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Recursive State Estimation for Multi-Rate
Time-Varying Systems with Multiplicative Noises:
Dealing with Sensor Resolutions

Yuxuan Shen, Zidong Wang, Hongjian Eju Hongli Dong and Xiaojian Yi

Abstract

In this paper, the recursive state estimation problem is investigated for a class of multi-rate systems with
multiplicative noises where the measurement outputs are collected from sensors with certain resolutions. Due to
the existence of the sensor resolution, the actual measurement output of the sensor might deviate from its true value
and such a deviation, if not adequately taken into account, would lead to serious degradation of the estimation
performance, and we are therefore motivated to develop an effective state estimation algorithm that is insensitive to
the sensor-resolution-induced measurement distortions. The aim of the considered estimation problem is to design a
state estimator such that an upper bound on the estimation error covariance is first guaranteed and then minimized
by properly choosing the estimator gain. Moreover, a simulation example with application background on moving
target tracking problem is presented to verify the validity of the developed recursive state estimation algorithm.

Index Terms
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I. INTRODUCTION

In engineering practice such as petroleum extraction and chemical engineering, it is vitally important
to acquire the state information of the underlying plant in order to make sure that the production process
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is operational yet safe. Due to resource limits and physioaktraints, it is quite common that the state
information cannot be directly obtained, and an altermatay is therefore to estimate the system state
by using the available measurements that could be cont#edirgy stochastic noises [8], [13], [37]-[39],
[54]. For decades, the state estimation problems have l&actang an ever-increasing research interest
from various communities ranging from signal processind amathematics to control engineering [1],
[9], [15], [21], [24], [32], [34].

So far, many state estimation algorithms have been dewliopthe literature for a variety of systems
including, but are not limited to, linear systems [5], [2B@nlinear systems [7], [18], [36], [42], stochastic
systems [3], [55], and uncertain systems [2], [17], [433][5According to the performance indices, the
state estimation algorithms can be generally categorizedfour types, namely, th&, state estimation
method [23], [33], the recursive state estimation scherf§32], [40], the set-membership state estimation
technique [6], [30] as well as moving-horizon state estioramechanism [16], [56]. Among others, the
recursive state estimation (RSE) method, whose main aim msinimize the estimation error covariance
at each time instant, has proven to be one of the most popoks due primarily to its advantages in
easy implementation and online computation. Note that t8& Rroblem has been recently investigated
in [49] for sensor networks and in [27] for complex networks.

It is worth mentioning that, up to now, the focus of almost RBE problems has been paid on the
single-rate systems, that is, the update rate of the systat®m and the sampling rate of the sensor are
the same. Unfortunately, due to different physical feawgdifferent system components, it is difficult
to unify the state update rate and the sensor sampling raemgmeering practice. Also, for systems
with slowly changing states, it is unnecessary and unecantomsample the measurement at each state
update instant [45]. In this sense, the multi-rate sampiimgchanism appears to be more reasonable
which has been applied in many industrial systems such aststal health monitoring system [11],
aluminium electrolysis cells [46], as well as power gridS][3Jntil now, despite the significant engineering
background of the multi-rate sampling mechanism, the RS#blpms for multi-rate systems still need
extra research attentions.

The multi-rate sampling, though practically appealingesldring multiple time sequences to the
system and would invalidate the state estimation algostkdesigned specifically for single-rate systems.
Therefore, it is theoretically important to make dedicagdirts in dealing with the multi-rate sampling
issue in the RSE problems, see [12], [14] for some latestiteedn particular, the filtering problem has
been tackled in [52] for multi-rate systems (MRSs) with agyonous sensors and the lifting technique
has been used to transform the MRS into a single-rate ondl1ln4n outlier-resistant recursive filter has
been designed for MRSs under the weighted Try-Once-Disgartbcol.

Multiplicative noises, also known as state-dependentaspisave recently gained considerable research
interest [20], [29]. Note that many practical plants can bedated by systems with multiplicative noises,
and the corresponding RSE problem for such kind of systemsadds extra care, see e.g. [19], [31] for
some representative results on the single-rate systerhsmaittiplicative noises. When it comes to the
MRSs, the relevant RSE results have been really scatte@libe of the essential difficulties in handling
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the coupling between the multi-rate sampling and the mlidafive noises. For example, the traditional
lifting technique is no longer directly applicable for MRBscause of the existence of the multiplicative
noises. Therefore, there is a practical need to develop al moethod to solve the RSE problem for MRSs
subject to multiplicative noises.

In engineering practice, no sensors could detect arbitramall changes of the measurement. The
smallest change that a sensor can detect, known asetiwor resolutionis one of the important specifi-
cations of the sensor. Due to inherent limit of the sensarluéi®n, the actual measurement output from
the sensor is most likely to deviate from the true measurémetput. Obviously, estimating the system
state by using the deviated measurement would lead to a [@bionagion performance. As such, in the
state estimation problem, it is vitally important to take tfensor resolution into serious consideration.

The consideration of the phenomenon of sensor resolutiotiesrly a non-trivial task with some
additional challenges outlined as follows: 1) how to estiblh model to accurately characterize the
sensor resolution? 2) how to mitigate the performance idetgion of the state estimation caused by the
deviation of the actual measurement from the true measuré&hand 3) how to design a state estimator
with guaranteed estimation accuracy in spite of the seresmtution-induced measurement distortions
(SRIMDs)? Note that some preliminary results have beenimddan [51] on the state estimation problem
for single-rate systems with non-logarithmic sensor nesmhs. Unfortunately, for multi-rate systems, the
corresponding state estimation results have been reallyesed.

To tackle the aforementioned challenges, in this paper,ndeavor to develop an effective RSE scheme
for MRSs with multiplicative noises and SRIMDs. The main elties of this paper are stressed as follows:
1) a novel method is put forward to handle the difficultiesutsg from the coupling of the multi-
rate sampling and the multiplicative noises; 2) a novel estastimation scheme, which is of acceptable
computational complexity, is developed for systems umiteggSRIMDs; and 3) a locally minimized upper
bound is guaranteed on the estimation error covariance.

The rest of this paper is organized as follows. In Sectiorthié sensor resolution is introduced, the
considered MRS is presented and then transformed into kesiatg one. In Section lll, the state estimation
scheme is developed. A simulation study is conducted on tnng target tracking problem in Section
IV. Finally, Section V concludes this paper.

Notation The notation used here is fairly standaidand 0 denote the identity matrix and the zero
matrix with appropriate dimensions, respectivgly., G-, andtr(G) represent the transpose, the inverse,
and the trace of the matri&, respectivelycol{---} stands for a column vector composed of elements.
|-] and [-] are the floor function and the ceiling function, respectivélor a random variable, E{«}
is the expectation of.

[I. PROBLEM FORMULATION

Consider the following class of discrete-time systems withtiplicative noises:

2(k+1) = A(k)z(k) + e(k)B(k)z(k) + E(k)w(k) @)
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wherex (k) € R is the system state(k) € R is the zero-mean Gaussian multiplicative noise with unity
covariance, andv(k) € R™ is the zero-mean process noise with covariaicg) > 0. A(k), B(k) and
E(k) are known time-varying matrices with compatible dimensiorhe initial valuez(0) of the system
state is a random variable with me&i0) and covarianceX (0).

In practical engineering, a sensor can only detect the @afghe measurement that is larger than a
certain value. Such a certain value is knownsassor resolutiorand defined as follows.

Definition 1:[51] Lety; (i =1,2,...,n,) be thei-th element of the measurement output of a sensor.
If y; takes value in the sefjr;|j = 0,%1,...,+z} where z is a given positive integer, theR =
col{ry, s, -+, 7y, } is the resolution of the sensor.

In this paper, a sensor with the sampling period

A
b= Spy1— Sk

and the sensor resolution

R = col{ry,ry, - - Ty }

is deployed to measure the system. Without considering éinscs resolution, thédeal measurement
output of the sensor is

y"“(sx) = Csk)x(sk) + D(sp)v(sk) (2)

where y'(s;) € R™ is the ideal measurement output of the sens¢s;) € R™ is the zero-mean
measurement noise with covariangés,) > 0, and C(s;) and D(s;) are known time-varying matrices
with compatible dimensions.
Assumption 1The random variables(0), ¢(k), w(k), andv(s,) are mutually uncorrelated.
By taking the sensor resolution into consideration, dbtial measurement from the sensor with sensor
resolutionR is
yi’(s)
Ty

Ty yzd(sk) > T

yi“(sr) = {0, Yid(sg) € (—=risry) 3)
[y} (sk) |
&7

T, yfd(sk) < -

wherey2“(s;) is thei-th element of the actual measuremefit(s,) from the sensoryi?(s;) is thei-th
element ofy’(s,), andr; is thei-th element of the resolutioR.

Noting that the system under consideration is a MRS, we armeggm transform the MRS into a
single-rate one. First, we rewrite the system (1) as

2k +1) = F(k)a(k) + E(k)w(k)
where F (k) = A(k) + (k) B(k). Then, setting

(sp) = col{w(sp—1 +1), -+, x(sk — 1), z(se) },



FINAL VERSION

we have

(skr1) = Alse)Z(sk) + E(sk)w(sr) 4)

where

w(sy) = col{w(sg),w(sp +1), -+, w(spsr — 1)},

A(Sk) é \Obnzxnz e Obnzxnzl egf(Sk) 7
b1
E(sk) £ B(s1)8 (sr), ) £ H F(sk+1 — 1)
o (1, —601{%(81@)7 o1 (sk), e Fr(sk)}
I 0 0]
95:%(8;0 [ 0
B(s) & | Fy (s1) F- f(sk) e 0f,
: 0
| TV (sk) T2 (sn) I

&(s) = diag{E(sg), E(si. +1),- -+, E(sg1 — 1)}

Moreover, the ideal measurement model (2) is reformulated a
y"(sk) = C(s)Z(sk) + D(si)v(sp)
whereC(sy) £ [0 --- 0 C(sp)]-
Due to the sensor resolution, the measurement receivedebgstimator ig/*“(s;) (instead of the ideal
measuremeny‘(s;)). In this paper, the state estimator is of the following form
(sk1) = E{A(s) }a(sr)
+ K (si) (y*(s) = C(si)i(sn)) (5)

wherez(sy) is the estimate of(s;) and K (s) is the estimator gain matrix to be determined. The initial
condition of the estimator i$(sy) = E{Z(so)}.
Denoting the estimation error as

e(sk) = T(sk) — @ (sk)
and the difference between the actual measurement andahkntasurement as
Ask) = y™(sk) — y"(sn),
we have the following estimation error dynamics:
e(sk1) = A(se)e(se) + A(sk)Z(sk) + E(sp)w(sy)
— K (sk)A(sk) — K(sk)D(sk)v(sk) (6)
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where
Ase) £ A(si) — E{A(sp)},
A(Sk) =S E{A(Sk)} - K(Sk)C'(Sk)

Remark 11t can be seen from (4) that, due to the existence of the nlickijive noisez(k), the parameter
matricesA(s;,) and E(s;) of the augmented system (4) are essentially random matri¢esrefore, in
the estimator (5), the expectati@{ A(s;)} of the random matrix4(s;) is used. It can be seen from the
estimation error dynamic system (6) that the appearanckeeofandom matrices(s;) and E(s;) would
bring additional difficulties in the derivation of the estation error covariance (or its upper bound), and
therefore a novel method is needed that can tackle the ramdatmces in an adequate way.

The aim of the considered estimation problem is to develdpate gstimator (5) such that the estimation
error covariance

P(sr) = E{e(se)e’ (s)}

has a certain upper bound and, moreover, an appropriatengairx i (s;) is designed such that the
derived upper bound is minimized.

[1l. M AIN RESULTS

In this section, we will first derive an upper bound on thereation error covariance, and then the
estimator gain matrix will be characterized so as to minertize obtained upper bound.

The following lemma will be useful in our later analysis.

Lemma 1l:Let a random matrix

M) £ [My(k)] My (k) € RO

and a vector
2(k) 2 col{zy (), za(k), - ,ap(k)},  wi(k) € R™
be given. The ter®{ M (k)z(k)zT (k) M” (k)} can be obtained by
E{M (k)x(k)a" (k)M (k) }
= Jii B{ My (k)i () (k) M,y; (k) }

whereE{ M (k)z(k)zT (k)M (k)}mn € R™*"= is the (m, n)-th submatrix ofE{ M (k)x(k)xT (k)M (k)}.
Proof: The proof is easily accessible by matrix operations andasefiore omitted here. [ |
In the following, the recursion of the estimation error co&ace is presented.
Lemma 2:The estimation error covariande(s, ;) of the estimator (5) is recursively calculated by

P(sp41) = A(s)P(sk)A" (s1) + T1(se) + Ta(si)
+ K (sp)E{A(s) AT (s) YK (s)
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+ K(Sk)D(Sk)V(Sk)DT(Sk)KT(Sk)
— A(Sk) — .AT(Sk) -+ B(Sk) + BT(Sk) (7)

where

Proof: With the help of Assumption 1 and (6), it is obvious that (7}rise. The proof is complete.
u
Note that the estimation error dynamics (6) contains themsumed stater(s;). To facilitate the
derivation of P(sy), in the following, the covariance of the augmented stdte,) is given.
Lemma 3:The state covarianc& (k) = E{x(k)zT (k)} is recursively calculated by
X(k+1)= Ak)X (k)AT (k) + B(k)X (k)BT (k)
+ E(k)W (k)ET (k) (8)
with initial value X (0). Moreover, the covariance of the augmented stéte,) = E{z(s.)z" (sx)} is
derived by

X(si) = [y (s0)] 9)

bxb
where

Xij(sx) 2 Efa(se1 + i)a" (sp_1 + j)} € R
is obtained according to
i Alsk = DX (k1 +5), 0>
Xij(sk) = X(sp_1 4 1), i=j
X(spr + ) [IZ AT (k1 +1), i< 5.
Proof: From (1), it is easily obtained that
X(k+1) = E{A(k)z(k)2" (k) A" (k)
+€( )B(k)x(k)x" (k)B" (k)" (k)
E(kyw(k)w" (k) E" (k) }
( )X (k)A" (k) + B(k)X (k) B (k)
E(k)W (k)E" (k).

From the definition ofi(s;), we know thatX; ;(sx) is the (i, j)-th submatrix ofX (s;). Fori = j, one
has X, ;(sx) = X(sr_1 +4). Fori > j, it is known from (1) that

Xi,j(sk) = A(Sk —b + 7 — 1>Xi—1,j(3k)
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Fori < j, we have

j—1
= X(sp—1+4) [JA" (s—1 +1).

=i
Then, X(s;) is calculated by (9). The proof is complete. [ |
For simplification, the following notations are introduced
Oi(sk) = E{F(sw)w(sk)a” (s1)(F(s1)"}
Q" (s1,) = B{Epi(sp)w(sg +i—1)
x w! (s +i—1)EL (s1)},

F (k) £ H A(spr1 — 1),

W (sk) £ E(sx)W (s5)E” (s1)

where £,,,;(s;) € R s the (m, i)-th submatrix ofE(sy,).

In order to calculate the estimation error covariance, dse eeds to calculate, (s;) and'y(s;) with
A(sy,) and E(s;) being random matrices. Obviously, the random matrices rttakealculations nontrivial.
In the following, a novel method is provided to handle sudifidilties.

Lemma 4:The termI';(s;) is obtained by

Ty(sie) = E{A(sx)Z(sk)T" (s5) AT (s1)}
— E{A(s1)} X (sx)E{A" (s1,)}

where

— Oan;L e Onwxnw d
E{A(s)} = | 2 s )

g

b—1
A (sk) & col{ F (si), F1(sw), -+, Fi(sn)}

andE{A(s;)Z(s,)zT (sx) AT (s1)} is derived according to
E{A(s)7(s1)T" (5£) A" (5) }on

Ty a1 (38)Opn1(58), m>n

= 9 Op—m+t1(Sk), m=mn

- T
Op—mt1(5k) (glf)_n-}-l(sk)) , m<n.
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Here, E{A(sy)z(sk)xT (s1) AT (s) }on € R™=*"= is the(m, n)-th submatrix ofE{ A(s;)z(sx)zT (sx) AT (s1)}.
©;(sk) is calculated by repeating
O;1(sk) = Alsgpr — i+ 1)0;(sp) AT (spy1 — i + 1)
+ B(spy1 — i+ 1)0;(sk) BT (531 — i + 1)
with
Oy(s1) = A(sk) X (s5) AT (s) + B(si) X (s5) BT ().

Proof: Noting the fact that(sy1 —¢) (i = 1,2,..., b) are uncorrelated withx(sx_; + j) (j =
1,2,...,b), it is derived that

From the definition ofA(s;,), by resorting to Lemma 1, the calculation®f A(s;,)Z(s,)z” (s) AT (s)}
reduces to the calculation of

E{A(sr)Z(sk)T" (55) AT (5k) brmn
= B{Z) 1 (se)x(sk)x” (s1) (P (se)" T
For m = n, it is obvious that
E{A(s)Z(s51)7" (5£) AT (55) Yo = Opm1(51)-

For m > n, we have

E{A(s)Z(55)Z" (55) A" (58) }run

b—n
=E{ ] Flses1—1)

i=b—m+1

X T (si)a(s)a” (s) (Fp i (s1)"}

H E{F(sk41— 1)} Op—nt1(sk)

i=b—m+1

= ylf 772+1(Sk)@b—n+1<8k)-

Similarly, for m < n, we have

E{A(51)Z(s1)Z" (sk) A" ($8) Frmn
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= Op_mr1(sk) < 1__[ E{F(sk41 — 2)}>

i=b—n+1

= Opmra (1) (T (s1)
Sinces (k) are mutually uncorrelated in time, we can derive the follayielationship betwee®,_ (sx)
and ©;(sy):
Oi-1(se) = E{LF (se)x(si)a” (s6) (Fiy (s) "}
= B{F(srs1 — i+ 1).F(sk)z(sr)
x &l (si) (F (s1)) F" (341 — i+ 1)}
= A(spp1 — i + DE{Z(sp)x(s5)
x at (si) (F (s1)) YA (81 — i 4 1)
+ B(sgr1 — i + 1)E{F] (s)x(sk)
x o (s3)(FL(s) } B (5341 — i 4+ 1)
= A(spy1 — i+ 1)0;(s5) AT (Spp1 — i 4+ 1)
+ B(spp1 — i + 1)0;(sx) B (sp41 — i + 1).
Moreover, it is known that
Oy(si) = E{F(si)x(se)a” (si) F" (sx)}
= A(sp)E{x(sk)a” (s1) }AT (s1)
+ B(si)E{a(sp)a” ()} B (s1)
= A(sp) X (s1) AT (s1) + B(sp) X (s1) B (s1).

Then, ©,_,,.1(sx) and ©,_,.1(sx) are calculated by repeating the above relationship. Thefpio

complete. [ |
Lemma 5:The termI'y(s;) is obtained according to
jlf—_nr;-i-l(sk) > i1 4 (sw), m>n
{T2(8%) binn = ZZ’;1 Q;n(sk)v m=n

m m = b—m T
Zi:l Q" (sk) (ﬁlf—n+1(sk)) , m<n.

Here {I'2(sk) }onn € R™ ™ is the(m, n)-th submatrix ofi'y (s, ). Moreover Q" (s ) is derived by repeating

Q" (s) = A(sp +m — D" (sp) AT (s +m — 1)
+ B(s, +m — 1)Q" (s) BT (s + m — 1)

with
Ql(sp) = Wi(sp +i—1).

Proof: The proof of this lemma is similar to that of Lemma 4 and is ¢fi@re omitted here. =
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Remark 2in Lemmas 4 and 5, a novel method is put forward to calculate;,) = E{A(s;,)Z(s,)Z7 (s,) AT (sx)}
and Ts(s;) = E{E(s)w(sy)w” (s;)ET(s,)}. Note that the structures of the matricéés,) and E(s;,)
complicate the calculations &f, (sx) andI's(sx), while the multiplicative noise(k) makes the calculation
even more complicated. Accordingly, it is quite difficultd@rectly calculatel’; (s;) andT's(s;). With the
help of Lemma 1, the calculations of (s;) andT's(s;) reduce to the calculation of the submatrices of
I'1(sk) andT's(sk), thereby reducing the computational complexity to a greétrd.

Due to the consideration of the sensor resolution, it iseemély hard (if not impossible) to obtain
the exact estimation error covariance. As such, an aligmatay is to obtain an upper bound on the
estimation error covariance and then the gain matrix isadtarized so as to minimize the obtained upper
bound.

Lemma 6:Denote

Ai(sk) = yi(se) — ' (sn)
as thei-th element ofA(s;). Then, one has
|Al(8k)| <T;.

Proof: For a constant: > 1, from the definition of the floor function-|, we know that—1 <
la] —a < 0 and therefore

id id
1< \‘yz (Sk)J . Y; (Sk) S 07 yzzd<8k> 2 T
Ty Ty

which is equivalent to-r; < y(sg) — yi4(sy) < 0 for yi(s;) > r;.
Similarly, from the definition of the ceiling functioft |, we know that0 < [b] — b < 1 with b < —1
being a constant. Therefore, we have

0 < y'(sp) — yil(sk) < riy  yisp) < =1y

Moreover, it is easily known thatr; < y9(s;,) — yi(sy) < r; for —r; < yid(sy) < r;.
Summarizing the above discussions, we hae(s,)| = |y#(sx) — yi(sk)| < r;, and the proof is
complete. [ |
Theorem 1:Let the positive scalars; (sx) and:(s,) be given. Denote

Yi(sk) 2= 1+ v (sp),
Yo(sk) £ 1477 (sk) + Y2(s),
Ya(sk) = 1+ 75" (sk)-

The solutionP(s;) for the following recursion

P(sp41) = 71(s) A(sr) P(sr) A" (s) + Ti(sk) + Da(si)

Ty

+ Y2(sk) Z K (sk) K7 (sk)

i=1

+ 3s(sk) K (51) D (s1)V (sx) DT (s1) KT () (10)
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with initial value P(sq) = P(sq) is an upper bound on the estimation error covariaf¢e, ). Here,
I'1(s) and I'y(s;) can be obtained according to Lemma 4 and Lemma 5, respgctMelreover, the
upper boundP(s;,1) is minimized with the estimator gaif'(s,) chosen as

K(sp) = Y(s1)2 " (s) (11)
and the minimized upper bound is
P(3k+1) = — T(sk)E_l(sk)TT(sk) + Fl(Sk) + Fg(sk)
+ 31 (1) E{ A1) }P (s ) BT { A1)} (12)

where

+ Y3(sx) D (5)V (5) DT (1),
T(sk) = F1(sk)E{A(sx)} P(s)CT (s8).
Proof: The proof is completed by using the mathematical inducti@thmod. First, it is obvious that
P(sg) < P(sp) holds. Assuming thaf’(s;) < P(s;) holds, we need to prove(syi1) < P(Sk+1)-
With the help of the elementary inequalityy” + ba” < daa® + 5-'bb" wherea, b are vectors of
appropriate dimensions ardis a known scalar, it follows from Lemmas 2-4 that
P(sp41) < 71(8k)A(5k)P(5k)AT(Sk)
(k) + Ta(sk)
+ 72(Sk)K(Sk)E{A(Sk)AT(Sk)}KT(Sk)
+ Y3(58) K (53) D(58)V (88) D (5:) KT (s1).

Moreover, from Lemma 6, we know that

E{A(sk) A" (s)} < E{tr{A(sx) A" (s)} }]

= ZyE{A?(sk)}I < Zyrizf.
i=1 i=1

Accordingly, one has

P(sp41) < 71(sk) A(sk) P(sk) AT (s)
+ Ty (sk) + Ta(sw)

Ny

+ ’72(8/6) Z T?K(Sk)KT(Sk)

i=1

+ Ya(se) K (s1) D(s)V (s1) DT (s) K7 (s).

Therefore,P(sy11) < P(sg41) holds.
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Now, we are going to characterize the estimator gain thatmizes P(s,.;). From the definition of
A(sy), (10) is rewritten as

P(skr1) = T1(se)E{A(se) } P(s0)E" {A(se) }

|
= =2
—_—
(VAR
= F =
= H
—
[VA)
5%’
Q=
/_\W—‘
’“U\
A\—/
TS
\_/)ﬂ
ﬁ/—\
V)
”:;?_,
/—\N
> ~
\'//C;\
\-'_/W
S—

+ 73(s6) K (s1) D(si)V (s1) DT (s1) K7 (s1)-
Noting thatI';(s;) andI'y(sx) do not contain the estimator gafi(s,), one has
P(sgi1) = K (s£)S(sk) KT (s8) = T(s) KT (s)
— K(s3) Y7 (s,) 4+ T1(sk) + Ta(sp)
+ 71 (s1)E{ A1) } P (s1)ET{ A(sr,)}
= (K (si) = T(s6) 7 (s1)) 2 (s8)
X (K (sk) = T(s)S ™ (s)"
— Y (1) 27 (s8) T (s5)
+ T (sk)E{ A(si) } P(s)ET {A(s) }
+ Ty (sk) + Ta(sk).
Since X(s;,) > 0, the minimum of P(s;,,) is (12) with the estimator gain being (11). The proof is

complete. u

In the following, the proposed recursive estimation algponi is summarized in Algorithm 1.

Algorithm 1 Recursive state estimation with the sensor resolution anitipticative noises
Step 1.Give positive scalars; (s;.), 12(sx) and set the initial values(sy), P(s);

Step 2.At time instants,, calculateE{A(s;)}, I'i(sx), andI'y(s;) according to Lemmas 4-5;
Step 3.CalculateK (s;,) and P(s;,;) by using (11) and (12), respectively;

Step 4.Compute the estimate(s,, 1) with the estimator (5). Set = k + 1;

Step 5.If £ < M, then go to Step 2, else go to Step 6;

Step 6.Stop.

Remark 3:In this paper, the RSE problem is studied for MRSs with mlttgtive noises and sensor
resolution. In Lemmas 4-5, a novel method is used to handaifficulties resulting from the coupling
of the multi-rate sampling and the multiplicative noises1 Apper bound is derived in Lemma 6 as a
result of tackling the uncertainties caused by the sensmiugon. Based on the result given in Lemma
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6, the estimator gain is characterized in Theorem 1 whichmaes the upper bound on the estimation
error covariance and the corresponding minimized uppentbasi presented. It is worth mentioning that
the obtained minimal upper bound reflects all the systenrimédion including the multi-rate sampling,
the multiplicative noises, and the sensor resolution.

Remark 4:In this paper, the RSE problem has been solved for MRSs withipticative noises and
sensor resolution. The main contributions of our results that 1) a novel recursive state estimation
algorithm is developed for systems with sensor resolut®)ra novel method is proposed which largely
reduces the computational complexity for the expectatiomatrix multiplication that involves random
matrices; and 3) the proposed estimation algorithm is inrdwirsive form and is suitable for online
computation.

[V. SIMULATION EXAMPLE

In this section, the usefulness of the proposed estimatigorithm is verified on the moving target
tracking problem.
The dynamics of the moving target (modified from [44]) is falated as

z(k+1) = A(k)x(k) + (k) B(k)x(k) + E(k)w(k)
where

oK) 2 [pT(k) TRy pTR) TR

x y
with (p.(k),p,(k)) being the position of the target arid,(k),,(k)) being the velocity of the target.
(k) is the multiplicative noise with zero mean and unity covac w(k) is the zero-mean process noise
with covariance matrix
T3/3 T2/2 0 0 |
T2/2 T 0 0
0 0 T3/3 T%)2
0 0 T?/2 T

whereT is the sampling period and is the acceleration variance. Moreover, the parametericeatare

W(k) = A

1700 1000 (0 001 0 0

0100 0100 0 0 0 0
A(k) = , B(k) = , B(k) =

00 1T 0010 0 0 0 001

0001 0001 0 001 0 0

In this example, a sensor with the sampling perbog 27" and the resolutiol? = c0l{0.1,0.01} is
deployed to collect the information. The ideal measurennendel is given as

y"(sk) = C(si)x(s) + D(sp)v(sk)

wherew(sg) is the measurement noise with zero mean and covariauée The parameter matrices are

1000 1
C(sg) = [0 01 017 D(sy) = [1]
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Fig. 1: The trajectory of the moving target and its estimate
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Fig. 2: Trace of the minimal upper bound and the MSE

In the simulation, we sef’” = 1s and A = 0.04. The initial condition of the state is(0) =
[Qm 0.lm/s 3m O.2m/S]T

The simulation results are given in Figs. 1-2. Fig. 1 shovesdhtual trajectory of the moving target
and the estimate of the trajectory. Fig. 2 gives the tracé@fminimal upper bound and the mean square
error of the proposed estimation algorithm. The mean sqeiare, denoted adISE(k), is defined as

MSE() 2 (a(k) — (k) (a(k) — #(4))

with N = 500 and Z(k) being the estimate af(k). The estimater(k) is obtained by applying matrix
operations taz (k). The simulation results verify that the developed estioralgorithm is effective in
the moving target tracking problem and the derived minimadar bound is indeed an upper bound of
the mean square error.

To show the monotonicity of the minimal upper bound with egpo the resolution of the sensor, in
the following, simulation results with different sensosotutions are presented. Figs. 3-4 give the minimal
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Fig. 4: Estimation performance with resolutidty = col{0.1,0.05}

upper bounds and the MSEs with the sensor resoluti®ns= col{0.5,0.01} and Ry = col{0.1,0.05},
respectively. From the simulation results, we know that mhi@imal upper bound and the MSE are
increasing when the sensor resolution increases, whiah aglieement with the engineering practice.

V. CONCLUSIONS

In this paper, the RSE problem has been investigated for MRBsmultiplicative noises and sensor
resolution. By applying the lifting technique, the MRS withultiplicative noises has been converted into
a single-rate system with random parameter matrices. Almogthod has been put forward to handle the
difficulties from the random parameter matrices. A novelesestimation scheme with low mathematical
complexity has also been developed which is robust to thentaiaty caused by the sensor resolution. With
the developed state estimation scheme, an upper bound émasbiined on the estimation error covariance
and the estimator gain has been characterized with whicblitened upper bound is minimized. Finally,
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the effectiveness of the proposed estimation algorithmbeses verified on the moving target tracking
problem. The future research topics will be the investagegiof the state estimation problems for complex
networks [26], [47], [50] with sensor resolution and the ttohproblems for multi-agent systems [10],

[25], [48] with sensor resolution.

VI. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are availéfde the corresponding author upon
reasonable request.
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