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LTReID: Factorizable Feature Generation with 

Independent Components for Long- Tailed Person 

Re-Identification 
Pingyu Wang, Zhicheng Zhao, Fei Su, Hongying Meng 

Abstract-With the rapid increase of large-scale and real-world 
person datasets, it is crucial to address the problem of long-tailed 
data distributions, i.e., head classes have large number of images 
while tail classes occupy extremely few samples. We observe that 
the imbalanced data distribution is likely to distort the overall 
feature space and impair the generalization capability of trained 
models. Nevertheless, this long-tailed problem has been rarely 
investigated in previous person Re-Identification (ReID) works. 
In this paper, we propose a novel Long-Tailed Re-Identification
(LTReID) framework to simultaneously alleviate class-imbalance 
and hard-imbalance problems. Specifically, each real feature 
is decomposed into multiple independent components with two 
decorrelation losses. Then these components are randomly aggre­
gated to generate more fake features for tail classes than head 
ones, resulting in the class-balance between head and tail classes. 
For the hard-balance between easy and hard samples, we utilize 
adversarial learning to generate more hard features than easy 
ones. The proposed framework can be trained in an end-to-end 
manner and avoids increasing the space and time complexity 
of inference models. Moreover, comprehensive experiments are 
conducted on the four ReID datasets so as to validate the 
effectiveness of the overall framework and the advantage of 
each module. Our results show that when trained with either 
balanced or imbalanced datasets, the LTReID achieves superior 
performance over the state-of-the-art methods. 

Index Terms-Person Re-Identification, Long-Tailed Distribu­
tion, Feature Factorization, Feature Generation 

I. INTRODUCTION

P
ERSON Re-Identification (Reill) aims to match images 

of the same person across non-overlapping cameras. It 

plays an important role in various video surveillance ap­

plications such as suspect tracking and missing elderly or 

children retrieval. With the advent of Convolutional Neural

Networks (CNNs), the current deep feature learning based 

methods [ 1-17] have significantly outperformed a variety of 
traditional feature learning based approaches [18-24]. As deep 

learning is an essentially data-driven algorithm, the success of 

deep Reill models is undoubtedly inseparable to large-scale 

person Reill datasets, e.g., Market1501 [25], CUHK03 [26], 

DukeMTMC [27] and MSMT17 [28]. 
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Fig. I: The instance distribution of training data on Marketl501, CUHK03, 
DukeMTMC and MSMTl 7 datasets. All classes are sorted in descending 
order by the number of instances. The instances on Marketl501, DukeMTMC 
and MSMTI 7 datasets obey a long-tailed distribution, while the instances on 
CUHK03 dataset are almost uniformly distributed. 

However, in contrast with commonly used visual recognition 

datasets (e.g., CIFAR [29, 30] and lmageNet [31]) that exhibit 

roughly uniform distributions of class labels, most person 

Reill datasets always possess long-tailed distributions. As 

illustrated in Fig. 1, head classes claim most of samples, 

while tail classes are represented by relatively few examples. 

Since head classes contain more intra-class variations than 

tail classes, head classes prefer occupying a much larger 

spatial span than tail classes in the feature space [32]. This 

imbalanced feature distribution twists the overall feature space, 

which undermines the generalization capability of Reill mod­

els. Regrettably, this long-tailed problem has been infrequently 

investigated in previous person Reill works. Except for the 

Reill task, several studies [33-38] have proposed various 

imbalance learning algorithms for other specific tasks. These 

methods often improve the performance reasonably yet the 

improvement deteriorates when tail classes are severely under­

represented. Specifically, they are often designed to adjust the 

decision boundary to reduce the bias introduced by imbalanced 
classes. Nonetheless, without enriching the diversities of tail 

classes, it becomes challenging to find the right direction to 

refine the decision boundary. Therefore, we focus on distilling 
Copyright © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
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variation-related knowledges to augment the examples of tail 

classes for long-tailed datasets. 

In this work, we propose a novel Long-Tailed ReID 

(LTRelD) framework to solve the long-tailed RelD problem. 
In particular, we construct an Independent Component Fac­

torization (ICF) method to decompose each person feature 

into an identity-related component and K variation-related 
components. The identity-related component purely encodes 

person identities, while the K variation-related components 
exclusively represent different image variations (e.g., body 

poses, part occlusions and background clutters). To preserve 

the component independence, the two decorrelation losses, 

i.e., Identity Variation Decorrelation (IVD) loss and Multiple

Variation Decorrelation (MVD) loss, are proposed to eliminate

the correlations among the K + 1 components. For augmenting
training data, an effective Factorizable Feature Generation

(FFG) method is proposed to synthesize fake features by ran­
domly aggregating the K + 1 components. More importantly,

we generate more fake features for tail classes than head

classes and then both real and fake features are merged to train
RelD models, resulting in the class-balance between head and

tail classes.

Apart from the class-imbalance problem, we also take into 

account the hard-imbalance between easy and hard samples. 

Specifically, hard samples usually account for the tiny minority 
of training data, while the vast majority belong to easy 

samples. During the training phase, hard samples can produce 

gradients with large magnitudes, while the gradients from easy 
samples are close to zero. Accordingly, the hard-imbalance 

may engender early training saturation, which prematurely 

stops contributing significant gradients to back-propagation. 
In order to relieve this training saturation, we put forward an 

Adversarial Feature Generation (AFG) method to encourage 
hard feature generation with adversarial learning, which is 

conducive to retain the hard-balance and output significant 
gradients. 

To sum up, this paper makes the following contributions: 

• We propose the ICF method to decompose each per­
son feature into an identity-related component and K

variation-related components. The IVD and MVD losses

are introduced to reduce component correlations.

• We put forward the FFG method to generate diverse fake

features to relieve the class-imbalance between head and
tail classes.

• We construct the AFG method to synthesize hard fake

features to mitigate the hard-imbalance between easy and
hard samples.

• The proposed end-to-end LTReID framework achieves

state-of-the-art performance on the four person ReID
datasets without increasing the time and space complexity

of inference models.

II. RELATED WORKS

A. Person Re-Identification

Person ReID frameworks roughly consist of two major compo­

nents, i.e., representation learning and metric learning. Some 

conventional ReID methods [18, 24, 39, 40] primarily employ 

handcrafted features such as color and texture histograms. For 

instance, Yang et al. [39] put forward salient color names 
based on color descriptor to form a feature representation 

for person matching. Recently, deep learning based person 

Re ID methods [l-17, 41] have achieved great success through 

simultaneously learning person features and similarities within 

one framework. For example, based on PCB [2, 7], some fol­
lowing works, i.e., MGN [9], PyramidNet [IO] and HPM [8], 

extract both global and local person representations by divid­

ing convolutional feature maps horizontally into multi-grained 

patches. Additionally, some works adopt deep metric learning 

methods with softrnax loss [42-44], triplet loss [45-47] or 

quadruplet loss [ 48] for discriminative feature learning. 

Nevertheless, previous ReID works have seldomly provided 

flexible and effective solutions to the long-tailed data distribu­
tion. Although some ReID systems [ 49-52] use a Generative 

Adversarial Network (GAN) [53] to synthesize unseen person 

images, these methods are not explicitly concerned with the 

long-tailed distribution problem. With regard to imbalanced 
person ReID, Liu et al. [32] transfer the angular margin 

of head classes to tail classes for margin-based softmax 
losses [54, 55]. Besides, Liu et al. [56] introduce a memory­

based jitter to augment tail classes with higher diversities. Dif­

ferent from these studies, the proposed LTRelD decomposes 
each person feature into an identity-related component and 

K variation-related components. These K + 1 components 

are randomly aggregated to generate more fake features for 
tail classes than head ones. To the best of our knowledge, 

this is the first attempt to manipulate multiple component 
factorization for fake feature generation in the long-tailed 

ReID task. 

B. Imbalance Learning

Imbalance learning has received increasing attention due to 
its wide applications for many real-world problems. Current 

works leverage data re-sampling, cost-sensitive learning, mar­

gin learning and data generation to cope with imbalanced 

datasets. Firstly, for data re-sampling methods, training sam­

ples are either over-sampled (increasing sampling frequencies 
for tail classes) [33, 34] or under-sampled (decreasing sam­

pling frequencies for head classes) [35, 36] to achieve a more 

balanced data distribution. Whereas, over-sampling duplicated 

samples might lead to over-fitting upon tail classes, while 
under-sampling informative samples will certainly lose impor­

tant information of head classes. Secondly, for cost-sensitive 
learning methods, training loss functions are weighted at class 

level by multiplying different weights on different classes to 

promote the influence of tail classes [57, 58] or at instance 
level by multiplying different weights on different training 

samples for more fine-grained control [37, 59-62]. However, 
cost-sensitive learning is not capable of handling the large­

scale and real-world scenarios of long-tailed data and tend to 

cause optimization difficulty [63]. Thirdly, for margin learning 
methods [64-67], a larger inter-class margin is assigned to 

tail classes than head classes in margin-based loss func­
tions [54, 55, 68, 69]. Unfortunately, it is non-trivial to select 

appropriate and universal margins for different long-tailed 

data. Finally, for data generation methods [70-73], additional 
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TABLE I: Comparisons with state-of-the-art methods on Markell 501, CUHK03, DukeMTMC and MSMTl 7 datasets. CUHK03-L and CUHK03-D use labeled 
and detected bounding boxes to crop person images on CUHK03, respectively. Note that we adopt the strong baseline model in [75], where the normalized 
and unnormalized features are trained by softrnax loss and triplet loss, respectively. 

Method I 
Marketl501 

I 
CUHK03-L 

I 
CUHK03-D 

I 
DukeMTMC 

I 
MSMT17 

Rankl mAP Rankl mAP Rankl mAP Rankl mAP Rankl mAP 

PDC [81] 84.14 63.41 - - - - - - 58.00 29.70
GLAD [82] 89.90 73.90 - - - - - - 61.40 34.00
PAB [83] 91.70 79.60 - - - - 84.40 69.30 - -

Manes [84] 93.10 82.30 69.00 63.90 65.50 60.50 84.90 71.80 - -
PCB+ RPP [2] 93.80 81.60 63.70 57.50 - - 83.30 69.20 68.20 40.40

MGN [9] 95.70 86.90 68.00 67.40 66.80 66.00 88.70 78.40 - -
HPM [8] 94.20 82.70 - - 63.90 57.50 86.60 74.30 - -

DGNet [51] 94.80 86.00 - - - - 86.60 74.80 77.20 52.30 
CASN [43] 94.40 82.80 73.70 68.00 71.50 64.40 87.70 73.70 - -
IANet [85] 94.40 83.10 - - - - 83.10 73.40 75.50 46.80 

DSAReID [86] 95.70 87.60 78.90 75.20 78.20 73.10 86.20 74.30 - -
PyrarnidNet [10] 95.70 88.20 78.90 76.90 78.90 74.80 89.00 79.00 - -

MHN [87] 95.10 85.00 77.20 72.40 71.70 65.40 89.10 77.20 - -
OSNet [88] 94.80 84.90 - - 72.30 67.80 88.60 73.50 78.70 52.90
BFE [89] 95.30 86.20 79.40 76.70 76.40 73.50 88.90 75.90 78.80 51.50 
SAN [90] 96.10 88.00 80.10 76.40 79.40 74.60 87.90 75.50 79.20 55.70 

RGA-SC [13] 96.10 88.40 81.10 77.40 79.60 74.50 - - 80.30 57.50
LEAP-CF [32] 93.50 84.20 - - - - 87.80 74.20 76.70 50.80 
GASM [15] 95.30 84.70 - - - - 88.30 74.40 79.50 52.50 
PISNet [91] 95.60 87.10 - - - - 88.80 78.70 - -

ISP [14] 95.30 88.60 76.50 74.10 75.20 71.40 89.60 80.00 - -
CSPR [12] 94.20 84.80 64.70 62.80 - - 83.50 71.90 75.30 50.80

ReID-NAS [92] 95.10 85.70 - - - - 88.10 74.60 79.50 53.30 
Occluded-ReID [93] 92.70 81.30 - - - - 86.20 72.60 

RFC [94] 95.20 89.20 - - 81.10 78.00 90.70 80.70 82.00 60.20
APNet [95] 96.20 90.50 87.40 85.30 83.00 81.50 90.40 81.50 83.70 63.50 

ResNet50 + Baseline 94.60 86.52 77.07 74.57 73.43 70.60 88.06 76.59 78.10 53.91 
ResNet50 + LTReID 95.89 89.02 82.14 80.33 81.81 79.07 90.48 80.35 81.02 58.64 

ResNetlOl + Baseline 94.63 87.55 79.50 77.56 79.21 75.44 89.95 78.59 80.71 57.34 
ResNetl0l + LTReID 96.12 90.65 87.14 85.24 85.57 83.63 91.20 82.09 83.33 62.71 

of real and fake features are reversed, the joint of these two 
features is able to equilibrate the sample distribution, which 
contributes to learning balanced features. 

D. Adversarial Feature Generation

The FFG method only considers the class-imbalance of class 
frequencies but ignores the hard-imbalance between easy and 
hard samples. For the sake of solving this hard-imbalance 
problem, an Adversarial Feature Generation (AFG) method 
is proposed to generate enough hard fake features. Our goal 
is to learn discriminative features and generate hard features 
simultaneously. Mathematically, the training process is formu­
lated as a minimax game, leading to an adversarial learning 
problem [53] as, 

min max As.Cs + At.Ct, (16) 
0v 0H 

where As and At are the loss weights of .Cs and .Ct, In addition, 
the optimization of 0D = {0x, W,'Y,,8} aims at learning 
discriminative features, which are beneficial to acquire reliable 
variation-related components. Contrastingly, the optimization 
of 0 H = { 0 ,J>k} f =I focuses on generating hard features, which 
would enlarge loss values and produce gradients with large 
magnitudes to back-propagation. 

As depicted in Fig. 5, the impact of the AFG method is 
attributed to three aspects. (1) The AFG helps to augment 
enough hard features and therefore balances the quantity distri­
bution of easy and hard samples. (2) The AFG prefers pushing 
hard features as close as possible to decision boundaries and 
makes feature learning concentrate on hard samples which 

have large overlaps with neighboring classes. (3) Since the 
LTReID tries to classify hard features, the AFG contributes 
to reducing intra-class distances and enlarging inter-class 
distances. Therefore, the AFG not only equilibrates the hard­
imbalance between easy and hard samples, but also facilitates 
discriminative feature learning. 

E. Overall Loss Function

We optimize the LTReID framework in an end-to-end manner 
by cascading .Cs , .Ct, .Civ and .Cmv as follows, 

minmax(As.Cs +At.Ct)+ min (Aiv.Civ +Amv.Cmv), (17) 
0v OH 0v,0H 

where Aiv and Amv are loss weights of .Civ and .Cmv , respec­
tively. The training process includes two sub-process: (1) fix 
0 H and update 0 D; (2) fix 0 D and update 0 H. The alternative 
learning process is formulated as follows, 

0 D = argmin As.Cs + At.Ct + Aiv.Civ + Amv.Cmv, 
0v 

0H = argmaxAs.Cs + At.Ct - Aiv.Civ - Amv .Cmv, 
0H 

(18) 

where 0 D and 0 H denote the optimal solutions of 0 D and 0 H, 

respectively. Note that we set As = 1.0, At = 1.0, Aiv = 0.1 
and Amv = 10.0 as default in our experiments. 

IV. EXPERIMENTS

A. Dataset

For the purpose of justifying the effectiveness of our 
method, we evaluate the proposed LTReID framework on 
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TABLE II: Comparisons with state-of-the-art methods on long-tailed Mar­
ket1501 and DukeMTMC. Different long-tailed datasets are constructed by 
varying the number of head class. H is the number of head classes and S

denotes the instance number per tail class. Note that all methods use ResNet50 
as the backbone. 

Long-Tailed I Method 
Market1501 DukeMTMC 

Rank! mAP Rank! mAP 

LEAP-CV [32] 86.50 68.70 74.80 55.60 
LEAP-AV [32] 87.30 69.80 76.50 57.90 

(HlO0,S5) MBJ [56] 88.40 72.60 78.60 60.80 
Baseline 90.97 77.66 82.32 67.04 
LTReID 92.84 82.60 84.78 70.96 

LEAP-CV [32] 84.90 67.30 73.00 53.10 
LEAP-AV [32] 84.60 67.10 73.50 54.40 

(H50,S5) MBJ [56] 86.20 68.80 74.40 56.70 
Baseline 89.79 75.26 80.92 65.41 
LTReID 91.54 80.28 82.50 68.07 

LEAP-CV [32] 83.20 64.10 72.70 52.40 
LEAP-AV [32] 82.20 64.30 73.70 54.20 

(H20,S5) MBJ [56] 84.80 66.70 75.50 57.90 
Baseline 87.32 70.72 79.37 64.70 
LTReID 90.56 77.95 82.67 66.76 

four holistic datasets, i.e., Market1501 [25], CUHK03 [26], 
DukeMTMC [27] and MSMT17 [28]. 

Market1501 [25]: It contains 32,668 images of 1,501 
persons captured by six camera views. The whole dataset is 
divided into a training set containing 12,936 images of 751 
persons and a testing set containing 19,732 images of 750 
persons. For each person in testing set, we select one image 
from each camera as a query image, forming 3,368 queries 
following the standard setting in [25]. 

CUHK03 [26]: It contains 14,097 images of 1,467 persons, 
captured by six camera views. Two types of person images are 
provided: manually labeled person bounding boxes (Labeled) 
and automatically detected bounding boxes (Detected). We use 
the settings of both labeled and detected person images on the 
splits in [96], where 767 and 700 persons are used for training 
and testing, respectively. 

DukeMTMC [27]: It contains 36,411 images of 1,812 
persons captured by 8 cameras, where only 1,404 persons 
appeared in more than 2 cameras. The other 408 persons 
are regarded as distractors. The training set contains 16,522 
images of 702 persons while the testing set contains 2,228 
query images of 702 persons and 17,661 gallery images. 

MSMT17 [28]: It contains manually annotated 126,441 
bounding boxes of 4,101 persons, which is currently the largest 
person ReID dataset. All images are captured by the 15-camera 
network deployed in campus, which contains 12 outdoor 
cameras and 3 indoor cameras. The training set contains 
32,621 bounding boxes of 1,041 persons, and the testing set 
contains 93,820 bounding boxes of 3,060 persons. From the 
testing set, 11,659 bounding boxes are randomly selected as 
query images and the other 82,161 bounding boxes are used 
as gallery images. 

B. Implementation Details

Network Architecture: We take the ResNet-50/101 [79] 
initialized with the parameters pretrained on lmageNet [97] as 
the backbone network. Following the work [8], the last fully­
connected layer and global average pooling layer are removed 
and the stride of the last residual block Conv4 _1 is set from 

7 

TABLE III: Comparisons with state-of-the-art methods on long-tailed Mar­
ket1501 and DukeMTMC. Different long-tailed datasets are constructed by 
varying the instance number per tail class. Note that all methods use ResNet50 
as the backbone. 

Long-Tailed I Method 
Market1501 DukeMTMC 

Rankl mAP Rankl mAP 

LEAP-CF [32] 83.40 65.20 72.80 52.70 

(H20,S5) 
LEAP-AF [32] 83.20 63.90 73.60 54.20 

Baseline 87.32 70.72 79.37 64.70 
LTReID 90.56 77.95 82.67 66.76 

LEAP-CF [32] 76.80 54.70 63.00 42.60 

(H20,S4) 
LEAP-AF [32] 77.90 56.50 64.40 44.20 

Baseline 84.83 67.11 76.75 59.53 
LTReID 88.63 74.33 79.22 63.25 

LEAP-CF [32] 67.20 43.50 51.10 33.20 

(H20,S3) 
LEAP-AF [32] 66.10 44.10 53.30 34.30 

Baseline 80.76 60.36 70.51 52.59 
LTReID 86.49 69.95 74.96 57.66 

2 to 1 for increasing the feature map size. 
Data Processing: In order to obtain enough context infor­

mation from person images and a proper size of feature map 
for the proposed LTReID framework, we first resize training 
images to 384 x 128. Then we randomly crop each training 
image with scale in the interval [0.64, 1.0] and aspect ratio 
[2, 3]. Third, we resize these cropped images back to 384x 128. 
Following the work [84], the training images are augmented 
with horizontal flipping and random erasing [98]. Before it 
is sent to the network, each image is subtracted from the 
mean values [0.485, 0.456, 0.406] and divided by the standard 
deviations [0.229, 0.224, 0.225] according to normalization 
procedure when using the pretrained model on ImageNet. 

Training/Testing Configurations: Since triplet loss is used 
to learn person features, we need to adopt an appropriate 
triplet sampling strategy. To simplify this procedure, triplets 
are generated using the PK sampling method [77], which ran­
domly samples P classes and then randomly selects K images 
for each person to form a mini-batch with the size P x K. 
In a mini-batch, we use all possible PK (PK - K) (K - 1) 
combinations of triplets for triplet loss. For all datasets, P and 
K are set to 16 and 4, respectively. Following the work [75], 
we warm up the model for 10 epochs with a linearly growing 
learning rate from 3.5 x 10-5 to 3.5 x 10-4

. Then, the learning 
rate is deceased by a factor 0.1 at 40th and 70th epoch. We 
observe that 120 epochs are enough for model converging. The 
batch size is set to 64 and Adam method is adopted to optimize 
the model. All our methods are implemented on PyTorch [99]. 
All experiments run on a server with 2 Intel(R) Xeon(R) E5-
2620 v4@2.10GHz CPUs, 4 GeForce GTX 1080 Ti GPU and 
128G RAM. 

C. Comparison with State-of-the-Art Methods

Original Dataset: We compare the LTReID framework with 
other state-of-the-art methods on Market1501, CUHK03, 
DukeMTMC and MSMTl 7 datasets. The comparisons are 
reported in Table I. Experimental results show that our baseline 
has surpassed many advanced methods and the LTRelD further 
improves performances compared with the baseline [75]. In 
addition, compared with other methods, the results show that 
the proposed LTReID achieves superior or competitive re­
trieval accuracies. Compared with other datasets, the MSMTl 7 
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Fig. 6: Ablation studies on Marketl501 and DukeMTMC datasets. (a) Analyzing the impact of the variation-related component number K of Eq. 13. (b) 
Analyzing the sensitivity of the generation exponent T of Eq. 15. (c) Analyzing the sensitivity of the generation ratio p. (d) Analyzing the effect of the merged 
features. Note that all Reill models adopt ResNet50 as the backbone network. 

TABLE IV: Ablation studies on Market1501, DukeMTMC and MSMT17 TABLE V: Ablation studies of the all framework on Marketl501 and 
datasets. "Res" denotes the residual variation is used for the ICE "UFG" 
denotes the unnormalized feature generation while "NFG" denotes the nor­
malized feature generation. All methods use ResNet50 as the backbone. 

Method mAP 
Res UFG NFG Marketl501 DukeMTMC MSMT17 

)( )( )( 86.52 76.59 53.91 

)( ti ti 88.20 78.41 60.27 
ti )( ti 88.00 79.51 62.53 
ti ti )( 87.30 77.63 59.90 

ti ti ti 89.02 80.35 63.50 

dataset presents the following challenges: (1) large number of
person identities, bounding boxes and cameras; (2) complex
scenes and backgrounds; (3) multiple time slots with severe
lighting changes. Apart from APNet [95], the LTReID still
achieves higher retrieval accuracies than the other methods. 
This clearly demonstrates that the LTRelD is able to achieve
a satisfactory generalization on the large-scale dataset.

Long-Tailed Dataset: To interpret the impact of long-tailed
distributions on training ReID models, we construct different
long-tailed datasets based on the original datasets. Following 
the work [32], the classes are ranked by their number of
samples and then the top classes H E {100, 50, 20} are
marked as the head classes, respectively. The remaining classes
are treated as the tail classes and the number of samples
is reduced to S E {5, 4, 3} for each tail class. In order to
study the impact of head classes, we fix S = 5 and vary
H E {100, 50, 20} in Table II. The results show that the
baseline model [75] has higher Rankl and mAP accuracies
than LEAP [32] and MBJ [56] on the same long-tailed setting.
This indicates that the baseline model has a stronger robustness
for the long-tailed problem. Moreover, the proposed LTReID
achieves vastly superior results over the strong baseline. This
indicates that the LTReID framework is effective to relieve
imbalanced distributions. In order to explore the impact of tail
classes, we fix H = 20 and vary SE {5, 4, 3} in Table III. The
results show that the performance of all ReID models drops
dramatically when the samples of tail classes are gradually 
reduced. In addition, the proposed LTReID still improves
ReID performance over the baseline with significant margins.
By analyzing the results in Table II and III, we observe
an interesting phenomenon. As the long-tailed distribution is
more serious, the performance improvement of our method
becomes even more significant.

DukeMTMC. Note that all methods use ResNet50 as the backbone. 

Method mAP 
FFG AFG IVD MVD Marketl501 DukeMTMC 

)( )( )( )( 86.52 76.59 

ti )( )( )( 86.97 77.49 
ti ti )( )( 87.88 78.80 

ti ti ti )( 88.23 79.45 
ti ti )( ti 88.81 79.94 
ti ti ti ti 89.02 80.35 

D. Ablation Study

Component Number K: We investigate the sens1t1v1ty of
the variation-related component number K of Eq. 13. When
K = 0, the resulting system is equivalent to the baseline model
without using feature generation. As reported in Fig. 6(a),
the LTRelD reaches the best performance when K = 64. 
With the increasing of the number K, the mAP scores are
significantly improved by 2.30% on Market1501 and 2.46%
on DukeMTMC from K = I to K = 64. This indicates that
the increasing of K contributes to enriching the diversity of
generated fake features. We also try the larger K settings,
i.e., K > 64. However, the too large K would incur addi­
tional computational costs without leading to any observable
performance improvements. Therefore, we recommend to set
K = 64 as default in this work. 

Generation Exponent T: We study the sensitivity of the
generation exponent T of Eq. 15, which is associated with
the distribution of fake features. Specifically, the LTReID uni­
formly generates fake features when T = 0, while the LTRelD
generates more features for tail classes and fewer features for
head classes when T > 0. Two interesting phenomena are
observed in Fig. 6(b). First, a larger generation exponent T 

benefits person ReID performance and the LTReID reaches
the best performance when T = 0.5. Second, increasing
the generation exponent (T > 0.5) significantly degrades
ReID accuracies. To some extent, this is because the large
generation exponent dramatically decreases the number of
generated features for head classes. Therefore, the distribution
of merged features may not be well balanced between head
and tail classes. In this work, we recommend T = 0.5 as it
strikes a satisfactory balance between the data equilibrium and
retrieval performance.

Generation Ratio p: We explore the sensitivity of the 
generation ratio p, which is associated with the quantity of
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Fig. 7: The t-SNE [76] visualization of 10 head classes (from Oto 9) and 10 tail classes (from 10 to 19) on on Marketl501 [25], CUHK03 [26], DukeMTMC [27] 
and MSMT17 [28] datasets. The different classes are distinguished by different colors. The real and fake features are marked as "+"and"*", respectively. 

generated fake features. When p = 0, the resulting system
is equivalent to the baseline model without using generated 
features. As shown in Fig. 6(c), the LTRelD reaches the best 
performance when p = 2.0. Furthermore, we also observe that
simply using too small or large p is not an ideal parameter 
setting, resulting in poor ReID performance. The main reason 
is that the appropriate number of generated features may be 
helpful to relieve the long-tailed distributions. Unfortunately, 
too many generated features are likely to bring unpleasant 
noise and hamper training convergence, which reduces the 
generalization capability of ReID models. Given the above, 
we set p = 2.0 in this work.

Merged Feature: We analyze the contributions of the 
real, fake and merged features on network optimization. In 
Fig. 6(d), the results show that training models with the fake 
features consistently achieves superior mAP scores than the 
real features. This phenomenon indicates that the fake features 
are more suitable than the real features in the long-tailed 
ReID task. In order to show the effectiveness of the joint 
learning of the two features, we merge them into a new mini­
batch to obtain complete merged features for training balanced 
ReID models. Interestingly, it is observed that the merged 
features significantly outperform either of these two features. 
Accordingly, we would recommend to use merged features for 
the LTRelD framework. 

Residual Variation: In this part, we study the effective­
ness of residual variations in Eq. 10. From the results in 
Table IV, decomposing residual variations achieves superior 
ReID performance over decomposing original variations on 
the three datasets. This suggests that it is easier to decompose 
residual variations than to decompose the original varia­
tions. From the perspective of feature generation, the original 
FFG randomly aggregates identity-related components and 
K variation-related components, while the residual FFG ran­
domly aggregates original features and K residual variation­
related components. Therefore, compared to the original FFG, 
the residual FFG is able to maintain the identity-related 

knowledges, even when some identity-related information is 
improperly assigned to the variation-related components. Ac­
cordingly, the residual variation decomposition enhances the 
predictive and stable behavior of the training process, which 
is more suitable for training data with large variations. 

Feature Generation: As fake feature generation is key to 
balancing feature distributions, it is worth exploring the impact 
of unnormalized and normalized fake feature generation. As 
shown in Table IV, the normalized fake features are observed 
to perform significantly better than the unnormalized ones. 
This observation suggests that the normalized feature genera­
tion plays a more critical role in equilibrating the long-tailed 
distributions than the unnormalized feature generation. More 
interestingly, it is found that leveraging both unnormalized and 
normalized feature generation significantly outperforms either 
of them on the three datasets. Although the normalized feature 
generation has some advantages over the unnormalized feature 
generation, they are complementary to each other. Hence, we 
would recommend to use both unnormalized and normalized 
feature generation for the LTReID framework. 

Overall Framework: Finally, we examine key design 
choices in the proposed LTReID framework. The person ReID 
performance on different datasets is reported in Table V. The 
results show that the LTReID model with the FFG outperforms 
the baseline model on each dataset. This is because fake 
features generated by the FFG are able to relieve the class­
imbalance of training data. Moreover, the joint of the FFG 
and AFG further improves the ReID performance with signif­
icant margins, which indicates that hard feature generation is 
conducive to mitigate the hard-imbalance between easy and 
hard samples. Interestingly, the IVD and MVD loss functions 
consistently achieve a significant performance improvement 
for the LTRelD model. This improvement demonstrates that 
reducing the correlations between different components is 
beneficial to boost the generalization capability of the LTReID 
framework. 
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E. Visualization Analysis

Feature Visualization: For demonstrating the effectiveness 

of the proposed method, we visualize the person features 
extracted from the baseline and LTReID models, respectively. 

As shown in Fig. 7, the features of different classes on 

CUHK03 dataset exhibit more uniform distributions than other 

datasets. Moreover, the features of head classes have a much 

larger spatial span than tail classes on MSMTl 7 dataset. This 
is because MSMTl 7 dataset has a more imbalanced data 

distribution than other datasets. Worse still, the long-tailed 

distribution seriously distorts the overall feature space and it 
is hard for tail classes to be separated from other classes. 

Consequently, the long-tailed distribution compromises the 
discriminative ability of the learned features. Moreover, since 

fake features expand the space of tail classes, it is more 

effective to push tail classes away from other classes. That is 

to say, the LTRelD is able to reduce intra-class distances and 

enlarge inter-class differences, which is beneficial to relieve 

the long-tailed RelD problem. 

Training Saturation: With regard to the influence of the 

LTReID on the training procedure, we show the curves of 
softmax loss, triplet loss, IVD loss, MVD loss and mAP in 

Fig. 8. From the results, it can be observed that the softmax 

and triplet losses of the baseline model decline quickly to 

a relatively low level (almost zero), implying that the early 

training saturation is serious. This is because the number of 

easy samples is much larger than hard samples. Since the base­

line model is optimized with gradient-based methods such as 

SGD and Adam, the training saturation may prematurely stops 
contributing gradients to back-propagation due to negligible 

gradients. As the number of easy samples increases and the 

number of hard samples decreases, the baseline model has 

few chances to move around and is more likely to converge at 

a local minima. Therefore, the baseline model easily suffers 

from over-fitting and requires extra hard samples to recover. 
In short, the hard-imbalance between easy and hard samples 

causes the early training saturation and introduces short-lived 
gradient propagation which is not enough to help models 

converge at a global minima or a better local minima. In 

contrast, the softmax and triplet losses of the LTReID model 

decline slowly and are much larger than the baseline model, 

verifying that the early saturation behavior is significantly 
avoided. From the results in Fig. 8, it can be observed that 

the LTReID outperforms the baseline with significant margins. 

Note that, after 2,500 iterations, the LTReID model achieves 
better mAP scores on Market1501 but higher loss values. 

This demonstrates that feature generation gives the LTRelD 
chances to traverse more portions of parameter space for 

optimal solution. In the later period of training, the LTReID 

will spend more efforts to explore this region and converge at 

a better local minima with a finite number of steps. 

V. CONCLUSION

In this work, we propose a new LTReID framework to simul­

taneously solve the class-imbalance and hard-imbalance prob­

lems for the long-tailed ReID task. Specifically, the LTReID 
generates fake features with multiple independent components 

to relieve the class-imbalance between head and tail classes. 

Moreover, the LTReID encourages hard feature generation 

with adversarial learning to mitigate the hard-imbalance be­

tween easy and hard samples. Extensive empirical analysis 
demonstrates that the proposed LTRelD contributes to learn­

ing both discriminative and balanced features on long-tailed 
training data. For the future work, we will extend this work to 

the fields of attribute recognition, face recognition and vehicle 

re-identification, where the long-tailed problem is prevalent. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TMM.2022.3179902, 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

IEEE TRANSACTIONS ON MULTIMEDIA 

REFERENCES 
[1] L. Wu, Y. Wang, J. Gao, and X. Li, "Where-and-when to look:

Deep siamese attention networks for video-based person re­
identification," IEEE Transactions on Multimedia, vol. 21, no. 6,
pp. 1412-1424, 2018.

[2] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, "Beyond
part models: Person retrieval with refined part pooling (and a
strong convolutional baseline)," in Proceedings of the European
Conference on Computer Vision, 2018, pp. 480-496.

[3] C. Song, Y. Huang, W. Ouyang, and L. Wang, "Mask-guided
contrastive attention model for person re-identification," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1179-1188.

[4] J. Xu, R. Zhao, F. Zhu, H. Wang, and W. Ouyang, "Attention­
aware compositional network for person re-identification," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2119-2128.

[5] G. Ding, S. Zhang, S. Khan, Z. Tang, J. Zhang, and F. Porikli,
"Feature affinity-based pseudo labeling for semi-supervised
person re-identification," IEEE Transactions on Multimedia 
vol. 21, no. 11, pp. 2891-2902, 2019.

'

[6] F. Yang, Z. Zhong, Z. Luo, S. Lian, and S. Li, "Leveraging vir­
tual and real person for unsupervised person re-identification,"
IEEE Transactions on Multimedia, vol. 22, no. 9, pp. 2444-
2453, 2019.

[7] ! S�, L. Zheng, Y. Li, Y. Yang, Q. Tian, and S. Wang,
Learmng part-based convolutional features for person re­

identification," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 3. IEEE, 2021, pp. 902-917.

[8] Y. Fu, Y. Wei, Y. Zhou, H. Shi, G. Huang, X. Wang, Z. Yao,
and T. Huang, "Horizontal pyramid matching for person re­
identification," in Proceedings of the AAA/ Conference on
Artificial Intelligence, vol. 33, 2019, pp. 8295-8302.

[9] �- ��g, :· Yuan, X. C�en, J. Li, and X. Zhou, "Learning
discmrunative features with multiple granularities for person
re-identification," in 2018 ACM Multimedia Conference on
Multimedia Conference. ACM, 2018, pp. 274--282.

[10] F. Zheng, C. Deng, X. Sun, X. Jiang, X. Guo, Z. Yu, F. Huang,
and R. Ji, "Pyramidal person re-identification via multi-loss
dynamic training," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8514--
8522.

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

H. Luo, W. Jiang, X. Zhang, X. Fan, J. Qian, and C. Zhang,
"Alignedreid++: Dynamically matching local information for
person re-identification," in Pattern Recognition, vol. 94. El­
sevier, 2019, pp. 53--61.
C. Wan, Y. Wu, X. Tian, J. Huang, and X.-S. Hua, "Concen­
trated local part discovery with fine-grained part representation
for person re-identification," IEEE Transactions on Multimedia 
vol. 22, no. 6, pp. 1605-1618, 2019.

'

Z. Zhang, C. Lan, W. Zeng, X. Jin, and Z. Chen, "Relation­
aware global attention for person re-identification," in Proceed-
ings of the IEEEICVF Conference on Computer Vision and 
Pattern Recognition, 2020, pp. 3186-3195. 
K. Zhu, H. Guo, Z. Liu, M. Tang, and J. Wang, "Identity­
guided human semantic parsing for person re-identification;• in
European Conference on Computer Vision, 2020, pp. 346-363.
L. He and W. Liu, "Guided saliency feature learning for person
re-identification in crowded scenes," in European Conference
on Computer Vision, 2020, pp. 357-373.
Z. Zeng, Z. Wang, Z. Wang, Y. Zheng, Y.-Y. Chuang, and
S. Satoh, "Illumination-adaptive person re-identification," IEEE
Transactions on Multimedia, vol. 22, no. 12, pp. 3064--3074 
2020.

'

H. Luo,. W. Jiang, X. Fan, and C. Zhang, "Stnreid: Deep
convolutional networks with pairwise spatial transformer net-
works for partial person re-identification," IEEE Transactions
on Multimedia, vol. 22, no. 11, pp. 2905-2913, 2020. 
Z. Wang, R. Hu, C. Liang, Y. Yu, J. Jiang, M. Ye, J. Chen,

11 

and Q. Leng, "Zero-shot person re-identification via cross-view 
consistency," IEEE Transactions on Multimedia, vol. 18, no. 2, 
pp. 260-272, 2015. 

[19] D: Gray and H. Tao, "Viewpoint invariant pedestrian recognition
with an ensemble of localized features," in European Confer­
ence on Computer Vision. Springer, 2008, pp. 262-275.

[20] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and
M. Cristani, "Person re-identification by symmetry-driven ac­
cumulation of local features," in 2010 IEEE Computer Soci­
ety Conference on Computer Vision and Pattern Recognition.
IEEE, 2010, pp. 2360--2367. 

[21] I. Kviatkovsky, A. Adam, and E. Rivlin, "Color invariants
for person reidentification," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 7. IEEE, 2012,
pp. 1622-1634.

[22] R. Zhao, W. Ouyang, and X. Wang, "Learning mid-level filters
for person re-identification," in Proceedings of the IEEE Con­
ference on Computer Vision and Pattern Recognition, 2014, pp.
144--151.

[23] Z. Wu, Y. Li, and R. J. Radke, "Viewpoint invariant human re­
identification in camera networks using pose priors and subject­
discriminative features," in IEEE Transactions on Pattern Anal­
ysis and Machine Intelligence, vol. 37, no. 5. IEEE, 2014, pp.
1095-1108.

[24] T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato, "Hier­
archical gaussian descriptors with application to person re­
identification," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 9. IEEE, 2020, pp. 2179-
2194.

[25] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian,
"Scalable person re-identification: A benchmark," in Proceed­
ings of the IEEE International Conference on Computer Vision,
2015, pp. 1116-1124.

[26] W. Li, R. Zhao, T. Xiao, and X. Wang, "Deepreid: Deep
filter pairing neural network for person re-identification," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 152-159.

[27] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi,
"Performance measures and a data set for multi-target, multi­
camera tracking;' in European Conference on Computer Vision.
Springer, 2016, pp. 17-35.

[28] L. Wei, S. Zhang, W. Gao, and Q. Tian, "Person transfer
gan to bridge domain gap for person re-identification," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 79-88.

[29] A. Krizhevsky, G. Hinton et al., "Learning multiple layers of
features from tiny images." Citeseer, 2009.

[30] �- Torralba, R. Fergus, and W. T. Freeman, "80 million tiny
rmages: A large data set for nonparametric object and scene
recognition," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 11. IEEE, 2008, pp. 1958-
1970.

[31] 0. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., "Ima­
genet large scale visual recognition challenge," in International
Journal of Computer Vision, vol. 115, no. 3. Springer, 2015,
pp. 211-252.

[32] J. Liu, Y. Sun, C. Han, Z. Dou, and W. Li, "Deep representation
learning on long-tailed data: A leamable embedding augmenta­
tion perspective," in Proceedings of the IEEEICVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 2970--
2979.

[33] H. Han, W.-Y. Wang, and B.-H. Mao, "Borderline-smote: a
new over-sampling method in imbalanced data sets learning," in
International Conference on Intelligent Computing. Springer,
2005, pp. 878-887.

[34] B. Zhou, Q. Cui, X.-S. Wei, and Z.-M. Chen, "Bbn: Bilateral­
branch network with cumulative learning for long-tailed visual
recognition," in Proceedings of the IEEEICVF Conference on

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TMM.2022.3179902, 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

12 IEEE TRANSACTIONS ON MULTIMEDIA 

Computer Vision and Pattern Recognition, 2020, pp. 9719-
9728. 

[35] C. Drummond, R. C. Holte et al., "C4. 5, class imbalance, and
cost sensitivity: why under-sampling beats over-sampling," in
Workshop on Leaming from Imbalanced Datasets II, vol. 11.
Citeseer, 2003, pp. 1-8.

[36] M. Peng, Q. Zhang, X. Xing, T. Gui, X. Huang, Y.-G. Jiang,
K. Ding, and Z. Chen, "Trainable undersampling for class­
imbalance learning," in Proceedings of the AAA/ Conference
on Artificial Intelligence, vol. 33, 2019, pp. 4707--4714.

[37] X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao, "Range loss
for deep face recognition with long-tailed training data," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 5409-5418.

[38] Y. Duan, J. Lu, and J. Zhou, "Unifonnface: Learning deep
equidistributed representation for face recognition," in Proceed­
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3415-3424.

[39] Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Z. Li,
"Salient color names for person re-identification," in European
Conference on Computer Vision. Springer, 2014, pp. 536--551.

[40] S. Liao, Y. Hu, X. Zhu, and S. Z. Li, "Person re-identification by
local maximal occurrence representation and metric learning,"
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 2197-2206.

[41] P. Wang, Z. Zhao, F. Su, Y. Zhao, H. Wang, L. Yang, and Y. Li,
"Deep multi-patch matching network for visible thermal person
re-identification," IEEE Transactions on Multimedia, vol. 23,
pp. 1474-1488, 2021.

[42] T. Xiao, H. Li, W. Ouyang, and X. Wang, "Learning deep
feature representations with domain guided dropout for person
re-identification," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 1249-
1258.

[43] M. Zheng, S. Karanam, Z. Wu, and R. J. Radke, "Re­
identification with consistent attentive siamese networks," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 5735-5744.

[44] W. Yang, H. Huang, Z. Zhang, X. Chen, K. Huang, and
S. Zhang, "Towards rich feature discovery with class activation
maps augmentation for person re-identification," in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog­
nition, 2019, pp. 1389-1398.

[45] Y. Zhang, Q. Zhong, L. Ma, D. Xie, and S. Pu, "Learning
incremental triplet margin for person re-identification," in Pro­
ceedings of the AAA/ Conference on Artificial Intelligence,
no. 01, Jul. 2019, pp. 9243-9250.

[46] R. Yu, Z. Dou, S. Bai, Z. Zhang, Y. Xu, and X. Bai, "Hard­
aware point-to-set deep metric for person re-identification," in
Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 188-204.

[47] K. Zeng, M. Ning, Y. Wang, and Y. Guo, "Hierarchical cluster­
ing with hard-batch triplet loss for person re-identification," in
Proceedings of the IEEEICVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 13 657-13 665.

[48] W. Chen, X. Chen, J. Zhang, and K. Huang, "Beyond triplet
loss: a deep quadruplet network for person re-identification," in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 403--412.

[49] X. Qian, Y. Fu, T. Xiang, W. Wang, J. Qiu, Y. Wu, Y.-G. Jiang,
and X. Xue, "Pose-normalized image generation for person re­
identification," in Proceedings of the European Conference on
Computer Vision, 2018, pp. 650---667.

[50] Y. Ge, Z. Li, H. Zhao, G. Yin, S. Yi, X. Wang et al., "Fd­
gan: Pose-guided feature distilling gan for robust person re­
identification," in Advances in Neural Information Processing
Systems, 2018, pp. 1230--1241.

[51] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz,
"Joint discriminative and generative learning for person re-

identification," in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2019, pp. 2138-
2147. 

[52] C. Eom and B. Ham, "Learning disentangled representation
for robust person re-identification," in Advances in Neural
Information Processing Systems, 2019, pp. 5297-5308.

[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde­
Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative
adversarial nets," in Advances in Neural Information Processing
Systems, 2014, pp. 2672-2680.

[54] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li,
and W. Liu, "Cosface: Large margin cosine loss for deep
face recognition," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 5265-
5274.

[55] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, "Arcface: Additive
angular margin loss for deep face recognition," in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog­
nition, 2019, pp. 4690--4699.

[56] J. Liu, J. Zhang, W. Li, C. Zhang, and Y. Sun, "Memory­
based jitter: Improving visual recognition on long-tailed data
with diversity in memory," in arXiv preprint arXiv:2008.09809,
2020.

[57] C. Huang, Y. Li, C. C. Loy, and X. Tang, "Deep imbalanced
learning for face recognition and attribute prediction," IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 11, pp. 2781-2794, 2019.

[58] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, "Class­
balanced loss based on effective number of samples," in Pro­
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9268-9277.

[59] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal
loss for dense object detection;' in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2980--
2988.

[60] B. Li, Y. Liu, and X. Wang, "Gradient harmonized single-stage
detector," in Proceedings of the AAA/ Conference on Artificial
Intelligence, vol. 33, 2019, pp. 8577-8584.

[61] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng,
"Meta-weight-net: Learning an explicit mapping for sample
weighting," in Advances in Neural Information Processing
Systems, 2019, pp. 1919-1930.

[62] T. Wu, Q. Huang, Z. Liu, Y. Wang, and D. Lin, "Distribution­
balanced loss for multi-label classification in long-tailed
datasets," in European Conference on Computer Vision.
Springer, 2020, pp. 162-178.

[63] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
"Distributed representations of words and phrases and their
compositionality," in Advances in Neural Information Process­
ing Systems, 2013, pp. 3111-3119.

[64] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, "Learning
imbalanced datasets with label-distribution-aware margin loss,"
in Advances in Neural Information Processing Systems, 2019,
pp. 1567-1578.

[65] D. Cao, X. Zhu, X. Huang, J. Guo, and Z. Lei, "Domain balanc­
ing: Face recognition on long-tailed domains," in Proceedings
of the IEEEICVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 5671-5679.

[66] T. Dutta, A. Singh, and S. Biswas, "Adaptive margin diversity
regularizer for handling data imbalance in zero-shot sbir," in
European Conference on Computer Vision. Springer, 2020,
pp. 349-364.

[67] J. Ren, C. Yu, S. Sheng, X. Ma, H. Zhao, S. Yi, and H. Li,
"Balanced meta-softmax for long-tailed visual recognition," in
Advances in Neural Information Processing Systems, vol. 33.
Curran Associates, Inc., 2020, pp. 4175--4186.

[68] W. Liu, Y. Wen, Z. Yu, and M. Yang, "Large-margin softmax
loss for convolutional neural networks." in International Con­
ference on Machine Learning, 2016, pp. 507-516.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TMM.2022.3179902, 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

IEEE TRANSACTIONS ON MULTIMEDIA 

[69] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, "Sphereface:
Deep hypersphere embedding for face recognition," in Proceed­
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 212-220.

[70] I. Masi, A. T. Tm, T. Hassner, J. T. Leksut, and G. Medioni,
"Do we really need to collect millions of faces for effective
face recognition?" in European Conference on Computer Vision.
Springer, 2016, pp. 579-596.

[71] X. Ym, X. Yu, K. Sohn, X. Liu, and M. Chandraker, "Feature
transfer learning for face recognition with under-represented
data," in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 5704-5713.

[72] Q. Yu and W. Lam, "Data augmentation based on adversar­
ial autoencoder handling imbalance for learning to rank," in
Proceedings of the AAA/ Conference on Artificial Intelligence,
vol. 33, 2019, pp. 411-418.

[73] P. Chu, X. Bian, S. Liu, and H. Ling, "Feature space augmen­
tation for long-tailed data;' in Proceedings of the European
Conference on Computer Vision, 2020, pp. 694-710.

[74] S. loffe and C. Szegedy, "Batch normalization: Accelerating
deep network training by reducing internal covariate shift," in
International Conference on Machine Leaming, 2015, pp. 448-
456.

[75] H. Luo, W. Jiang, Y. Gu, F. Liu, X. Liao, S. Lai, and J. Gu, "A
strong baseline and batch normalization neck for deep person
re-identification," IEEE Transactions on Multimedia, vol. 22,
no. 10,pp. 2597-2609, 2019.

[76] L. v. d. Maaten and G. Hinton, "Visualizing data using t-sne," in
Journal of Machine Leaming Research, vol. 9, no. Nov, 2008,
pp. 2579-2605.

[77] A. Hermans, L. Beyer, and B. Leibe, "In defense of the
triplet loss for person re-identification," in arXiv preprint
arXiv:1703.07737, 2017.

[78] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, "A discriminative feature
learning approach for deep face recognition," in European
Conference on Computer Vision. Springer, 2016, pp. 499-515.

[79] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for
image recognition;' in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770-778.

[80] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang,
and X. Tang, "Residual attention network for image classifi­
cation," in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 3156-3164.

[81] C. Su, J. Li, S. Zhang, J. Xing, W. Gao, and Q. Tian, "Pose­
driven deep convolutional model for person re-identification," in
Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 3960-3969.

[82] L. Wei, S. Zhang, H. Yao, W. Gao, and Q. Tian, "Glad: Global­
local-alignment descriptor for scalable person re-identification,"
in IEEE Transactions on Multimedia, vol. 21, no. 4. IEEE,
2018, pp. 986-999.

[83] Y. Suh, J. Wang, S. Tang, T. Mei, and K. Mu Lee, "Part­
aligned bilinear representations for person re-identification," in
Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 402-419.

[84] C. Wang, Q. Zhang, C. Huang, W. Liu, and X. Wang, "Manes:
A multi-task attentional network with curriculum sampling
for person re-identification," in Proceedings of the European
Conference on Computer Vision, 2018, pp. 365-381.

[85] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and
X. Chen, "Interaction-and-aggregation network for person re­
identification," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9317-
9326.

[86] Z. Zhang, C. Lan, W. Zeng, and Z. Chen, "Densely semantically
aligned person re-identification," in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019,
pp. 667-676.

[87] B. Chen, W. Deng, and J. Hu, "Mixed high-order attention

13 

network for person re-identification," in Proceedings of the 
IEEE International Conference on Computer Vision, 2019, pp. 
371-381.

[88] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, "Omni-scale
feature learning for person re-identification," in Proceedings of
the IEEE International Conference on Computer Vision, 2019,
pp. 3702-3712.

[89] Z. Dai, M. Chen, X. Gu, S. Zhu, and P. Tan, "Batch dropblock
network for person re-identification and beyond," in Proceed­
ings of the IEEE International Conference on Computer Vision,
2019, pp. 3691-3701.

[90] X. Jin, C. Lan, W. Zeng, G. Wei, and Z. Chen, "Semantics­
aligned representation learning for person re-identification," in
Proceedings of the AAA/ Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 11 173-11 180.

[91] S. Zhao, C. Gao, J. Zhang, H. Cheng, C. Han, X. Jiang, X. Guo,
W.-S. Zheng, N. Sang, and X. Sun, "Do not disturb me: Person
re-identification under the interference of other pedestrians," in
European Conference on Computer Vision, 2020, pp. 647-663.

[92] Q. Zhou, B. Zhong, X. Liu, and R. Ji, "Attention-based neural
architecture search for person re-identification," IEEE Transac­
tions on Neural Networks and Leaming Systems, 2021.

[93] J. Miao, Y. Wu, and Y. Yang, "Identifying visible parts via
pose estimation for occluded person re-identification," IEEE
Transactions on Neural Networks and Leaming Systems, 2021.

[94] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and X. Chen, "Fea­
ture completion for occluded person re-identification," IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2021.

[95] G. Chen, T. Gu, J. Lu, J.-A. Bao, and J. Zhou, "Person re­
identification via attention pyramid," IEEE Transactions on
Image Processing, vol. 30, pp. 7663-7676, 2021.

[96] Z. Zhong, L. Zheng, D. Cao, and S. Li, "Re-ranking person re­
identification with k-reciprocal encoding," in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1318-1327.

[97] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "lmagenet classi­
fication with deep convolutional neural networks," in Advances
in Neural Information Processing Systems, 2012, pp. 1097-
1105.

[98] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, "Random
erasing data augmentation;' in Proceedings of the AAA/ Confer­
ence on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 13 001-
13 008.

[99] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., "Pytorch:
An imperative style, high-performance deep learning library,"
in Advances in Neural Information Processing Systems, 2019,
pp. 8024-8035.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TMM.2022.3179902, 




