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Abstract: 

The formation of shrinkage cracks is a natural phenomenon in expansive soils. The 

development of these cracks affects both the physical and mechanical properties of the soil. 

This paper proposes new procedures for predicting and detecting the formation of crack 

patterns in expansive soils, based on customized Convolution Neural Network (CNN) and 

transfer learning. A total of four different deep learning models are developed to detect the soil 

crack pattern by changing the convolution layers and hyper-parameters in the analysis. The 

novelty of the proposed detection methods lies in the use of customized CNN models in 

shrinkage crack detection for expansive soils. The customized CNN models are constructed by 

varying the number of convolution layers and the hyperparameters. The results show that the 

proposed CNN models provide very accurate results and are capable of detecting the presence 

of cracks in the soil with great accuracy. The best results are from one of the customized CNN 

models namely the Customized CNN Model 2 which consists of five convolution layers, three 

activation layers, one pooling layer, two fully connected layers, and a softmax layer. The results 

from this model are compared with other well-known approaches from the literature and are 

shown to provide improved results. Overall, the proposed deep learning methods developed in 

this paper produce excellent results in terms of the accurate detection of shrinkage soil cracks 

and can also be applied to other types of soil cracks. 

Keywords: Shrinkage crack, crack detection, expansive soil, deep learning, deep convolution 

neural network 

1. Introduction: 

This paper is concerned with the detection of shrinkage cracking in expansive soils using a 

deep convolution neural network together with so-called transfer learning. Shrinkage cracks 

are a natural phenomenon and generally occur due to the evaporation of moisture and a 

reduction in water content in the soil. On the other hand, swelling occurs in expansive soils 

when the water content is reasonably high. In this context, when expansive soils such as clays 

are exposed to the atmosphere, their behaviour is influenced by changes in the local weather 

conditions. Naturally, expansive soil tends to seep low into the material, and the soil layer may 

produce shrinkage cracks during evaporation. Clay soils are more likely to experience greater 

shrinkage and lower seepage characteristics compared with non-cohesive soils, and these 

properties are the main causes of crack development in these materials. The upper surface of 

the soil layer tends to shrink as the water evaporates, while the bottom soil layer experiences 



no significant change, and the resultant shrinkage is, therefore, inhomogeneous through the 

overall soil depth [Shi et al. (2014) and Xuhe Gao et al. (2020 a,b)].  

Shrinkage cracking can be a significant issue and is, for example, the principal cause of anti-

seepage failure of compacted clay liner in landfill covers [Wan et al. (2018)]. Though it is a 

natural phenomenon, dehydration cracking and the effects of climate change are aggravating 

these issues. The formation of cracks may alter the physical properties of soil which, in turn, 

cause geological, geotechnical, and environmental problems such as landslides, barrier 

dysfunction, ground subsidence, and embankment [Xu et al. (2021)]. The soil cracks induce 

several physical, biochemical and chemical changes in the soil [Armstrong et al. (2000)].  

Researchers have generally focused on the development of soil cracks and their morphology, 

as well as quantitative measurements to understand the crack patterns [Kumar et al. (2015)]. 

The soil morphology illustrates the drying process in the material and also provides information 

about large-scale crack patterns. In addition, cracks in clay soils, in particular, may weaken the 

physical properties of the material thereby affecting the stability of nearby structures. The 

formation of surface cracks due to shrinkage affects the stress capacity of the soil. An uneven 

distribution of water content in the soil, particularly when coupled with high relative humidity, 

can cause significant variations in the crack density for clay soils [Lu and Likos (2004)]. It is 

very important to identify soil crack patterns to evaluate the permeability of the soil, which is 

in turn important when considering soil improvement strategies. The geometric parameters of 

the soil cracks are one of the important metrics for predicting soil engineering properties and 

therefore it is important to obtain and understand the soil crack network in a reliable manner. 

There are several traditional methods available to evaluate the geometric properties of soil 

cracks in the field such as taking manual measurements or non-destructive testing. However, 

these are not necessarily reliable or accurate owing to their inherent dependency on human 

readings. In more recent years, due to vast and rapid computational advancements, it is possible 

to detect the soil cracks efficiently without human intervention, using digital images. The 

digital image processing methodology involves many fundamental steps including pre-

processing, noise removal, and crack detection. Image processing techniques can also be used 

to analyze the characteristics of cracks in clay subjected to drying shrinkage. The factors 

influencing the development of shrinkage cracks are the water content, the wetting-drying 

cycle, and the composition of soil [Lu and Likos (2004)]. Many researchers have used different 

methods to predict, analyze and quantify the crack formation for cohesive or expansive soils 

[e.g. Tan and Kong (2006) and Gong et al. (2009)]. Accurate detection and assessment of 



shrinkage cracks in clay soils is very important as it strongly affects slope stability. 

Nevertheless, the traditional methods of detecting cracks, particularly for expansive soils, have 

significant shortcomings, as described, and therefore newer methods employing modern 

technologies are being developed. 

In this context, a very current and topical approach to processing the data from digital imagery 

is to adopt a machine learning strategy. To process large quantities of input data, machine 

learning-based methods such as support vector machine (SVM) learning [Li et al. (2017)] and 

extreme learning machine (ELM) [Dai et al. (2019)] have been adopted to classify the cracks 

in concrete from the input images. Andrushia et al. (2019, 2020) investigated crack detection 

methods for concrete structures subjected to fire. In this work, the images of the fire exposed 

concrete were analyzed in the transform domain to identify and locate the cracks.  

In these different machine learning methods, a feature extraction process is carried out as a 

primary step to learn the input images. If a greater number of features are to be extracted, then 

feature reduction techniques can be applied to find the optimal features. Principle component 

analysis (PCA) is then employed to perform feature selection and thereby yield an informative 

feature set. The optimal features are given to classifiers to detect the cracks accurately. In 

addition, there are many different types of classifiers available to detect the cracks from the 

input images, including the so-called K nearest neighbour method (KNN), artificial neural 

networks (ANN), fuzzy logic with SVM, and genetic algorithms with SVM [Choudhary and 

Dey (2012)].  

The traditional steps in pattern recognition involve pre-processing, feature extraction, 

segmentation, classification, and recognition and many algorithms can be introduced at each 

stage. The feature extraction step is the most challenging of these steps because the high-level 

features that are related to the damage location are provided by the user, which can reduce the 

overall accuracy of the detection process. This is overcome by adopting a deep learning 

technique that can perform automatic feature extraction steps and can deal with a very large 

number of inputs.  

Deep learning is an emerging artificial intelligence tool that has created significant 

advancements in the area of pattern recognition in recent years and has been applied 

successfully in a wide variety of fields. The performances of these techniques are excellent in 

comparison with machine learning techniques [Liu et al. (2019)]. Cha et al. (2017) used deep 

convolution neural networks to detect damage to concrete surfaces. Also, Andrushia et al. 



(2021) used U-net with residual connection architecture for damage detection in concrete 

structures.  For pavement crack detection, Fan et al. (2020 a, b) used ensemble networks and 

encoder-decoder architecture; the efficiency of this approach was compared with different deep 

learning methods and achieved an accuracy of 92.1%. Drouyer (2020) used deep learning 

models to detect the cracks in concrete structures. Ali et al. (2021) compared multiple pre-

trained models to detect the cracks in concrete structures.  Auvray et al. (2014) discussed the 

image-based crack quantification for soft soils, in which the cracks were found using image 

processing methods.  

From the above discussion, it is clear that although there are a variety of different deep learning 

techniques available which can detect defects in concrete structures, tunnels, dams, and 

pavements, there is very little available information in the literature on using these techniques 

for the detection of cracks in the soil. In this context, the current paper aims to explore the use 

of different deep learning techniques include a convolution neural network and transfer 

learning to detect the development of cracks in expansive soils. The farmlands under the 

foothills of the Western Ghat mountain range in India are identified as the local environment 

for this study, as the soil in this area is characterized as an expansive clay material.  

Four deep neural models are employed to detect soil shrinkage cracks. The first and second 

approaches are Customized CNN models whilst the third and fourth models are pre-trained. 

The novelty of the proposed method is in the usage of Customized CNN models in shrinkage 

crack detection for expansive soils, which has not previously been studied. These customized 

CNN models are developed by varying the number of convolution layers and the hyper-

parameters. The detection of soil cracks using deep-learning strategies is very rarely studied in 

the literature. The pre-trained architectures of VGG-19 and ResNet-50 have been used to detect 

the soil shrinkage cracks. A set of real time images are captured from the local environment 

for the analysis. The detailed steps of each model are described in the following sections. The 

performance of each model is analyzed and the accuracy of the results is compared with those 

obtained using other deep learning as well as traditional methods.  

2. Methodology 

The area of interest for this investigation is in farmlands near the Western Ghats mountain 

range in India with geographical coordinates of 10.9412° N, 76.7264° E, as shown in Fig. 1. 

The study area is located in the western part of Tamil Nadu. This image highlights the location 

under investigation, in which the soil images are captured. The average annual rainfall in this 



area falls between 550 and 710 mm, of which the northeast and the southwest monsoons 

contribute 43.5% and 26.3% respectively to the total rainfall. The mean minimum and 

maximum temperatures of the location during summer and winter vary between 19 and 35°C. 

 

Fig. 1: Field Location of Study Area 

This paper is concerned with soft clay soil, which is an example of an expansive soil. Expansive 

soils are significant for engineering applications because they tend to swell when they absorb 

water and then shrink during the drying process, causing stability issues for buildings and 

structures. The swelling occurs owing to the presence of expansive clay minerals in the 

material. In general, clay soils with a plasticity index value of greater than 25 and the liquid 

limit value of more than 40 are likely to experience swelling [Thomas et al. (2016)]. Expansive 

soils are found in many regions under the Western Ghats mountain range in India, and these 

soils pose settlement problems leading to foundation issues in structures. In the present study, 

the clay material is assumed to be from a landscape with a fine-grained soil datum, and a 

relatively high void ratio. The soil is in a plastic state and has a range of water content values. 

The details of the soil considered in the current investigation are shown in Table 1. The 

presented values were determined in the geotechnical laboratory at the Karunya Institute of 

Technology and Sciences. 

Table 1: Physical Characteristics of the Soil 

Soil Property Value 

Specific weight (dry state) 17.75 kN/m3 

Specific gravity 2.55 – 2.62 

Size 

Particle size distribution  

< 0.002 mm 

91.5% 

Optimum moisture content 14.2 – 15.2% 

Liquid limit 58-72 



Plastic limit 36-42 

Shrinkage index 24-32 

Free swell index 66-75% 

It is seen from the data presented in Table 1 that the soil samples have a high degree of 

expansion coupled with relatively high compressibility. Fig. 2 shows the soil samples and 

instruments that were considered for the laboratory testing, including (a) an image of a soil 

sample, (b) the device for determination of the moisture content (Atterburg limits), and (c) the 

tool for measuring the swelling pressure. 

 

(a)                                           (b)                                           (c) 

Fig. 2: Images from the experimental investigation of the soil properties including (a) the Soil 

sample, (b) the moisture content measuring apparatus including a grooving tool and moisture 

can, and (c) the device for measuring the swelling pressure.  

 

Fig. 3. Particle Size Distribution of the Clay Soil 

The tests to determine the Atterburg limits were conducted following the Indian standards [IS 

2720 Part 5. (2006) and IS 2720 Part 6. (2001)]. Sieve analysis was conducted for the soil 

samples in accordance with the guidance given in IS 2720 Part 4. (2015). Fig. 3 presents the 

particle distribution of the clay soil samples that were considered in this analysis. 

3. Crack detection procedure 



The proposed detection method comprises three distinct stages, as indicated in Fig. 4. Firstly, 

the images in the dataset are arranged. Then, the customized CNN architecture and deep 

learning algorithms are generated before finally, in the third stage, the model is evaluated and 

comparisons are made. These steps are described in more detail in the following sub-sections.  

As indicated in the figure, four different models are studied in this work, namely (i) the 

Customized CNN Model 1, (ii) the Customized CNN Model 2, (iii) the VGG-19 Model and 

the (iv) ResNet-50 Model. 

 

Fig, 4: Flowchart for the proposed soil crack detection 

Once a study area has been identified and selected, the dataset can be generated by taking a 

series of images. The images are captured using a camera with a resolution of 3200×4800, after 

which they are resized to 64×64. Fig. 5 shows some sample images of soil shrinkage cracks. 

 

Fig. 5: Sample Images of Soil Shrinkage Cracks 

3.1. Convolution Neural Networks (CNN) Architecture 



The CNN consists of four major segments, which are the convolution layer, pooling layer, 

flattening layer, and fully connected layer. The CNN was designed as a feed-forward neural 

network. The convolution and pooling layers perform feature extraction steps.  

3.2 Convolution Layer  

The primary purpose of the convolution layer is to extract the desired features from the input 

data. This is done by finding local contacts of the data sample from the input layer. The 

convolution operation is performed between the matrix of input and feature detector to obtain 

the feature map. In this later, the dimensions of the input data are reduced thus simplifying the 

processing requirements. Many feature vectors are applied to the input, to get multiple feature 

maps. The derived feature maps are then varied with different convolution kernels. The final 

feature vector (FV) is applied to the activation layer, given as: 

𝐹𝑉 = ∑(𝐼𝑛×𝑛 +𝑊𝑛×𝑛) + 𝐴            (1) 

where 𝐼𝑛×𝑛 is the input to which the convolution operation is being applied, 𝑊𝑛×𝑛 is the filter 

weights, n is the kernel size and A is the filter bias of the convolution layer.  

3.2.1 Activation layer 

The activation function defines how the weighted sum of the input is transmitted into an output 

from the nodes in a layer of the network. Two different activation functions are employed in 

this, namely a rectified linear unit (ReLU) and Softmax. ReLU is a linear function that is 

applied to the output of the convolution layer (i.e. the feature maps). For a positive input, ReLU 

produces the output as unity whereas, for a negative input, the output is zero. ReLU is 

specifically employed because it accelerates the computational processes compared with other 

activation functions such as tanh and sigmoid. The prime advantage of the ReLU function is 

that it does not trigger all the neurons at the same instant. The ReLU function is defined as: 

𝛼(𝐼) = max⁡(0, 𝐼)                  (2) 

where ‘I’ is the input matrix elements and ‘𝛼′is the mathematical function of the activation 

layer. The second activation function Softmax normalizes the input and produces a probability 

function that ranges from zero to unity. The cross-entropy cost function is generally used with 

the Softmax activation function. 

3.2.2 Pooling Layer  

The pooling layer is used to reduce the dimensions of the input further [Simonyan et al., 2015]. 

It separates the feature map into non-overlapping pooling kernels. Specifically, it down-



samples the input and also reduces the number of model parameters. This has the positive effect 

of simplifying the computational complexity and improving the potential for generalization of 

the model. The sub-sampling process uses max-pooling and average pooling techniques. For 

max-pooling, the maximum value of every smaller region is considered whilst the remaining 

values are removed. On the other hand, the average pooling process considers the average of 

all values in each smaller region. In general, max-pooling is used to find the prime features of 

an input image, whereas, average pooling helps the model to assess the full features of the input 

image. It is noteworthy that average pooling is a higher workload with a greater amount of data 

analyzed compared with maximum pooling. 

3.2.3 Fully Connected Layer  

In this final layer, the feature maps that are generated in the previous layers are aligned into 

columns and then feed into the neural network. The fully connected layer is considered to be a 

traditional neural network that gives logical inference. It converts a three-dimensional matrix 

into a single-dimensional vector by using a full convolution operation. The mathematical 

equation that defines this layer is given as: 

𝐶𝑉0×1 = 𝑤𝑡𝑉0×𝑉𝑖 ⁡𝐼𝑉𝑖×1 × 𝐴𝑉0×1           (3) 

where  𝑉0 and 𝑉𝑖 are the input and output matrix size, respectively C denotes the outcome of 

the fully connected layer and 𝑤𝑡 and 𝐴 represent the weight and bias matrices, respectively. 

The network generates a prediction and upon which the cost function is calculated which then 

reveals the performance of the network. The cost function calculation is followed by 

backpropagation, weights tuning, and feature maps optimization. The Adam optimization 

algorithm is employed which effectively updates the weights of the network depending upon 

the training data.  

4. Model Architecture 

As stated before, four different modelling approaches are used for the training and testing of 

the soil cracks dataset. A detailed description of each of these models (two customized models 

and two pre-trained models) is provided hereafter.  

4.1 Customized CNN Model 1 

The first CNN model is constructed by tuning different hyperparameters including the number 

of filters, pooling locations, number of convolution layers, stride, sizes, and number of fully 

connected layers. The hyper-parameter selections are done on a trial-and-error basis and there 



is no standard mathematical formulation for setting the parameters for the specific dataset. The 

first, second, and third convolution layers have 32, 64, and 128 feature maps, respectively, 

employing the ReLU activation function. It is noteworthy that convolutional layers in a 

convolutional neural network summarize the presence of features in an input image.  

After each convolution layer, a 2×2 dimensions max pooling layer is used. Pooling layers 

provide an approach to down sampling feature maps by summarizing the presence of features 

in patches of the feature map. Two common pooling methods are average pooling and max 

pooling and the latter is employed in the work presented herein. There are two dense layers 

used. The initial dense layer has 256 output perceptrons with ReLU and the second dense layer 

has output perceptron with a softmax function. The learning rate is given as 0.0001.  As 

discussed before, the Adam optimizer with the cross-entropy cost function is used. Fig 6 shows 

the detailed architecture of the Customized CNN Model 1. 

 

Fig. 6: Flow chart of the Customized CNN Model 1 

4.2 Customized CNN Model 2 

The customized architecture of the second CNN Model consists of five convolution layers, 

three activations, one pooling layer, 2 fully connected layers, and a softmax layer (Fig. 7). Each 

of these layer arrangements are used to increase the performance of the model and to extract 

the features and reduce the dimensionality requirements of the inputs. The convolution layers 

are used to improve the spatial invariance property and to recognize the key features from the 

input image. The CNN architecture relies on the sequential features of the input data. If the 

input is highly sparse then the training ability of the neural network should be downgraded 

[Luo et al. (2020)]. In this context, the Adam optimizer is again used in this model to handle 

the sparse input data. It handles the sparse data well in comparison with Adadelta and RMSprop 

optimizer by adding bias correction and momentum to RMSprop. The learning rate of the 



second model is reduced to 0.00001. The detailed steps involved in the implementation of both 

of the customized CNN models (in Section 4.1 and 4.2) are outlined as: 

Step 1: The input image with size of 64×64 is applied through the convolution layers which 

produce 32 feature maps (ReLU activation function). The output of the convolution layer is 

passed into the maximum pooling layer with 2×2 dimensions:  

𝛼(𝐼) = max⁡(0, 𝐼)         (4) 

Step 2: The input image with a size of 64×64 is applied through the convolution layer which 

produces 64 feature maps (the ReLU activation function). The output of the convolution layer 

is passed into the maximum pooling layer with 2×2 dimensions. 

Step 3 Part (i): For the Customized CNN Model 1, the input image with a size of 64×64 is 

applied through the convolution layers which produce 128 feature maps (ReLU activation 

function). The output of the convolution layer is passed into the maximum pooling layer with 

2×2 dimensions and then flattened. 

Step 3 Part (ii): For the Customized CNN Model 2, the input image with a size of 64×64 is 

applied through the convolution layers which produce 512 feature maps (ReLU activation 

function). The output of the convolution layer is passed into the maximum pooling layer with 

2×2 dimensions and then flattened. 

Step 4: The outcome of the final layer is passed through a fully connected layer with 256 

perceptrons (for model 1) and 1024 perceptrons (for model 2) as well as the ReLU function. 

Step 5: The model is compiled using the Adam optimizer and a learning rate of 0.0001. 

 

 

Fig. 7: Flow chart of Customized CNN Model 2 

4.3 VGG-19 Model 



The VGG-19 transfer learning model was first proposed by Simonyan et al (2015) and consists 

of 16 convolution layers and 3 fully connected layers with a 3×3 filter size. The smaller kernel 

size is used to reduce the number of parameters and to access the entire input image. The use 

of multiple kernels increases the depth of the neural model.  The model performs 2×2 maximum 

pooling with stride 2.  This means that the pooling layer reduces the size of each feature map 

by a factor of 2, e.g. each dimension is halved, reducing the number of pixels or values in each 

feature map to one quarter the size. As before, the Adam optimizer is employed with the cross-

entropy cost function to reduce the learning rate to 0.00001. The VGG-19 Model emphasizes 

the concept that CNN model need to have a deep layer network which can interpret the visual 

data hierarchically.  

4.4 ResNet-50 Model  

The fourth approach is the ResNet-50 Model which employs pre-trained neural networks. He 

et al. (2016) originally proposed the residual network ‘ResNet’ which is an artificial neural 

network (ANN) primarily used for image classification. It introduces residual connections 

between the layers which help the model to reduce losses and improve the performance during 

the training phase. The ResNet convolution layer has 3×3 filters and the downsampling is 

performed by convolution layers with a stride of 2. The final fully-connected layer employs 

ReLU and Softmax activation functions. The learning rate of the model is 0.000001 and, as 

before, the Adam optimizer is used. The residual connection in the ResNet network is used to 

nullify the issues of diminishing gradient and degrading accuracy which occur in deep 

networks. Hence, the training error is reduced and the convergence rate is higher in comparison 

with other deep networks.   ResNet networks have been developed in different architectures 

(e.g ResNet 34, ResNet Xt, ResNet V2 and ResNet-50) and ResNet-50 is a residual network 

that consists of 50 layers. A graphical representation of the ResNet architecture is presented in 

Fig. 8. 



 

Fig. 8: Residual Learning block of ResNet-50 Architecture 

5. Experimental Results 

The performances of each of the four deep learning models which were developed for soil 

crack detection are evaluated hereafter based on the input size of the dataset, model parameters, 

and the convergence rate. The experiments were implemented using MATLAB 2018, a 2.90 

GHz processor with a 12 GB GPU card NVIDIA GTX1050. A total of 5200 images were 

obtained during the analysis. The approach adopted herein employs k-fold cross-validation as 

the resampling procedure to evaluate the machine learning models for the sample set. Instead 

of training fixed data only as ‘train and test’, different combinations of data have been used. 

Initially, different k-fold-scenarios selected the training and testing dataset. After a number of 

trials, a fivefold cross-validation technique was adopted to evaluate the proposed methods. In 

the fivefold cross-validation, the entire dataset is segregated into 5 mutual folds. Each fold is 

used once to access the model performance, generated from the collective data of the remaining 

4 subsets. It results in 5 independent performance estimations. This method assigns all soil 

crack images to a validation subset once, thus can be utilized for cross-validation evaluation. 

The cross-validation procedure is repeated after every 5 epochs.  80% of input images are used 

for training, 10% of input images are used for testing, and 10% are employed for validation 

assists in avoiding the overfitting problem.  

5.1 Analysis of the Customized and Pre-trained Models 

The number of convolution layers is lower in the customized model in comparison with the 

pre-trained models. The VGG-19 models are three to four times deeper than the customized 

model. The architecture of the VGG-19 and ResNet models are quite similar but the ResNet 

model is deeper than the VGG-19 Model. In terms of the number of parameters, the ResNet 



model is less complex. The number of epochs in the proposed work is tuned as 25 for all four 

models. The losses of all models are minimized at the 25th epoch. Following this, there was 

found to be no further improvement in the accuracy of the models. The relatively low number 

of epochs helps to reduce the computational complexity of the architecture. Also, it has been 

shown that a relatively larger number of epochs may tend to over-fit the models [Yan et al. 

(2019)]. 

Fig. 9 presents a comparison between the soil samples (in top images) and the results predicted 

by each of the four modelling approaches (lower images). It is observed that all of the major 

and minor cracks are detected with different lighting conditions. Figs. 10-13 presents the model 

accuracy and loss results for each of the four modelling approaches, respectively; the data is 

also presented in Table 2. With reference first to Fig. 10, it is observed that Customized CNN 

Model 1 has a training accuracy of 93.82% and a validation accuracy of 88.83%. The training 

and validation loss for Customized CNN Model 1 is 20.01% and 39.14%, respectively. The 

corresponding training accuracy figures for Customized CNN Model 2 are 96.91% and the 

testing accuracy is 94.15%. On the other hand, the training and validation loss figures are 

10.15% and 26.18%, respectively. By comparing the two customized models, it is shown that 

although both CNN approaches provide an excellent prediction, the second model is the most 

accurate and provides more consistent and efficient scores.  

 

 

(a)                        (b)                              (c)                           (d) 

Fig. 9: Output of soil shrinkage crack detection from each of the four approaches including 

(a) the Customized CNN Model 1, (b) the Customized CNN Model 2, (c) the VGG-19 pre-

trained approach and (d) the Res-Net-50 CNN Model 1 



 

(a)                                                           (b) 

Fig. 10. Results for Customized CNN Model 1 including (a) training accuracy versus 

validation accuracy and (b) training loss versus validation loss 

 

 

 

 

 

 

(a)                                                           (b) 

Fig. 11. Results for Customized CNN Model 2 including (a) training accuracy versus 

validation accuracy and (b) training loss versus validation loss 

 

 

 

 

 

 

(a)                                                          (b) 

Fig. 12. Results for the VGG-19 pre-trained model including (a) training accuracy 

versus validation accuracy and (b) training loss versus validation loss 

 



 

(a)                                                          (b) 

Fig. 13. Results for the ResNet-50 pre-trained model including (a) training accuracy 

versus validation accuracy and (b) training loss versus validation loss 

With reference to the pre-trained models, the model accuracy and loss graphs are shown in 

Figs. 12 and 13 for the VGG-19 and ResNet-50 Models, respectively. The validation accuracy 

of the ResNet-50 Model is relatively low and the validation loss is also quite high compared 

with the VGG-19 Model. The results highlight the variation in accuracy and loss values for 

increasing epochs. The VGG-19 Model has less overfitting and greater testing accuracies 

compared with the ResNet-50 Model. Overall, the pre-trained models have a higher number of 

layers and their testing accuracy is shown to be less than for the customized CNN models. 

Smaller datasets are used for both training and testing so that the pre-trained models produce 

lesser accuracy.  When a larger dataset is employed, the transfer learning models generally give 

improved outputs. 

Table 2: Accuracy and Loss Values for the Four Models 

Name of the Model Training 

Accuracy 

(%) 

Training 

loss (%) 

Validation 

Accuracy 

(%) 

Validation 

Loss 

(%) 

Customized CNN Model 1 93.82 20.01 88.83 39.14 

Customized CNN Model 2 96.91 10.15 94.15 26.18 

VGG-19 Model 92.92 18.95 87.63 36.41 

ResNet-50 Model 94.71 15.81 84.11 70.11 

 

Table 3 highlights the accuracies of the Customized CNN models as well as the pre-trained 

models at the first and twenty-fifth epochs. The accuracy of the VGG-19 Model differs 



significantly at the first and twenty-fifth epochs. The ResNet-50 Model had lower accuracy 

due to the identity mapping concepts which resulted in its architecture being quite complex. 

Table 3. Accuracy of the Models at the First and 25th Epoch 

Name of the Model 1st Epoch 25th Epoch 

Customized CNN Model 1 0.873 0.891 

Customized CNN Model 2 0.934 0.927 

VGG-19 Model 0.839 0.884 

ResNet-50 Model 0.832 0.850 

 

5.2 Evaluation Metrics 

The performance metrics are carefully chosen to determine the best-performing model as these 

play a major role in finding the efficiency of the detection method. In the proposed work, the 

performance metrics of accuracy, precision, recall, and F1 are taken for the fine comparison of 

experimental results. The accuracy (A) is determined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡(𝐴) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
           (5) 

where 𝑇𝑃 is truly positive, 𝑇𝑁 is a true negative, 𝐹𝑃 is false positive and 𝐹𝑁 is a false negative. 

𝑇𝑃 and 𝑇𝑁 represent the correctly detected soil cracks and non-cracks. 𝐹𝑃 and 𝐹𝑁 represents 

wrongly detected soil cracks and non-cracks. Accuracy is defined as the ratio of the correctly 

detected cracks and non-cracks to the total cracks in the input image.  On the other hand, the 

precision (P) is defined as the ratio between the correctly detected cracks and the total number 

of cracks detected by the model. The recall (R) is the ratio of correct crack detections among 

all positive samples. The F1 score is the harmonic mean of precision and recall. If it is high, 

then the 𝐹𝑃 and 𝐹𝑁 are relatively low. The precision (P), recall (R) and F1 scores are determined 

in accordance with Eqs. 6-8, respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡(𝑃) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙⁡(𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (7) 

𝐹1 = 2 ×
𝑃×𝑅

(𝑃+𝑅)
                            (8) 



Table 4 shows the evaluation metrics of all four models, for comparison. The customized CNN 

Model 2 achieves better performance metrics in comparison with the other three models. The 

precision, recall, and F1 scores of the Customized CNN Model 1 and 2 are greater than 9%. 

The Customized CNN Model 2 in particular has a recall value of 97.25% which is exceptionally 

high. Overall, the VGG-19 Model gives better results in comparison with ResNet-50. Hence 

out of four analyzed models, the Customized CNN Model 2 is shown to provide the best overall 

performance, following by the Customized CNN Model 1, then the VGG-19 Model and finally 

the ResNet-50 approach.  

Table 4: Performance Metrics 

 

The receiver operating characteristic (ROC) is another commonly-used performance metric 

for the evaluation of detection algorithms. The ROC plot of the Customized CNN Models 1 

and 2 are shown in Fig. 14. The area under the ROC curve identifies that the model effectively 

detects crack pixels and other non-crack pixels. The highest possible area value under the ROC 

curve is unity. The Customized CNN Model 2 has a value 0.961 whereas the corresponding 

value for the Customized CNN Model 1 is 0.911. It indicates the second customized model 

accurately detects the cracks and non-cracks from the input. 

Name of the Model Precision (P) Recall (R) F1 Score 

Customized CNN Model 1 0.901 0.934 0.918 

Customized CNN Model 2 0.957 0.980 0.964 

VGG-19 Model 0.882 0.944 0.909 

ResNet-50 Model 0.805 0.894 0.850 



 

Fig. 14. ROC Curve of the Customized CNN Models 

5.3 Comparative Study 

The best performing of the four methods described herein, that is the Customized CNN Model 

2, is compared with four state-of-the-art methods proposed by other researchers. The traditional 

Canny edge detector method is used to detect the cracks in the studies conducted by Zhao et 

al. (2010). The modified median filters are used to remove the noise in the input image. The 

Support Vector Machine (SVM) based machine learning method is adopted to find the cracks 

in the investigation proposed by Wang et al. (2016). The feature fusion technique is also used 

to identify the features correctly. Fan et al. (2020a) used an ensemble network for detecting 

cracks. The small size of input images is given to the network to identify the cracks.  The 

encoder and decoder architecture of the U-net is used to detect the cracks in the analysis of Fan 

et al (2020b). The comparison of performance metrics in terms of precision, recall, and F1-

score are presented in Table 5. 

Table 5: Comparison of the Proposed Detection Method with State-of-the-Art Methods 

Reference Method Precision Recall  F1-Score 

Zhao et al., 

(2010) 

Canny 0.437 0.730 0.457 

Wang et 

al(2016)  

SVM 0.768 0.681 0.681 

Fan et al 

(2020a) 

DCNN 0.930 0.926 0.923 



Fan et al 

(2020b) 

U-Net 0.945 0.936 0.939 

Proposed 

method 

Customized 

CNN Model 2 

0.957 0.972 0.964 

 

The data presented in Table 5 indicates that the proposed Customized CNN Model 2 

outperforms the different methods proposed by other researchers for the range of parameters 

examined. It has been shown that the detection results from earlier traditional models mostly 

depend on image quality [Zhao et al. (2010)]. Hence, the soil elements are also identified as 

cracks due to their color being similar to the cracks. More basic computer vision methods are 

also faced with this problem [Wang et al (2016)]. On the other hand, deep learning models 

produce better and more accurate results in terms of crack detection compared with traditional 

computer vision-based methods. The deep learning models proposed by Fan et al. (2020a) and 

the proposed Customized CNN Model 2 produces greater accuracy of all the methods examined 

herein in terms of accuracy, precision, recall, and the F1 score. 

6. Conclusions 

This paper presents a series of new, deep learning-based models for the detection of shrinkage 

cracks in expansive soils. This is a complex problem, and recent advances in digital methods 

have enabled these new, sophisticated approaches to be developed. A real-time soil crack 

dataset is used for illustrating the accuracy of the devised approaches. Four different models 

are develops including two customized CNN Models and two pre-trained models (i.e. the 

VGG-19 and ResNet-50 models). The proposed methods are shown to accurately detect 

shrinkage cracks in expansive soils. The dataset consists of images with various lighting and 

soil conditions as well as different field environments.  

The Customized CNN Model 2 is shown to provide the best results of those presented, although 

all four methods are better than other approaches in the literature.  The recall is a useful 

performance metric to minimize the number of false negatives in the automatic detection tasks. 

It is shown in this paper that the proposed model has a very high recall value of 98%. It can be 

concluded that the increasing number of convolution layers and parameters which are 

employed in this model result in accurate detection of soil cracks.  

Even though the proposed deep learning method yields satisfactory results in shrinkage soil 

crack detection, there are some limitations which are noteworthy. In particular, complicated 



crack geometries and their morphological conditions need to be collected and included in the 

datasets. In addition, testing images with different photographic angles can be encountered. 

Nevertheless, the proposed deep-learning method developed herein can be readily adapted and 

employed for other types of cracks in soils also.  
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