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Recursive State Estimation for Multi-Rate

Time-Varying Systems with Multiplicative Noises:

Dealing with Sensor Resolutions

Yuxuan Shen, Zidong Wang, Hongjian Liu∗, Hongli Dong and Xiaojian Yi

Abstract

In this paper, the recursive state estimation problem is investigated for a class of multi-rate systems with

multiplicative noises where the measurement outputs are collected from sensors with certain resolutions. Due to

the existence of the sensor resolution, the actual measurement output of the sensor might deviate from its true value

and such a deviation, if not adequately taken into account, would lead to serious degradation of the estimation

performance, and we are therefore motivated to develop an effective state estimation algorithm that is insensitive to

the sensor-resolution-induced measurement distortions. The aim of the considered estimation problem is to design a

state estimator such that an upper bound on the estimation error covariance is first guaranteed and then minimized

by properly choosing the estimator gain. Moreover, a simulation example with application background on moving

target tracking problem is presented to verify the validity of the developed recursive state estimation algorithm.
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I. INTRODUCTION

In engineering practice such as petroleum extraction and chemical engineering, it is vitally important

to acquire the state information of the underlying plant in order to make sure that the production process
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is operational yet safe. Due to resource limits and physicalconstraints, it is quite common that the state

information cannot be directly obtained, and an alternative way is therefore to estimate the system state

by using the available measurements that could be contaminated by stochastic noises [8], [13], [37]–[39],

[54]. For decades, the state estimation problems have been attracting an ever-increasing research interest

from various communities ranging from signal processing and mathematics to control engineering [1],

[9], [15], [21], [24], [32], [34].

So far, many state estimation algorithms have been developed in the literature for a variety of systems

including, but are not limited to, linear systems [5], [28],nonlinear systems [7], [18], [36], [42], stochastic

systems [3], [55], and uncertain systems [2], [17], [43], [53]. According to the performance indices, the

state estimation algorithms can be generally categorized into four types, namely, theH∞ state estimation

method [23], [33], the recursive state estimation scheme [4], [22], [40], the set-membership state estimation

technique [6], [30] as well as moving-horizon state estimation mechanism [16], [56]. Among others, the

recursive state estimation (RSE) method, whose main aim is to minimize the estimation error covariance

at each time instant, has proven to be one of the most popular ones due primarily to its advantages in

easy implementation and online computation. Note that the RSE problem has been recently investigated

in [49] for sensor networks and in [27] for complex networks.

It is worth mentioning that, up to now, the focus of almost allRSE problems has been paid on the

single-rate systems, that is, the update rate of the system state and the sampling rate of the sensor are

the same. Unfortunately, due to different physical features of different system components, it is difficult

to unify the state update rate and the sensor sampling rate inengineering practice. Also, for systems

with slowly changing states, it is unnecessary and uneconomic to sample the measurement at each state

update instant [45]. In this sense, the multi-rate samplingmechanism appears to be more reasonable

which has been applied in many industrial systems such as structural health monitoring system [11],

aluminium electrolysis cells [46], as well as power grids [35]. Until now, despite the significant engineering

background of the multi-rate sampling mechanism, the RSE problems for multi-rate systems still need

extra research attentions.

The multi-rate sampling, though practically appealing, does bring multiple time sequences to the

system and would invalidate the state estimation algorithms designed specifically for single-rate systems.

Therefore, it is theoretically important to make dedicatedefforts in dealing with the multi-rate sampling

issue in the RSE problems, see [12], [14] for some latest results. In particular, the filtering problem has

been tackled in [52] for multi-rate systems (MRSs) with asynchronous sensors and the lifting technique

has been used to transform the MRS into a single-rate one. In [41], an outlier-resistant recursive filter has

been designed for MRSs under the weighted Try-Once-Discardprotocol.

Multiplicative noises, also known as state-dependent noises, have recently gained considerable research

interest [20], [29]. Note that many practical plants can be modeled by systems with multiplicative noises,

and the corresponding RSE problem for such kind of systems demands extra care, see e.g. [19], [31] for

some representative results on the single-rate systems with multiplicative noises. When it comes to the

MRSs, the relevant RSE results have been really scattered because of the essential difficulties in handling
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the coupling between the multi-rate sampling and the multiplicative noises. For example, the traditional

lifting technique is no longer directly applicable for MRSsbecause of the existence of the multiplicative

noises. Therefore, there is a practical need to develop a novel method to solve the RSE problem for MRSs

subject to multiplicative noises.

In engineering practice, no sensors could detect arbitrarily small changes of the measurement. The

smallest change that a sensor can detect, known as thesensor resolution, is one of the important specifi-

cations of the sensor. Due to inherent limit of the sensor resolution, the actual measurement output from

the sensor is most likely to deviate from the true measurement output. Obviously, estimating the system

state by using the deviated measurement would lead to a poor estimation performance. As such, in the

state estimation problem, it is vitally important to take the sensor resolution into serious consideration.

The consideration of the phenomenon of sensor resolution isclearly a non-trivial task with some

additional challenges outlined as follows: 1) how to establish a model to accurately characterize the

sensor resolution? 2) how to mitigate the performance deterioration of the state estimation caused by the

deviation of the actual measurement from the true measurement? and 3) how to design a state estimator

with guaranteed estimation accuracy in spite of the sensor-resolution-induced measurement distortions

(SRIMDs)? Note that some preliminary results have been obtained in [51] on the state estimation problem

for single-rate systems with non-logarithmic sensor resolutions. Unfortunately, for multi-rate systems, the

corresponding state estimation results have been really scattered.

To tackle the aforementioned challenges, in this paper, we endeavor to develop an effective RSE scheme

for MRSs with multiplicative noises and SRIMDs. The main novelties of this paper are stressed as follows:

1) a novel method is put forward to handle the difficulties resulting from the coupling of the multi-

rate sampling and the multiplicative noises; 2) a novel state estimation scheme, which is of acceptable

computational complexity, is developed for systems undergoing SRIMDs; and 3) a locally minimized upper

bound is guaranteed on the estimation error covariance.

The rest of this paper is organized as follows. In Section II,the sensor resolution is introduced, the

considered MRS is presented and then transformed into a single-rate one. In Section III, the state estimation

scheme is developed. A simulation study is conducted on the moving target tracking problem in Section

IV. Finally, Section V concludes this paper.

Notation The notation used here is fairly standard.I and 0 denote the identity matrix and the zero

matrix with appropriate dimensions, respectively.GT , G−1, andtr(G) represent the transpose, the inverse,

and the trace of the matrixG, respectively.col{· · · } stands for a column vector composed of elements.

⌊·⌋ and ⌈·⌉ are the floor function and the ceiling function, respectively. For a random variableα, E{α}

is the expectation ofα.

II. PROBLEM FORMULATION

Consider the following class of discrete-time systems withmultiplicative noises:

x(k + 1) = A(k)x(k) + ε(k)B(k)x(k) + E(k)w(k) (1)
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wherex(k) ∈ R
nx is the system state,ε(k) ∈ R is the zero-mean Gaussian multiplicative noise with unity

covariance, andw(k) ∈ R
nw is the zero-mean process noise with covarianceW (k) > 0. A(k), B(k) and

E(k) are known time-varying matrices with compatible dimensions. The initial valuex(0) of the system

state is a random variable with meanχ(0) and covarianceX(0).

In practical engineering, a sensor can only detect the change of the measurement that is larger than a

certain value. Such a certain value is known assensor resolutionand defined as follows.

Definition 1: [51] Let yi (i = 1, 2, . . . , ny) be thei-th element of the measurement output of a sensor.

If yi takes value in the set{jri|j = 0,±1, . . . ,±z} where z is a given positive integer, thenR ,

col{r1, r2, · · · , rny
} is the resolution of the sensor.

In this paper, a sensor with the sampling period

b , sk+1 − sk

and the sensor resolution

R , col{r1, r2, · · · , rny
}

is deployed to measure the system. Without considering the sensor resolution, theideal measurement

output of the sensor is

yid(sk) = C(sk)x(sk) +D(sk)v(sk) (2)

where yid(sk) ∈ R
ny is the ideal measurement output of the sensor,v(sk) ∈ R

nv is the zero-mean

measurement noise with covarianceV (sk) > 0, andC(sk) andD(sk) are known time-varying matrices

with compatible dimensions.

Assumption 1:The random variablesx(0), ε(k), w(k), andv(sk) are mutually uncorrelated.

By taking the sensor resolution into consideration, theactualmeasurement from the sensor with sensor

resolutionR is

yaci (sk) =







⌊
yidi (sk)

ri

⌋

ri, yidi (sk) ≥ ri

0, yidi (sk) ∈ (−ri, ri)
⌈
yidi (sk)

ri

⌉

ri, yidi (sk) ≤ −ri

(3)

whereyaci (sk) is the i-th element of the actual measurementyac(sk) from the sensor,yidi (sk) is the i-th

element ofyid(sk), andri is the i-th element of the resolutionR.

Noting that the system under consideration is a MRS, we are going to transform the MRS into a

single-rate one. First, we rewrite the system (1) as

x(k + 1) = F (k)x(k) + E(k)w(k)

whereF (k) , A(k) + ε(k)B(k). Then, setting

x̄(sk) , col{x(sk−1 + 1), · · · , x(sk − 1), x(sk)},
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we have

x̄(sk+1) = Ā(sk)x̄(sk) + Ē(sk)w̄(sk) (4)

where

w̄(sk) , col{w(sk), w(sk + 1), · · · , w(sk+1 − 1)},

Ā(sk) ,

[

0bnx×nx
· · · 0bnx×nx

︸ ︷︷ ︸

b−1

A (sk)
]

,

Ē(sk) , B(sk)E (sk), F
n
m(sk) ,

n∏

i=m

F (sk+1 − i),

A (sk) , col{F b
b (sk),F

b
b−1(sk), · · · ,F

b
1 (sk)},

B(sk) ,












I 0 · · · 0

F
b−1

b−1
(sk) I · · · 0

F
b−1

b−2
(sk) F

b−2

b−2
(sk) · · · 0

...
... · · · 0

F
b−1

1 (sk) F
b−2

1 (sk) · · · I












,

E (sk) , diag{E(sk), E(sk + 1), · · · , E(sk+1 − 1)}.

Moreover, the ideal measurement model (2) is reformulated as

yid(sk) = C̄(sk)x̄(sk) +D(sk)v(sk)

whereC̄(sk) ,
[

0 · · · 0 C(sk)
]

.

Due to the sensor resolution, the measurement received by the estimator isyac(sk) (instead of the ideal

measurementyid(sk)). In this paper, the state estimator is of the following form

x̂(sk+1) = E{Ā(sk)}x̂(sk)

+K(sk)
(
yac(sk)− C̄(sk)x̂(sk)

)
(5)

wherex̂(sk) is the estimate of̄x(sk) andK(sk) is the estimator gain matrix to be determined. The initial

condition of the estimator iŝx(s0) = E{x̄(s0)}.

Denoting the estimation error as

e(sk) , x̄(sk)− x̂(sk)

and the difference between the actual measurement and the ideal measurement as

∆(sk) , yac(sk)− yid(sk),

we have the following estimation error dynamics:

e(sk+1) = Ǎ(sk)e(sk) + Ã(sk)x̄(sk) + Ē(sk)w̄(sk)

−K(sk)∆(sk)−K(sk)D(sk)v(sk) (6)



FINAL VERSION 6

where

Ã(sk) , Ā(sk)− E{Ā(sk)},

Ǎ(sk) , E{Ā(sk)} −K(sk)C̄(sk).

Remark 1:It can be seen from (4) that, due to the existence of the multiplicative noiseε(k), the parameter

matricesĀ(sk) and Ē(sk) of the augmented system (4) are essentially random matrices. Therefore, in

the estimator (5), the expectationE{Ā(sk)} of the random matrixĀ(sk) is used. It can be seen from the

estimation error dynamic system (6) that the appearance of the random matrices̄A(sk) and Ē(sk) would

bring additional difficulties in the derivation of the estimation error covariance (or its upper bound), and

therefore a novel method is needed that can tackle the randommatrices in an adequate way.

The aim of the considered estimation problem is to develop a state estimator (5) such that the estimation

error covariance

P (sk) , E{e(sk)e
T (sk)}

has a certain upper bound and, moreover, an appropriate gainmatrix K(sk) is designed such that the

derived upper bound is minimized.

III. M AIN RESULTS

In this section, we will first derive an upper bound on the estimation error covariance, and then the

estimator gain matrix will be characterized so as to minimize the obtained upper bound.

The following lemma will be useful in our later analysis.

Lemma 1:Let a random matrix

M(k) ,
[

Mij(k)
]

b×b
, Mij(k) ∈ R

nx×ny

and a vector

x(k) , col{x1(k), x2(k), · · · , xb(k)}, xi(k) ∈ R
ny

be given. The termE{M(k)x(k)xT (k)MT (k)} can be obtained by

E{M(k)x(k)xT (k)MT (k)}mn

=

b∑

j=1

b∑

i=1

E{Mmi(k)xi(k)x
T
j (k)M

T
nj(k)}

whereE{M(k)x(k)xT (k)MT (k)}mn ∈ R
nx×nx is the(m,n)-th submatrix ofE{M(k)x(k)xT (k)MT (k)}.

Proof: The proof is easily accessible by matrix operations and is therefore omitted here.

In the following, the recursion of the estimation error covariance is presented.

Lemma 2:The estimation error covarianceP (sk+1) of the estimator (5) is recursively calculated by

P (sk+1) = Ǎ(sk)P (sk)Ǎ
T (sk) + Γ1(sk) + Γ2(sk)

+K(sk)E{∆(sk)∆
T (sk)}K

T (sk)
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+K(sk)D(sk)V (sk)D
T (sk)K

T (sk)

−A(sk)−AT (sk) + B(sk) + BT (sk) (7)

where

Γ1(sk) , E{Ã(sk)x̄(sk)x̄
T (sk)Ã

T (sk)},

Γ2(sk) , E{Ē(sk)w̄(sk)w̄
T (sk)Ē

T (sk)},

A(sk) , E{Ǎ(sk)e(sk)∆
T (sk)K

T (sk)},

B(sk) , E{K(sk)∆(sk)v
T (sk)D

T (sk)K
T (sk)}.

Proof: With the help of Assumption 1 and (6), it is obvious that (7) istrue. The proof is complete.

Note that the estimation error dynamics (6) contains the augmented statēx(sk). To facilitate the

derivation ofP (sk), in the following, the covariance of the augmented statex̄(sk) is given.

Lemma 3:The state covarianceX(k) , E{x(k)xT (k)} is recursively calculated by

X(k + 1) = A(k)X(k)AT (k) +B(k)X(k)BT (k)

+ E(k)W (k)ET (k) (8)

with initial value X(0). Moreover, the covariance of the augmented stateX̄(sk) , E{x̄(sk)x̄
T (sk)} is

derived by

X̄(sk) =
[

X̄i,j(sk)
]

b×b
(9)

where

X̄i,j(sk) , E{x(sk−1 + i)xT (sk−1 + j)} ∈ R
nx×nx

is obtained according to

X̄i,j(sk) =







∏b−j

l=b−i+1
A(sk − l)X(sk−1 + j), i > j

X(sk−1 + i), i = j

X(sk−1 + i)
∏j−1

l=i A
T (sk−1 + l), i < j.

Proof: From (1), it is easily obtained that

X(k + 1) = E
{
A(k)x(k)xT (k)AT (k)

+ ε(k)B(k)x(k)xT (k)BT (k)εT (k)

+ E(k)w(k)wT (k)ET (k)
}

= A(k)X(k)AT (k) +B(k)X(k)BT (k)

+ E(k)W (k)ET (k).

From the definition of̄x(sk), we know thatX̄i,j(sk) is the(i, j)-th submatrix ofX̄(sk). For i = j, one

hasX̄i,i(sk) = X(sk−1 + i). For i > j, it is known from (1) that

X̄i,j(sk) = A(sk − b+ i− 1)X̄i−1,j(sk)
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=

b−j
∏

l=b−i+1

A(sk − l)X̄j,j(sk)

=

b−j
∏

l=b−i+1

A(sk − l)X(sk−1 + j).

For i < j, we have

X̄i,j(sk) = X̄i,j−1(sk)A
T (sk−1 + j − 1)

= X̄i,i(sk)

j−1
∏

l=i

AT (sk−1 + l)

= X(sk−1 + i)

j−1
∏

l=i

AT (sk−1 + l).

Then,X̄(sk) is calculated by (9). The proof is complete.

For simplification, the following notations are introduced:

Θi(sk) , E
{
F

b
i (sk)x(sk)x

T (sk)(F
b
i (sk))

T
}
,

Ωm
i (sk) , E{Ēmi(sk)w(sk + i− 1)

× wT (sk + i− 1)ĒT
mi(sk)},

F̄
n
m(sk) ,

n∏

i=m

A(sk+1 − i),

W̄ (sk) , E(sk)W (sk)E
T (sk)

whereĒmi(sk) ∈ R
nx×nw is the (m, i)-th submatrix ofĒ(sk).

In order to calculate the estimation error covariance, one also needs to calculateΓ1(sk) andΓ2(sk) with

Ã(sk) andĒ(sk) being random matrices. Obviously, the random matrices makethe calculations nontrivial.

In the following, a novel method is provided to handle such difficulties.

Lemma 4:The termΓ1(sk) is obtained by

Γ1(sk) = E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}

− E{Ā(sk)}X̄(sk)E{Ā
T (sk)}

where

E{Ā(sk)} =

[

0bnx×nx
· · · 0bnx×nx

︸ ︷︷ ︸

b−1

Ā (sk)
]

,

Ā (sk) , col{F̄ b
b (sk), F̄

b
b−1(sk), · · · , F̄

b
1 (sk)}

andE{Ā(sk)x̄(sk)x̄T (sk)Ā
T (sk)} is derived according to

E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}mn

=







F̄
b−n
b−m+1

(sk)Θb−n+1(sk), m > n

Θb−m+1(sk), m = n

Θb−m+1(sk)
(
F̄

b−m
b−n+1

(sk)
)T

, m < n.



FINAL VERSION 9

Here,E{Ā(sk)x̄(sk)x̄T (sk)Ā
T (sk)}mn ∈ R

nx×nx is the(m,n)-th submatrix ofE{Ā(sk)x̄(sk)x̄T (sk)Ā
T (sk)}.

Θi(sk) is calculated by repeating

Θi−1(sk) = A(sk+1 − i+ 1)Θi(sk)A
T (sk+1 − i+ 1)

+B(sk+1 − i+ 1)Θi(sk)B
T (sk+1 − i+ 1)

with

Θb(sk) = A(sk)X(sk)A
T (sk) +B(sk)X(sk)B

T (sk).

Proof: Noting the fact thatε(sk+1 − i) (i = 1, 2, . . . , b) are uncorrelated withx(sk−1 + j) (j =

1, 2, . . . , b), it is derived that

E

{

Ã(sk)x̄(sk)x̄
T (sk)Ã

T (sk)
}

= E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}

+ E

{

E{Ā(sk)}x̄(sk)x̄
T (sk)E{Ā

T (sk)}
}

− E

{

E{Ā(sk)}x̄(sk)x̄
T (sk)Ā

T (sk)
}

− E

{

Ā(sk)x̄(sk)x̄
T (sk)E{Ā

T (sk)}
}

= E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}

− E{Ā(sk)}E{x̄(sk)x̄
T (sk)}E{Ā

T (sk)}.

From the definition ofĀ(sk), by resorting to Lemma 1, the calculation ofE{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}

reduces to the calculation of

E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}mn

= E{F b
b−m+1(sk)x(sk)x

T (sk)(F
b
b−n+1(sk))

T}.

For m = n, it is obvious that

E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}mm = Θb−m+1(sk).

For m > n, we have

E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}mn

= E{

b−n∏

i=b−m+1

F (sk+1 − i)

× F
b
b−n+1(sk)x(sk)x

T (sk)(F
b
b−n+1(sk))

T}

=

b−n∏

i=b−m+1

E{F (sk+1 − i)}Θb−n+1(sk)

= F̄
b−n
b−m+1

(sk)Θb−n+1(sk).

Similarly, for m < n, we have

E{Ā(sk)x̄(sk)x̄
T (sk)Ā

T (sk)}mn
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= Θb−m+1(sk)

(
b−m∏

i=b−n+1

E{F (sk+1 − i)}

)T

= Θb−m+1(sk)
(
F̄

b−m
b−n+1

(sk)
)T

.

Sinceε(k) are mutually uncorrelated in time, we can derive the following relationship betweenΘi−1(sk)

andΘi(sk):

Θi−1(sk) = E{F b
i−1(sk)x(sk)x

T (sk)(F
b
i−1(sk))

T}

= E{F (sk+1 − i+ 1)F b
i (sk)x(sk)

× xT (sk)(F
b
i (sk))

TF T (sk+1 − i+ 1)}

= A(sk+1 − i+ 1)E{F b
i (sk)x(sk)

× xT (sk)(F
b
i (sk))

T}AT (sk+1 − i+ 1)

+B(sk+1 − i+ 1)E{F b
i (sk)x(sk)

× xT (sk)(F
b
i (sk))

T}BT (sk+1 − i+ 1)

= A(sk+1 − i+ 1)Θi(sk)A
T (sk+1 − i+ 1)

+B(sk+1 − i+ 1)Θi(sk)B
T (sk+1 − i+ 1).

Moreover, it is known that

Θb(sk) = E{F (sk)x(sk)x
T (sk)F

T (sk)}

= A(sk)E{x(sk)x
T (sk)}A

T (sk)

+B(sk)E{x(sk)x
T (sk)}B

T (sk)

= A(sk)X(sk)A
T (sk) +B(sk)X(sk)B

T (sk).

Then, Θb−m+1(sk) and Θb−n+1(sk) are calculated by repeating the above relationship. The proof is

complete.

Lemma 5:The termΓ2(sk) is obtained according to

{Γ2(sk)}mn =







F̄
b−n
b−m+1

(sk)
∑n

i=1
Ωn

i (sk), m > n
∑m

i=1
Ωm

i (sk), m = n
∑m

i=1
Ωm

i (sk)
(
F̄

b−m
b−n+1

(sk)
)T

, m < n.

Here,{Γ2(sk)}mn ∈ R
nx×nx is the(m,n)-th submatrix ofΓ2(sk). Moreover,Ωm

i (sk) is derived by repeating

Ωm
i (sk) = A(sk +m− 1)Ωm−1

i (sk)A
T (sk +m− 1)

+B(sk +m− 1)Ωm−1

i (sk)B
T (sk +m− 1)

with

Ωi
i(sk) = W̄ (sk + i− 1).

Proof: The proof of this lemma is similar to that of Lemma 4 and is therefore omitted here.
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Remark 2:In Lemmas 4 and 5, a novel method is put forward to calculateΓ1(sk) = E{Ã(sk)x̄(sk)x̄
T (sk)Ã

T (sk)}

andΓ2(sk) = E{Ē(sk)w̄(sk)w̄
T (sk)Ē

T (sk)}. Note that the structures of the matricesÃ(sk) and Ē(sk)

complicate the calculations ofΓ1(sk) andΓ2(sk), while the multiplicative noiseε(k) makes the calculation

even more complicated. Accordingly, it is quite difficult todirectly calculateΓ1(sk) andΓ2(sk). With the

help of Lemma 1, the calculations ofΓ1(sk) andΓ2(sk) reduce to the calculation of the submatrices of

Γ1(sk) andΓ2(sk), thereby reducing the computational complexity to a great extent.

Due to the consideration of the sensor resolution, it is extremely hard (if not impossible) to obtain

the exact estimation error covariance. As such, an alternative way is to obtain an upper bound on the

estimation error covariance and then the gain matrix is characterized so as to minimize the obtained upper

bound.

Lemma 6:Denote

∆i(sk) , yaci (sk)− yidi (sk)

as thei-th element of∆(sk). Then, one has

|∆i(sk)| < ri.

Proof: For a constanta ≥ 1, from the definition of the floor function⌊·⌋, we know that−1 <

⌊a⌋ − a ≤ 0 and therefore

−1 <

⌊
yidi (sk)

ri

⌋

−
yidi (sk)

ri
≤ 0, yidi (sk) ≥ ri

which is equivalent to−ri < yaci (sk)− yidi (sk) ≤ 0 for yidi (sk) ≥ ri.

Similarly, from the definition of the ceiling function⌈·⌉, we know that0 ≤ ⌈b⌉ − b < 1 with b ≤ −1

being a constant. Therefore, we have

0 ≤ yaci (sk)− yidi (sk) < ri, yidi (sk) ≤ −ri.

Moreover, it is easily known that−ri < yaci (sk)− yidi (sk) < ri for −ri < yidi (sk) < ri.

Summarizing the above discussions, we have|∆i(sk)| =
∣
∣yaci (sk)− yidi (sk)

∣
∣ < ri, and the proof is

complete.

Theorem 1:Let the positive scalarsγ1(sk) andγ2(sk) be given. Denote

γ̄1(sk) , 1 + γ1(sk),

γ̄2(sk) , 1 + γ−1

1 (sk) + γ2(sk),

γ̄3(sk) , 1 + γ−1

2 (sk).

The solutionP̄ (sk+1) for the following recursion

P̄ (sk+1) = γ̄1(sk)Ǎ(sk)P̄ (sk)Ǎ
T (sk) + Γ1(sk) + Γ2(sk)

+ γ̄2(sk)

ny∑

i=1

r2iK(sk)K
T (sk)

+ γ̄3(sk)K(sk)D(sk)V (sk)D
T (sk)K

T (sk) (10)
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with initial value P̄ (s0) = P (s0) is an upper bound on the estimation error covarianceP (sk+1). Here,

Γ1(sk) and Γ2(sk) can be obtained according to Lemma 4 and Lemma 5, respectively. Moreover, the

upper boundP̄ (sk+1) is minimized with the estimator gainK(sk) chosen as

K(sk) = Υ(sk)Σ
−1(sk) (11)

and the minimized upper bound is

P̄ (sk+1) =−Υ(sk)Σ
−1(sk)Υ

T (sk) + Γ1(sk) + Γ2(sk)

+ γ̄1(sk)E{Ā(sk)}P̄ (sk)E
T {Ā(sk)} (12)

where

Σ(sk) , γ̄1(sk)C̄(sk)P̄ (sk)C̄
T (sk)

+ γ̄2(sk)

ny∑

i=1

r2i I

+ γ̄3(sk)D(sk)V (sk)D
T (sk),

Υ(sk) , γ̄1(sk)E{Ā(sk)}P̄ (sk)C̄
T (sk).

Proof: The proof is completed by using the mathematical induction method. First, it is obvious that

P (s0) ≤ P̄ (s0) holds. Assuming thatP (sk) ≤ P̄ (sk) holds, we need to proveP (sk+1) ≤ P̄ (sk+1).

With the help of the elementary inequalityabT + baT ≤ δaaT + δ−1bbT where a, b are vectors of

appropriate dimensions andδ is a known scalar, it follows from Lemmas 2-4 that

P (sk+1) ≤ γ̄1(sk)Ǎ(sk)P (sk)Ǎ
T (sk)

+ Γ1(sk) + Γ2(sk)

+ γ̄2(sk)K(sk)E{∆(sk)∆
T (sk)}K

T (sk)

+ γ̄3(sk)K(sk)D(sk)V (sk)D
T (sk)K

T (sk).

Moreover, from Lemma 6, we know that

E{∆(sk)∆
T (sk)} ≤ E

{
tr{∆(sk)∆

T (sk)}
}
I

=

ny∑

i=1

E{∆2

i (sk)}I ≤

ny∑

i=1

r2i I.

Accordingly, one has

P (sk+1) ≤ γ̄1(sk)Ǎ(sk)P (sk)Ǎ
T (sk)

+ Γ1(sk) + Γ2(sk)

+ γ̄2(sk)

ny∑

i=1

r2iK(sk)K
T (sk)

+ γ̄3(sk)K(sk)D(sk)V (sk)D
T (sk)K

T (sk).

Therefore,P (sk+1) ≤ P̄ (sk+1) holds.
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Now, we are going to characterize the estimator gain that minimizes P̄ (sk+1). From the definition of

Ǎ(sk), (10) is rewritten as

P̄ (sk+1) = γ̄1(sk)E{Ā(sk)}P̄ (sk)E
T{Ā(sk)}

+ γ̄1(sk)K(sk)C̄(sk)P̄ (sk)C̄
T (sk)K

T (sk)

− γ̄1(sk)E{Ā(sk)}P̄ (sk)C̄
T (sk)K

T (sk)

− γ̄1(sk)K(sk)C̄(sk)P̄ (sk)E
T {Ā(sk)}

+ Γ1(sk) + Γ2(sk)

+ γ̄2(sk)

ny∑

i=1

r2iK(sk)K
T (sk)

+ γ̄3(sk)K(sk)D(sk)V (sk)D
T (sk)K

T (sk).

Noting thatΓ1(sk) andΓ2(sk) do not contain the estimator gainK(sk), one has

P̄ (sk+1) = K(sk)Σ(sk)K
T (sk)−Υ(sk)K

T (sk)

−K(sk)Υ
T (sk) + Γ1(sk) + Γ2(sk)

+ γ̄1(sk)E{Ā(sk)}P̄ (sk)E
T{Ā(sk)}

= (K(sk)−Υ(sk)Σ
−1(sk))Σ(sk)

× (K(sk)−Υ(sk)Σ
−1(sk))

T

−Υ(sk)Σ
−1(sk)Υ

T (sk)

+ γ̄1(sk)E{Ā(sk)}P̄ (sk)E
T{Ā(sk)}

+ Γ1(sk) + Γ2(sk).

SinceΣ(sk) > 0, the minimum of P̄ (sk+1) is (12) with the estimator gain being (11). The proof is

complete.

In the following, the proposed recursive estimation algorithm is summarized in Algorithm 1.

Algorithm 1 Recursive state estimation with the sensor resolution and multiplicative noises

Step 1.Give positive scalarsγ1(sk), γ2(sk) and set the initial valueŝx(s0), P̄ (s0);

Step 2.At time instantsk, calculateE{Ā(sk)}, Γ1(sk), andΓ2(sk) according to Lemmas 4-5;

Step 3.CalculateK(sk) and P̄ (sk+1) by using (11) and (12), respectively;

Step 4.Compute the estimatêx(sk+1) with the estimator (5). Setk = k + 1;

Step 5.If k < M , then go to Step 2, else go to Step 6;

Step 6.Stop.

Remark 3:In this paper, the RSE problem is studied for MRSs with multiplicative noises and sensor

resolution. In Lemmas 4-5, a novel method is used to handle the difficulties resulting from the coupling

of the multi-rate sampling and the multiplicative noises. An upper bound is derived in Lemma 6 as a

result of tackling the uncertainties caused by the sensor resolution. Based on the result given in Lemma
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6, the estimator gain is characterized in Theorem 1 which minimizes the upper bound on the estimation

error covariance and the corresponding minimized upper bound is presented. It is worth mentioning that

the obtained minimal upper bound reflects all the system information including the multi-rate sampling,

the multiplicative noises, and the sensor resolution.

Remark 4:In this paper, the RSE problem has been solved for MRSs with multiplicative noises and

sensor resolution. The main contributions of our results are that 1) a novel recursive state estimation

algorithm is developed for systems with sensor resolution;2) a novel method is proposed which largely

reduces the computational complexity for the expectation of matrix multiplication that involves random

matrices; and 3) the proposed estimation algorithm is in therecursive form and is suitable for online

computation.

IV. SIMULATION EXAMPLE

In this section, the usefulness of the proposed estimation algorithm is verified on the moving target

tracking problem.

The dynamics of the moving target (modified from [44]) is formulated as

x(k + 1) = A(k)x(k) + ε(k)B(k)x(k) + E(k)w(k)

where

x(k) ,
[

pTx (k) νT
x (k) pTy (k) νT

y (k)
]T

with (px(k), py(k)) being the position of the target and(νx(k), νy(k)) being the velocity of the target.

ε(k) is the multiplicative noise with zero mean and unity covariance.w(k) is the zero-mean process noise

with covariance matrix

W (k) = Λ









T 3/3 T 2/2 0 0

T 2/2 T 0 0

0 0 T 3/3 T 2/2

0 0 T 2/2 T









whereT is the sampling period andΛ is the acceleration variance. Moreover, the parameter matrices are

A(k) =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









, E(k) =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, B(k) =









0 0.01 0 0

0 0 0 0

0 0 0 0.01

0 0.01 0 0









.

In this example, a sensor with the sampling periodb = 2T and the resolutionR = col{0.1, 0.01} is

deployed to collect the information. The ideal measurementmodel is given as

yid(sk) = C(sk)x(sk) +D(sk)v(sk)

wherev(sk) is the measurement noise with zero mean and covariance0.05. The parameter matrices are

C(sk) =

[

1 0 0 0

0 0 1 0

]

, D(sk) =

[

1

1

]

.
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Fig. 1: The trajectory of the moving target and its estimate
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Fig. 2: Trace of the minimal upper bound and the MSE

In the simulation, we setT = 1s and Λ = 0.04. The initial condition of the state isx(0) =
[

2m 0.1m/s 3m 0.2m/s
]T

.

The simulation results are given in Figs. 1-2. Fig. 1 shows the actual trajectory of the moving target

and the estimate of the trajectory. Fig. 2 gives the trace of the minimal upper bound and the mean square

error of the proposed estimation algorithm. The mean squareerror, denoted asMSE(k), is defined as

MSE(k) ,
1

N

(
x(k)− ~x(k)

)T (
x(k)− ~x(k)

)

with N = 500 and ~x(k) being the estimate ofx(k). The estimate~x(k) is obtained by applying matrix

operations tôx(k). The simulation results verify that the developed estimation algorithm is effective in

the moving target tracking problem and the derived minimal upper bound is indeed an upper bound of

the mean square error.

To show the monotonicity of the minimal upper bound with respect to the resolution of the sensor, in

the following, simulation results with different sensor resolutions are presented. Figs. 3-4 give the minimal
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Fig. 3: Estimation performance with resolutionR1 = col{0.5, 0.01}
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Fig. 4: Estimation performance with resolutionR2 = col{0.1, 0.05}

upper bounds and the MSEs with the sensor resolutionsR1 = col{0.5, 0.01} andR2 = col{0.1, 0.05},

respectively. From the simulation results, we know that theminimal upper bound and the MSE are

increasing when the sensor resolution increases, which is in agreement with the engineering practice.

V. CONCLUSIONS

In this paper, the RSE problem has been investigated for MRSswith multiplicative noises and sensor

resolution. By applying the lifting technique, the MRS withmultiplicative noises has been converted into

a single-rate system with random parameter matrices. A novel method has been put forward to handle the

difficulties from the random parameter matrices. A novel state estimation scheme with low mathematical

complexity has also been developed which is robust to the uncertainty caused by the sensor resolution. With

the developed state estimation scheme, an upper bound has been obtained on the estimation error covariance

and the estimator gain has been characterized with which theobtained upper bound is minimized. Finally,
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the effectiveness of the proposed estimation algorithm hasbeen verified on the moving target tracking

problem. The future research topics will be the investigations of the state estimation problems for complex

networks [26], [47], [50] with sensor resolution and the control problems for multi-agent systems [10],

[25], [48] with sensor resolution.

VI. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are availablefrom the corresponding author upon

reasonable request.
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[4] R. Caballero-́Aguila, A. Hermoso-Carazo and J. Linares-Pérez, Optimal state estimation for networked systems with random parameter

matrices, correlated noises and delayed measurements,International Journal of General Systems, vol. 44, no. 2, pp. 142–154, 2015.

[5] B. Cai, L. Zhang and Y. Shi, Observed-mode-dependent state estimation of hidden semi-Markov jump linear systems,IEEE Transactions

on Automatic Control, vol. 65, no. 1, pp. 442–449, 2020.

[6] S. Chen, L. Ma and Y. Ma, Distributed set-membership filtering for nonlinear systems subject to round-robin protocoland stochastic

communication protocol over sensor networks,Neurocomputing, vol. 385, pp. 13–21, 2020.

[7] W. Chen, J. Hu, Z. Wu, X. Yu and D. Chen, Finite-time memoryfault detection filter design for nonlinear discrete systems with

deception attacks,International Journal of Systems Science, vol. 51, no. 8, pp. 1464–1481, 2020.

[8] Y. Chen, J. Ren, X. Zhao and A. Xue, State estimation of Markov jump neural networks with random delays by redundant channels,

Neurocomputing, vol. 453, pp. 493–501, 2021.

[9] Y. Cui, Y. Liu, W. Zhang and F. E. Alsaadi, Sampled-based consensus for nonlinear multiagent systems with deception attacks: The

decoupled method,IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 561–573, 2021.

[10] L. Ding, Q.-L. Han, X. Ge and X.-M. Zhang, An overview of recent advances in event-triggered consensus of multiagentsystems,

IEEE Transactions on Cybernetics, vol. 48, no. 4, pp. 1110–1123, 2018.

[11] Q. Dong, N. Yao, H. Chang and X. Qiu, Application and analysis of multi-rate sampled in structural health monitoringsystem,Journal

of Computational Methods in Sciences and Engineering, vol. 16, no. 2, pp. 317–328, 2016.

[12] A. Fatehi and B. Huang, Kalman filtering approach to multi-rate information fusion in the presence of irregular sampling rate and

variable measurement delay,Journal of Process Control, vol. 53, pp. 15–25, 2017.

[13] X. Ge, Q.-L. Han, X.-M. Zhang and L. Ding, Distributed event-triggered estimation over sensor networks: A survey,IEEE Transactions

on Cybernetics, vol. 50, no. 3, pp. 1306–1320, 2020.

[14] H. Geng, Y. Liang, F. Yang, L. Xu and Q. Pan, The joint optimal filtering and fault detection for multi-rate sensor fusion under unknown

inputs, Information Fusion, vol. 29, pp. 57–67, 2016.

[15] H. Geng, H. Liu, L. Ma and X. Yi, Multi-sensor filtering fusion meets censored measurements under a constrained network environment:

advances, challenges and prospects,International Journal of Systems Science, vol. 52, no. 16, pp. 3410–3436, 2021.

[16] Y. Gu, Y. Chou, J. Liu and Y. Ji, Moving horizon estimation for multirate systems with time-varying time-delays,Journal of the

Franklin Institute, vol. 356, no. 4, pp. 2325–2345, 2019.

[17] N. Hou, Z. Wang, D. W. C. Ho and H. Dong, Robust partial-nodes-based state estimation for complex networks under deception

attacks,IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2793–2802, 2020.

[18] J. Hu, D. Chen and J. Du, State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed

sensor delays,International Journal of General Systems, vol. 43, no. 3-4, pp. 387–401, 2014.

[19] J. Hu, Z. Wang, B. Shen and H. Gao, Quantised recursive filtering for a class of nonlinear systems with multiplicativenoises and

missing measurements,International Journal of Control, vol. 86, no. 4, pp. 650–663, 2013.



FINAL VERSION 18

[20] J. Hu, H. Zhang, H. Liu and X. Yu, A survey on sliding mode control for networked control systems,International Journal of Systems

Science, vol. 52, no. 6, pp. 1129–1147, 2021.

[21] J. Hu, C. Jia, H. Liu, X. Yi and Y. Liu, A survey on state estimation of complex dynamical networks,International Journal of Systems

Science, vol. 52, no. 16, pp. 3351–3367, 2021.

[22] X.-C. Jia, Resource-efficient and secure distributed state estimation over wireless sensor networks: a survey,International Journal of

Systems Science, vol. 52, no. 16, pp. 3368–3389, 2021.

[23] Y. Ju, Y. Liu, X. He and B. Zhang, Finite-horizonH∞ filtering and fault isolation for a class of time-varying systems with sensor

saturation,International Journal of Systems Science, vol. 52, no. 2, pp. 321–333, 2021.

[24] Y. Ju, X. Tian, H. Liu and L. Ma, Fault detection of networked dynamical systems: a survey of trends and techniques,International

Journal of Systems Science, vol. 52, no. 16, pp. 3390–3409, 2021.

[25] H. Li, X. Liao, T. Huang and W. Zhu, Event-triggering sampling based leader-following consensus in second-order multi-agent systems,

IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1998–2003, 2015.

[26] N. Li, Q. Li and J. Suo, Dynamic event-triggeredH∞ state estimation for delayed complex networks with randomly occurring

nonlinearities,Neurocomputing, vol. 421, pp. 97–104, 2021.

[27] W. Li, C. Meng, Y. Jia and J. Du, Recursive filtering for complex networks using non-linearly coupled UKF,IET Control Theory &

Applications, vol. 12, no. 4, pp. 549–555, 2018.

[28] X. Li, F. Han, N. Hou, H. Dong and H. Liu, Set-membership filtering for piecewise linear systems with censored measurements under

Round-Robin protocol,International Journal of Systems Science, vol. 51, no. 9, pp. 1578–1588, 2020.

[29] Y. Li, H. R. Karimi, M. Zhong, S. X. Ding and S. Liu, Fault detection for linear discrete time-varying systems with multiplicative

noise: The finite-horizon case,IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3492–3505, 2018.

[30] L. Liu, L. Ma, J. Zhang and Y. Bo, Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and

bias injection attacks,International Journal of Systems Science, vol. 52, no. 6, pp. 1192–1205, 2021.

[31] Q. Liu, Z. Wang, Q.-L. Han and C. Jiang, Quadratic estimation for discrete time-varying non-Gaussian systems with multiplicative

noises and quantization effects,Automatica, vol. 113, art. no. 108714, 2020.

[32] Y. Liu, Z. Wang and D. Zhou, Resilient actuator fault estimation for discrete-time complex networks: A distributedapproach,IEEE

Transactions on Automatic Control, vol. 66, no. 9, pp. 4214–4221, Sept. 2021.

[33] C.-E. Park, N. K. Kwon and P. Park, OptimalH∞ filtering for singular Markovian jump systems,Systems & Control Letters, vol. 118,

pp. 22–28, 2018.

[34] B. Qu, Z. Wang, B. Shen and H. Dong, Distributed state estimation for renewable energy microgrids with sensor saturations,Automatica,

vol. 131, art. no. 109730, 2021.

[35] S. Roshany-Yamchi, M. Cychowski, R. R. Negenborn, B. D.Schutter, K. Delaney and J. Connell, Kalman filter-based distributed

predictive control of large-scale multi-rate systems: Application to power networks,IEEE Transactions on Control Systems Technology,

vol. 21, no. 1, pp. 27–39, 2013.

[36] X. Tian, G. Wei, L. Wang and J. Zhou, Wireless-sensor-network-based target localization: A semidefinite relaxation approach with

adaptive threshold correction,Neurocomputing, vol. 405, pp. 229–238, 2020.

[37] Z.-H. Pang, L.-Z. Fan, K. Liu and G.-P. Liu, Detection ofstealthy false data injection attacks against networked control systems via

active data modification,Information Sciences, vol. 546, pp. 192-205, 2021.

[38] Z.-H. Pang, L.-Z. Fan, Z. Dong, Q.-L. Han and G.-P. Liu, False data injection attacks against partial sensor measurements of networked

control systems,IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 1, pp. 149-153, 2022.

[39] W. Qian, Y. Li, Y. Zhao, and Y. Chen, New optimal method for L2-L∞ state estimation of delayed neural networks,Neurocomputing,

vol. 415, pp. 258–265, 2020.

[40] B. Qu, N. Li, Y. Liu and F. E. Alsaadi, Estimation for power quality disturbances with multiplicative noises and correlated noises: A

recursive estimation approach,International Journal of Systems Science, vol. 51, no. 7, pp. 1200–1217, 2020.

[41] Y. Shen, Z. Wang, B. Shen and H. Dong, Outlier-resistantrecursive filtering for multisensor multirate networked systems under weighted

Try-Once-Discard Protocol,IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 4897–4908, 2021.

[42] J. Song, D. Ding, H. Liu and X. Wang, Non-fragile distributed state estimation over sensor networks subject to DoS attacks: The

almost sure stability,International Journal of Systems Science, vol. 51, no. 6, pp. 1119–1132, 2020.

[43] Q. Song, Y. Chen, Z. Zhao, Y. Liu and F. E. Alsaadi, Robuststability of fractional-order quaternion-valued neural networks with neutral

delays and parameter uncertainties,Neurocomputing, vol. 420, pp. 70–81, 2021.



FINAL VERSION 19

[44] W. Song, Z. Wang, J. Wang, F. E. Alsaadi and J. Shan, Distributed auxiliary particle filtering with diffusion strategy for target tracking:

A dynamic event-triggered approach,IEEE Transactions on Signal Processing, vol. 69, pp. 328–340, 2021.

[45] H. Tan, B. Shen, Y. Liu, A. Alsaedi and B. Ahmad, Event-triggered multi-rate fusion estimation for uncertain systemwith stochastic

nonlinearities and colored measurement noises,Information Fusion, vol. 36, pp. 313–320, 2017.

[46] H. Viumdal, S. Mylvaganam and D. Di Ruscio, System identification of a non-uniformly sampled multi-rate system in aluminium

electrolysis cells,Modeling, Identification and Control, vol. 35, no. 3, pp. 127–146, 2014.

[47] J.-L. Wang, Z. Qin, H.-N. Wu, T. Huang and P.-C. Wei, Analysis and pinning control for output synchronization andH∞ output

synchronization of multiweighted complex networks,IEEE Transactions on Cybernetics, vol. 49, no. 4, pp. 1314–1326, 2019.

[48] W. Xu and D. W. C. Ho, Clustered event-triggered consensus analysis: An impulsive framework,IEEE Transactions on Industrial

Electronics, vol. 63, no. 11, pp. 7133–7143, 2016.

[49] H. Yang, H. Li, Y. Xia and L. Li, Distributed Kalman filtering over sensor networks with transmission delays,IEEE Transactions on

Cybernetics, vol. 51, no. 11, pp. 5511–5521, 2021.

[50] H. Yang, Z. Wang, Y. Shen, F. E. Alsaadi and F. E. Alsaadi,Event-triggered state estimation for Markovian jumping neural networks:

On mode-dependent delays and uncertain transition probabilities, Neurocomputing, vol. 424, pp. 226–235, 2021.

[51] J. Zhang, X. He and D. Zhou, Filtering for stochastic uncertain systems with non-logarithmic sensor resolution,Automatica, vol. 89,

pp. 194–200, 2018.

[52] W.-A. Zhang, G. Feng and L. Yu, Multi-rate distributed fusion estimation for sensor networks with packet losses,Automatica, vol. 48,

no. 9, pp. 2016–2028, 2012.

[53] D. Zhao, S. X. Ding, H. R. Karimi and Y. Li, RobustH∞ filtering for two-dimensional uncertain linear discrete time-varying systems:

A krein space-based method,IEEE Transactions on Automatic Control, vol. 64, no. 12, pp. 5124–5131, 2019.

[54] M. Zhu, Y. Chen, Y. Kong, C. Chen and J. Bai, Distributed filtering for Markov jump systems with randomly occurring one-sided

lipschitz nonlinearities under Round-Robin scheduling,Neurocomputing, vol. 417, pp. 396–405, 2020.

[55] L. Zou, Z. Wang, J. Hu, Y. Liu and X. Liu, Communication-protocol-based analysis and synthesis of networked systems: Progress,

prospects and challenges,International Journal of Systems Science, vol. 52, no. 14, pp. 3013–3034, 2021.

[56] L. Zou, Z. Wang, J. Hu and Q.-L. Han, Moving horizon estimation meets multi-sensor information fusion: Development, opportunities

and challenges,Information Fusion, vol. 60, pp. 1–10, 2020.




