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Dynamic Output-Feedback/,, Control for Discrete
Time-Delayed Systems with Actuator Saturations
under Round-Robin Communication Protocol

Yonggang Chen, Zidong Wahg Fuad E. Alsaadi and Hongjian Liu

Abstract

In this paper, the dynamic output-feedballk, control problem is investigated for discrete-time state-delay
systems subject to exogenous disturbances and actuator saturations under the Round-Robin communication protocol.
Using the switched system approach, the Lyapunov-Krasovskii functional and the modified sector condition, sufficient
conditions are first obtained under which the closed-loop systems can achieve some desirable performance indices
such as the boundedness, ttig, performance and the stability in the absence of disturbances. Then, the controller
is explicitly characterized by means of the solvability of linear matrix inequalities. For the case without time delays,
the corresponding conditions are also presented. Subsequently, the optimization problems about the performance
indices are discussed. Finally, the benefit and effectiveness of the proposed results are specifically illustrated via
two simulation examples.

Index Terms

Dynamic output-feedback control, discrete-time systems, state delays, actuator saturations, Round-Robin proto-
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. INTRODUCTION

Time delays are often encountered in many practical systems such as power systems, chemical process, neure
networks and networked control systems (NCSs), which could lead to poor performance and instability of control
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systems. Over the past several decades, an ever-growiagrcbsinterest has been devoted to the investigation
on the time-delay systems, see e.g., [9], [12], [15], [22B]F[27], [29], [32], [36], [37]. On the other hand, in
most practical feedback control systems, the phenomenawtahtor saturations is unavoidable, which constitutes
another source of performance degradation and instalfiitlyne important results about analysis and synthesis of
control systems subject to actuator saturations can bedfouf1], [42] and the references therein.

In reality, time delays and actuator saturations might idr a control system. For a decade, the coupling
issue of time delays and actuator saturations has drawndesable research attention [1], [2], [4], [5], [28],
[43]. For example, the semi-global stabilization probleas tbeen addressed in [43] for input-delay systems by
using the law gain technique. In [2], [4], the local/regibstabilization problem has been studied by using the
Lyapunov-Krasovskii (L-K) functional approach to deal kwitime delays and the polytopic models to represent
saturation nonlinearities. Note that most existing reashiave been mainly concerned with the design of state
feedback controller. In the case that the system state isasarable, it becomes necessary to design the output-
feedback controller [14], [35]. However, it is worth poimgi out that some stringent constrains would have to be
imposed on the matrix variables when designing the obsérased controller [35].

Along with the rapid development of network technologie€C$¢ have been attracting a recurring research
interest in the control community. So far, NCSs have exéibifascinating advantages (e.g. cost reduction and
maintenance convenience) with extensive applicationsvarigty of practical systems. Nevertheless, the embedding
of communication networks in control systems have broudfuua certain imperfections (e.g., packet dropouts,
communication delays, and signal quantization) whichltesainly from inherent limited bandwidth [3], [13], [16],
[18], [30], [34], [39], [44], [46]. For network with limitedbandwidth, a typical way of preventing networked-induced
phenomena is to deplayommunication protocolso as to facilitate multiple (and simultaneous) signalgraissions.
According to the popularity, three types of communicatiootpcols have been adopted in industry applications,
i.e., Round-Robin (RR) protocol, Try-Once-Discard (TODdtocol, and Random Access (RA) protocol [48].

In the past few years, the analysis and synthesis problemBl@5s under various communication protocols
have gained significant attention and some pioneering teebalve been reported [8], [10], [11], [19]-[21], [33],
[38], [45], [47]. For example, in [20], the stability anf,-gain analysis problems have been studied for NCSs
with communication delays under the RR protocol and, in [47& moving horizon estimation problem has been
addressed for networked systems with state delays und&Rhgrotocol. However, it is worth mentioning that the
phenomenon of actuator saturations has been largely okedbin most existing literature. Note that the results
proposed in [21] have dealt with the RR-protocol-based a@idprotocol-based stability analysis problems for
discrete-time systems without state delays and distudsmnehere two sensor nodes have been considered.

Based on the above discussions, this paper aims to addmesdyttamic output-feedback control problem for
discrete-time state-delay systems with exogenous detwds and actuator saturations under the RR communication
protocol. Using the switched system approach, the L-K fionet as well as the modified sector condition, sufficient
conditions are established under which the closed-loopesys can achieve some desirable performance indices
including the boundedness, thé,, performance and the stability in the absence of disturtmn&esimulation
example shows that our proposed result can provide a latjaate of admissible initial conditions for the case
without transmission delays. In fact, when the time del#lys actuator saturations and the communication protocols
are simultaneously involved in a control system, the pnob&# designing the dynamic output-feedback controller
is non-trivial. The main difficulty is how to design and chetexize the controller effectively in terms of linear



FINAL VERSION 3

matrix inequalities (LMIs). It should be pointed out thathewn the time delay is unknown, the existing dynamic
output-feedback design techniques cannot be applicaldaalthe existence of saturations [14], [15].

The main contributions of the paper are summarized as felldy The dynamic output-feedbaék,, control
problem is studied, for the first time, for discrete-timeteyss with state delays, exogenous disturbances and actuato
saturations under the RR communication protocol, and threesponding sufficient conditions are established. 2)
A switched dynamic output-feedback controller is proposededuce the conservatism of the obtained results,
and the linearized technique is developed to charactefirecontroller by means of the solvability of LMIs. 3)
The controller is designed directly based on the system aedattual measurement (without resorting to their
augmented models [8]), thereby meriting the implementatibthe output-feedback controller.

Notation. The superscript?” denotes the transpose of a matidx> 0 (> 0) means thai is a real, symmetric
and positive definite (positive semi-definite) matfiX! stands for the:-dimensional Euclidean space afd|| is
the 2-norm of a vectol;) is thel-th row of the matrixG andwv; is thel-th element of the vectar. Ay, (P) is the
maximum eigenvalue aP. The symmetric terms in a symmetric matrix are denoted.bya, b] 2 {a,a+1,...,b}.

[I. PROBLEM FORMULATION

Consider the following linear discrete-time state-delggtem subject to actuator saturations:

x(k+1) = Azx(k) + Agz(k — 7(k)) + Bsat(u(k)) + Dw(k),
y(k) = Cx(l) + Buo(h), &)
z(k) = Fx(k),

wherez(k) € R", u(k) € R™, y(k) € RP, z(k) € R? andw(k) € R" are, respectively, the system state, the control
input, the measurement output, the controlled output aeddikturbance inputd, A;, B, C, D, E and F are
some real constant matricesk) denotes the state delay that is variable and satigfies; < 7(k) < 7. sat(u)
= [sat(u(y)) sat(ug)) - sat(ugy,))]” is a vector-valued function representing the actuatoratitms, where each
component is defined asit(ug)) = sgn(u))min{|ug|, 4q)} ( = 1,2,...,m) with the saturation levei;, > 0.

The exogenous disturbancgk) of the system (1) is energy-bounded and satisfy the comditio

+oo
> Wl (k)w(k) <6 (5> 0). 2)
k=0

In this paper, the measurements are transmitted over adshamemunication network. In particular, in order to
alleviate the phenomenon of data collision induced by thétéid bandwidth of communication network, the RR
protocol is adopted here to schedule the network traffic e/loey one sensor node is allowed to transmit its data
at each time instant [20], [47]. As in [47], we rewrite the rmegement outpuy (k) as follows:

y(k) = [yi (k) vz (k),..., yn(K)], ®3)

whereN is the number of sensors apdk) € R?: is the measurement corresponding toztle sensor{Y , p; = p).
Let o(k) be the selected node at the instantUnder the RR protocol, it can be seen thdtk) satisfies the
relationso(k + N) = o(k) ando(k) € I[1, N] [47]. Here, we assume thatk) = k + 1 for k € I[0, N — 1].
Under the RR communication protocol, the actual measur&gfk) (¢ € I[1, N]) can be represented as
yi(k), i = o(k),

¥i(k — 1), otherwise.
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Let §(-) be the Kronecker delta function and denote
Do) =diag{d(o(k) — 1)I,6(a(k) —2)I,...,0(c(k) — N)I}. (5)
Then, the actual measurement can be rewritten as followls [47
y(k) = Poyy(k) + (I — Por))y(k — 1). (6)
In this paper, we consider the following dynamic outputdiesck controller with an anti-windup loop [14]:
{:ﬁ(k +1) = AC 2 (k) + By, y(k) + E7  (sat(u(k)) — u(k)),
u(k) = Cf gy 2(k) + Dy 1,y (k),
wherez(k) € R" is the controller state, and§, Bf, Cf, D and Ef (i € I[1, N]) are the gain matrices.

Denoting thatz(k) £ [27(k) 27(k) g7 (k—1)]7, ¢ (u(k)) = u(k) —sat(u(k)), ) = I — ®;(k), and using
(1), (6) and (7), one obtains the following closed-loop syst

()

T(k+1) = Asry (k) + Age(k — 7(k))
— By (u(k)) + Dogyw (k) (8)
z(k) = Fz(k),
whereA; £ [AY 0 0F, F£[F 0 0], and

A+ BDg(k)(I)U(k)C BCg(k) BDg(k)(I)o(k)
N ¢ ¢ c &
Aa(k) - Ba(k)%(k)c Ao(k) Bo(k)q)a(k) ’

i Do) C 0 20
B D + BDSy ®o() B
A c A c
Boty = |Eqey| » Doty = | Boy@om &
L0 ok E

The initial condition associated with (8) has the fotk) = [¢1 (k) 27(0) 37 (—1)]T (k € I[—7,0]).

In order to handle the nonlinearity(x) appearing in (8), we introduce the modified sector condition

Lemma 1: [31] Let the vectorsu € R™ andv € R™ be given. Iflv;| < aqy (I € I[1,m]), then for anym x m
positive diagonal matrix{, the following inequality holds:

(W) H(u) —u+ 0] < 0.
Let us define a switched function of the following form:
U(k) éGa(k)g_j(k‘)’ (10)

whereco (k) has the same definition as in (8), aéd (: € I[1, N]) arem x (2n + p) matrices to be determined.
Suppose that the following constraints are satisfied:

\v(l)(k)\ < ﬁ(l), l e I[l,m]. (11)
Then, for any diagonal matrices; > 0 (i € I[1, N]), it follows from Lemma 1 that

— 207 (u(k)) Hy o [ u(k)) — u(k) + v(k)] >0, (12)
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whereu(k) £ Koy (k) + DSy @iy Bw(k) With Kory £ [D 30 @) C CSiry DSy Pt

The main objective of this paper is to design the dynamic wtfpedback controller (7) such that: 1) all
trajectories of the closed-loop system (8) are boundeddarmissible initial conditions and non-zero disturbances;
2) the following H,, performance constraint is ensured [17], [23]:

Zz k) < Voo +’wa (13)

where~y > 0 is a scalar andfa(k)( ) is an L-K functional to be selected; and 3) the closed-loogteay (8) is
locally asymptotically stable in the absence of exogenasisidbances.

Remark 1:Using the time-delay approach, the stability analysis |gmmbhas been thoroughly investigated in
[21] for discrete-time systems subject to actuator saturatand transmission delays under RR and TOD protocols,
where the main results are applicable to the case of two sews&tes. Different from the approach developed in
[21], the switched model (6) is utilized in this paper to eg@nt the measurement output under which the multiple
sensor nodes can be conveniently dealt with. In additiom,sthitched dynamic output-feedback controller (7) is
proposed in our paper to reduce unnecessary conservatiime obtained results.

I11. MAIN RESULTS

For the stability and performance analysis, we select thewing switched L-K functional [6], [15]:

k—1 k—71—1
Voy (k) =27 (B) Py (k) + > 2" ()Quz(i) + > 27 (i)Qau(i)
i=k—T71 i=k—T2
—T1 -1
+ > Z ()Qsa(i) +m Z )IT Z2In(i)
Jj=—Toi=k+j Jj=—T1i=k+j
—m—1 k-1
+7 > Y 0TI ZIn6) (FEm - n), (14)
Jj=—T2 i=k+j

wheren(k) £z(k+1)—z(k),Z=[I 0 0],andP; >0, Q; >0, Z; >0, Z» >0, i € I[1,N], j € I[1, 3].
Theorem 1:Assume that there exig@n + p) x (2n + p) matricesP; > 0, Ty;, Ta;, n X n matrices@Q; > 0,

Q2 >0,Q3>0,7 >0, Zy >0, L, AY, n x p matricesBf, m x n matricesC{, m x p matricesD{, n x m

7

matricesEf, m x (2n + p) matricesG;, m x m diagonal matricedd; > 0, i € I[1, N], and the scalars > 0,
w > 0, such thatw < 1/§ and the following matrix inequalities are satisfied:

[Z, L
>0, Vi e I[1,N], 15

11 ZJ o -
QG,i+1) FT

(ii +1) <0, Vi e I[1,N — 1], (16)
| F -1
‘v, 1) FT

SR Y (17)
. F -1
o
0% FOL S 0 v e I[N,V 1[1,m), (18)
Gy P
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where F£[F 0 0 0 0 0 0] andQ(o(k),o(k+1)) £

(11 Q1 Qi3 Qs Qe iy
* Qgg Qgg Lo(k) O O

[an}

* * * Quq 0

* * * * Q55 Q56 Q57
* * * * * 966 Qﬁ?
* * * * * * —I

with
1 2T Aoy = 1) + Aoy = D Tio) = Poy
+ Pygeyry +I71Q1 + (F+ 1)Q3 — Z1]T,
Do 2721, Qi3 2 T 0 Ad, 7 2 Tl 9 Doy,
5 = = Ty Bote) + Koo Hagy = Gay Hay:
Qe = — Tﬂ(k) + (Aoy = D) Togr) + Pty
Qoo £ — Q14 Q2 — Z1 — Z2, Qa3 = Zy — Loy,
Qzz £ — Q3 — 270 + Loy + L1y Q31 = Zo — Loy,
Q36 £A] Top(r), Qs 2 —Qo — Z, Q55 2 —2H, ),
Q56 2 — By Tao(kys 57 = Ho(r) Doy Po() B
Q66 = — Too(k) — Togry + Porr1)
+I7(1{ 21 + P Z9)T, Qo1 = Ty Do)
Then, 1) all trajectories of the closed-loop system (8) aenided for all initial conditions satisfyiny ) (0) <
1/w — ¢ and all non-zero disturbances satisfying (2); 2) fiig performance constraint (13) is guaranteed; 3) the
system (8) is asymptotically stable for all initial condits satisfying/; () (0) < 1/w in the absence of disturbances.
Proof: Denoting AV}, £ Voet1) (b +1) = Vo (k), by tedious calculations, we have
AVy, <[E(k) + (k)] Pogern)[2(k) + n(k)] — 2" (k) Py Z(k)
+al (B)[Q1 + (7 + 1)Qsla(k) + 2T (k — )
X (—Q1+Q2)a(k —n) — 2" (k — 7(k)Qsx(k — (k)
- SUT(k — 72)Qax(k — 72) + 0" (K)I" (77 Z1 + 72 Za)In (k)

k ’7’1—1
—7 Z I 2 In(i) =7 > 0" ()T Z2Tn(i). (19)
i=k— T1 1= k—Tg

Using the Jensen inequality [12] and notifg—" ' (-) = Zf:_,;“_;gk () + Zf ,z(li (+), it follows that

k—1
>0 0t O LT = ¢ (k) 216 (), (20)
7 " ()" Z,In(i) > [7/(7(k) —70)]
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x (3 (k) Zaa(k) + [F/ (2 — T(K))]CT (k) Z2(s(k), (21)

where(; (k) 2 z(k) — z(k — 1), Co(k) 2 2(k — 1) — 2(k — 7(k)) and(3(k) £ z(k — 1(k)) — 2(k — 7).
If there exist matriced.; (i € I[1, N]) such that the LMIs (15) hold, the inequality (21) can be rfiedias [24]

e W] [ 2 Lo @(k:)]
7 17 7,T ) 22
:kZ 7 ZeTn(i) 2 [Cs() Iy 2% | |Gk @2

For any matricedy; andTy; (i € I[1, N]), from the closed-loop system (8), one obtains the follgréguality:
202" ()T ) + 1" (B) T [(Ag(ry — DE(K) — (k)
+ Agz(k — 7(k)) = Bo(y¥(u(k)) + Dy(ryw(k)] = 0. (23)
Noting the non-negativity of the left-hand sides of (12) 488), and using (19), (20) and (22), it follows that
AVi+ (1/7)2" (k)z(k) — " (k)w(k)
<AV + (1/7)2" (k)z(k) — W' (k)w(k) — 207
x [(u(k)) = Koy Z(k) = Dy Po(r) Ew(k
+ 2027 () Ty + 17 (F) Ty [ (Ao

u(k))Hy
+ GoryZ (k)]
(k) Ky — 1)z(k) — n(k)
+ Agr(k — 7(k)) — By ¥ (u(k)) + Doyw(k)]
=" (k)[Qa(k), ok + 1)) + (1/7)F" FIE(k), (24)
where (k) = [#7(k) 2T(k — 1) 27(k —1(k) 2T(k —7) T (u(k)) 77 (k) w'(k)]”, and the matrix
Q(o(k),o(k + 1)) is denoted in the statement of this theorem.
Applying Schur complement to (16) and (17), we have

)
)

Qi,i+ 1)+ (1/9)FFF <0, Vi e I[1,N — 1], (25)
Q(N, 1) + (1/9)FLF <o. (26)

Then, it is seen from the inequality (24) that
AVi + (1/7) 27 (k) z(k) — wT (B)w(k) < 0. (27)

Summing up the above inequality frobnto k& — 1 yields

k—1 k—1
Vi) (k) = Vo) (0) + (1/7) Y 2" (0)2(6) = Yo" (i)w(i) < 0. (28)
=0 =0
Applying Schur complement to (18), one obtains the follayvinatrix inequalities:
ufywP; > Gy Gy, Vi € I[1,N], VI € I[1,m]. (29)
In addition, it is seen from the L-K functional (14) that
Voiy (k) =27 (k) Py gy (K). (30)
Using the inequalities (29) and (30), it follows that

vy () =1Gagn 2R < (%) Vo (k). (31)
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For all ¢(k) satisfyingV;)(0) < 1/ —§ and all non-zerav(k) satisfying (2), it is seen from (28) and (31)
that the constraints (11) can be guaranteed. Moreoverlldwe from (28) and (30) that

7' (k) PyyZ(k) < Vo (k) < 1/w. (32)
From (32), it is clear that all trajectories of the systemt{8)ong to the union of the following bounded ellipsoids:
{z e R*™ . 3" Pz <1/w}, i € I[1,N]. (33)

In (28), lettingk — +oco and notingV; (k) > 0, it is seen that thel,, performance constraint (13) is satisfied.
For the case that(k) = 0, from (28) and (31), the constraints (11) can also be gueeahfor all initial conditions
¢(k) satisfyingV;)(0) < 1/. Meanwhile, from (27), we have the following relation:

Vo) (k +1) < Vo (k) (34)

which implies that the closed-loop system (8) is locallyrapyotically stable and this completes the proof. B
If the time delayr (k) is not contained in the system (1), the corresponding resuitbe formulated as follows.
Corollary 1: The conclusions of Theorem 1 are true for the case withowt tietay if there exist2n+p) x (2n+p)

matricesP; > 0, T1;, T, n x n matricesAs, n x p matricesB{, m x n matricesC{, m x p matricesDy, n x m

matricesEf, m x (2n + p) matricesG;, m x m diagonal matricedd; > 0, i € I[1, N], and the scalars > 0,
w > 0, such thatw < 1/4, (18) and the following matrix inequalities are satisfied:

D(i,i+1) <0, Vi e I[1, N —1]; T(N,1) < 0, (35)
where
T1 NP Ty Ty FT]
% —2H,py T2z Taa 0O
D(o(k),o(k+1)) = | « * I'33 Tza 0
* * * i 0
| x * * * —’y[_
with

T 210 o (Aoey = 1) + (Aory = D Tiory

+ Pyjt1) — Pory, T14 = Tﬂ(k)pa(ky
= = TloBatry + Koy Hoy — Gotwy Hogry:
L _ Tng(k) + (Aory = D) To(y + Porr1)
a3 £ = By Tao(k)s D21 = Ho (k) D 1) ®o(r) E-

=

—

w
[|>

33 £Ps(ks1) — Taa() — Tog(ryr 131 = Top(ayPoi)-
Next, we will address the control design problem. In ordesatve the problem in the framework of LMIs, we
setTy; =T, Ty, = NTy; in (16) and (17), and specify the matricésand7—! as follows [7]:
RT 7 0 ST 73 0
T=|NT % o0 |, T'=|MT g, 0
0 0 wp'rI 0 0 wul

; (36)
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whereR, S, M, N, J; (i =1,2,3,4) are some matrices andis a scalar. Then, we define the two matrices

I ST o RT 1 0
X210 MT o, X222 |NT 0 0. (37)
0 0 pul 0 0 I

It is easy to verify thatl’ X; = X,. Moreover, we denote

A¢ B¢l , [N RB|[As—1 B¢
ce pel o 1| ¢ b
| Mmoo) [RGA-DST o] | 39)
®,C8T 1 0 0
E{ % (RB+ NE{)H;, Y 2 SR" + MN”, (39)
P2 xTPXx,, G;2GX,, H 2 H, (40)
[An Aﬁ(k) Még(k)(i)g(k)
A= A Ay pBDE G o | (41)
(A Doy CST — Dok
1 I 0 R YT 0
A2 |Ss s o], A2 |1 ST o], (42)
0 0 0 0 0 ul
A £ R(A 1) + By o) O, Ara = @iy C, (43)
Ay 2 A— 1T+ BDg; 0 C, S ST 0], (44)
Az 2 (A=D)ST + BC,, T2 (I 1 0]. (45)

Theorem 2Let the scalars\ > 0, u, a, 51, B2, f3 and 54 be given. Assume that there exigh + p) x (2n+p)
matricesP; > 0, n x n matricesQ; > 0, Q2 > 0, Q3 >0, Z; >0, Zo >0, L;, R, S, Y, AS, n x p matricesB¢,
m x n matricesC¢, m x p matricesD§, n x m matricesE¢, m x (2n + p) matricesG;, m x m diagonal matrices
H; >0, i €I[1,N], and the scalars > 0, @ > 0, such thatw < 1/§, and the LMIs (15) and

[Qe,i+1) T

(Z7Z + ) 1 < 0’ Vi € I[l’N _ 1]’ (46)
2 W,y
[Q(N, 1) ©T

(V1) oy 0. (47)
IR Z
A
0T T S 0 v e T, NV € 11, m), (48)
_G,%F(l) b




FINAL VERSION 10

are satisfied, wher@(o(k),o(k + 1)) £

(O Q2 Q3 0 Q5 Qe Qa7
x Qoo Qo Loy O 0 0
* x Q33 Qay 0 Q3 0
* * * Qg 0 0 01,
* * * * Q55 Q56 Q57
* * * * x Qe Qo7

| * * * * * *  —1 |

[ FS 0 000 0 0

al —al 00 0 0 O
v, 2 S 0O 000 0 O 7
VIFIS 0 0 00 0 O
0 0 00 0 mS 0
0 0 000 7S 0

\II2 édlag{_/}/]v _Z1> 5%@1 - 25117 53@3 - 25217
837y — 2831, 81 Zo — 2B4I}

with
Q1 2P, (p1) — Py + A1+ AT — (Mg + AT),
019 éa[2] ST + 1 O]T, ng = [AZ;RT Az{ O]T,

(D5 PO || Eogy

0 A ~c s ~T

Ql5 = _(CU(kN))T - BHU(k) - GU(k)’
_/‘(ny(k)q’o(k))T 0

QIG £ — A3 + /\A{ + po’(k-i—l)y Q36 £ /\Q?g,

) RD + Bg ) o) E ) )

Q7 £ | D+ BDL Doy B | D55 = —2H, ),
L Pew®

Qo & — Q1+ Q2 — Zo — 2ad, Qg7 = A7,
Qs6 = — )\[(Efy(k))T (BH, )" 0],
Q57 éDCcr(k)(I)o(k)E, 966 £ Pg(k_H) — )\(Ag + Ag)
Then, the conclusions of Theorem 1 are true. Moreover, timgraiter gain is obtained by solving (38) and (39).
Proof: Pre- and post-multiplying (16) and (17) by’ andII, respectively, wher&l £ diag{X,,I,1,1, H;, X1,
I, 1}, and using the notations in (38)-(45), we can obtain theo¥alhg matrix inequalities:
QG,i+1) FT
F —~1

[Q(N,l) ﬁT] o (50)

] <0, VieI[1,N — 1], (49)

F —~I
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whereF =[FS 0 0 0 0 0 0] andQ(o(k),o(k +1)) £

Qu STZ0 Qi3 0 Qs Oy Oy
b Qug Ly 0 00
* * Q33 Q3 0 Q3 0
* * * Oya 0 0 0

* * * * Q55 956 Q57
* * * * * Q66 QG?
* * * * * x =1

with
M1 2ST[Q1 + (F+ 1)Q3 — Z1]S + Py — Pogry + A1 + AT,
Q66 2Py (rs1) — Too(h) — TZT(,(k) +ST(r2 2, + 722,)S.

For any matrices(; and Y, it is seen that

(Tl — aZl_ng)TZl(Tl — OéZl_ng) > 0. (51)
Let us selecfl; =[S —I]JandYy;=[I — ], we have
-STz,8 STz
! Y= Tz,
AN -7
< —a(YTYy +YIr)) + YTz, (52)
Similarly, we have the following matrix inequalities:
—Qy < BIQL—2611, — Q3" < F5Qs — 20l (53)
—Zy < B3Zy — 2831, — 2y < BiZ — 2840 (54)

For the LMIs (46) and (47), using the relations (52)-(54) &uothur complement, it can be inferred that the matrix
inequalities (49) and (50) are ensured. Pre- and postplyiity the matrix inequalities (18) byliag{1, X7} and
diag{1, X, }, respectively, and using the notations in (40), the LMIs) (@& readily obtained.

Note that, if the LMIs (46) and (47) hold, we have

R+RT 1+YT 0
As+AY = T1+Y S§4+8T o | >0, (55)
0 0 oul

which implies thatR is invertible. Pre- and post-multiplying (55) By ~! — I 0] and its transpose yields
Y - SRHRT+ RN (Y - SR <. (56)

From (56), it is seen that the matrix — SR” is non-singular. Applying the technique of singular value
decomposition toY” — SRT, the matricesM and NT can be readily obtained. Moreover, the controller gain
can be solved by using the matrix equations (38) and (39% Thinpletes the proof. [ |

Remark 2:In order to obtain LMI-based conditions, we have specifieat the matrix7" in (36) has a special
structure. Of course, we can first augment the system (1) lemdneasurement (6), and then design the controller
based on the augmented system [8]. In this case, the stahleatized technique in [7] can be adopted and the
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special assumption on the matriX is no longer required. However, it should be pointed out that technique
in [8] will produce a higher-order controller which make® ttmplementation of controller more difficult. In fact,
some simulation examples shows that our proposed techmiquéd not bring much conservatism.

Remark 3:In [14], the non-rational dynamic output controller is dgsd under which the existing linearized
techniques can be directly employed. Nevertheless, whertithe delay is unknown, the non-rational dynamic
output controller is no longer applicable. In this papee thatrix inequalities (52)-(54) are utilized to make that
the obtained matrix inequalities are linear. However, ivigth mentioning that the introduction of the inequalities
(52)-(54) will increase the conservatism. Of course, thelified cone complementary linearization (CCL) algorithm
[15] could be used here, but then the optimization of systenfiopmance indices will become difficult.

Corresponding to Corollary 1, we can obtain the followinguié

Corollary 2: The conclusions of Theorem 1 are true for the case withowt tiefay if there exist2n+p) x (2n+p)
matricesP; > 0, n x n matricesR, S, Y, AS, n x p matricesB¢, m x n matricesC¢, m x p matricesD¢, n x m
matricesEf, m x (2n + p) matricesG;, m x m diagonal matrices?; > 0, i € I[1, N], and the scalars > 0,

w > 0, such thato < 1/4, the LMIs (48) and the following LMIs are satisfied:

[(i,i+1) <0, Vi e I[1,N —1]; T(N,1) <0, (57)
where
I IRP) g Tia Tis
*  —2H,4) Taz Tay O
f(O’(k),O’(k—F 1)) = * * f33 f34 0
* * * -1 0
| x * * * —’y[_
with

L1 2P, 1) — Pogry + M1 + AT,

(Dfr(k)q)a(k)c)T Eﬁ(k)

= A ~e 7 ~T

F12 = _(Ca(k,;))T - BHU(k) - Go(k)7
_ﬂ(Dg(k)<Da(k))T 0

Tis £ — As+ AT + P,(ks1), Tis = STFT,

) RD + Bg ) o) E ) )

NP = D+ BDg(k)(I)o(k)E y Iy = Dccr(k)q)a(k:)E7

i Q,0) E
Toz £ = A[(E5 )" (BHgu)" 0],
a3 £Ps(e1) — A(A3 + A3), Taq £ ATy

Remark 41n obtaining our main results, the modified sector condiiti2) is utilized to handle the nonlinear term
¥ (u) induced by saturations. Here, it should be pointed out thatpolytopic approach might be more effective
in dealing with saturations for the multiple-input syste[4]. Along the similar analysis as this paper, some
alternative conditions can be readily obtained by incoafing the polytopic approach handling the saturations.
Nevertheless, it is worth mentioning that the polytopic raagh could lead to a larger numerical complexity.
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Finally, let us deal with the optimization problems invadviem our main results. For the case with disturbances,
we can first measure the largest disturbance tolerance dgyelThen, for a given scalaf < ¢,;, we can obtain
the minimum H, performance levely,,. Note that, under the zero initial condition, the scataiin (48) should
be modified ad /. The corresponding optimization problems are easily fdated and thus omitted here.

For the case without disturbances, it is necessary to magithie set of admissible initial conditions in designing
the controller. In this case, the rows and columns involuir(@) in LMIs (46), (47) and (57) can be removed.
Here, we are interested in estimating the admissible irdbaditions¢, (k) (k € I[—7»,0]) of the system (1) under
the assumption that(0) = y(—1) = 0. As in [4], we assume that the initial conditiogig(k) belong to the set

2, 2L (k) : NOIEY Ad (k)| < pal, 58
p 2{00h) ;e [0k < o1 _max[A,(k)] < p2) (58)

where Ag¢, (k) £ ¢.(k + 1) — ¢ (k), p1 > 0 andpz > 0 are two scalars.
Remark 51n fact, we can remove the second constraint involved in ¢e2$,. In this case, the initial conditions

¢ (k) belong to the setZ, £ {¢,(k) : pnax O}H%(k)ﬂ < p}. Using the fact thaf| A, (k)| < ||¢z(k + 1) +

lp.(k)||, it is seen that the reIatioIrJ II[I]&X ”HA%(kz)H < 2p is implied in the setZ,. Compared with the set
el|—72,—

Z,, it is clear that the se®, is more flexible in characterizing the admissible initiahddions.
Using the assumption(0) = 1 and noting thaZ P,Z” = ZP,Z" £ P14, it is seen that the scalags and ps
involved in the initial condition set?, satisfy the following inequality:

Vi(0)(0) <th1p7 + 2p3 < 1/, (59)
where
Y1 2EAM(ZPIIT) + 1idn (Q1) + FAum(Q2) + (1/2)(F + 1) (11 + 72)Am (Qs3),
Yo 2(1/2)[72 (11 + DA (Z1) 4+ 72 (11 4 10 + DA (Z2o)).

Let us introduce the following LMIs:

IPI" & Py < xpl, (60)
Ql S qu‘[? QZ S XQ2'[7 Qg S XQ3'[7 (61)
Zl SXZ]‘L ZZ SXZz‘[ (62)

Then, the maximization of the set), can be described by the following optimization problem:

Prob. 1. ~ max v
P;,Q: 7Q27Q37zl7Z27Li7R7‘97Y7AvainCic7vaE1’CvGi7Hi7Xp7Xq1 yXagrXaz 1 Xz11Xzo

s.t., LMIs (15), (46)— (48) and (60)— (62) hold,

)

where
v éXp + 71X + TXg, + (1/2)(F + 1)(71 + T2) Xgs
+ (1/2)[r (11 4+ D)xz, + 7211+ 72+ 1)xa).
In case thatr(k) is not contained in (1), the initial conditions, (0) = x, are assumed to belong to an ellipsoid

wa é{xo cR": wgPlllxo < 1/w} (63)
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Correspondingly, the maximization of the ellipsoitl, can be written as follows:

Prob. 2. o o_max.  __ _ Xp,
P;,R,S,Y,A¢, B, C¢,D¢ ES G, Hi X

s.t., LMIs (48), (57) and (60) hold.

Remark 6:Recently, the dynamic output-feedback control problemideses considered in [40], [41] for discrete-
time switched delay systems with actuator saturations. é¥ew the switchingr (k) in this paper is different from
that in [40], [41]. Moreover, the measurement model (6) nsalkee of the information of its previous step that is
also different from the system outputs in [40], [41]. In addh, the time delays in [40], [41] are assumed to be
constant. It is obvious the results in [40], [41] cannot belidl to the system (1) and the model (6).

Remark 7:n the past decade, the stability analysis and control gigifor NCSs under different communication
protocols have received considerable research atterlipfil[L], [20], [21], [38], but the actuator saturations kav
not been taken into account in most existing literature px{&1]. Note that the results in [21] are applicable to
the case of two sensor nodes for systems without disturlsaorcstate delays. As such, the results obtained in this
paper are more general than existing ones in terms of thed=yed system and the practical applicability.

Remark 8:In order to reduce the potential conservatism, the adjlest@drameters, u, «, 51, B2, $3 and S, are
introduced in Theorem 2. For such parameters, we can firsttsglem through experience to ensure the feasibility
of the optimization problems involved in Theorem 2, and tipenform the linear search within their neighbours
to obtain the optimized performance indices. For the liresarch, one can first search the scalay fixing the
last 6 parameters, then search the scalay fixing other 6 parameters, and until finally seafghby fixing first
6 parameters. To further decrease the conservatism, oneepaat the above search process.

IV. NUMERICAL EXAMPLES

Example 1:Consider the discrete-time system (1) with the parameters

1 0.001 0 0 0

0 1 —0.0005 0 0.0064
A= , B= ,

0 0 1 0.001 0

0 0 0.0448 1 —0.0280
Ag=0,C=1, D=FE=F =0, ﬂ(1)250.

The system is a linearized model of the inverted pendulum carig]21]. As in [47], we rewrite the measurement
outputy(k) as (3) withp; = p, = N = 2. By solving Prob. 2 withA = @ = 1, ;1 = 8 x 108, and the additional
constraintsk < 50001, S < 50001, C§(C§)T < 100, D§(D$)T < 100, we havey, = 0.0062 and

[ 0.0008  0.0011  0.0000 0.0171 ]
e -0.0370 —0.0548 0.0027 —0.8340|

—0.0002 0.0012  0.9921  0.1574

| 0.0035  0.0049 —0.0070  0.9934 |

[—0.9133  0.0213  0.0000  0.0000 ]
B — ~0.0632 —10863 —0.0000 —0.0000

—0.0002  0.0012  —0.0000 —0.0000

| 0.0033  0.0050  0.0000  0.0000 |



FINAL VERSION 15

Ci = [5.6026 8.3106 —0.3886 126.4517},

Df = [5.3523 8.4468 0.0001 0.0000}7

[ 0.9994 —0.0024 —0.0001 —0.0000]
45— 0.0293  1.1586 —0.0002 —0.0000 |
0.0002 —0.0003 0.0000  0.0000
| —0.0000 —0.0000  0.0000 —0.0000 ]
[ 0.0000  0.0000 0.0086  0.0072 |
Be— —0.0000 —0.0000 —0.4217 —0.3507 |
—0.0000 —0.0000 —0.0032 —0.0005
| 0.0000  —0.0000 0.0004 —0.0000 ]

C5 = [—4.4386 —24.0363 0.0051 0.0001],

D5 = [0.0000 0.0000 64.0069 53.1689] .

T
B =F5 = [0.0001 —~0.0066 —0.0000 0.0000| .

0.0050  0.0004 0.0000 —0.0000

0.0004  0.0054 0.0000  0.0000

0.0000  0.0000 0.0062 0.0001

—0.0000 0.0000 0.0001 0.0056

Applying Theorem 1 and Remark 3 in [21] with= 5 =1, p = 1.02, 0 = 0.01 andn,, = nyr = 77 = 0,

it follows that the largest ball of admissible initial cotidns is ||zg|| < 0.5250 under the static output-feedback
controller with K = [5.825 5.883 24.941 5.140]. Noting that our obtained largest ball of the sgf, is
ol < 1/+/@An(Pri11) = 12.6787, it is obvious that our proposed control strategy can pmwdarger estimate
of admissible initial conditions. In Fig. 1, the state evmn of the closed-loop system is plotted with =

111 =

nz2 -7 -3 —-1te 2. It is seen from Fig. 1 that the stability of the closed-logstem can be ensured.
For this example, applying Theorem 1 witkf £ A¢, B¢ £ B¢, C¢ £ C¢, D§ £ D¢, E¢ & E* (i € I[1,N)),
and the same parameter selection and the same additiorsdtaiats as above, we cannot find the feasible solution,
which means that the switched controller might be more #@¥fe¢han the non-switched controller.
Example 2: [4] Consider the system (1) and (3) with the following parsens

1.1 0.15 0 —0.1 1
A: M Ad - ) B - b
0.03 0.8 0 0 0.1
C=I1, D=E=[01 01", F=[1 1], ag =15,
n=1mn=3 p=p=1 N=2.
Under the zero initial condition, applying Theorem 2 with= 1.7, u = 104, & = 0.15, B; = 0.7, B2 = 109,
B3 = 0.1 andB, = 0.4, we obtain the largest disturbance tolerance léygl= 4.5018 x 10*. Lettingd = 2 x 10* <
Sy, and applying Theorem 2 again with= 1, o = 0.1, #; = 0.5, 2 = p = 10%, B3 = 0.2 and 3, = 0.6, we
have the minimumf, performance level,,, = 0.6812. Correspondingly, the controller gain matrices are given a

pe — 0.8142  0.6020 Be _ —4.9802  0.0003
! —0.0014  —0.0209 |’ 11.1554  —0.0002]
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The system state x(k)

0 2000 4000 6000 8000 10000 12000
Time(k)

Fig. 1. State evolution under the proposed controller.

os = :—0.0037 —0.0015], DS = [—0.6304 —0.0000},

AC_'0.1305 —0.0961| . _ [-0.0001 22.7256
02688 02599 |* " ° | 0.0002  9.0595 |

Cs =10.0126 —0.0152}, DS = [0.0000 —0.5115],

r T T
B¢ = [4.0386 29.3856] | ES = [—23.8098 43.4463} .

Next, we consider the case that the disturbang@s are absent. By solving Prob. 1 with= 1.2, o = 1077,

B = B3 =By = pu=10° B3 = 10*, @ = 1, and the additional constraints < 3007, C{(C{)T < 104,
75(C5)T < 104, we obtain the following controller gain matrices:
AC = 0.5969 —0.4113 Be = —0.0019 0.0000
0.1299  —0.0323] | 0.0002  0.0000]

C¢ = [—122.4041 71.0628], DS = [—0.7700 —0.0019},

[0.3552  —0.7422] [—0.0000 0.0014]
00341 0.0304 | | —0.0000 0.0003 |

9

C5 = |175.2796 64.0781} , D5 = {—0.0030 —0.4849} )

- T T
E§ = |—0.0056 —0.0017] , BS = [0.0030 0.0004] :

Meanwhile, it follows that the scalays and ps involved in the set%), satisfy0.0020p? + 4.8148 x 107°p3 < 1.

In Figs. 2-3, we plot the state evolutions by using the abdviined controller gains, where the time delay
7(k) is randomly generated withifi, 3]. In Fig. 2, the disturbance is chosenag:) = 50 for 0 < k£ < 7 and
w(k) = 0 for k > 8, and in Fig. 3, the initial condition is selected @s(k) = [21 7|7 (-3 < k < 0). Noting that
the open-loop system is not stable, it is clear from Figs.tBe? our proposed control scheme is indeed effective.

Remark 9:In order to avoid excessively high controller gain, the a¢@ists R < 50007, .S < 50001, C‘f((?f)T <
100, D§(D$)T < 100 are introduced in solving Prob. 2 in Example 1, and the caimgss < 3007, C5(C5)T < 104,
C$(Cs)T < 10* are imposed in solving Prob. 1 in Example 2. Such constraatsbe readily written LMIs.
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20

Wy —e—x (k)

—%— xz(k) |

L ox
15 k

The system state x(k)

0 10 20 30 40 50
Time(k)

Fig. 2. State evolution without exogenous disturbance.

20

= =
o (62
T T

ol
T

The system state x(k)

0 5 10 15 20 25 30
Time(k)

Fig. 3. State evolution with exogenous disturbance.

V. CONCLUSIONS

In this paper, the dynamic output-feedbagk, control problem has been studied for discrete state-dgistgmns
with exogenous disturbances and actuator saturations irfelgrotocol. Based on the switched system approach,
the L-K functional and the generalized sector condition,ufficdent condition has been proposed under which
the closed-loop systems can possess the desirable penfoeniadices. The controller gain has been explicitly
characterized in terms of solvability of LMIs. The resultncerning the special case without time delay has also
been given. Moreover, the optimization problems about tedopmance indices have been discussed. The less
conservatism and feasibility of the obtained results haenlshown by simulation examples. Our proposed results
can be readily extended to more general systems, such againcg/stems [4] and T-S fuzzy systems [10], [36].

In this paper, the techniques handling the time delay arsemative to a certain extent. By incorporating the
augmented L-K functionals and some advanced inequali&iél [37], we can obtain less conservative conditions,
which is our future work. Moreover, it is worth mentioningatithe communication delay is ignored in this paper. If
the communication delay is constant, we can modify the m{@edsy (k) = ®,)y(k—h) + (I — ,4))y(k — 1),
whereh > 0 denotes the time delay. Then, the corresponding resultbearasily obtained. If the communication
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delay is time-varying, the phenomenon of packet disordéghihoccur and the further research should be given.
In addition, it is seen that the inequalities (52)-(54) asedito obtain LMI-based conditions, which brings the
conservatism. A further research direction is to develapesanore effective linearized techniques.

VI. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are avail&iole the corresponding author upon reasonable
request.
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