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Abstract

This paper presents a predictable and grouped genetic algorithm (PGGA) for job
scheduling. The novelty of the PGGA is twofold: (1) a job workload estimation
algorithm is designed to estimate a job workload based on its historical execution
records, (2) the divisible load theory (DLT) is applied to predict an optimal solution
in searching a large scheduling space so that the convergence process can be speeded
up. Comparison with traditional scheduling methods such as first-come-first-serve
(FCFS), random scheduling and a typical genetic algorithm (TGA) indicates that the

PGGA is more effective and efficient in finding optimal scheduling solutions.
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1. Introduction

The Grid [1] is evolving as a promising computing platform for engineers and
scientists to solve data and computation very intensive problems. Job scheduling is
an indispensable part of the Grid. One major role of a job scheduling system is to
minimum the total execution time (makespan) of the jobs submitted to a Grid
environment. Well-known workload management systems such as Condor [2] and
Sun Grid Engine [3] have built-in simple job scheduling mechanisms such as first-
come-first-server (FCFS), random scheduling, priority-based scheduling, but they do
not have comprehensive heuristics methods for job scheduling. In a Grid
environment, many users may concurrently submit jobs for execution. The
scheduling of m jobs to n resources, which is named as an m/n type scheduling,
becomes a NP-hard problem [4]. Genetic algorithms (GAs) have been widely used in

this area trying to find optimal or near optimal scheduling solutions.

When perform m/n type scheduling, traditional GAs generate an optimal or a near
optimal scheduling solution by ranking the fitness value of each chromosome in an
evolution process. One major problem with these GAs is that they cannot
dynamically predict an optimal fitness value based on historical execution records of
the jobs to be scheduled. Therefore, the fitness of a scheduling solution produced by
a GA is largely dependent on the number of generations (iterations) used in the
evolution process. While a large number of iterations could have a higher probability
in producing a better scheduling solution than a small number of iterations, the cost

is that the former method usually takes longer to complete the evolution process



than the latter method. A good job scheduling approach should be quick enough to

produce an optimal or a near optimal scheduling solution.

In this paper, we present a predictable and grouped genetic algorithm (PGGA) for
m/n type scheduling. The PGGA is novel in two aspects. On one hand, it uses a job
workload estimation algorithm to estimate a job workload based on its historical
execution records. On the other hand, the PGGA uses the divisible load theory (DLT)
[5] to dynamically predict an optimal fitness value during its runtime which can

speed up the convergence process in finding an optimal scheduling solution.

The remainder of this paper is organized as follows. Section 2 presents a job
workload estimation algorithm. Section 3 introduces the PGGA, which is extended
from an implementation of a typical genetic algorithm (TGA). Section 4 evaluates the
performance of the PGGA in scheduling a large number of jobs. Both theoretical and
practical tests have been performed. Section 5 gives related work on job scheduling

with GAs, and Section 6 concludes this paper.

2. A Job Workload Estimation Algorithm

Jobs considered in the algorithm are independent and indivisible. Computing nodes
used in a cluster environment are dedicated and have the same architecture but with
different computing capabilities. Each job has an input with a certain data size and a
unique job name. We only consider the computing capability as the performance

metric of a computing node in the algorithm. Furthermore, the communication cost



to send a job from one computing node to another is not considered in the algorithm
as the network bandwidth in a cluster environment is normally fixed.

Let
* Jxbe the name of job k, ke{1,2,..., m}.
* Ji(d) be ajob Jx with an input data size of d.
* T(Jx(d)) be the number of normalized time units needed to complete the
execution of Jk(d).
* Pibe a computing node, i€{1, 2, ..., n}.
= F(Pi) be the computing capability of node Pi .
= U(Pi) be the current utilization rate of node Pi.

= W(Jk(d)) be the estimated workload of Jx(d).

For a job Jx(d) to run on a node Pi, we have
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Let
»  LSk(W(Jx(da)), W(Jx(dv))) represent the slope of the line ((W(Jx(da)),da),
(W(k(de)),db)).
= R={(LSy), (LS2), ..., (LSW), ..., (LSwm)}.
*  X=lda-dbl, Y=1 W(Jk(da)) - W(Jx(db))I.
* Hbe a historical job execution record set.
* Q1 be a queue for jobs without estimated workload values.

*  (Q2be a queue for jobs with estimated workload values.

Then we have
Y
LS, W (3 (A )W (3 (A ) = - 2
The job workload estimation algorithm is given in Figure 1. A specific job with more

execution records in the list R can have a more accurate estimated workload using

the algorithm.



1 Receive a new job Jx with an input data size of dc

2: if the job Jx has execution records in the list R, then

3: if dc is in the range of any (ds, dv) in R, then

4: Calculate an estimated workload We(Jk(dc)) of the job J« (dc) based on formula
We(Jx(dc)) = LSk(W(Jx(da)), W(Jk(db)))x dc

5: Put the job Jx(dc) with the estimated workload in queue Q:

6: Update R

7 Replace LSk(W(Ji(da)),W(Jx(db))) with LSk(W(Jx(da)), W(Jx(dc))) and
LSk(W(Jx(d<)), W(Jx(db))) once the job Jk(d.) finishes its execution, where W(Jx(dc))
is the real workload of job Jk(d)

8: Gotostep1

9: endif

10: else if dc is not in the range of any (da, dv) in R, then

11: Find the closest da to d¢, and then find the dv from the record LSkx(W(Jx(da)), W(Jx(db))) in R

12: Calculate an estimated workload We (Jx(d<)) of the job Jx (dc) based on formula
We(Jk(dc)) = LSk(W(J(da)), W(Jk(db)))* dc

13: Put the job Jx(dc) with the estimated workload in queue Q:

14: Update R

15: Add LSk(W(Jx(da)),W(Jx(dc))) in R once the job Jk(dc) finishes its execution, where
W(Jx(d)) is the real workload of job Jx(dc)

16: Gotostep1

17: endif

18:  endif

19:  else if there are two execution records of job Jxin H, e.g., W(Jk(da)) and W(Jx(dv)), then

20: Calculate LSk(W(Jk(da)),W(Jx(db))) based on formula (2)

21: Add LSy(W(Jx(da)), W(Jx(db))) in R

22: Delete the two records from H

23: Go to step 2

24:  endif

25:  else if there is no or just one execution record of job Jx in H, then

26: Put the job Jx(d<) in queue Q1

27: Add a new execution record with the real workload W(Jx(dc)) of job Jk(dc) in H once the job
Jk(dc) finishes its execution

28: Gotostep1

29:  endif

Figure 1. A job workload estimation algorithm.

3. Scheduling Algorithm Design

3.1 A Typical Generic Algorithm for Job Scheduling

To solve an optimisation problem, a GA solution needs to be represented as a
chromosome encoded as a set of strings, which are normally binary strings.
However, for the problem of job scheduling, a binary representation is not feasible

because the number of jobs for scheduling can increase dramatically which results in



a long binary string. In the TGA, we employ decimal string to represent a
chromosome. Computing nodes and jobs are uniquely numbered. As shown in
Figure 2, a computer node is represented as a gene in a chromosome. The position of
a gene represents the sequence number of a job. The sequence of jobs is organized in
an ascending order from the left side to the right side corresponding to a

chromosome.

Computing nodes P, P P B

Chromosome | By | Py | By | P | B, | By | By | By

Tohs I o I Is s 5

Figure 2. Problem representation in the TGA.

Each chromosome is associated with a fitness value which will be calculated by the

following fitness function.

Let
* nbe the number of computing nodes.

* Tibe the number of normalized time units needed to finish all the jobs on a
computing node Pi, whereie{l, 2, ..., n}.
* m(Pi) be the number of jobs allocated to the node P

* Ckbe the Kth chromosome in one chromosome population.

Then, the fitness function can be defined as follows:

) 1
Fitness(C, ) = 3
(€0 Max(T,,T,,...,T,) ©)
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Each chromosome in one population is ranked using its associated fitness values
calculated by formula (3). From the testing results to be presented in Section 4, we
will see that other scheduling methods such as FCFS may produce a better solution
than the TGA. This is because the TGA may produce a reasonable good scheduling
solution with a specified number of iterations rather than an optimal solution.
Moreover, as a typical implementation of a GA, the TGA also has a slow convergence

process.

3.2 A Predictable and Grouped GA for Job Scheduling

Two improvements have been made in the PGGA. On one hand, computing
nodes are classified into groups based on their computing capabilities. All
nodes in the same group have the same computing capability. On the other
hand, the DLT is applied in the PGGA to predict an optimal fitness value.
According to the DLT, taking only the computation into account, an optimal
solution to schedule m jobs to multiple groups of computing nodes with an
objective to reach a minimum makespan is that each group should finish their
jobs at the same time. Moreover, each computing node in the same group
should finish their jobs at the same time too.

Let
* N be the number of groups classified.

*  Gibe the ith group.



* N(Gi) be the number of computing nodes in group G;, ie{l,2, ..., N}.

*  W(Gi) be the total estimated workloads of jobs in group Gi.

* W be the total estimated workloads of jobs in the N groups.

* T(Gi) be a predicted number of normalized time units needed to finish all
the jobs in group Gi.

* F(Gi) be the utilizable computing capability of each node in group G;
F(G;)=U(P)xF(P,) where Piis a computing node in the ith group.

Then we have

W=2 W) (4)

According to formula (1) and the DLT, we have

_ W(G)
T8 =Ne)-F@G) ®
where T(G,)=T(G,)=...=T(G,) (6)

Using formula (4), (5) and (6), we have

TGy = %

Z(F(Gi)x N(G)))

Here the T(Gi) represents the minimum time units needed to schedule m jobs to n
computing nodes. It is a predicted optimal fitness value for selecting chromosomes
from one generation to the next generation. As parameters used in formula (7) such
as F(Gi), N(Gi), N are known and W can be estimated, the value of the T(Gi) can be

calculated dynamically during the runtime of PGGA.

We reuse the fitness function (3) in the PGGA to select an optimal chromosome
whose fitness value should be close enough to the reverse value of the predicted

T(Gi). The chromosomes whose fitness values are far away from the reverse value of



the T(Gi) will be thrown away. From the testing results to be given in Section 4, we
will see that PGGA speeds up the convergence process and can always produce a

better scheduling solution compared with other scheduling methods such as FCFS,

random and the TGA.

4. Performance Evaluation

We have done comprehensive tests to evaluate the performance of the PGGA for m/n
type scheduling. Tests are classified into two classes - theoretical tests and practical
tests. Theoretical tests are performed without using the job workload estimation
algorithm as described in Section 2. Practical tests are performed in a Linux cluster

environment using the job workload estimation algorithm.

Random
./ 1GA
// _ FCES

T MEEA |

Normalised time units (107)
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Figure 3. A performance evaluation of the PGGA.



4.1 Theoretical Tests

A job workload was randomly generated from 1-3,000,000 with a rate of 70% for
small workload values and 30% for large workload values. We assumed five types of
computing nodes — 2.8GHz, 2.6GHz, 2.0GHz, 1.8GHz, and 1.6GHz. A computing
node of each type has an equal probability to be randomly chosen from the five types
of computing nodes. We assumed the utilization of each computing node chosen is
100%. We define the time needed to finish one workload unit of a job on a computing
node with a speed of 1GHz as one normalized time unit. The tests were performed in

the following aspects.

4.1.1 Performance Evaluation of PGGA in Job Scheduling
We have done 240 tests to evaluate the performance of the PGGA for m/n type
scheduling. The number of jobs started from 50 to 1200 with a step of 50. The number

of computing nodes started from 50 to 500 with a step of 50. The maximum number

of iterations used by both the TGA and the PGGA was 200.

As shown in Fig.3, the four curved surfaces represent the normalized time units
needed to finish m jobs on n computing nodes using the four scheduling methods
respectively. Among the four scheduling methods, the random approach produces
the worst scheduling solutions and the PGGA is the best one. The performance of the
PGGA is always better than that of FCFS and the TGA, as shown in Figure 4 and

Figure 5 respectively.
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Figure 4. A performance comparison of FCFS and the PGGA.
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Figure 5. A performance comparison of the TGA and the PGGA.

However, the performance of the TGA is not always better than that of FCES as

shown in Figure 6. The reason is that the number of iterations used by the TGA was

11



200, which is not large enough to search all the scheduling spaces to find an optimal
or near optimal solution. The larger the number of iterations is used in the TGA, the
better a solution can be produced at the cost of more time units to be consumed.
Figure 6 also emphasizes that one major problem with classical genetic algorithms in

job scheduling is that they cannot guarantee an optimal solution using a reasonable

number of iterations in the evolution process.
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Figure 6. A performance comparison of FCFS and the TGA.

4.1.2 Convergence Evaluation of the TGA and the PGGA
From the tests described in Section 4.1.1 we know that the performance of PGGA is

always better than that of the TGA in generating scheduling solutions. In this section,

we compare the two algorithms in terms of convergence.
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We randomly generated 1500 jobs with 10 different workload units, and used 500
computing nodes. The TGA and the PGGA were used to find solutions for
scheduling the 1500 jobs to the 500 computing nodes. To test the convergence of the
two algorithms, 10 tests were performed with the number of iterations for both the
TGA and PGGA starting from 50 to 500. For each test, a scheduling solution was
generated which was used to calculate the normalized time units for scheduling the

1500 jobs to the 500 computing nodes.
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Figure 10. A convergence comparison of the TGA and the PGGA.
As shown in Figure 10, the PGGA has a faster convergence than the TGA, e.g., the
PGGA only needs 150 iterations to converge, but the TGA needs at least 300
iterations to converge. Apart from that, the PGGA can also generate better

scheduling solutions than the TGA.

4.1.3 Algorithm Complexity Evaluation of the TGA and the PGGA

When we performed the 240 tests as described in section 4.1.1, we also measured the
computation complexity of the two genetic algorithms. The two algorithms were
tested on an Intel Pentium IIII computing node with a 2.0GHz CPU and 256MB RAM

running Windows XP Professional. Part of the results is given in Table 1, showing
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that the PGGA is faster than the TGA when the number of jobs and computing nodes
gets large. The reason is that the PGGA dynamically predicts an optimal fitness value
to select the chromosomes and thus needs fewer iterations than the TGA to produce

a new generation of chromosomes.

Jobs/Computing Nodes 200/300 | 1000400 | 12004300 | 12004400 | 12004500
Algorithm TeA | 14631 18206 21511 21721 21841
Computation

Complesxity

(s PGGA | 14571 18336 20970 21692 21390

Table 1. The computation complexity of the TGA and PGGA.

4.2 Practical Tests

In this section, we present our testing results using the four methods for scheduling
jobs in a Linux cluster environment, which had a maximum of 42 computing nodes
with three types of computing speeds — Intel Pentium IIII 2.6GHz, Pentium IIII
2.0GHz and Pentium III 1.6GHz. Whereas the numbers of jobs and computing nodes
were kept unchanged in one test, they were changed for different tests to represent a
dynamic computing environment. The network bandwidth of the cluster is 100Mbps.
Redhat Linux 7.3 and 9.0 were used in the cluster. The job workload estimation
algorithm as described in Section 2 was used to estimate job workloads in the tests.
The testing job was a loop to calculate two float values. An input data value (size)
was used to specify the number the loops. The workload value of a job tested was in
the range of 1-5. The time needed to finish a job with a workload value of 1 on a
2.6GHz computing node with a 100% utilization rate was 250ms. We performed 8
tests in the cluster environment to schedule jobs using the four methods. Table 2

shows the testing results for scheduling jobs in the Linux cluster environment taking

14



only the computing capability of each node into account. Compared with FCEFS,
random and the TGA, the PGGA has again shown its superb performance in

scheduling a large number of jobs in the cluster environment.

Jaohs 50 ] 70 72 &l 85 o0 02

Computing Modes 20 25 30 32 35 37 40 43

Fandom 8717 6260 7189 5300 | 3686 | 7508 | 5234 5624

Titne needed FCFS 3584 5244 3274 32632 3375 | 3244 4160 3274
to schedule
the jobs (ms) TGaA 3145 32a7 3312 3563 3679 | 3859 35093 3423

PGGA 2807 3062 2782 2988 | 3312 | 2835 | 3179 3057

Table 2. Four methods for scheduling jobs in a Linux cluster environment.

5. Related Work

GAs have been widely used for static job scheduling [6,7,8], requiring the state of all
jobs must be known a priori. This limits these schedulers to specific problems and
systems. Dynamic GA schedulers [9,10,11] produce schedules at runtime which
eliminates the necessity to know the properties of the jobs to be scheduled in
advance, allowing for variable system and job properties to be considered. Our
PGGA is a dynamic scheduler as it uses a job workload estimation algorithm to
dynamically estimate a job workload by which to produce a predicted optimal fitness

value for job scheduling.

Theoretically, a GA can find an optimal or a near optimal scheduling solution.
However, it is not always the case when a GA is practically employed. The testing
results presented in Section 4 have shown that a classical GA may produce a worse
solution than a traditional FCFS scheduling method because cannot dynamically

predict an optimal fitness value in the evolution process. The larger the number of

15



iterations is used, the longer the time will be taken. A practical GA in job scheduling
should have a fast convergence. One major research issue in applying GAs for job
scheduling is to speed up the convergence process. Parallel GAs [12,13,14] have been
proposed to solve this problem. However, these algorithms mainly distribute the
computation complexity of a GA to multiple processors to speed up the convergence
process instead of reducing the inherent complexity of a GA. Our PGGA makes use
of the DLT to dynamically predict an optimal fitness value so that the computation
complexity of a classical GA can be reduced in nature and the convergence process
can be speeded up. Moreover, the PGGA can always produce an optimal or near

optimal scheduling solution.

6. Conclusions

In this paper, we have presented PGGA, a predictable and grouped genetic
algorithm for job scheduling in a cluster environment. The PGGA is novel in two
aspects. On one hand, it uses a job workload estimation algorithm to dynamically
estimate a job workload based on its historical execution records of the job. On the
other hand, it makes use of the DLT to predict an optimal fitness value to speed up
the convergence process. Comparison with traditional scheduling methods such as
tirst-come-first-serve (FCFS), random scheduling and a typical genetic algorithm has
indicated that the PGGA is more effective and efficient in finding optimal or near
optimal scheduling solutions in terms of a large number of jobs and computing

nodes.
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Currently, jobs used by the PGGA are independent. However, the PGGA can be

extended with a slight modification for scheduling dependent jobs, which can be

grouped as one job as long as job dependencies are specified in a job submission.

Future work will be focused on the extension of the PGGA to support dependent

jobs. In addition, communication cost in job scheduling should also be taken into

account in the extension of the PGGA to suit a Grid environment.
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