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Abstract

In this paper, the dynamic output-feedbackH∞ control problem is investigated for discrete-time state-delay

systems subject to exogenous disturbances and actuator saturations under the Round-Robin communication protocol.

Using the switched system approach, the Lyapunov-Krasovskii functional and the modified sector condition, sufficient

conditions are first obtained under which the closed-loop systems can achieve some desirable performance indices

such as the boundedness, theH∞ performance and the stability in the absence of disturbances. Then, the controller

is explicitly characterized by means of the solvability of linear matrix inequalities. For the case without time delays,

the corresponding conditions are also presented. Subsequently, the optimization problems about the performance

indices are discussed. Finally, the benefit and effectiveness of the proposed results are specifically illustrated via

two simulation examples.
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I. INTRODUCTION

Time delays are often encountered in many practical systems such as power systems, chemical process, neural

networks and networked control systems (NCSs), which could lead to poor performance and instability of control
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systems. Over the past several decades, an ever-growing research interest has been devoted to the investigation

on the time-delay systems, see e.g., [9], [12], [15], [22], [24]–[27], [29], [32], [36], [37]. On the other hand, in

most practical feedback control systems, the phenomenon ofactuator saturations is unavoidable, which constitutes

another source of performance degradation and instability. Some important results about analysis and synthesis of

control systems subject to actuator saturations can be found in [31], [42] and the references therein.

In reality, time delays and actuator saturations might coexist in a control system. For a decade, the coupling

issue of time delays and actuator saturations has drawn considerable research attention [1], [2], [4], [5], [28],

[43]. For example, the semi-global stabilization problem has been addressed in [43] for input-delay systems by

using the law gain technique. In [2], [4], the local/regional stabilization problem has been studied by using the

Lyapunov-Krasovskii (L-K) functional approach to deal with time delays and the polytopic models to represent

saturation nonlinearities. Note that most existing results have been mainly concerned with the design of state

feedback controller. In the case that the system state is immeasurable, it becomes necessary to design the output-

feedback controller [14], [35]. However, it is worth pointing out that some stringent constrains would have to be

imposed on the matrix variables when designing the observer-based controller [35].

Along with the rapid development of network technologies, NCSs have been attracting a recurring research

interest in the control community. So far, NCSs have exhibited fascinating advantages (e.g. cost reduction and

maintenance convenience) with extensive applications in avariety of practical systems. Nevertheless, the embedding

of communication networks in control systems have brought about certain imperfections (e.g., packet dropouts,

communication delays, and signal quantization) which result mainly from inherent limited bandwidth [3], [13], [16],

[18], [30], [34], [39], [44], [46]. For network with limitedbandwidth, a typical way of preventing networked-induced

phenomena is to deploycommunication protocolsso as to facilitate multiple (and simultaneous) signal transmissions.

According to the popularity, three types of communication protocols have been adopted in industry applications,

i.e., Round-Robin (RR) protocol, Try-Once-Discard (TOD) protocol, and Random Access (RA) protocol [48].

In the past few years, the analysis and synthesis problems for NCSs under various communication protocols

have gained significant attention and some pioneering results have been reported [8], [10], [11], [19]–[21], [33],

[38], [45], [47]. For example, in [20], the stability andL2-gain analysis problems have been studied for NCSs

with communication delays under the RR protocol and, in [47], the moving horizon estimation problem has been

addressed for networked systems with state delays under theRR protocol. However, it is worth mentioning that the

phenomenon of actuator saturations has been largely overlooked in most existing literature. Note that the results

proposed in [21] have dealt with the RR-protocol-based and TOD-protocol-based stability analysis problems for

discrete-time systems without state delays and disturbances, where two sensor nodes have been considered.

Based on the above discussions, this paper aims to address the dynamic output-feedback control problem for

discrete-time state-delay systems with exogenous disturbances and actuator saturations under the RR communication

protocol. Using the switched system approach, the L-K functional as well as the modified sector condition, sufficient

conditions are established under which the closed-loop systems can achieve some desirable performance indices

including the boundedness, theH∞ performance and the stability in the absence of disturbances. A simulation

example shows that our proposed result can provide a large estimate of admissible initial conditions for the case

without transmission delays. In fact, when the time delays,the actuator saturations and the communication protocols

are simultaneously involved in a control system, the problem of designing the dynamic output-feedback controller

is non-trivial. The main difficulty is how to design and characterize the controller effectively in terms of linear
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matrix inequalities (LMIs). It should be pointed out that, when the time delay is unknown, the existing dynamic

output-feedback design techniques cannot be applicable due to the existence of saturations [14], [15].

The main contributions of the paper are summarized as follows. 1) The dynamic output-feedbackH∞ control

problem is studied, for the first time, for discrete-time systems with state delays, exogenous disturbances and actuator

saturations under the RR communication protocol, and the corresponding sufficient conditions are established. 2)

A switched dynamic output-feedback controller is proposedto reduce the conservatism of the obtained results,

and the linearized technique is developed to characterize the controller by means of the solvability of LMIs. 3)

The controller is designed directly based on the system and the actual measurement (without resorting to their

augmented models [8]), thereby meriting the implementation of the output-feedback controller.

Notation. The superscript“T” denotes the transpose of a matrix.P > 0 (≥ 0) means thatP is a real, symmetric

and positive definite (positive semi-definite) matrix.R
n stands for then-dimensional Euclidean space and‖ · ‖ is

the 2-norm of a vector.G(l) is thel-th row of the matrixG andv(l) is thel-th element of the vectorv. λM (P ) is the

maximum eigenvalue ofP . The symmetric terms in a symmetric matrix are denoted by∗. I[a, b] , {a, a+1, . . . , b}.

II. PROBLEM FORMULATION

Consider the following linear discrete-time state-delay system subject to actuator saturations:


















x(k + 1) = Ax(k) +Adx(k − τ(k)) +Bsat(u(k)) +Dω(k),

y(k) = Cx(k) + Eω(k),

z(k) = Fx(k),

(1)

wherex(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p, z(k) ∈ R

q andω(k) ∈ R
r are, respectively, the system state, the control

input, the measurement output, the controlled output and the disturbance input.A, Ad, B, C, D, E andF are

some real constant matrices.τ(k) denotes the state delay that is variable and satisfies0 < τ1 ≤ τ(k) ≤ τ2. sat(u)

= [sat(u(1)) sat(u(2)) · · · sat(u(m))]
T is a vector-valued function representing the actuator saturations, where each

component is defined assat(u(l)) = sgn(u(l))min{|u(l)|, ū(l)} (l = 1, 2, . . . ,m) with the saturation level̄u(l) > 0.

The exogenous disturbanceω(k) of the system (1) is energy-bounded and satisfy the condition
+∞
∑

k=0

ωT (k)ω(k) ≤ δ (δ > 0). (2)

In this paper, the measurements are transmitted over a shared communication network. In particular, in order to

alleviate the phenomenon of data collision induced by the limited bandwidth of communication network, the RR

protocol is adopted here to schedule the network traffic where only one sensor node is allowed to transmit its data

at each time instant [20], [47]. As in [47], we rewrite the measurement outputy(k) as follows:

y(k) = [yT1 (k), y
T
2 (k), . . . , yTN (k)], (3)

whereN is the number of sensors andyi(k) ∈ R
pi is the measurement corresponding to thei-th sensor (ΣN

i=1pi = p).

Let σ(k) be the selected node at the instantk. Under the RR protocol, it can be seen thatσ(k) satisfies the

relationsσ(k +N) = σ(k) andσ(k) ∈ I[1, N ] [47]. Here, we assume thatσ(k) = k + 1 for k ∈ I[0, N − 1].

Under the RR communication protocol, the actual measurements ȳi(k) (i ∈ I[1, N ]) can be represented as

ȳi(k) =







yi(k), i = σ(k),

ȳi(k − 1), otherwise.
(4)
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Let δ(·) be the Kronecker delta function and denote

Φσ(k) =diag{δ(σ(k) − 1)I, δ(σ(k) − 2)I, . . . , δ(σ(k) −N)I}. (5)

Then, the actual measurement can be rewritten as follows [47]:

ȳ(k) = Φσ(k)y(k) + (I − Φσ(k))ȳ(k − 1). (6)

In this paper, we consider the following dynamic output-feedback controller with an anti-windup loop [14]:






x̂(k + 1) = Ac
σ(k)x̂(k) +Bc

σ(k)ȳ(k) + Ec
σ(k)(sat(u(k))− u(k)),

u(k) = Cc
σ(k)x̂(k) +Dc

σ(k)ȳ(k),
(7)

wherex̂(k) ∈ R
n is the controller state, andAc

i , B
c
i , C

c
i , Dc

i andEc
i (i ∈ I[1, N ]) are the gain matrices.

Denoting that̄x(k) , [xT (k) x̂T (k) ȳT (k − 1)]T , ψ(u(k)) , u(k)− sat(u(k)), Φ̃σ(k) , I −Φi(k), and using

(1), (6) and (7), one obtains the following closed-loop system:


















x̄(k + 1) = Aσ(k)x̄(k) +Adx(k − τ(k))

−Bσ(k)ψ(u(k)) +Dσ(k)ω(k),

z(k) = F x̄(k),

(8)

whereAd , [AT
d 0 0]T , F , [F 0 0], and

Aσ(k) ,









A+BDc
σ(k)Φσ(k)C BCc

σ(k) BDc
σ(k)Φ̃σ(k)

Bc
σ(k)Φσ(k)C Ac

σ(k) Bc
σ(k)Φ̃σ(k)

Φσ(k)C 0 Φ̃σ(k)









,

Bσ(k) ,









B

Ec
σ(k)

0









, Dσ(k) ,









D +BDc
σ(k)Φσ(k)E

Bc
σ(k)Φσ(k)E

Φσ(k)E









.

The initial condition associated with (8) has the formφ(k) , [φTx (k) x̂T (0) ȳT (−1)]T (k ∈ I[−τ2, 0]).
In order to handle the nonlinearityψ(u) appearing in (8), we introduce the modified sector condition.

Lemma 1: [31] Let the vectorsu ∈ R
m andv ∈ R

m be given. If|v(l)| ≤ ū(l) (l ∈ I[1,m]), then for anym×m

positive diagonal matrixH, the following inequality holds:

ψT (u)H[ψ(u) − u+ v] ≤ 0.

Let us define a switched function of the following form:

v(k) ,Gσ(k)x̄(k), (10)

whereσ(k) has the same definition as in (8), andGi (i ∈ I[1, N ]) arem× (2n+ p) matrices to be determined.

Suppose that the following constraints are satisfied:

|v(l)(k)| ≤ ū(l), l ∈ I[1,m]. (11)

Then, for any diagonal matricesHi > 0 (i ∈ I[1, N ]), it follows from Lemma 1 that

− 2ψT (u(k))Hσ(k)[ψ(u(k)) − u(k) + v(k)
]

≥ 0, (12)
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whereu(k) , Kσ(k)x̄(k) +Dc
σ(k)Φσ(k)Eω(k) with Kσ(k) , [Dc

σ(k)Φσ(k)C Cc
σ(k) Dc

σ(k)Φ̃σ(k)].

The main objective of this paper is to design the dynamic output-feedback controller (7) such that: 1) all

trajectories of the closed-loop system (8) are bounded for admissible initial conditions and non-zero disturbances;

2) the followingH∞ performance constraint is ensured [17], [23]:

+∞
∑

k=0

zT (k)z(k) ≤ γVσ(0)(0) + γ

+∞
∑

k=0

ωT (k)ω(k), (13)

whereγ > 0 is a scalar andVσ(k)(k) is an L-K functional to be selected; and 3) the closed-loop system (8) is

locally asymptotically stable in the absence of exogenous disturbances.

Remark 1:Using the time-delay approach, the stability analysis problem has been thoroughly investigated in

[21] for discrete-time systems subject to actuator saturations and transmission delays under RR and TOD protocols,

where the main results are applicable to the case of two sensor nodes. Different from the approach developed in

[21], the switched model (6) is utilized in this paper to represent the measurement output under which the multiple

sensor nodes can be conveniently dealt with. In addition, the switched dynamic output-feedback controller (7) is

proposed in our paper to reduce unnecessary conservatism ofthe obtained results.

III. M AIN RESULTS

For the stability and performance analysis, we select the following switched L-K functional [6], [15]:

Vσ(k)(k) =x̄
T (k)Pσ(k)x̄(k) +

k−1
∑

i=k−τ1

xT (i)Q1x(i) +

k−τ1−1
∑

i=k−τ2

xT (i)Q2x(i)

+

−τ1
∑

j=−τ2

k−1
∑

i=k+j

xT (i)Q3x(i) + τ1

−1
∑

j=−τ1

k−1
∑

i=k+j

ηT (i)ITZ1Iη(i)

+ τ̃

−τ1−1
∑

j=−τ2

k−1
∑

i=k+j

ηT (i)ITZ2Iη(i) (τ̃ , τ2 − τ1), (14)

whereη(k) , x̄(k + 1)− x̄(k), I , [I 0 0], andPi > 0, Qj > 0, Z1 > 0, Z2 > 0, i ∈ I[1, N ], j ∈ I[1, 3].

Theorem 1:Assume that there exist(2n + p) × (2n + p) matricesPi > 0, T1i, T2i, n × n matricesQ1 > 0,

Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Li, Ac
i , n × p matricesBc

i , m × n matricesCc
i , m × p matricesDc

i , n ×m

matricesEc
i , m × (2n + p) matricesGi, m ×m diagonal matricesHi > 0, i ∈ I[1, N ], and the scalarsγ > 0,

̟ > 0, such that̟ ≤ 1/δ and the following matrix inequalities are satisfied:
[

Z2 Li

LT
i Z2

]

> 0, ∀i ∈ I[1, N ], (15)

[

Ω(i, i+ 1) F̃T

F̃ −γI

]

< 0, ∀i ∈ I[1, N − 1], (16)

[

Ω(N, 1) F̃T

F̃ −γI

]

< 0, (17)

[

ū2(l)̟ Gi(l)

GT
i(l) Pi

]

≥ 0, ∀i ∈ I[1, N ],∀l ∈ I[1,m], (18)
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whereF̃ , [F 0 0 0 0 0 0] andΩ(σ(k), σ(k + 1)) ,




























Ω11 Ω12 Ω13 0 Ω15 Ω16 Ω17

∗ Ω22 Ω23 Lσ(k) 0 0 0

∗ ∗ Ω33 Ω34 0 Ω36 0

∗ ∗ ∗ Ω44 0 0 0

∗ ∗ ∗ ∗ Ω55 Ω56 Ω57

∗ ∗ ∗ ∗ ∗ Ω66 Ω67

∗ ∗ ∗ ∗ ∗ ∗ −I





























with

Ω11 ,T
T
1σ(k)(Aσ(k) − I) + (Aσ(k) − I)TT1σ(k) − Pσ(k)

+ Pσ(k+1) + IT [Q1 + (τ̃ + 1)Q3 − Z1]I,

Ω12 ,ITZ1, Ω13 , T T
1σ(k)Ad, Ω17 , T T

1σ(k)Dσ(k),

Ω15 ,− T T
1σ(k)Bσ(k) +KT

σ(k)H
T
σ(k) −GT

σ(k)H
T
σ(k),

Ω16 ,− T T
1σ(k) + (Aσ(k) − I)TT2σ(k) + Pσ(k+1),

Ω22 ,−Q1 +Q2 − Z1 − Z2, Ω23 , Z2 − Lσ(k),

Ω33 ,−Q3 − 2Z2 + Lσ(k) + LT
σ(k), Ω34 , Z2 − Lσ(k),

Ω36 ,AT
d T2σ(k), Ω44 , −Q2 − Z2, Ω55 , −2Hσ(k),

Ω56 ,− BT
σ(k)T2σ(k), Ω57 , Hσ(k)D

c
σ(k)Φσ(k)E,

Ω66 ,− T2σ(k) − T T
2σ(k) + Pσ(k+1)

+ IT (τ21Z1 + τ̃2Z2)I, Ω67 , T T
2σ(k)Dσ(k).

Then, 1) all trajectories of the closed-loop system (8) are bounded for all initial conditions satisfyingVσ(0)(0) ≤
1/̟− δ and all non-zero disturbances satisfying (2); 2) theH∞ performance constraint (13) is guaranteed; 3) the

system (8) is asymptotically stable for all initial conditions satisfyingVσ(0)(0) ≤ 1/̟ in the absence of disturbances.

Proof: Denoting△Vk , Vσ(k+1)(k + 1)− Vσ(k)(k), by tedious calculations, we have

△Vk ≤[x̄(k) + η(k)]TPσ(k+1)[x̄(k) + η(k)] − x̄T (k)Pσ(k)x̄(k)

+ xT (k)[Q1 + (τ̃ + 1)Q3]x(k) + xT (k − τ1)

× (−Q1 +Q2)x(k − τ1)− xT (k − τ(k))Q3x(k − τ(k))

− xT (k − τ2)Q2x(k − τ2) + ηT (k)IT (τ21Z1 + τ̃2Z2)Iη(k)

− τ1

k−1
∑

i=k−τ1

ηT (i)ITZ1Iη(i)− τ̃

k−τ1−1
∑

i=k−τ2

ηT (i)ITZ2Iη(i). (19)

Using the Jensen inequality [12] and noting
∑k−τ1−1

i=k−τ2
(·) =

∑k−τ1−1
i=k−τ(k)(·) +

∑k−τ(k)−1
i=k−τ2

(·), it follows that

τ1

k−1
∑

i=k−τ1

ηT (i)ITZ1Iη(i) ≥ ζT1 (k)Z1ζ1(k), (20)

τ̃

k−τ1−1
∑

i=k−τ2

ηT (i)ITZ2Iη(i) ≥ [τ̃ /(τ(k) − τ1)]
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× ζT2 (k)Z2ζ2(k) + [τ̃ /(τ2 − τ(k))]ζT3 (k)Z2ζ3(k), (21)

whereζ1(k) , x(k)− x(k − τ1), ζ2(k) , x(k − τ1)− x(k − τ(k)) andζ3(k) , x(k − τ(k)) − x(k − τ2).

If there exist matricesLi (i ∈ I[1, N ]) such that the LMIs (15) hold, the inequality (21) can be modified as [24]

τ̃

k−τ1−1
∑

i=k−τ2

ηT (i)ITZ2Iη(i) ≥
[

ζ2(k)

ζ3(k)

]T [

Z2 Lσ(k)

LT
σ(k) Z2

][

ζ2(k)

ζ3(k)

]

. (22)

For any matricesT1i andT2i (i ∈ I[1, N ]), from the closed-loop system (8), one obtains the following equality:

2[x̄T (t)T T
1σ(k) + ηT (k)T T

2σ(k)][(Aσ(k) − I)x̄(k) − η(k)

+Adx(k − τ(k))− Bσ(k)ψ(u(k)) +Dσ(k)ω(k)] = 0. (23)

Noting the non-negativity of the left-hand sides of (12) and(23), and using (19), (20) and (22), it follows that

△Vk + (1/γ)zT (k)z(k) − ωT (k)ω(k)

≤△Vk + (1/γ)zT (k)z(k) − ωT (k)ω(k) − 2ψT (u(k))Hσ(k)

× [ψ(u(k)) −Kσ(k)x̄(k)−Dc
σ(k)Φσ(k)Eω(k) +Gσ(k)x̄(k)

]

+ 2[x̄T (t)T T
1σ(k) + ηT (k)T T

2σ(k)][(Aσ(k) − I)x̄(k)− η(k)

+Adx(k − τ(k)) − Bσ(k)ψ(u(k)) +Dσ(k)ω(k)]

=ξT (k)[Ω(σ(k), σ(k + 1)) + (1/γ)F̃T F̃ ]ξ(k), (24)

where ξ(k) = [x̄T (k) xT (k − τ1) xT (k − τ(k)) xT (k − τ2) ψT (u(k)) ηT (k) ωT (k)]T , and the matrix

Ω(σ(k), σ(k + 1)) is denoted in the statement of this theorem.

Applying Schur complement to (16) and (17), we have

Ω(i, i + 1) + (1/γ)F̃T F̃ < 0, ∀i ∈ I[1, N − 1], (25)

Ω(N, 1) + (1/γ)F̃T F̃ < 0. (26)

Then, it is seen from the inequality (24) that

△Vk + (1/γ)zT (k)z(k) − ωT (k)ω(k) < 0. (27)

Summing up the above inequality from0 to k − 1 yields

Vσ(k)(k)− Vσ(0)(0) + (1/γ)

k−1
∑

i=0

zT (i)z(i) −
k−1
∑

i=0

ωT (i)ω(i) < 0. (28)

Applying Schur complement to (18), one obtains the following matrix inequalities:

ū2(l)̟Pi ≥ GT
i(l)Gi(l), ∀i ∈ I[1, N ], ∀l ∈ I[1,m]. (29)

In addition, it is seen from the L-K functional (14) that

Vσ(k)(k) ≥x̄T (k)Pσ(k)x̄(k). (30)

Using the inequalities (29) and (30), it follows that

|v(l)(k)|2 =|Gσ(k)(l)x̄(k)|2 ≤ (ū2(l)̟)Vσ(k)(k). (31)
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For all φ(k) satisfyingVσ(0)(0) ≤ 1/̟ − δ and all non-zeroω(k) satisfying (2), it is seen from (28) and (31)

that the constraints (11) can be guaranteed. Moreover, it follows from (28) and (30) that

x̄T (k)Pσ(k)x̄(k) ≤ Vσ(k)(k) ≤ 1/̟. (32)

From (32), it is clear that all trajectories of the system (8)belong to the union of the following bounded ellipsoids:

{

x̄ ∈ R
2n+p : x̄TPix̄ ≤ 1/̟}, i ∈ I[1, N ]. (33)

In (28), lettingk → +∞ and notingVσ(k)(k) > 0, it is seen that theH∞ performance constraint (13) is satisfied.

For the case thatω(k) = 0, from (28) and (31), the constraints (11) can also be guaranteed for all initial conditions

φ(k) satisfyingVσ(0)(0) ≤ 1/̟. Meanwhile, from (27), we have the following relation:

Vσ(k+1)(k + 1) < Vσ(k)(k) (34)

which implies that the closed-loop system (8) is locally asymptotically stable and this completes the proof.

If the time delayτ(k) is not contained in the system (1), the corresponding resultcan be formulated as follows.

Corollary 1: The conclusions of Theorem 1 are true for the case without time delay if there exist(2n+p)×(2n+p)

matricesPi > 0, T1i, T2i, n× n matricesAc
i , n× p matricesBc

i , m× n matricesCc
i , m× p matricesDc

i , n×m

matricesEc
i , m × (2n + p) matricesGi, m ×m diagonal matricesHi > 0, i ∈ I[1, N ], and the scalarsγ > 0,

̟ > 0, such that̟ ≤ 1/δ, (18) and the following matrix inequalities are satisfied:

Γ(i, i+ 1) < 0, ∀i ∈ I[1, N − 1]; Γ(N, 1) < 0, (35)

where

Γ(σ(k), σ(k + 1)) ,



















Γ11 Γ12 Γ13 Γ14 FT

∗ −2Hσ(k) Γ23 Γ24 0

∗ ∗ Γ33 Γ34 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −γI



















with

Γ11 ,T
T
1σ(k)(Aσ(k) − I) + (Aσ(k) − I)TT1σ(k)

+ Pσ(k+1) − Pσ(k), Γ14 , T T
1σ(k)Dσ(k),

Γ12 ,− T T
1σ(k)Bσ(k) +KT

σ(k)H
T
σ(k) −GT

σ(k)H
T
σ(k),

Γ13 ,− T T
1σ(k) + (Aσ(k) − I)TT2σ(k) + Pσ(k+1),

Γ23 ,− BT
σ(k)T2σ(k), Γ24 , Hσ(k)D

c
σ(k)Φσ(k)E,

Γ33 ,Pσ(k+1) − T2σ(k) − T T
2σ(k), Γ34 , T T

2σ(k)Dσ(k).

Next, we will address the control design problem. In order tosolve the problem in the framework of LMIs, we

setT1i = T , T2i = λT1i in (16) and (17), and specify the matricesT andT−1 as follows [7]:

T =









RT J1 0

NT J2 0

0 0 µ−1I









, T−1 =









ST J3 0

MT J4 0

0 0 µI









, (36)
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whereR, S, M , N , Jĩ (̃i = 1, 2, 3, 4) are some matrices andµ is a scalar. Then, we define the two matrices

X1 ,









I ST 0

0 MT 0

0 0 µI









, X2 ,









RT I 0

NT 0 0

0 0 I









. (37)

It is easy to verify thatTX1 = X2. Moreover, we denote
[

Āc
i B̄c

i

C̄c
i D̄c

i

]

,

[

N RB

0 I

][

Ac
i − I Bc

i

Cc
i Dc

i

]

×
[

MT 0

ΦiCS
T I

]

+

[

R(A− I)ST 0

0 0

]

, (38)

Ēc
i , (RB +NEc

i )H̄i, Y , SRT +MNT , (39)

P̄i , XT
1 PiX1, Ḡi , GiX1, H̄i , H−1

i , (40)

Λ1 ,









Λ11 Āc
σ(k) µB̄c

σ(k)Φ̃σ(k)

Λ12 Λ13 µBD̄c
σ(k)Φ̃σ(k)

Λ14 Φσ(k)CS
T −µΦσ(k)









, (41)

Λ2 ,









I I 0

S S 0

0 0 0









, Λ3 ,









R Y T 0

I ST 0

0 0 µI









, (42)

Λ11 , R(A− I) + B̄c
σ(k)Φσ(k)C, Λ14 , Φσ(k)C, (43)

Λ12 , A− I +BD̄c
σ(k)Φσ(k)C, S , [I ST 0], (44)

Λ13 , (A− I)ST +BC̄c
σ(k), I , [I I 0]. (45)

Theorem 2:Let the scalarsλ > 0, µ, α, β1, β2, β3 andβ4 be given. Assume that there exist(2n+ p)× (2n+ p)

matricesP̄i > 0, n× n matricesQ1 > 0, Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Li, R, S, Y , Āc
i , n× p matricesB̄c

i ,

m× n matricesC̄c
i , m× p matricesD̄c

i , n×m matricesĒc
i , m× (2n+ p) matricesḠi, m×m diagonal matrices

H̄i > 0, i ∈ I[1, N ], and the scalarsγ > 0, ̟ > 0, such that̟ ≤ 1/δ, and the LMIs (15) and

[

Ω̄(i, i+ 1) ΨT
1

Ψ1 Ψ2

]

< 0, ∀i ∈ I[1, N − 1], (46)

[

Ω̄(N, 1) ΨT
1

Ψ1 Ψ2

]

< 0, (47)

[

ū2(l)̟ Ḡi(l)

ḠT
i(l) P̄i

]

≥ 0, ∀i ∈ I[1, N ],∀l ∈ I[1,m], (48)
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are satisfied, wherēΩ(σ(k), σ(k + 1)) ,




























Ω̄11 Ω̄12 Ω̄13 0 Ω̄15 Ω̄16 Ω̄17

∗ Ω̄22 Ω23 Lσ(k) 0 0 0

∗ ∗ Ω33 Ω34 0 Ω̄36 0

∗ ∗ ∗ Ω44 0 0 0

∗ ∗ ∗ ∗ Ω̄55 Ω̄56 Ω̄57

∗ ∗ ∗ ∗ ∗ Ω̄66 Ω̄67

∗ ∗ ∗ ∗ ∗ ∗ −I





























,

Ψ1 ,

























FS 0 0 0 0 0 0

αI −αI 0 0 0 0 0

S 0 0 0 0 0 0
√
τ̃ + 1S 0 0 0 0 0 0

0 0 0 0 0 τ1S 0

0 0 0 0 0 τ̃S 0

























,

Ψ2 ,diag{−γI,−Z1, β
2
1Q1 − 2β1I, β

2
2Q3 − 2β2I,

β23Z1 − 2β3I, β
2
4Z2 − 2β4I}

with

Ω̄11 ,P̄σ(k+1) − P̄σ(k) + Λ1 + ΛT
1 − α(Λ2 + ΛT

2 ),

Ω̄12 ,α[2I ST + I 0]T , Ω̄13 , [AT
dR

T AT
d 0]T ,

Ω̄15 ,









(D̄c
σ(k)Φσ(k)C)T

(C̄c
σ(k))

T

µ(D̄c
σ(k)Φ̃σ(k))

T









−









Ēc
σ(k)

BH̄σ(k)

0









− ḠT
σ(k),

Ω̄16 ,− Λ3 + λΛT
1 + P̄σ(k+1), Ω̄36 , λΩ̄T

13,

Ω̄17 ,









RD + B̄c
σ(k)Φσ(k)E

D +BD̄c
σ(k)Φσ(k)E

Φσ(k)E









, Ω̄55 , −2H̄σ(k),

Ω̄22 ,−Q1 +Q2 − Z2 − 2αI, Ω̄67 , λΩ̄17,

Ω̄56 ,− λ[(Ēc
σ(k))

T (BH̄σ(k))
T 0],

Ω̄57 ,D̄
c
σ(k)Φσ(k)E, Ω̄66 , Pσ(k+1) − λ(Λ3 + ΛT

3 ).

Then, the conclusions of Theorem 1 are true. Moreover, the controller gain is obtained by solving (38) and (39).

Proof: Pre- and post-multiplying (16) and (17) byΠT andΠ, respectively, whereΠ , diag{X1, I, I, I, H̄i,X1,

I, I}, and using the notations in (38)-(45), we can obtain the following matrix inequalities:
[

Ω̌(i, i + 1) F̌T

F̌ −γI

]

< 0, ∀i ∈ I[1, N − 1], (49)

[

Ω̌(N, 1) F̌T

F̌ −γI

]

< 0, (50)
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whereF̌ = [FS 0 0 0 0 0 0] and Ω̌(σ(k), σ(k + 1)) ,




























Ω̌11 S
TZ1 Ω̄13 0 Ω̄15 Ω̄16 Ω̄17

∗ Ω22 Ω23 Lσ(k) 0 0 0

∗ ∗ Ω33 Ω34 0 Ω36 0

∗ ∗ ∗ Ω44 0 0 0

∗ ∗ ∗ ∗ Ω̄55 Ω̄56 Ω̄57

∗ ∗ ∗ ∗ ∗ Ω̌66 Ω̄67

∗ ∗ ∗ ∗ ∗ ∗ −I





























with

Ω̌11 ,S
T [Q1 + (τ̃ + 1)Q3 − Z1]S+ P̄σ(k+1) − P̄σ(k) +Λ1 + ΛT

1 ,

Ω̌66 ,Pσ(k+1) − T2σ(k) − T T
2σ(k) + S

T (τ21Z1 + τ̃2Z2)S.

For any matricesΥ1 andΥ2, it is seen that

(Υ1 − αZ−1
1 Υ2)

TZ1(Υ1 − αZ−1
1 Υ2) ≥ 0. (51)

Let us selectΥ1 = [S − I] andΥ2 = [I − I], we have
[

−S
TZ1S S

TZ1

Z1S −Z1

]

= −ΥT
1 Z1Υ1

≤ −α(ΥT
1 Υ2 +ΥT

2 Υ1) + α2ΥT
2 Z

−1
1 Υ2. (52)

Similarly, we have the following matrix inequalities:

−Q−1
1 ≤ β21Q1 − 2β1I, −Q−1

3 ≤ β22Q3 − 2β2I, (53)

− Z−1
1 ≤ β23Z1 − 2β3I, − Z−1

2 ≤ β24Z2 − 2β4I. (54)

For the LMIs (46) and (47), using the relations (52)-(54) andSchur complement, it can be inferred that the matrix

inequalities (49) and (50) are ensured. Pre- and post-multiplying the matrix inequalities (18) bydiag{1,XT
1 } and

diag{1,X1}, respectively, and using the notations in (40), the LMIs (48) are readily obtained.

Note that, if the LMIs (46) and (47) hold, we have

Λ3 + ΛT
3 =









R+RT I + Y T 0

I + Y S + ST 0

0 0 2µI









> 0, (55)

which implies thatR is invertible. Pre- and post-multiplying (55) by[R−1 − I 0] and its transpose yields

(Y − SRT )R−T +R−1(Y − SRT )T < 0. (56)

From (56), it is seen that the matrixY − SRT is non-singular. Applying the technique of singular value

decomposition toY − SRT , the matricesM and NT can be readily obtained. Moreover, the controller gain

can be solved by using the matrix equations (38) and (39). This completes the proof.

Remark 2:In order to obtain LMI-based conditions, we have specified that the matrixT in (36) has a special

structure. Of course, we can first augment the system (1) and the measurement (6), and then design the controller

based on the augmented system [8]. In this case, the standardlinearized technique in [7] can be adopted and the
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special assumption on the matrixT is no longer required. However, it should be pointed out thatthe technique

in [8] will produce a higher-order controller which makes the implementation of controller more difficult. In fact,

some simulation examples shows that our proposed techniquewould not bring much conservatism.

Remark 3:In [14], the non-rational dynamic output controller is designed under which the existing linearized

techniques can be directly employed. Nevertheless, when the time delay is unknown, the non-rational dynamic

output controller is no longer applicable. In this paper, the matrix inequalities (52)-(54) are utilized to make that

the obtained matrix inequalities are linear. However, it isworth mentioning that the introduction of the inequalities

(52)-(54) will increase the conservatism. Of course, the modified cone complementary linearization (CCL) algorithm

[15] could be used here, but then the optimization of system performance indices will become difficult.

Corresponding to Corollary 1, we can obtain the following result.

Corollary 2: The conclusions of Theorem 1 are true for the case without time delay if there exist(2n+p)×(2n+p)

matricesP̄i > 0, n× n matricesR, S, Y , Āc
i , n× p matricesB̄c

i , m× n matricesC̄c
i , m× p matricesD̄c

i , n×m

matricesĒc
i , m × (2n + p) matricesḠi, m ×m diagonal matricesH̄i > 0, i ∈ I[1, N ], and the scalarsγ > 0,

̟ > 0, such that̟ ≤ 1/δ, the LMIs (48) and the following LMIs are satisfied:

Γ̄(i, i+ 1) < 0, ∀i ∈ I[1, N − 1]; Γ̄(N, 1) < 0, (57)

where

Γ̄(σ(k), σ(k + 1)) ,



















Γ̄11 Γ̄12 Γ̄13 Γ̄14 Γ̄15

∗ −2H̄σ(k) Γ̄23 Γ̄24 0

∗ ∗ Γ̄33 Γ̄34 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −γI



















with

Γ̄11 ,P̄σ(k+1) − P̄σ(k) + Λ1 + ΛT
1 ,

Γ̄12 ,









(D̄c
σ(k)Φσ(k)C)T

(C̄c
σ(k))

T

µ(D̄c
σ(k)Φ̃σ(k))

T









−









Ēc
σ(k)

BH̄σ(k)

0









− ḠT
σ(k),

Γ̄13 ,− Λ3 + λΛT
1 + P̄σ(k+1), Γ̄15 = S

TF T ,

Γ̄14 ,









RD + B̄c
σ(k)Φσ(k)E

D +BD̄c
σ(k)Φσ(k)E

Φσ(k)E









, Γ̄24 , D̄c
σ(k)Φσ(k)E,

Γ̄23 ,− λ[(Ēc
σ(k))

T (BH̄σ(k))
T 0],

Γ̄33 ,Pσ(k+1) − λ(Λ3 +ΛT
3 ), Γ̄34 , λΓ̄14.

Remark 4:In obtaining our main results, the modified sector condition(12) is utilized to handle the nonlinear term

ψ(u) induced by saturations. Here, it should be pointed out that the polytopic approach might be more effective

in dealing with saturations for the multiple-input systems[31]. Along the similar analysis as this paper, some

alternative conditions can be readily obtained by incorporating the polytopic approach handling the saturations.

Nevertheless, it is worth mentioning that the polytopic approach could lead to a larger numerical complexity.
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Finally, let us deal with the optimization problems involved in our main results. For the case with disturbances,

we can first measure the largest disturbance tolerance levelδM . Then, for a given scalarδ ≤ δM , we can obtain

the minimumH∞ performance levelγm. Note that, under the zero initial condition, the scalar̟ in (48) should

be modified as1/δ. The corresponding optimization problems are easily formulated and thus omitted here.

For the case without disturbances, it is necessary to maximize the set of admissible initial conditions in designing

the controller. In this case, the rows and columns involvingω(k) in LMIs (46), (47) and (57) can be removed.

Here, we are interested in estimating the admissible initial conditionsφx(k) (k ∈ I[−τ2, 0]) of the system (1) under

the assumption that̂x(0) = ȳ(−1) = 0. As in [4], we assume that the initial conditionsφx(k) belong to the set

Xρ ,
{

φx(k) : max
k∈I[−τ2,0]

‖φx(k)‖ ≤ ρ1, max
k∈I[−τ2,−1]

‖∆φx(k)‖ ≤ ρ2
}

, (58)

where∆φx(k) , φx(k + 1)− φx(k), ρ1 > 0 andρ2 > 0 are two scalars.

Remark 5:In fact, we can remove the second constraint involved in the set Xρ. In this case, the initial conditions

φx(k) belong to the setX̃ρ ,
{

φx(k) : max
k∈I[−τ2,0]

‖φx(k)‖ ≤ ρ
}

. Using the fact that‖∆φx(k)‖ ≤ ‖φx(k + 1)‖ +

‖φx(k)‖, it is seen that the relation max
k∈I[−τ2,−1]

‖∆φx(k)‖ ≤ 2ρ is implied in the setX̃ρ. Compared with the set

X̃ρ, it is clear that the setXρ is more flexible in characterizing the admissible initial conditions.

Using the assumptionσ(0) = 1 and noting thatIP1IT = IP̄1IT , P111, it is seen that the scalarsρ1 andρ2

involved in the initial condition setXρ satisfy the following inequality:

Vσ(0)(0) ≤ψ1ρ
2
1 + ψ2ρ

2
2 ≤ 1/̟, (59)

where

ψ1 ,λM (IP̄1IT ) + τ1λM (Q1) + τ̃λM (Q2) + (1/2)(τ̃ + 1)(τ1 + τ2)λM (Q3),

ψ2 ,(1/2)[τ21 (τ1 + 1)λM (Z1) + τ̃2(τ1 + τ2 + 1)λM (Z2)].

Let us introduce the following LMIs:

IP̄1IT , P111 ≤ χpI, (60)

Q1 ≤ χq1I, Q2 ≤ χq2I, Q3 ≤ χq3I, (61)

Z1 ≤ χz1I, Z2 ≤ χz2I. (62)

Then, the maximization of the setXρ can be described by the following optimization problem:

Prob. 1. max
P̄i,Q1,Q2,Q3,Z1,Z2,Li,R,S,Y,Āc

i ,B̄
c
i ,C̄

c
i ,D̄

c
i ,Ē

c
i ,Ḡi,H̄i,χp,χq1

,χq2
,χq3

,χz1
,χz2

ν,

s.t., LMIs (15), (46)− (48) and (60)− (62) hold,

where

ν ,χp + τ1χq1 + τ̃χq2 + (1/2)(τ̃ + 1)(τ1 + τ2)χq3

+ (1/2)[τ21 (τ1 + 1)χz1 + τ̃2(τ1 + τ2 + 1)χz2 ].

In case thatτ(k) is not contained in (1), the initial conditionsφx(0) , x0 are assumed to belong to an ellipsoid

X̟̃ ,
{

x0 ∈ R
n : xT0 P111x0 ≤ 1/̟}. (63)
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Correspondingly, the maximization of the ellipsoid̃X̟ can be written as follows:

Prob. 2. max
P̄i,R,S,Y,Āc

i ,B̄
c
i ,C̄

c
i ,D̄

c
i ,Ē

c
i ,Ḡi,H̄i,χp

χp,

s.t., LMIs (48), (57) and (60) hold.

Remark 6:Recently, the dynamic output-feedback control problem hasbeen considered in [40], [41] for discrete-

time switched delay systems with actuator saturations. However, the switchingσ(k) in this paper is different from

that in [40], [41]. Moreover, the measurement model (6) makes use of the information of its previous step that is

also different from the system outputs in [40], [41]. In addition, the time delays in [40], [41] are assumed to be

constant. It is obvious the results in [40], [41] cannot be applied to the system (1) and the model (6).

Remark 7:In the past decade, the stability analysis and control synthesis for NCSs under different communication

protocols have received considerable research attention [8], [11], [20], [21], [38], but the actuator saturations have

not been taken into account in most existing literature except [21]. Note that the results in [21] are applicable to

the case of two sensor nodes for systems without disturbances or state delays. As such, the results obtained in this

paper are more general than existing ones in terms of the considered system and the practical applicability.

Remark 8:In order to reduce the potential conservatism, the adjustable parametersλ, µ, α, β1, β2, β3 andβ4 are

introduced in Theorem 2. For such parameters, we can first select them through experience to ensure the feasibility

of the optimization problems involved in Theorem 2, and thenperform the linear search within their neighbours

to obtain the optimized performance indices. For the linearsearch, one can first search the scalarλ by fixing the

last 6 parameters, then search the scalarµ by fixing other 6 parameters, and until finally searchβ4 by fixing first

6 parameters. To further decrease the conservatism, one canrepeat the above search process.

IV. N UMERICAL EXAMPLES

Example 1:Consider the discrete-time system (1) with the parameters

A =













1 0.001 0 0

0 1 −0.0005 0

0 0 1 0.001

0 0 0.0448 1













, B =













0

0.0064

0

−0.0280













,

Ad = 0, C = I, D = E = F = 0, ū(1) = 50.

The system is a linearized model of the inverted pendulum on acart [21]. As in [47], we rewrite the measurement

outputy(k) as (3) withp1 = p2 = N = 2. By solving Prob. 2 withλ = ̟ = 1, µ = 8× 108, and the additional

constraintsR ≤ 5000I, S ≤ 5000I, C̄c
1(C̄

c
1)

T ≤ 100, D̄c
1(D̄

c
1)

T ≤ 100, we haveχp = 0.0062 and

Ac
1 =













0.0008 0.0011 0.0000 0.0171

−0.0370 −0.0548 0.0027 −0.8340

−0.0002 0.0012 0.9921 0.1574

0.0035 0.0049 −0.0070 0.9934













,

Bc
1 =













−0.9133 0.0213 0.0000 0.0000

−0.0632 −1.0863 −0.0000 −0.0000

−0.0002 0.0012 −0.0000 −0.0000

0.0033 0.0050 0.0000 0.0000













,
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Cc
1 =

[

5.6026 8.3106 −0.3886 126.4517
]

,

Dc
1 =

[

5.3523 8.4468 0.0001 0.0000
]

,

Ac
2 =













0.9994 −0.0024 −0.0001 −0.0000

0.0293 1.1586 −0.0002 −0.0000

0.0002 −0.0003 0.0000 0.0000

−0.0000 −0.0000 0.0000 −0.0000













,

Bc
2 =













0.0000 0.0000 0.0086 0.0072

−0.0000 −0.0000 −0.4217 −0.3507

−0.0000 −0.0000 −0.0032 −0.0005

0.0000 −0.0000 0.0004 −0.0000













,

Cc
2 =

[

−4.4386 −24.0363 0.0051 0.0001
]

,

Dc
2 =

[

0.0000 0.0000 64.0069 53.1689
]

,

Ec
1 =E

c
2 =

[

0.0001 −0.0066 −0.0000 0.0000
]T

,

P111 =













0.0050 0.0004 0.0000 −0.0000

0.0004 0.0054 0.0000 0.0000

0.0000 0.0000 0.0062 0.0001

−0.0000 0.0000 0.0001 0.0056













.

Applying Theorem 1 and Remark 3 in [21] withλ = β = 1, µ = 1.02, σ = 0.01 and ηm = ηM = τM = 0,

it follows that the largest ball of admissible initial conditions is ‖x0‖ < 0.5250 under the static output-feedback

controller with K = [5.825 5.883 24.941 5.140]. Noting that our obtained largest ball of the set̃X̟ is

‖x0‖ ≤ 1/
√

̟λM (P111) = 12.6787, it is obvious that our proposed control strategy can provide a larger estimate

of admissible initial conditions. In Fig. 1, the state evolution of the closed-loop system is plotted withx0 =

[12 − 7 − 3 − 1]T ∈ X̟̃. It is seen from Fig. 1 that the stability of the closed-loop system can be ensured.

For this example, applying Theorem 1 with̄Ac
i , Āc, B̄c

i , B̄c, C̄c
i , C̄c, D̄c

i , D̄c, Ēc
i , Ēc (i ∈ I[1, N ]),

and the same parameter selection and the same additional constraints as above, we cannot find the feasible solution,

which means that the switched controller might be more effective than the non-switched controller.

Example 2: [4] Consider the system (1) and (3) with the following parameters:

A =

[

1.1 0.15

0.03 0.8

]

, Ad =

[

0 −0.1

0 0

]

, B =

[

1

0.1

]

,

C = I, D = E = [0.1 0.1]T , F = [1 1], ū(1) = 15,

τ1 = 1, τ2 = 3, p1 = p2 = 1, N = 2.

Under the zero initial condition, applying Theorem 2 withλ = 1.7, µ = 104, α = 0.15, β1 = 0.7, β2 = 106,

β3 = 0.1 andβ4 = 0.4, we obtain the largest disturbance tolerance levelδM = 4.5018×104. Letting δ = 2×104 ≤
δM , and applying Theorem 2 again withλ = 1, α = 0.1, β1 = 0.5, β2 = µ = 104, β3 = 0.2 andβ4 = 0.6, we

have the minimumH∞ performance levelγm = 0.6812. Correspondingly, the controller gain matrices are given as

Ac
1 =

[

0.8142 0.6020

−0.0014 −0.0209

]

, Bc
1 =

[

−4.9802 0.0003

11.1554 −0.0002

]

,
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Fig. 1. State evolution under the proposed controller.

Cc
1 =

[

−0.0037 −0.0015
]

, Dc
1 =

[

−0.6304 −0.0000
]

,

Ac
2 =

[

0.1305 −0.0961

−0.2688 0.2599

]

, Bc
2 =

[

−0.0001 22.7256

0.0002 9.0595

]

,

Cc
2 =

[

0.0126 −0.0152
]

, Dc
2 =

[

0.0000 −0.5115
]

,

Ec
1 =

[

4.0386 29.3856
]T

, Ec
2 =

[

−23.8098 43.4463
]T

.

Next, we consider the case that the disturbancesω(k) are absent. By solving Prob. 1 withλ = 1.2, α = 10−5,

β1 = β3 = β4 = µ = 105, β3 = 104, ̟ = 1, and the additional constraintsS ≤ 300I, C̄c
1(C̄

c
1)

T ≤ 104,

C̄c
2(C̄

c
2)

T ≤ 104, we obtain the following controller gain matrices:

Ac
1 =

[

0.5969 −0.4113

0.1299 −0.0323

]

, Bc
1 =

[

−0.0019 0.0000

0.0002 0.0000

]

,

Cc
1 =

[

−122.4041 71.0628
]

, Dc
1 =

[

−0.7700 −0.0019
]

,

Ac
2 =

[

0.3552 −0.7422

0.0341 0.0304

]

, Bc
2 =

[

−0.0000 0.0014

−0.0000 0.0003

]

,

Cc
2 =

[

175.2796 64.0781
]

, Dc
2 =

[

−0.0030 −0.4849
]

,

Ec
1 =

[

−0.0056 −0.0017
]T

, Ec
2 =

[

0.0030 0.0004
]T

.

Meanwhile, it follows that the scalarsρ1 andρ2 involved in the setXρ satisfy0.0020ρ21 + 4.8148 × 10−5ρ22 ≤ 1.

In Figs. 2-3, we plot the state evolutions by using the above obtained controller gains, where the time delay

τ(k) is randomly generated within[1, 3]. In Fig. 2, the disturbance is chosen asω(k) = 50 for 0 ≤ k ≤ 7 and

ω(k) = 0 for k ≥ 8, and in Fig. 3, the initial condition is selected asφx(k) = [21 7]T (−3 ≤ k ≤ 0). Noting that

the open-loop system is not stable, it is clear from Figs. 2-3that our proposed control scheme is indeed effective.

Remark 9:In order to avoid excessively high controller gain, the constraintsR ≤ 5000I, S ≤ 5000I, C̄c
1(C̄

c
1)

T ≤
100, D̄c

1(D̄
c
1)

T ≤ 100 are introduced in solving Prob. 2 in Example 1, and the constraintsS ≤ 300I, C̄c
1(C̄

c
1)

T ≤ 104,

C̄c
2(C̄

c
2)

T ≤ 104 are imposed in solving Prob. 1 in Example 2. Such constraintscan be readily written LMIs.
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Fig. 2. State evolution without exogenous disturbance.
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Fig. 3. State evolution with exogenous disturbance.

V. CONCLUSIONS

In this paper, the dynamic output-feedbackH∞ control problem has been studied for discrete state-delay systems

with exogenous disturbances and actuator saturations under RR protocol. Based on the switched system approach,

the L-K functional and the generalized sector condition, a sufficient condition has been proposed under which

the closed-loop systems can possess the desirable performance indices. The controller gain has been explicitly

characterized in terms of solvability of LMIs. The results concerning the special case without time delay has also

been given. Moreover, the optimization problems about the performance indices have been discussed. The less

conservatism and feasibility of the obtained results have been shown by simulation examples. Our proposed results

can be readily extended to more general systems, such as uncertain systems [4] and T-S fuzzy systems [10], [36].

In this paper, the techniques handling the time delay are conservative to a certain extent. By incorporating the

augmented L-K functionals and some advanced inequalities [27], [37], we can obtain less conservative conditions,

which is our future work. Moreover, it is worth mentioning that the communication delay is ignored in this paper. If

the communication delay is constant, we can modify the model(6) asȳ(k) = Φσ(k)y(k−h)+ (I−Φσ(k))ȳ(k−1),

whereh > 0 denotes the time delay. Then, the corresponding results canbe easily obtained. If the communication
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delay is time-varying, the phenomenon of packet disorders might occur and the further research should be given.

In addition, it is seen that the inequalities (52)-(54) are used to obtain LMI-based conditions, which brings the

conservatism. A further research direction is to develop some more effective linearized techniques.

VI. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are availablefrom the corresponding author upon reasonable

request.
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