 9.70e-13 7.93e02 7.88e02 1.58e02 
Std 1.13e01 8.99e-09 1.32e01 9.79e-01 2.59e01 4.50e-14 6.70e-01 2.14e01 1.33e01 

t-test - -3.73e01 7.57e01* -3.68e01 2.09e01* -3.73e01 3.46e02* 1.61e02* 2.54e01* 

F17 
Mean 7.35e04 2.62e06 2.62e06 5.83e05 2.95e05 8.61e04 2.61e05 7.03e05 8.79e05 
Std 7.80e03 1.04e05 2.49e05 1.54e04 2.29e05 3.58e03 1.34e05 3.58e04 3.91e04 

t-test - 1.34e02* 5.60e01* 1.62e02* 5.29e00* 8.04e00* 7.65e00* 9.41e01* 1.11e02* 

F18 
Mean 7.97e03 5.22e03 2.23e09 5.31e03 6.64e03 6.79e10 7.02e03 1.92e04 5.48e04 
Std 1.16e03 2.34e03 3.59e08 1.42e03 1.14e03 9.67e09 2.72e03 8.81e03 1.43e04 

t-test - -5.77e00 3.40e01* -7.95e00 -4.48e00 3.85e01* -1.76e00 6.92e00* 1.79e01* 

F19 
Mean 3.22e06 2.98e07 1.05e07 2.78e07 2.02e06 5.28e06 4.51e06 6.02e06 3.60e06 
Std 9.50e04 1.70e06 5.27e05 1.53e06 7.88e04 2.10e05 3.40e05 3.12e05 1.24e05 

t-test - 8.55e01* 7.45e01* 8.78e01* -5.33e01 4.90e01* 2.00e01* 4.70e01* 1.33e01* 

F20 
Mean 5.44e03 2.19e03 2.54e09 2.79e03 2.73e03 1.65e11 4.50e03 4.94e03 8.36e03 
Std 3.43e02 2.51e02 5.03e08 2.45e02 1.89e02 1.37e10 5.25e02 4.86e02 6.49e02 

t-test - -4.19e01 2.77e01* -3.44e01 -3.79e01 6.60e01* -8.21e00 -4.60e00 2.18e01* 
w/l/t - 11/9/0 20/0/0 8/11/1 11/7/2 17/3/0 15/3/2 16/3/1 18/2/0 
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Based the above results, we can conclude that our method possesses a good scalability in 

tackling problems with different dimensions or complexities and outperform related methods. 

5. Conclusions 

This paper reported a PSO incorporated with multi-level population sampling and dynamic 

p-learning mechanisms for LSGO. The MLS mechanism in the proposed method is devised to 365 

encourage exploration at the beginning of evolution while exploitation towards the end of 

evolution, thus appropriately searching the space. The dynamic p-learning scheme is designed 

to support efficient particle learning while preserving the swarm diversity during evolution. 

The performance of proposed algorithm has been evaluated via a series of experiments and 

compared with related methods. The results confirm the significance of the proposed 370 

mechanisms. By incorporating these mechanisms, our results reveal that the proposed 

algorithm is able to significantly outperform related methods for addressing LSGO. 

For the future work, firstly, it will be interesting to design other schemes for partitioning 

the population, which can help the MLS to sample more appropriate subpopulations for 

evolution. This can be achieved, for example, by considering both the fitness of the 375 

individuals as well as their distances to the best individual in the population for partition 

purpose. Secondly, dynamically setting the parameter of L and φ in MLS could also be 

considered to improve the proposed MLS further. Finally, employing the proposed method to 

address optimization problems, especially for those involving complex search spaces such as 

network state estimation [41], [42], fault detection of dynamical systems [43], multi-senser 380 

filtering fusion [44] and data clustering [45], [46] could also be investigated. 
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	Abstract
	Large-scale optimization, which has received much attention in recent years, is inherently a challenging problem. This paper proposes a particle swarm optimizer with multi-level population sampling and dynamic p-learning mechanisms to address the problem. The multi-level sampling mechanism in the proposed method is developed for supporting a balanced evolutionary search. The mechanism works by partitioning the particles of swarm into multi-levels based on their fitness before each generation of evolution. A subset of swarm is then dynamically sampled from the particles at various levels for evolution such that encouraging exploration at the beginning of evolution while exploitation towards the end of evolution, thus appropriately searching the space. The dynamic p-learning mechanism, on the other hand, is introduced to allow efficient particle learning while preserving the swarm diversity during evolution. In this mechanism, each particle is devised to learn from one of the top 100p% particles of the sub-swarm and the value of p associated with each particle is dynamically adjusted during evolution. By employing the above two mechanisms, the resulting method aims to appropriate search the solution space of large-scale global optimization problem for identifying the optimal or near-optimal solution. The performance of the proposed method has been evaluated on CEC’2010 and CEC’2013 benchmark suites for large-scale optimization and compared with related methods. Our results confirm the merits of the devised mechanisms in the proposed method. The results also show that our method can achieve a superior performance and outperform related methods. 
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	1. Introduction
	Particle swarm optimization (PSO) [1], which simulates swarm behaviors of birds flocking, is a popular global optimization scheme. In PSO, each particle of swarm has a historical best position named pBest, which records the best position it has searched, and the best of these pBests is called gBest. Each particle is guided by its own pBest and the gBest to search for the optimal position in solution space. This scheme has shown to be efficient and successfully applied in various fields [2], [3], [4], [5], [6], [7], [8]. However, it could perform poorly when the optimization problem to be addressed involves a large number of local optima and has a high-dimensionality, generally referred to as large-scale global optimization (LSGO) [9]. This issue is mainly attributed to the premature convergence exerted by the pBest and gBest based particle learning in PSO as well as its limited capability to achieve a balanced evolutionary search [2], [10].
	To improve the performance of PSO, many variants of the algorithm have been proposed [2], [3], [16], [17], [18]. Kennedy and Mendes [23] argued that the gBest based particle learning strategy as adopted in the traditional PSO could cause a rapid loss of swarm diversity, thus leading to premature convergence. Instead of gBest, the authors proposed to update each particle during evolution using the information of local best (lbest), which is defined as the best of pBest of the particle’s neighborhoods determined by a given topology. Such a strategy allows the particle’s learning to be influenced by its neighborhoods and can be used to preserve the swarm diversity to a certain extent. This scheme represents the first approach, which employs lbest rather than gBest for particle learning, to enhance the traditional PSO and is followed by several researchers to design their PSO variants [23], [24], [33]. The second approach tends to get rid of both pBest and gBest and introduce inter-particle learning strategies to implement PSO. For example, Cheng et al. [11] proposed a variant of PSO based on an inter-particle learning strategy, which works by first randomly selecting a pair of particles from the swarm. Then, the one with a higher fitness (i.e., the winner) will directly enter into the swarm for evolution, while the other one will learn from the winner before it can enter into the swarm. Yang et al. [14] introduced another inter-particle learning strategy, in which particles are first divided into multiple levels according to their fitness values. Each particle then learns from two predominant particles, which are from different higher levels. Comparing with lbest based strategies, inter-particle learning strategies are generally able to preserve more appropriate swarm diversity. However, they could lead to inefficient particle learning, as elite individuals are usually not considered for particle learning. Further, in existing particle learning strategies, fixed rules are typically employed to update all particles in the swarm. Since different particles possess different properties, it would be desirable to have a particle learning strategy with flexible rules, which can consider different properties of the particles. Additionally, the above PSO variants generally tend to enhance the traditional PSO by improving the particle learning strategy alone. As the particle learning strategy could have a limited capability to help PSO achieving a balanced evolutionary search, this may also restrict the performance of these methods.
	To address above issues, here we first devise a multi-level population sampling mechanism to support a balanced evolutionary search. The mechanism tries to divide the particles of swarm into multi-levels based on their fitness before each generation of evolution. A subset of swarm is then dynamically sampled from the particles at various levels for evolution such that encouraging exploration at the beginning of evolution while exploitation towards the end of evolution, thus appropriately searching the space. Further, a dynamic p-learning mechanism is introduced to allow efficient particle learning while preserving the swarm diversity during evolution. In this mechanism, each particle is devised to learn from one of the top 100p% particles of the sub-swarm and the value of p associated with each particle is dynamically adjusted during evolution. By incorporating these two mechanisms into PSO, a swarm optimizer with multi-level population sampling and dynamic p-learning mechanisms is thus proposed. We evaluate the proposed algorithm on CEC’2010 and CEC’2013 benchmark suites for LSGO and compare its performance with related methods. The results show that the proposed method is well suited to address LSGO and outperforms related methods. The results also confirm the significance of the devised mechanisms in our method. 
	The remainder of the paper is organized as follows. Following a brief review of related work in Section 2, we present the proposed method in Section 3. Subsequently, in Section 4, a series of experiments on CEC’2010 and CEC’2013 LSGO benchmark suites are conducted to evaluate the performance of proposed method and to compare with related methods. Finally, we conclude the paper with a summary in Section 5.
	2. Related Work
	2.1 Canonical PSO

	Canonical PSO, proposed by Kennedy et al. [1], is a swarm-based stochastic optimization algorithm, which starts with N randomly initialized particles. For an D-dimensional optimization problem, each particle in the swarm maintains a velocity vector Vi={vi,1, vi,2, ..., vi,D}, a position vector Xi={xi,1, xi,2, ..., xi,D} and a historical best position pBesti={pBesti,1, pBesti,2, ..., pBesti,D}, where i=1, 2, ..., N. Among these pBests, the best one is called gBest.
	At each generation, each particle i updates the velocity and position according to its own pBesti and gBest. The updating rules are defined as:
	𝑣𝑖,𝑗=𝑤∙𝑣𝑖,𝑗+𝑐1∙𝑟1,𝑗∙𝑝𝐵𝑒𝑠𝑡𝑖,𝑗−𝑥𝑖,𝑗+𝑐2∙𝑟2,𝑗∙𝑔𝐵𝑒𝑠𝑡𝑗−𝑥𝑖,𝑗,   (1)
	𝑥𝑖,𝑗=𝑥𝑖,𝑗+𝑣𝑖,𝑗,  (2)
	where j=1, 2, ..., D represents the jth dimension of the optimization problem, w is an inertia weight, c1 and c2 denote acceleration coefficients, r1 and r2 are random numbers uniformly distributed in [0, 1]. After updating the position of the particle, if pBesti is worse than the current position Xi, then it will be replaced by Xi. Due to its simplicity and efficiency, PSO has been widely applied to deal with optimization problems [3]. However, it may not perform well on optimization problems, which involve complex search spaces. This is mainly due to it suffers from premature convergence and has a limited capability to achieve a balanced evolutionary search [2], [10].
	2.2 PSO Variants

	To improve the performance of canonical PSO, many variants of the algorithm have been developed in literature [2], [3], [25], [26]. In [23], Kennedy and Mendes proposed a PSO variant, in which, rather than gBest, lbest is employed for particle learning. Specifically, in this method, the velocity of the particle is updated as:
	 𝑣𝑖,𝑗=𝑤∙𝑣𝑖,𝑗+𝑐1∙𝑟1,𝑗∙𝑝𝐵𝑒𝑠𝑡𝑖,𝑗−𝑥𝑖,𝑗+𝑐2∙𝑟2,𝑗∙𝑙𝐵𝑒𝑠𝑡𝑖,𝑗−𝑥𝑖,𝑗,  (3)
	where lBesti is the best pBest of ith particle’s neighborhoods defined by a given topology. In [24], Liang et al. extended the above scheme by allowing each particle to learn from different lBests on different dimensions of the data. Specifically, the learning rule in this method is defined as:
	 𝑣𝑖,𝑗=𝑤∙𝑣𝑖,𝑗+𝑐∙𝑟𝑗∙(𝑝𝐵𝑒𝑠𝑡𝑓𝑖𝑗,𝑗−𝑥𝑖,𝑗),        (4)
	where fi(j) is the winner’s pBest of two randomly selected particles. In [33], Liang et al. proposed a dynamic multi-swarm PSO, in which the particles are first randomly divided into multiple groups and each group then evolves using the lbest based learning strategy given in [23]. By employing lbest rather than gBest for particle learning, the above methods can avoid rapid loss of swarm diversity during evolution and have shown to be more effective than the canonical PSO. However, their performance is still limited on optimization problems with complex search spaces [2].
	To improve the situation further, inter-particle learning strategies, in which neither pBest nor gBest is employed, have also been proposed to implement PSO. For example, in [11], Cheng et al. devised a competitive swarm optimizer (CSO), in which the updating of particles is driven by a pairwise random competition between particles. After each competition, the winner will directly pass to the swarm of next generation, while the loser Xl be updated according to the information from the winner using the following rules:
	 𝑣𝑙,𝑗=𝑟1,𝑗∙𝑣𝑙,𝑗+𝑟2,𝑗∙𝑥𝑤,𝑗−𝑥𝑙,𝑗+𝜑∙𝑟3,𝑗∙𝑥𝑗−𝑥𝑙,𝑗,  (5)
	 𝑥𝑙,𝑗=𝑥𝑙,𝑗+𝑣𝑙,𝑗,     (6)
	where r1, r2 and r3 are random numbers uniformly distributed within [0, 1],  is the mean position of all particles in the swarm, φ is a control parameter. In [12], a social learning PSO (SL-PSO) was developed, in which each particle Xi is set to learn from a randomly selected particle Xk in the swarm, which has a better fitness. In this method, the updating rule of velocity is defined as: 
	 𝑣𝑙,𝑗=𝑟1,𝑗∙𝑣𝑙,𝑗+𝑟2,𝑗∙𝑥𝑘,𝑗−𝑥𝑙,𝑗+𝜑∙𝑟3,𝑗∙𝑥𝑗−𝑥𝑙,𝑗.   (7)
	Yang et al. proposed a segment-based predominant learning swarm optimizer (SPLSO) [13] and a level-based learning swarm optimizer (LLSO) [14]. In SPLSO, the variables of particles are randomly divided into multiple segments and different segments learn from different predominant particles. While in LLSO, particles are divided into multiple levels according to their fitness values. Each particle learns from two predominant particles, which are from different higher levels.
	The above methods are generally able to outperform the lbest based PSO variants as well as traditional cooperative coevolutionary algorithms (CCEAs) [13], [14] for addressing LSGO. However, in these methods, elite individuals are usually not considered during particle learning. This could lead to an inefficient particle learning, thus restricting the performance of the algorithm. Further, the particle learning strategies in existing PSO methods typically tend to update all particles using the same rules. As different particles possess different properties, a flexible learning rule, which can take into account such information, may be preferred in order to achieve a good performance. Additionally, to enhance the traditional PSO, the above methods generally focus on improving the particle learning strategy alone, which could have a limited capability to help PSO achieving a balanced evolutionary search. To address the above issues, this work first devises a multi-level population sampling mechanism, which is employed to encourage exploration at the beginning of evolution while exploitation towards the end of evolution, thus achieving a balanced evolutionary search. Further, we consider different properties of the particles and introduce a flexible particle learning mechanism to allow efficient particle learning while preserving the swarm diversity during evolution.
	2.3 Other Related Work

	The LSGO problem could be dealt using the divide-and-conquer strategy, which decomposes the problem into multiple sub-problems and solves them separately [29], [30], [31], [32]. The best partial solutions obtained for these sub-problems are then assembled together to form a full solution. This approach is generally referred to as the decomposition-based approach. Employing this strategy, PSO based methods have also been proposed in literature [15], [21], [27], [28]. These methods generally adopt the cooperative coevolutionary (CC) framework to evolve multiple swarms, each of which is used to encode one partial solution of the problem. For example, Bergh et al. [27] proposed a CC based PSO called CPSO-Sk for LSGO. In this method, sub-problems are formed by dividing variables of a given problem into k groups and each of which is dealt with a swarm. In [21], Li and Yao devised another CC based PSO named CCPSO2 for LSGO, in which the sizes of variables of sub-problems are determined dynamically during evolution. These methods are promising for LSGO problems. However, how to make swarms work cooperatively to deliver partial solutions, which can be used to form an optimal or near optimal full solution, is typically a difficult problem [22]. Further, it has been shown that CCEAs may not perform well on non-separable problems with more than 100 real-valued variables [19].
	Apart from PSO, many other evolutionary algorithms (EAs) have also been proposed to handle LSGO [37], [38]. For example, Molina et al. [34] proposed a memetic algorithm named MA-SW-Chains, which combines a steady-state genetic algorithm with a local search method, for LSGO. LaTorre et al. developed a multiple offspring sampling framework [35], [36], which hybridizes multiple EAs to handle LSGO. Yang et al. [19] developed a CC based differential evolution (DE) for LSGO, in which a random grouping scheme and adaptive weighting are introduced for problem decomposition. Zhang et al. [20] introduced a multilevel cooperative coevolution, which is incorporated into DE for LSGO. While, Omidvar et al. [29] devised a CC based DE with an automatic decomposition scheme, which tries to decompose the problem into sub-problems with minimum interdependences. In this work, the performance of several representative algorithms of above approach will be compared with our proposed method.
	3. Proposed method
	This section presents a PSO with multi-level population sampling and dynamic p-learning mechanisms (denoted as mlsdpl_PSO) for LSGO. In the proposed method, a multi-level sampling mechanism is developed and incorporated to dynamically sample a sub-swarm before each generation of evolution. The sampled subset subsequently evolves using the devised dynamic p-learning mechanism based swarm optimizer. The above process will repeat until a termination condition is met. The procedure of the proposed algorithm is shown in Algorithm 1.
	In the following sections, we shall describe the details of multi-level sampling and dynamic p-learning mechanisms in the proposed method.
	3.1 Multi-level Sampling Mechanism

	The multi-level sampling (MLS) mechanism is devised for supporting a balanced PSO evolution. In the devised mechanism, before each generation of evolution, particles of swarm are first partitioned into multi-levels based on their fitness. Then, a subset of swarm is dynamically selected from the particles at various levels such that encouraging exploration during the early phase of evolution while exploitation towards the end of evolution. The primary rationale behind this mechanism is that, during evolution, the exploitation and exploration behaviors of a swarm optimizer depend on the particles subjected to evolve. If most of the particles subjected to evolve possess relative low fitness values, then the swarm optimizer will be biased to explore the solution space. Otherwise, it will be biased for exploitation. In order to achieve a proper performance, generally, the task of evolutionary search should focalize more on exploration during the early phase of evolution, thus discovering promising areas of the space. While along with the progress of evolution, the evolutionary search should gradually switch to exploitation, therefore locating the optimal solution with high accuracy. According to the above rationale, dynamically sampling an appropriate subset of swarm for evolution at each generation is thus desirable in order to properly implement the evolutionary search.
	Specifically, the devised MLS mechanism works as follow. At the beginning of each generation, the entire particles in the swarm are firstly sorted based on their fitness values in descending order. The sorted particles are then partitioned evenly to L levels, indexed 0 to L-1, such that a higher level (associated with a smaller index) will contain particles of higher fitness. Subsequently, we calculate the sampling probability pri for the particles at level i as:
	𝑝𝑟𝑖=𝑝𝑟𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙+(𝑝𝑟𝑖,𝑓𝑖𝑛𝑎𝑙−𝑝𝑟𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙)∙𝐹𝐸𝑠𝐹𝐸_𝑀𝑎𝑥,    (8)
	where FEs denotes the number of function evaluations consumed so far during evolution and FE_Max is a user-specified maximum number of function evaluations. The initial and final sampling probability pri,initial and pri,final are defined as pri,initial=i/(L-1) and pri,final=1-pri,initial, respectively. According to the calculated probabilities, a sub-swarm is finally sampled from particles at different levels. Based on the above procedure, during the early stage of evolution, particles from lower levels will have higher probabilities to be selected for evolution, therefore encouraging exploration aspect of evolution to identify potential regions of the space. While, during the later stage of evolution, particles from higher levels will have higher probabilities to be sampled, thus encouraging exploitation of the space to locate the optimum with high accuracy.
	3.2 Dynamic p-Learning Mechanism

	To appropriately search the space, it is also desirable to have a particle learning scheme, which can support efficient evolutionary search while preserving the swarm diversity during evolution. Here, we propose a dynamic p-learning mechanism (DPL) for this purpose. The DPL will be implemented on the sub-swarm selected by the MLS mechanism at each generation. In the proposed DPL, each particle is devised to learn from one of the top 100p% particles of the sub-swarm and the value of p associated with each particle is dynamically adjusted during evolution.
	Specifically, to update a particle m during particle learning, the proposed mechanism works as follows. Firstly, the pm value associated with particle m is extracted to determine top 100pm% particles of the sub-swarm. Then, one particle e will be randomly selected from these top particles. If the selected particle e has a better fitness than m, then updating m according to the following rules:
	 𝑣𝑚,𝑗=𝑟1,𝑗∙𝑣𝑚,𝑗+𝑟2,𝑗∙𝑥𝑒,𝑗−𝑥𝑚,𝑗+𝜑∙𝑟3,𝑗∙𝑥𝑤𝑒𝑖𝑔ℎ𝑡,𝑗−𝑥𝑚,𝑗,   (9)
	 𝑥𝑚,𝑗=𝑥𝑚,𝑗+𝑣𝑚,𝑗,    (10)
	where xe is the position of particle e. It should be noted that, rather than the centroid of swarm, as typically used to define the updating rule, a weighted centroid has been adopted here to increase the efficiency of particle learning. Specifically, we define the term 𝑥𝑤𝑒𝑖𝑔ℎ𝑡 in equation (9), which denotes the weighted centroid of particles of the sub-swarm, as:
	 𝑥𝑤𝑒𝑖𝑔ℎ𝑡,𝑗=𝑖=1𝑆𝑃𝑓𝑖∙𝑥𝑖,𝑗𝑖=1𝑆𝑃𝑓𝑖,     (11)
	where fi is the fitness of ith particle and |SP| denotes the number of individuals in the sub-warm SP.
	Obviously, the setting of parameter p for each particle is critical for the performance of the proposed mechanism. A small value of p will lead the particle to learn from very top particles, thus resulting efficient particle learning and promoting exploitation of the evolutionary search. Increasing the value of p will allow it to learn from particles with relatively low fitness thus encouraging a diverse search and preserving the population diversity. To support an efficiently particle learning while preserving the swarm diversity during evolution, the following scheme has been introduced to dynamically control the value of p for each particle. Firstly, the parameter pi associated with ith particle in the swarm is initialized as:
	𝑝𝑖=1−𝑝𝑚𝑖𝑛𝑓𝑚𝑎𝑥−𝑓𝑖𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛+𝑝𝑚𝑖𝑛,    (12)
	where fi is the fitness of ith particle, fmax and fmin denotes the maximum and minimum fitness of particles in the initial swarm, pmin is a user-specified minimum value of p and is set to be 0.05. As a result, a particle with a high fitness will be assigned with a small value of p to encourage it for exploitation during particle learning. Otherwise, a high value of p will be assigned to encourage it for a diverse search. Further, during the process of particle learning, the value p of each particle is set to learn from its paired particle. Specifically, for a particle m to be learned from the particle e, after updating its position, if m is improved, then its associated parameter pm is updated as:
	 𝑝𝑚=(𝑝𝑚+𝑝𝑒)/2,     (13)
	Otherwise, it will be computed as:
	 𝑝𝑚=2∙𝑝𝑚−𝑝𝑒,     (14)
	where pe is the parameter p associated with particle e. The resulting pm will be truncated into [pmin, 1]. According to the above rules, if particle e has a guiding effect on m, then the value of pm will be set close to value of pe, which is typically smaller than pm, to increase its probability for exploitation during particle learning. Otherwise, the value of pm will be set far away from value of pe to increase its probability for exploration during particle learning. 
	By employing the above scheme, particles with high fitness will tend to have a small value of p and could be used to efficiently exploit the search space during particle learning. While for particles with low fitness, they generally carry with a high value of p and could be used to promote a diverse search. By employing such a scheme, the resulting particle learning mechanism is thus able to support an efficient evolutionary search while preserving the swarm diversity during evolution.
	4. Experiments
	In this section, experiments have been carried out to evaluate the devised MLS and DPL mechanisms, and to compare our proposed method with related algorithms. All algorithms used in the experiments are coded using C++ and tested on a workstation with an Intel (R) CoreTM i7-3630QM CPU at 2.40GHz and 8 GB RAM running WindowsTM 7 operation system. Unless otherwise stated, 30 trials of each algorithm are performed and the average results of which are reported.
	4.1 Data Sets and Parameter Settings

	The CEC’2010 and CEC’2013 benchmark suits for LSGO, which contain 20 (denoted as F1 to F20) and 15 functions (denoted as M1 to M15), respectively, have been used for experiments. The characteristics of these two sets of functions can be found in [39] and [40], respectively. In our experiments, the dimension D of these functions is set to be 1000 and the maximum number of function evaluations (FE_Max) is set to be 3000×D. For the swarm size of our proposed method, it is configured as 2*(100+D/10.0). The level number L in the devised MLS mechanism and the control parameter φ in the particle updating rule are set to be 20 and D/100*0.01, respectively.
	Exploring the Proposed Mechanisms

	We first assess the significance of MLS and DPL mechanisms in the proposed algorithm. For this purpose, two sets of experiments have been carried out. In the first set of experiments, we compare the performance of our proposed algorithm, mlsdpl_PSO, with its variant: mlsdpl_PSO without MLS mechanism (denoted as dpl-PSO). In the second set of experiments, we compare the performance of dpl-PSO, in which the DPL mechanism is used for particle learning, with two recently proposed methods, CSO [11] and SL-PSO [12], which employ different inter-particle learning mechanisms. The results of the two sets of experiments are shown in Tables I and II, respectively. The last rows of Tables I and II report a summary in terms of the number of wins, losses and ties on the test functions of the pairwise comparisons.
	Comparing mlsdpl_PSO with dpl-PSO, the results show that the MLS mechanism could greatly improve the performance of mlsdpl_PSO. Specifically, the results in Table I show that, by incorporating the MLS mechanism, mlsdpl_PSO is able to locate better or comparable solutions than dpl-PSO on all functions, except F1, F7 from CEC’2010 and M1 from CEC’2013. Comparing dpl-PSO with CSO and SL-PSO, the results reveal that dpl-PSO could significantly outperform CSO and SL-PSO. For example, the results in Table II show that dpl-PSO is able to deliver better or comparable solutions than CSO and SL-PSO on 24 and 25, respectively, out of 35 functions to be tested. Since the only difference among the three algorithms to be compared is that they employ different particle learning strategies. These results thus indicate the significance of the proposed DPL.
	4.3 Comparing with Related Algorithms

	Then, we compare our proposed algorithm, mlsdpl_PSO, with related algorithms. The algorithms to be compared consist of recently proposed PSO variants for LSGO (including CSO [11], SL-PSO [12], SPLSO [13] and LLSO [14]) and CCEAs for LSGO (including DECC-DG [29], CCPSO2 [21], MLCC [20] and DECC-G [19]) as well as the winner algorithm of CEC’2010 LSGO (i.e., MA-SW-Chains [34]). To facilitate a fair comparison, the same FE_Max value (i.e., 3000×D) is used for all methods. For the rest parameters of the methods to be compared, they are set according to the original papers with the best performance. 
	Tables III and IV show the comparison results of different methods on CEC’2010 and CEC’2013 benchmark suits, respectively. To statistically justify the comparisons between our proposed method and the related algorithms, two-tailed t-tests are performed at a significance level of α = 0.05 and the results have also been reported in Tables III and IV. In addition, the number of wins, losses and ties on the test functions for each pairwise comparison between our algorithm and related methods have been summarized in the last rows of Tables III and IV. From the results, we can see that our proposed method could significantly outperform related algorithms to be compared. For example, the results show that, comparing to the PSO variants of CSO, SL-PSO, SPLSO and LLSO, mlsdpl_PSO can deliver better solutions on 27, 31, 21 and 25, respectively, out of 35 functions to be tested. Similar results can also be found by comparing our proposed method to CCEAs including DECC-DG, CCPSO2, MLCC and DECC-G that the mlsdpl_PSO is able to provide better solutions on most of the functions. While, comparing to MA-SW-Chains, which is a winner algorithm of CEC’2010 LSGO, our method gives better solutions on 26 out of 35 functions. Clearly, based the results, mlsdpl_PSO shows the best performance among the ten algorithms. The superiority is mainly due to the incorporation of MLS mechanism, which helps balance the exploitation and exploration of PSO evolution, as well as the DPL mechanism, which could be used to support efficient particle learning while preserving the swarm diversity during evolution. Equipped with these two mechanisms, the resulting mlsdpl_PSO could achieve a superior performance for addressing LSGO.
	4.4 Scalability Evaluation and Comparison

	To evaluate the scalability of our proposed algorithm, experiments have also been conducted on CEC’2010 functions with various dimensions including 200, 500, 800 as well as 2000 and the performance are compared with related methods. Same as previous experiments, a FE_Max value of 3000×D is used for all methods to make the comparison fair. The results are reported in Tables V, VI, VII and VIII for problem dimensions of 200, 500, 800 and 2000, respectively.
	From the results, we can see that our proposed algorithm can outperform the related methods across all dimensions to be tested, except LLSO on 2000 dimensions. On the functions with a dimension of 2000, the results in Table VIII show that, comparing to the four CCEAs (i.e., DECC-DG, CCPSO2, MLCC and DECC-G), mlsdpl_PSO can provide better solutions on at least 15 out of 20 functions. While, comparing to CSO, SL-PSO and LLSO, mlsdpl_PSO delivers better solutions on 11, 20 and 8, respectively, out of 20 functions. For the MA-SW-Chains, which has a relatively better performance than most of the rest methods to be compared, however, is still outperformed by our proposed algorithm on 11 functions. Based the above results, we can conclude that our method possesses a good scalability in tackling problems with different dimensions or complexities and outperform related methods.
	5. Conclusions
	This paper reported a PSO incorporated with multi-level population sampling and dynamic p-learning mechanisms for LSGO. The MLS mechanism in the proposed method is devised to encourage exploration at the beginning of evolution while exploitation towards the end of evolution, thus appropriately searching the space. The dynamic p-learning scheme is designed to support efficient particle learning while preserving the swarm diversity during evolution. The performance of proposed algorithm has been evaluated via a series of experiments and compared with related methods. The results confirm the significance of the proposed mechanisms. By incorporating these mechanisms, our results reveal that the proposed algorithm is able to significantly outperform related methods for addressing LSGO.
	For the future work, firstly, it will be interesting to design other schemes for partitioning the population, which can help the MLS to sample more appropriate subpopulations for evolution. This can be achieved, for example, by considering both the fitness of the individuals as well as their distances to the best individual in the population for partition purpose. Secondly, dynamically setting the parameter of L and φ in MLS could also be considered to improve the proposed MLS further. Finally, employing the proposed method to address optimization problems, especially for those involving complex search spaces such as network state estimation [41], [42], fault detection of dynamical systems [43], multi-senser filtering fusion [44] and data clustering [45], [46] could also be investigated.
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