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Abstract.—Clathrodictyids are the most abundant stromatoporoids in the Upper Ordovician 28 

Xiazhen Formation (middle to upper Katian) of South China. A total of nine species 29 

belonging to four clathrodictyid genera are identified in the formation, including 30 

Clathrodictyon idense Webby and Banks, 1976, Clathrodictyon cf. Cl. microundulatum 31 

Nestor, 1964, Clathrodictyon cf. Cl. mammillatum  (Schmidt, 1858), Clathrodictyon 32 

megalamellatum Jeon n. sp., Clathrodictyon plicatum Webby and Banks, 1976, 33 

Ecclimadictyon nestori Webby, 1969, Ecclimadictyon undatum Webby and Banks, 1976, 34 

Camptodictyon amzassensis (Khalfina, 1960) and Labyrinthodictyon cascum (Webby and 35 

Morris, 1976). The clathrodictyid fauna in the Xiazhen Formation is very similar to those 36 

from both New South Wales and Tasmania, although the latter two Australian regions do not 37 

share any common clathrodictyid species during the Late Ordovician. The 38 

paleobiogeographic pattern indicates that the northward drift of South China resulted in a 39 

favorable environment for the migration of clathrodictyids from other peri-Gondwanan 40 

terranes to South China. Also, these peri-Gondwanan clathrodictyid species hosted various 41 

endobionts, representing a variety of paleoecological interactions. The high abundance and 42 
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species-level diversity of clathrodictyid species presumably increased the substrate 43 

availability of suitable host taxa, judging from the diverse intergrowth associations between 44 

clathrodictyids and other benthic organisms. These paleoecological interactions between 45 

stromatoporoid and other organisms are known from the Late Ordovician and became more 46 

abundant and widespread in the Siluro–Devonian. Overall, the Late Ordovician clathrodictyid 47 

assemblage in South China demonstrates one of the highest species-level diversities among 48 

all peri-Gondwanan terranes and represents a precursor of clathrodictyid-dominant complex 49 

communities of metazoan reefs. 50 

 51 

UUID: http://zoobank.org/f99f2d55-7f61-4a83-99fe-abc33ec47f6b 52 

 53 

Introduction 54 

 55 

Clathrodictyid stromatoporoids form the dominant stromatoporoid group that became 56 

cosmopolitan during the Silurian, and were abundant until the end of the Devonian (Nestor, 57 

1997; Nestor and Stock, 2001), surviving the Frasnian-Famennian extinction (Webby et al., 58 

2015, fig. 363). This group is characterized by weakly differentiated and inflected laminae 59 

with short to superposed pillars (Nestor, 1997, 2015) and is regarded as one of the most 60 

important early Paleozoic stromatoporoids involved in the establishment of mid-Paleozoic 61 

coral-stromatoporoid metazoan reefs (Nestor, 1997; Copper, 2002, 2011; Stearn, 2015a). 62 

Their early appearance was recorded in the middle Katian Stage of the Late Ordovician, and 63 

by then they were already widely distributed (Bolton, 1988; Lin and Webby, 1988; Nestor et 64 

al., 2010; Nestor and Webby, 2013; Stearn et al., 2015; Webby, 2015a), in accordance with 65 

the wide distribution of Ordovician metazoan reefs (Webby, 2002; Stock et al., 2015). The 66 

http://zoobank.org/f99f2d55-7f61-4a83-99fe-abc33ec47f6b


4 
 

early diversification of clathrodictyid stromatoporoids involved four genera (i.e., 67 

Clathrodictyon, Ecclimadictyon, Camptodictyon and Labyrinthodictyon), which occurred in 68 

the middle Katian in central New South Wales and spread to the Tasmanian Shelf and South 69 

China (peri-Gondwanan terranes), as well as Laurentia and Baltica (Webby, 2004, 2015a; 70 

Stock et al., 2015; Webby et al., 2015; Jeon et al., 2020a). 71 

In South China, clathrodictyids are commonly recorded as significant reef components on 72 

the northern margin of the Cathaysian landmass (e.g., Yu et al. 1992; Chen 1995, 1996; Bian 73 

et al. 1996; Li et al. 2004; Zhang et al. 2007). The Jiangshan-Changshan-Yushan (JCY) 74 

triangle, on the border between Jiangxi and Zhejiang provinces of south-eastern China (Fig. 75 

1), is particularly well-known for the development of clathrodictyid-dominated reefs (Bian et 76 

al., 1996; Li et al., 2004; Wang et al., 2012; Yu et al., 1992; Park et al. 2021). Recent 77 

investigations of Late Ordovician stromatoporoids from the Xiazhen and coeval Sanqushan 78 

formations of the JCY triangle (Jeon et al. 2020a, 2022) revealed that clathrodictyids played a 79 

critical role in a relatively complex reef community. However, species-level taxonomic work 80 

on clathrodictyids has not been conducted. This study therefore: 1) presents a new detailed 81 

taxonomic description of clathrodictyid stromatoporoids from the Upper Ordovician Xiazhen 82 

Formation at Zhuzhai, Jiangxi Province, China; 2) links taxonomy with paleoecological 83 

features; and 3) applies this information towards understanding the global development of 84 

stromatoporoids as part of the Great Ordovician Biodiversification Event (GOBE). The 85 

results emphasize the importance of early fossil records of clathrodictyids in the development 86 

of stromatoporoids in the Late Ordovician Period. 87 

 88 

Geological setting 89 
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The Upper Ordovician Xiazhen Formation at Zhuzhai, Yushan County, Jiangxi Province is 90 

among the most classic representatives of Upper Ordovician carbonate successions in South 91 

China (Fig. 1). The formation is characterized by mixed carbonate–clastic deposits, situated 92 

on the Zhe-Gan Platform along the northern margin of the Cathaysian landmass (Li et al., 93 

2004; Zhang et al., 2007; Park et al., 2021). The depositional environment is interpreted to be 94 

a mixed siliciclastic–carbonate ramp-type platform (Park et al., 2021). The Zhuzhai section of 95 

the formation can be divided into three partially correlated sub-sections ZU1, ZU2 and ZU3 96 

(Lee et al., 2012; Figs. 1.3, 2), separated by Quaternary sedimentary deposits (Fig. 1.3). The 97 

stratigraphy of the Zhuzhai section was revised and divided into three units: a lower 98 

limestone member, a lower shale member, a middle-mixed lithology member, and an upper 99 

shale member in stratigraphic ascending order (Lee et al. 2012; Fig. 2). Comprehensive 100 

paleontological studies on many fossil groups from the formation covered algae, brachiopods, 101 

bryozoans, cephalopods, corals and trilobites, but little information is available for 102 

stromatoporoids (Chen et al., 1987; Bian and Zhou, 1990; Chen, 1995, 1996; Lee et al., 2012, 103 

Kwon et al., 2012; Lee, 2013; Dai et al., 2015; Lee et al., 2016a, 2016b, 2019; Liang et al., 104 

2016; Sun et al., 2016; Zhang, 2016; Park et al., 2017; Zhang et al., 2018; Jeon et al., 2020a, 105 

b). The Xiazhen Formation is roughly correlative to the Sanqushan and Changwu formations 106 

judging from the fossil components such as brachiopods and corals, and was previously 107 

estimated to be of middle to late Katian age (e.g., Zhan et al., 2002; Zhang et al., 2007). The 108 

discovery of graptolite Anticostia uniformis (Mu and Lin in Mu et al., 1993) in the base of the 109 

upper shale member confirmed that the upper part of the formation is within the 110 

Dicellograptus complanatus to Paraorthograptus pacificus Biozone (Diceratograptus mirus 111 

Subzone), indicating a late Katian age (Chen et al., 2016). 112 

 113 
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Materials and methods 114 

Approximately 420 specimens were collected from the 18 stromatoporoid-bearing intervals 115 

(Figs. 2, 3), of which over 300 belong to clathrodictyid stromatoporoids. In the lower 116 

limestone member, only two clathrodictyid specimens were collected. No stromatoporoid was 117 

found in the lower shale member, interpreted to be deposited below wave base (Park, 2017) 118 

and beyond the threshold of stromatoporoid survival. The majority of specimens were 119 

collected from the S2 to S9 intervals of sub-section ZU2 and the S9 to S18 intervals of sub-120 

section ZU1, while only a few fragmented clathrodictyid samples were collected from ZU3, 121 

which is correlated to the upper part of ZU 1 (Figs. 2, 3; see Lee et al., 2012, figs. 8 and 9). In 122 

this collection, 239 stromatoporoid samples were selected and 420 thin sections were made 123 

for taxonomic studies. These include specimens used by Lee et al. (2016a) and Jeon et al. 124 

(2020a, b). The suprageneric taxonomic assignment and terminology used in this study 125 

follow those of Nestor (2015) and Webby (2015b). 126 

Network analysis is applied to evaluate the global paleobiogeographic affinity of 127 

Ordovician clathrodictyids, and presented as a diagram showing geographic relationships of 128 

taxa. Occurrences of clathrodictyid species are organized as a binary dataset (i.e., terrane and 129 

clathrodictyid species), processed with Gephi software, version 0.9.2 (Bastian et al., 2009) to 130 

produce a network analysis diagram in which a source node (i.e., terrane) is connected to a 131 

target node (i.e., clathrodictyid species) by a line (called an edge in Gephi terminology). 132 

Endemic clathrodictyid species are revealed where a target node is linked to only a single 133 

source node. Cosmopolitan species are indicated where several source nodes (terranes) are 134 

connected to several target nodes (taxa) and the size of the nodes provides a visual 135 

impression of the degree of cosmopolitanism. From the various display options within Gephi, 136 

Force Atlas 2 was chosen to display the clathrodictyid data as the most appropriate for the 137 
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purposes of this study. The following parameters were involved in this study: scaling 10.0, 138 

gravity 1.0, edge weight influence 1.0, number of threads 3, tolerance 1.0 and approximation 139 

1.2. 140 

The dataset of the Ordovician clathrodictyid stromatoporoids for the network analysis was 141 

collected from previously published data as well as in this study, including 27 species from 142 

South China (Lin and Webby, 1988; Jeon et al., 2022; this study), North China (Lin and 143 

Webby, 1988), Qaidam (Lin and Webby, 1988), Tarim (Dong and Wang, 1984), New South 144 

Wales (Webby, 1969; Webby and Morris, 1976; Pickett and Percival, 2001), Tasmania 145 

(Webby and Banks, 1976), Altai-Sayan Fold Belt (Khalfina, 1960), Laurentia (Bolton, 1988; 146 

Nestor et al. 2010) and Baltica (Nestor, 1964; Bogoyavlenskaya, 1973). A few previously 147 

reported clathrodictyid species are not included (e.g., Bol’shakova and Ulitina, 1985; 148 

Khromych, 2001; Jiang et al., 2011) because of their problematic taxonomic assignments or a 149 

lack of detailed description and illustration.  150 

 151 

Repository and institutional abbreviation.— All the clathrodictyid stromatoporoid specimens 152 

from the Xiazhen Formation, are deposited in Nanjing Institute of Geology and 153 

Palaeontology (NIGP), Chinese Academy of Sciences, Nanjing, China.  154 

 155 

Systematic paleontology 156 

 157 

Phylum Porifera Grant, 1836 158 

Class Stromatoporoidea Nicholson and Murie, 1878 159 

Order Clathrodictyida Bogoyavlenskaya, 1969 160 
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Family Clathrodictyidae Kühn, 1939 161 

 162 

Clathrodictyon Nicholson and Murie, 1878 163 

Type species.—Clathrodictyon vesiculosum Nicholson and Murie, 1878. 164 

Clathrodictyon idense Webby and Banks, 1976 165 

Figure 4 166 

 167 

1976 Clathrodictyon idense Webby and Banks, p. 130, pl. 1, figs. 1, 2 168 

 169 

Type specimen.—Holotype UTGD 58125 from the Gordon Limestone Subgroup, southwest 170 

of Ida Bay, Tasmania: precise stratigraphic horizon and location unknown (Webby and 171 

Banks, 1976, p. 130, pl. 1, figs. 1, 2); deposited in University of Tasmania, Hobart, Australia. 172 

Occurrence.—The S2–4, S7 and S9 intervals of the Xiazhen Formation (Upper Ordovician, 173 

Katian) at Zhuzhai, Yushan County, Jiangxi Province, China (Figs. 2, 3). 174 

Description.—Columnar to dendroid forms of skeletons (up to 100 mm high and 7 mm wide) 175 

dominate; fragmented low domical and bulbous ones (up to 40 mm high and 50 mm wide) 176 

are also common. Skeletons exhibit a variety of orientations. Astrorhizae, latilaminae and 177 

mamelons are not observed. 178 

Laminae are continuous, moderately wavy, and regularly spaced, ranging 0.05–0.23 mm 179 

thick (number of measured laminae=121, average 0.13 mm); 5–7 laminae per millimeter. 180 

Pillars are short, stout, and rod-like. Galleries are commonly elongated and round, ranging 181 

0.10–1.15 mm wide (number of measured galleries=121, average 0.42 mm). 182 

In the axial part of the columnar and dendroid growth forms, zigzag-shaped cassiculate 183 

skeletal structure is well-developed. The structure is sharply folded and radially upward-184 
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arranged, which resembles the Ecclimadictyon-like cassiculate structure. During growth it 185 

gradually changed to the normal laminae skeletal phase (Fig. 4.1, 4.3). 186 

Materials.—27 specimens, including NIGP 159424, 159440, 159441, 177100–177113 from 187 

the S2–S3 interval, NIGP 177114 and 177115 from the S7 interval, NIGP 177116–177123 188 

from the S9 interval the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan 189 

County, Jiangxi Province, China. 190 

Remarks.—The present Xiazhen specimens show close morphological resemblances to those 191 

of Clathrodictyon idense Webby and Banks, 1976 from the Gordon Limestone Subgroup, 192 

southwest of Ida Bay, Tasmania. The Tasmanian specimens are similar to the present 193 

specimens in features of laminae, exhibiting 10–12 laminae within 2 mm (Webby and Banks, 194 

1976). However, the Tasmanian specimens are restricted to sheet-like growth forms (Webby 195 

and Banks, 1976), in contrast to the present specimens, which show a much wider spectrum 196 

of growth forms (Fig. 3).  197 

 198 

Clathrodictyon megalamellatum Jeon new species  199 

Figure 5 200 

 201 

Type specimen.—Holotype with three thin sections, NIGP 177124-1–3 from the S18 interval 202 

of the Xiazhen Formation at Zhuzhai, Yushan County, Jiangxi Province, China. 203 

Diagnosis.—Clathrodictyon with laminae planar, continuous, laterally well-developed and 204 

widely spaced, ranging 1.05–4.21 mm in thickness (2 to 3 per millimeter); pillars rod- to 205 

funnel-like, and crumpled; galleries varying from slightly round to angular, ranging 0.17–206 

1.60 mm in width; microstructure compact. 207 

Occurrence.—The S18 interval of the Xiazhen Formation (Upper Ordovician, Katian) at 208 

Zhuzhai, Yushan County, Jiangxi Province, China (Figs. 2, 3). 209 
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Description.—Skeleton is low domical, up to 98 mm wide and 45 mm high. Astrorhizae and 210 

latilaminae are not found, but mamelon-like upward-arching areas are common. Laminae are 211 

continuous, planar, and notably widely spaced, ranging 1.05–4.21 mm in thickness (number 212 

of measured laminae=92, average 2.62 mm), laminae spaced 2–4 per mm (mostly 3). Wavy 213 

and slightly undulating laminae are rarely seen. In longitudinal section, pillars are well-214 

defined and commonly extend to inter-laminar space, varying from rod- to funnel-like shapes. 215 

In tangential section, pillars range from round to elongate. Galleries vary from slightly round 216 

to angular shapes, ranging 0.17–1.60 mm (number of measured galleries=88, average 0.53 217 

mm) wide.  218 

Etymology.—Combination of Greek, mégas, large and latin, lamella, thin plate or layer; 219 

derivation from its morphological feature of widely spaced laminae with well-developed 220 

pillars, clearly distinguishable from other previously known Clathrodictyon species found in 221 

Late Ordovician strata. 222 

Material.—One specimen of  NIGP 177124-1–3 from the S18 interval of the Xiazhen 223 

Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi Province, China. 224 

Remarks.—This new species has the most widely spaced planar laminae, which is the most 225 

distinctive and distinguishable feature unlike other previously known Clathrodictyon species 226 

during the Ordovician. One of the typical skeletal features of Clathrodictyon is irregularly 227 

wrinkled laminae (Nestor 2015), but wavy laminae are less common in Clathrodictyon 228 

megalamellatum Jeon n. sp. Its planar laminae (Fig 5.1, 5.2, 5.3, 5.4, 5.8) are rather similar to 229 

that of the genus Petridiostroma, which is characterized by planar and continuous laminae 230 

(Nestor, 2015). However, in terms of pillars, the present new species is closer to genus 231 

Clathrodictyon in morphological features, possessing varying rod-, funnel to crumpled form 232 

in both longitudinal and tangential sections (Fig. 5). Petridiostroma is first known in the early 233 

Silurian (middle Llandovery), much later than the appearance of Clathrodictyon in the Late 234 
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Ordovician (middle Katian) (Webby et al., 2015; Stock et al., 2015). Although this new 235 

species possesses similar morphological features to both Clathrodictyon and Petridiostroma, 236 

here it is regarded as a species of Clathrodictyon, based on their similarity of pillars and 237 

stratigraphic occurrences. 238 

 239 

Clathrodictyon cf. Cl. mammillatum (Schmidt, 1858) 240 

Figure 6 241 

 242 

cf. 1858 Stromatopora mammillata Schmidt: p. 232 243 

cf. 1867 Stromatopora mammillata Schmidt; Rosen, p. 71, pl. 8, figs 1-5. 244 

cf. 1964 Clathrodictyon mammillatum (Schmidt); Nestor, p. 42, pl. 13, figs 7-8 (cum syn) 245 

1969 Clathrodictyon aff. mammillatum (Schmidt); Webby, p. 657, pl. 126, figs. 3–5. 246 

non cf. 1980 Clathrodictyon mammillatum (Schmidt); Yang and Dong, p. 397, pl. 1, figs. 5–247 

6. 248 

1988 Clathrodictyon cf. mammillatum (Schmidt); Lin and Webby, p. 242, fig. 5a–e. 249 

2022 Clathrodictyon cf. mammillatum (Schmidt); Jeon, Li, Na, Liang and Zhang, p. 60, figs 250 

2a, b, 3a, b, 4a, b. 251 

 252 

Occurrence.—The S1, S3, S9, 11, 14–16 and S18 intervals of sub-sections ZU1 and ZU2, 253 

and the lower part of ZU3 of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, 254 

Yushan County, Jiangxi Province, China (Figs. 2, 3). 255 

Description.— Growth form of skeletons varies from laminar, low domical, dendroid, to 256 

irregular, up to 80 mm wide and 50 mm high, and commonly fragmented. Mamelons range 257 

1.89–3.90 mm in diameter (number of measured mamelons=8, average 2.94 mm), and up to 258 
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5.35 mm apart from each other, generally around 3 mm. Astrorhizae and latilaminae are not 259 

found. 260 

Laminae vary from slightly wrinkled, and laterally continuous well-developed, ranging 0.07–261 

0.45 mm (number of measured laminae=113, average 0.14 mm), and spacing 4–8 laminae per 262 

millimeter (normally 5 laminae). Pillars are dominantly simple rod-like, and rarely branching 263 

triangular wedge-shape. Galleries are round, elongated and slightly angular, ranging 0.12–264 

0.95 mm (number of measured galleries=0.96, average 0.34 mm) wide. In the axial part of the 265 

dendroid form, laminae are more widely spaced than the normal phases, and radially arranged 266 

with sharply folded zigzag Ecclimadictyon-like phases (Fig. 6.4). 267 

Material.—20 specimens, including NIGP 177125, 177126 from the S1 interval, NIGP 268 

177127–177130 from the S9 interval, NIGP 177131 from S11 interval, NIGP 177132 from 269 

the S15 interval, NIGP 177133-1, 2 and 177313 from the S16 interval, NIGP 159423, 270 

159430, 159433, 159442, 159445, 159447, 159448, 169634-1–20, 177134, 177135 from the 271 

S18 interval of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan 272 

County, Jiangxi Province, China. 273 

Remarks.—The present specimens of Clathrodictyon cf. Cl. mammillatum from the Xiazhen 274 

Formation share close morphological features with those from Sanqushan, Changshan, 275 

Zhejiang Province and New South Wales (Lin and Webby, 1988; Webby, 1969; Jeon et al., 276 

2022). Laminae in the latter specimens are spaced 6–9 laminae per 2 mm (Webby, 1969), 277 

thicker than those of the Xiazhen Formation specimens, which is considered as intraspecific 278 

variation. 279 

 280 

Clathrodictyon cf. Cl. microundulatum Nestor, 1964 281 

Figure 7 282 

 283 
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cf. 1964 Clathrodictyon microundulatum Nestor, p. 41, pl. 13, figs. 1–6 284 

1969 Clathrodictyon cf. microundulatum Nestor; Webby, p. 657, pl. 126, fig. 6, pl. 127, figs 285 

1–4. 286 

1988 Clathrodictyon cf. microundulatum Nestor; Lin and Webby, p. 242, Fig. 6a, b. 287 

2021 Clathrodictyon cf. microundulatum Nestor; Jeon, Li, Na, Liang and Zhang, p. 62, figs 288 

2e, f, 4e, f. 289 

 290 

Occurrence.—The S3, S13 and 15–18 intervals of sub-sections ZU1 and ZU2, and the upper 291 

part of ZU3 of the of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan 292 

County, Jiangxi Province, China (Figs. 2, 3). 293 

Description.—Skeletons range from laminar, low to high domical, to irregular growth forms. 294 

Large domical forms are commonly found in the S15 interval, up to 100 cm wide. 295 

Latilaminae and mamelons are not observed. Astrorhizae rarely found (Fig. 7.4). Laminae, 296 

which are similar to vesicular in morphology, are well-undulating, thickness ranges 0.16–297 

0.43 mm (number of measured laminae=96, average 0.30 mm) high, spaced 3–5 laminae per 298 

millimeter. Pillars are persistently crumpled and funnel-like shaped. Galleries are round and 299 

elongated, ranging 0.19–1.58 mm (number of measured galleries=88, average 0.67 mm) 300 

width. Astrorhizae are approximately 0.3–0.4 mm in diameter and 2 mm high, with ragged 301 

marginal contacts with laminae.  302 

Material.—66 specimens, including NIGP 177136 and 177137 from the S3 interval, NIGP 303 

177138 from the S9 interval, NIGP 159427, 159428, 159437, 159438, 177139–177179 from 304 

the S15 interval, NIGP 159421, 177180–177185 from the S16 interval, NIGP 177186, 305 

177187 from the S17 interval, NIGP 159420, 177188–177194 from the S18 interval NIGP 306 

177195, 177196 from the upper part of the sub-section ZU3 of the Xiazhen Formation (Upper 307 

Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi Province, China. 308 
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Remarks.—The Xiazhen specimens of Clathrodictyon cf. Cl. microundulatum show close 309 

skeletal resemblances to those from the Sanqushan Formation in Changshan, Zhejiang 310 

Province, China and from the New South Wales, Australia (Webby, 1969; Percival et al., 311 

2006; Jeon et al., 2022). Astrorhizae have not been found in the Sanqushan specimens, but 312 

both the New South Wales and Xiazhen Formation specimens possess well-developed 313 

astrorhizae with ragged margins between laminae.  314 

A vertically developed tube is developed in the present specimen (Fig. 7.3); the tube has 315 

the same compact microstructure as the stromatoporoid (similar example of fig. 18 in 316 

Kershaw et al., 2018). Parts of the tube are in open continuation with stromatoporoid galleries 317 

and may be part of the stromatoporoid skeletal structure. However, it remains possible that 318 

the tube is a bioclaustration (an intergrown organisms lacking its own shell). This vertical 319 

element is distinguishable from astrorhizae (Fig. 7.4, right-hand side) and intergrown tubes 320 

(Fig. 7.1, 4, 5). Astrorhizae have ragged marginal contact with laminae (Fig. 7.4). 321 

Stromatoporoid laminae also show concave or convex curving of laminae near the contact 322 

with intergrown corals (Fig. 7.4 upper left; also see both astrorhizae and intergrown Bajgolia 323 

in Fig. 16.1, 2). In contrast, the stromatoporoid laminae adjacent to the vertical tube  in Fig. 324 

7.3 does not exhibit any skeletal distortions. Overall, the nature of this tube is not resolved 325 

and may require more samples to verify. 326 

 327 

Clathrodictyon plicatum Webby and Banks, 1976 328 

Figure 8 329 

1976 Clathrodictyon plicatum Webby and Banks, p. 131, pl. 2, figs. 1–5 330 

2021 Clathrodictyon plicatum Webby and Banks; Jeon, Li, Na, Liang and Zhang: p. 3, figs 331 

2c, d, 3c. 332 

 333 
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Type specimen.—Holotype UTGD 94626 and paratypes UTGD 94623–94625, 94628–94629, 334 

94631–94632 from the Upper Ordovician Den Formation of the uppermost Gordon 335 

Limestone Subgroup, Tasmania (Webby and Banks, 1976, p. 131, pl. 2, figs. 1–5; see Burrett 336 

et al., 1989 for the stratigraphic information); deposited in University of Tasmania, Hobart, 337 

Australia. 338 

Occurrence.—The S10–S12, S14–S18 intervals of sub-sections ZU1 and ZU2, and the upper 339 

part of ZU3 of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan 340 

County, Jiangxi Province, China (Figs. 2, 3). 341 

Description.—Skeletons vary from laminar, low to high domical, bulbous, dendroid, to 342 

irregular or even digitate, up to 16 cm wide and 15 cm high. Astrorhizae and latilaminae are 343 

not found. Mamelons are common, spacing 2.83–5.43 mm (number of measured distance 344 

between two mamelons=13, average 4.28 mm), and up to 9.66 mm apart from each other, 345 

generally 6 mm.  346 

Laminae are laterally continuous and regularly spaced, ranging 0.08–0.25 mm (number of 347 

measured laminae=86, average 0.15 mm), usually spaced from 6–8 per millimeter (average 348 

7). Galleries are round and elongate, and of variable width, ranging 0.15–1.06 mm (number 349 

of measured galleries=86, average 0.51 mm). In the axial part of columnar growth form, 350 

widely-spaced laminae developed. These laminae are interlayered with crumpled laminae of 351 

sharp, chevron-like folds, which are rather similar to cassiculate network in actinodictyids, 352 

such as Ecclimadictyon and Plexodictyon (see Fig. 8 for folded-chevron like crumpled 353 

laminae in Clathrodictyon plicatum and Figs. 9 and 10 for skeletal features of Ecclimadictyon 354 

species).  355 

Materials.—56 specimens, including NIGP 177197–177224 from the S10 interval, NIGP 356 

177225–177228 from the S11 interval, NIGP 177229 from the S12 interval, NIGP 159429, 357 

177230–177232 from S14 interval, NIGP 177233–177239 from the S15 interval, NIGP 358 
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177240 from the S16 interval, NIGP 168768, 177241–177246 from the S17 interval, NIGP 359 

177247–177250 from the S18 interval of the Xiazhen Formation (Upper Ordovician, Katian) 360 

at Zhuzhai, Yushan County, Jiangxi Province, China. 361 

Remarks.—Both the specimens of Clathrodictyon plicatum Webby and Banks 1976 from the 362 

Upper Ordovician Den Formation of Tasmania (Webby and Banks, 1976) and from South 363 

China (Jeon et al., 2022; the present study) exhibit an abnormal skeletal phase, represented by 364 

angularly folded chevron-like crumpled laminae (‘a Plexodictyon-type structure’ in p. 131 of 365 

Webby and Banks 1976; ‘Plexodictyon-like abnormal phase’ in p. 5 of Jeon et al., 2022). 366 

This skeletal variation has been interpreted as an advanced growth strategy affected by 367 

environmental conditions (Jeon et al., 2022), and this species correspondingly shows the 368 

longest stratigraphic range in the Xiazhen Formation, representing a wide range of 369 

depositional environments. 370 

 371 

Family Actinodictyidae Khalfina and Yavorsky, 1973 372 

 373 

Ecclimadictyon Nestor, 1964 374 

Type species.—Clathrodictyon fastigiatum Nicholson, 1887. 375 

Ecclimadictyon nestori Webby, 1969 376 

Figure 9 377 

1969 Ecclimadictyon nestori Webby, p. 660, pl. 128, fig.1, pl. 129, figs. 1–6. 378 

1988 Ecclimadictyon sp. A Lin and Webby, p. 239, fig. 3a–d. 379 

 380 

Type specimen.—Holotype, SUP 28203 from the Upper Ordovician Vandon Limestone 381 

between Belubula River and Large Flat (Webby, 1969). One paratype, SUP 28256 from the 382 

upper part of the Upper Ordovician Belubula Limestone, and the others (SUP 26199–26202, 383 
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26204, 26209) from the Upper Ordovician Vandon Limestone of New South Wales (see 384 

Webby, 1969, p. 660) in the Cliefden Caves Limestone Subgroup, New South Wales 385 

(Webby, 1991, p. 660, pl. 128, fig.1, pl. 129, figs. 1–6; see Percival et al., 2011 for the 386 

regional stratigraphic information); deposited in Australian Museum, Sydney, Australia. 387 

Occurrence.—The S2–4, 10, 16, 18 intervals of sub-sections ZU1 and ZU2, and the upper 388 

part of ZU3 of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan 389 

County, Jiangxi Province, China (Figs. 2, 3). 390 

Description.—Skeletons are mostly laminar, and rarely low domical and irregular in growth 391 

forms, up to 10 cm wide and 4 cm high. Astrorhizae, mamelons and latilaminae are not 392 

found.  393 

Skeletons consist of sharply folded chevron-like crumpled laminae, which are laterally 394 

continuous, forming regular cassiculate networks. The thickness of laminae ranges 0.08–0.20 395 

mm (number of measured laminae=92, average 0.12 mm), spaced 6–8 laminae per millimeter 396 

(average 7 laminae). Pillars are poorly developed and confined to inter-laminar spaces. 397 

Galleries are mostly rhomboid with sharp marginal areas. Sharply-crumpled laminae exhibit 398 

isolated dots or appear to be linked with others. 399 

Materials.—51 specimens, including NIGP 177251–177253 from the S2–S3 interval, NIGP 400 

177254–177259 from the S4 interval, NIGP 177260–177263 from the S10 interval, 401 

NIGP177264–177267 from the S15 interval, NIGP 177268–177271 from the S16 interval, 402 

NIGP 177272, 177273 from the S17 interval, NIGP 159431, 159436, 159443, 159444, 403 

159449, 168769, 177274–177294 from the S18 interval of the Xiazhen Formation (Upper 404 

Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi Province, China. 405 

Remarks.—The single specimen of Ecclimadictyon from the Sanqushan Formation, which 406 

was described in Lin and Webby (1988), was designated as an independent species of 407 

Ecclimadictyon in open nomenclature (Ecclimadictyon sp. A in p. 239 of Lin and Webby, 408 
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1988), judging from its more conspicuous latilaminae and larger astrorhizal canals than those 409 

of Ecclimadictyon nestori (Lin and Webby, 1988). However, those differences cannot serve 410 

as critical features to separate two independent stromatoporoid species, and should be 411 

counted as skeletal variations of a single species. Both of them show identical sharply-folded, 412 

zigzag-shaped crumpled laminae, forming angular galleries, as mostly spacing 7–8 laminae 413 

per millimeter. Thus, in this study, Ecclimadictyon sp. A in Lin and Webby, 1988 is 414 

synonymized with Ecclimadictyon nestori Webby, 1969, judging from their close skeletal 415 

morphological resemblance. 416 

 417 

Ecclimadictyon undatum Webby and Banks, 1976 418 

Figure 10 419 

1976 Ecclimadictyon undatum Webby and Banks, p. 132, pl. 2, figs. 1–3. 420 

 421 

Type specimen.—Holotype (UTGD 94636) and three paratypes (UTGD 90917, 94637, 422 

94638) from the Upper Ordovician Den Formation of the uppermost Gordon Limestone 423 

Subgroup, Tasmania (Webby and Banks 1976, p. 132, pl. 2, figs. 1–3; see Burrett et al., 1989 424 

for the regional stratigraphic information). 425 

Occurrence.—The S11, S12 and S15 intervals of the Xiazhen Formation (Upper Ordovician, 426 

Katian) at Zhuzhai, Yushan County, Jiangxi Province, China (Figs. 2, 3). 427 

Description.—Skeleton is laminar in growth form, up to 14 cm wide and 3 cm high. 428 

Mamelon, latilaminae and astrorhizae are not found. An unidentified endobiont (referred as 429 

‘Eofletcheria-like tubules’ in Lee et al., 2016a) occurs only in the current species (Fig. 10.5, 430 

6). 431 

The internal structure is variable, ranging from coarsely to finely structured laminae. In the 432 

coarser skeletal phase, laminae are moderately crumpled, forming elongated and round 433 
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galleries (Fig. 10.1). In more finely structured portions of the skeleton, laminae are rather 434 

sharply-folded and galleries are more angular rhomboid (Fig. 10.2). The thickness of laminae 435 

ranges 0.13–0.39 mm (number of measured laminae=86, average 0.21), spaced 3–5 laminae 436 

per millimeter (average 4 laminae). Pillars are mostly indistinct. 437 

Materials.—13 specimens, including NIGP 177295, 177296 from the S11 interval, NIGP 438 

177297 from the S12 interval, NIGP 159425, 159426, 177298–177307 from the S15 interval 439 

of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi 440 

Province, China. 441 

Remarks.—The specimens of Ecclimadictyon undatum from Tasmania show that laminae 442 

range 12–14 per two millimeters (Webby and Banks, 1976), slightly finer than those in the 443 

Xiazhen Formation specimens. These differences in laminae dimensions are considered to be 444 

an intraspecific variation. Astrorhizae are not found in either specimens. E. undatum Webby 445 

and Banks, 1976 exhibits widely spaced, less sharply folded laminae and coarser cassiculate 446 

structures than E. nestori Webby, 1969.  447 

 448 

Camptodictyon Nestor, Copper and Stock, 2010 449 

Type species.—Camptodictyon penefastigiatum Nestor, Copper and Stock, 2010. 450 

Camptodictyon amzassensis (Khalfina, 1960) 451 

Figure 11 452 

1960 Clathrodictyon(?) kirgisicum amzassensis Khalfina, p. 370, pl. O–1, figs. 1–3. 453 

1969 Ecclimadictyon amzassensis (Khalfina); Webby, p. 659, pl. 127, figs. 5–7, pl. 128, figs. 454 

1–5. 455 

1984 Ecclimadictyon crassilamellatum Dong and Wang, p. 260, pl. 14, fig 2a, b 456 

1984 Ecclimadictyon xinjiangense Dong and Wang, p. 261, pl. 14, fig 3a, b 457 

 458 
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Type specimen.—Holotype No. 537 with three thin sections from the Amzass Formation of 459 

Gornaya Shoriya, Russia (Khalfina, 1960, p. 370, pl. O–1, figs. 1–3); deposited in Trofimuk 460 

Institute of Petroleum Geology and Geophysics, Russian Academy of Sciences, Novosibirsk, 461 

Russia. 462 

Occurrence.—The S15, 17 intervals of the Xiazhen Formation (Upper Ordovician, Katian) at 463 

Zhuzhai, Yushan County, Jiangxi Province, China (Figs. 2, 3). 464 

Description.—Skeleton is laminar, about 20 mm high and 60 mm wide. Latilaminae and 465 

mamelon columns are not found. 466 

Laminae range from zigzag-shaped (also commonly referred as ‘chevron-like’; see Nestor et 467 

al., 2010, p. 83 for the diagnosis of genus Camptodictyon), smoothly downward-folded to 468 

undulating structures, spaced 5–7 per mm (average 6). Thickness of laminae is 0.06–0.22 mm 469 

(number of measured laminae=55, average 0.13 mm). Pillars are short and commonly 470 

indistinct, but may also reach the other laminae, 0.03–0.17 mm high (number of measured 471 

laminae=70, average 0.08 mm). Galleries are round and elliptical in longitudinal section, 472 

varying 0.32–1.61 mm in width (number of measured galleries=52, average 0.75 mm). 473 

Astrorhizae are sporadically developed, represented by short and curved astrorhizal galleries 474 

(Fig. 11.2). 475 

Materials.— Three specimens, including NIGP 177308 from the S15 interval, NIGP 177309, 476 

177310 from the S17 interval of the Xiazhen Formation (Upper Ordovician, Katian) at 477 

Zhuzhai, Yushan County, Jiangxi Province, China. 478 

Remarks.— The Xiazhen Formation specimens closely resemble specimens from Altai-Sayan 479 

(Khalfina, 1960) and New South Wales (Webby, 1969), with 3–6 laminae per millimeter. 480 

Ecclimadictyon xinjiangense (NIGP 70420) and E. crassilamellatum (NIGP 70421) from 481 

Xinjiang, China develop cassiculate networks from downward folded to undulating laminae 482 

(see pl. 14, fig 2a, b and pl. 14, fig 3a, b of Dong and Wang, 1984, respectively). These 483 
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skeletal characteristics are much closer to the generic concept of Camptodictyon (Nestor et 484 

al., 2010, p. 83; Nestor, 2015, p. 758) than to Ecclimadictyon (Nestor, 2015, p. 758). The 485 

skeletal differences in these two species (i.e., slightly thicker laminae, space of astrorhizal 486 

canals) are not considered to possess significant taxonomic value to justify them as 487 

independent species in Dong and Wang (1984) (Lin and Webby, 1988). The specimens from 488 

Xinjiang, China show similar morphological features with those in current material, thereby 489 

being regarded as junior synonyms of Camptodictyon amzassensis (Khalfina 1960). 490 

 491 

Labyrinthodictyon Nestor, Copper and Stock, 2010 492 

Type species.—Labyrinthodictyon angulosum Nestor, Copper and Stock, 2010. 493 

Labyrinthodictyon cascum (Webby and Morris, 1976) 494 

Figure 12 495 

 496 

1976 Plexodictyon? cascum Webby and Morris, p. 132, fig. 5a–c, 5e. 497 

2021 Labyrinthodictyon cascum (Webby and Morris 1976); Jeon, Li, Na, Liang and Zhang, p. 498 

7, figs 2g, h, 3d, e. 499 

 500 

Type specimen.—Holotype (SUP 78258), three paratypes (SUP 77277–77279) from the 501 

Upper Ordovician Ballingoole Limestone in upper part of the Bowan Park Limestone 502 

Subgroup, New South Wales (Webby and Morris, 1976, p. 132, fig. 5a–c, 5e; see Percival et 503 

al., 2011 for the regional stratigraphic information); deposited in the Australian Museum, 504 

Sydney, Australia. 505 

Occurrence.—The S15 interval of the Xiazhen Formation (Upper Ordovician, Katian) at 506 

Zhuzhai, Yushan County, Jiangxi Province, China (Figs. 2, 3). 507 
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Description.—Skeletons are fragmented, but indicate a laminar growth form. Mamelons and 508 

astrorhizae are not found. Skeletons consist of planar paralaminae, which are laterally 509 

continuous. Thickness of paralaminae is 0.21 to 0.78 mm (number of measured 510 

paralaminae=67, average 0.45 mm), regularly spaced 2 per millimeter (exceptionally 3 511 

paralaminae are also seen). The inter-paralaminae exhibit cassiculate laminae, of variable 512 

from irregularly crumpled to triangular-wedge shapes, spacing 2–3 crumpled laminae within 513 

one paralamina. Galleries are angular and variable in both shape and size. 514 

Materials.—Three specimens, including NIGP 168770, 177311, 177312 from the S15 515 

interval of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan County, 516 

Jiangxi Province, China. 517 

Remarks.—The Xiazhen specimens have regularly spaced planar paralaminae, closely similar 518 

to the specimens from New South Wales (Webby and Morris, 1976) and those from the 519 

coeval Sanqushan Formation of South China (Jeon et al., 2022). All the specimens from 520 

China and Australia show about 2 paralaminae per millimeter (Webby and Morris, 1976; 521 

Jeon et al., 2022). No abnormal skeletal phases have been observed in the Xiazhen Formation 522 

specimens, while abnormal Ecclimadictyon-like phases occur in the Sanqushan Formation 523 

specimens (see fig. 3d, e of Jeon et al., 2022). 524 

 525 

Intergrowth association between clathrodictyid stromatoporoids and other sessile 526 

organisms 527 

In the Xiazhen Formation, intergrowth associations between clathrodictyid stromatoporoids 528 

and other sessile organisms are commonly found (Figs. 13–17, Table 1). The intergrowth 529 

associations occur both in reef and non-reef environments, but are much more common in 530 

reefs due to the high diversity and density of reef-building organisms. Lee et al. (2016) found 531 
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that only Clathrodictyon and Ecclimadictyon acted as host stromatoporoids. No intergrown 532 

organisms were found within skeletons of Camptodictyon and Labyrinthodictyon. The 533 

stratigraphic distribution of intergrowth associations between clathrodictyid stromatoporoids 534 

and other sessile organisms in the Xiazhen Formation is listed in Table 1. The intergrowth 535 

associations include seven host clathrodictyid species and various intergrown benthic 536 

organisms. Among those intergrown benthic organisms, tabulate corals include Agetolites, 537 

Bajgolia, Catenipora and Heliolites (Figs. 13–17), with the auloporid Bajgolia the most 538 

common intergrown coral (Figs. 14–16; see figures in Lee et al., 2016a). Species of 539 

Agetolites are found to envelop dendroid forms of Clathrodictyon idense particularly in the 540 

S3 interval (Fig. 13.5, 13.6). Solitary-form rugose corals, Streptelasma and Tryplasma are 541 

also found as endobionts. Other fossil groups, including Rhabdotetradium (see fig.  2b in Lee 542 

et al., 2016a), unidentified Eofletcheria-like tubules (Fig. 10.6, 14.3; see fig.  2f of Lee et al., 543 

2016a), labechiid stromatoporoids (Fig. 14.6; see figures of Jeon et al., 2020b) and bryozoans 544 

(Fig. 14.2) also intergrew within clathrodictyid stromatoporoids. 545 

We interpret the intergrowth associations between clathrodictyid stromatoporoids and 546 

other sessile organisms to have occurred by chance rather than an obligate association, 547 

judging from the presence of both free-living and intergrown growth modes (Lee et al., 548 

2016a; Jeon et al., 2020b). The laminae of clathrodictyids are concavely or convexly curved 549 

near the contact with the intergrown corals, which possibly show the different growth rates of 550 

host clathrodictyids and intergrown organisms (Fig. 15). It can be inferred that most of the 551 

endobionts had little to no impact on most of the host clathrodictyids, and some endobionts 552 

even encrusted or grew near the astrorhizae of the host stromatoporoid (Fig. 16.1, 16.2). 553 

However, in some cases, the host clathrodictyids show evidence of having been affected by 554 

the intergrown organisms, judging from a narrow range of columnar to dendritic growth 555 

forms (Fig. 16.3–16.7), abnormally spaced laminae (Fig. 16.8), and skeletal distortions (Fig. 556 
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14.6; see figs. 2.4, 3, 4 in Jeon et al., 2020b). Host stromatoporoids that contain intergrown 557 

Bajgolia are often restricted to the branching dendroid forms (Fig. 16.3–16.7; Lee et al., 558 

2016a), which indicates that the growth direction and orientation of intergrown organism 559 

could affect the growth of the host stromatoporoid in some cases. Skeletal deformation with 560 

zigzag, crumpled distorted laminae of the host clathrodictyid is also observed near the 561 

physical contacts with intergrown labechiids, indicating spatial competition between these 562 

two stromatoporoids (compare Figs. 13–17 and figs. 2.4, 3, 4 in Jeon et al., 2020b). 563 

 564 

Paleobiogeographic pattern of Ordovician clathrodictyid stromatoporoids 565 

 566 

Ordovician clathrodictyid stromatoporoids rapidly reached a global distribution concurrently 567 

with their earliest appearance in the middle Katian of the Late Ordovician (Stock et al., 568 

2015). A total of 27 clathrodictyid species were reported in the Late Ordovician interval 569 

(middle Katian to Hirnantian). The wide range of skeletal variation in clathrodictyids may 570 

confuse discrimination of lowest-level taxa and lead to over-splitting, but resolving this issue 571 

requires examination of published materials, which is outside the scope of this study. 572 

Nevertheless, the clathrodictyid species examined here belong to four genera 573 

(Clathrodictyon, Ecclimadictyon, Camptodictyon and Labyrinthodictyon) and have been 574 

recorded from nine terranes (Fig. 18). Many species were endemic and occurred within a 575 

single terrane. Peri-Gondwanan terranes, including North China, Australia, South China and 576 

other terranes (e.g., Tarim) share more clathrodictyid species in common than the other 577 

terranes. In general, the network analysis diagram shows three independent clathrodictyid 578 

faunal provinces (peri-Gondwana–Tarim–Altai, Laurentia and Baltica) (Fig. 18).  579 
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 580 

Peri-Gondwana–Tarim–Altai Province. —Peri-Gondwanan terranes, particularly Australia 581 

and South China, show diverse clathrodictyids and share many common species of 582 

Clathrodictyon, Ecclimadictyon, Camptodictyon and Labyrinthodictyon. It is noteworthy that 583 

New South Wales and Tasmania do not share any common clathrodictyid species although 584 

they were paleogeographically close to each other (Webby, 1969; Webby and Banks, 1976; 585 

Webby and Morris, 1976; Webby et al., 2000).      586 

Camptodictyon amzassensis (Khalfina, 1960) is an important species for defining this 587 

faunal province in that it shows the widest paleobiogeographic distributions (Fig. 18), 588 

occurring in New South Wales (Webby, 1969), South China (present study), Tarim (Dong 589 

and Wang, 1984), and Altai-Sayan Fold Belt (Khalfina, 1960). This species had not yet been 590 

found in North China, and only a single clathrodictyid species (Clathrodictyon cf. Cl. 591 

microundulatum Nestor, 1964) occurs in both North China and the other peri-Gondwanan 592 

terranes (i.e., South China and New South Wales). In addition to this species, two other 593 

species: Clathrodictyon? sp., possessing distinctive skeletal features, and Ecclimadictyon sp. 594 

B (Lin and Webby, 1988) have been reported only from North China. 595 

No detailed taxonomic work on clathrodictyids from the Ordovician of Qaidam has been 596 

undertaken, unfortunately, and thus our analysis is based on the few records in the literatures. 597 

Ecclimadictyon cf. E. koigense Nestor, 1964 is the only clathrodictyid species known from 598 

Qaidam (Lin and Webby, 1988). Occurrence of the tabulate coral Agetolites species and 599 

labechiid stromatoporoids in Qaidam indicates a close paleobiogeographic relationship with 600 

South China (Li and Lin, 1982), presumably indicating the two blocks belong to the same 601 

clathrodictyid paleobiogeographic unit. Accordingly, we include Qaidam in the GTA 602 

Province in this study. 603 



26 
 

 604 

Laurentia Province.— Clathrodictyon cf. Cl. kudnavzevi Riabinin, 1951, Clathrodictyon sp. 605 

3 (Bolton, 1988), Labyrinthodictyon angulosum Nestor, Copper and Stock, 2010, 606 

Ecclimadictyon anticostiense Nestor, Copper and Stock, 2010 and Ecclimadictyon sp. 607 

(Bolton, 1988) are known to occur in this province. Of these, Ecclimadictyon sp. and 608 

Clathrodictyon sp. 3 in Bolton (1988) are from the Portage Chute and Red River formations 609 

of Manitoba, respectively, while the other three species are from the Ellis Bay Formation of 610 

Anticosti Island (Nestor et al., 2010). 611 

 612 

Baltic Province.— This province contains Clathrodictyon microundulatum Nestor, 1964, 613 

Clathrodictyon vormsiense Riabinin, 1951, Clathrodictyon gregale Nestor, 1964, 614 

Clathrodictyon zonatum Nestor, 1964, Ecclimadictyon geniculatum Bogoyavlenskaya, 1973,  615 

Ecclimadictyon porkuni (Riabinin, 1951) and Ecclimadictyon koigiense Nestor, 1964. Among 616 

them, Clathrodictyon microundulatum, Clathrodictyon vormsiense and Ecclimadictyon 617 

geniculatum are from the Katian Stage (including Vormsi and Pirgu regional stages), while 618 

the other four species are from the Hirnantian Stage (Porkuni Regional Stage) (Nestor, 1964). 619 

 620 

Discussion 621 

 622 

Occurrence of clathrodictyid stromatoporoids and their paleobiogeographic implication.—  623 

South China was postulated to have been close to the other peri-Gondwana terranes (e.g., 624 

Australia), judging from the co-occurrence of some Clathrodictyon species and characteristic 625 

agetolitid corals from the Sanqushan Formation (Webby, 1980; Lin and Webby, 1988, 1989). 626 
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A recent study of clathrodictyids from the Sanqushan Formation (Jeon et al., 2022), and the 627 

present analysis, correspondingly show that South China has close faunal affinity to New 628 

South Wales and Tasmania. It is noteworthy that New South Wales and Tasmania do not 629 

share any common clathrodictyid species with each other despite their close paleogeographic 630 

distance (Webby, 1969; Webby and Banks, 1976; Webby and Morris, 1976; Webby et al., 631 

2000). Similar to the clathrodictyid stromatoporoids, Percival et al. (2011) noted that the 632 

brachiopods of New South Wales and Tasmania share surprisingly few faunal taxa. This 633 

pattern was interpreted to be due to a deep ocean basin swept by strong currents, which 634 

separated the benthic organisms of the two regions (Webby et al., 2000). If true, this strong 635 

oceanic current may have also affected the migration of those Australian clathrodictyid 636 

species to South China, judging from high faunal similarity of clathrodictyids between South 637 

China and those two Australian regions. 638 

The analysis presented here indicates that North China had the clathrodictyids had little 639 

faunal similarity with the other peri-Gondwanan terranes (i.e., South China, Australia), 640 

although this contrasts the paleobiogeographic pattern of labechiid stromatoporoids, which 641 

show North and South China have faunal similarities (Jeon et al., 2021); the implication is 642 

that these different taxa groups of stromatoporoids were under different controls with respect 643 

to their dispersal. Only one species (Clathrodictyon cf. Cl. microundulatum) occurs in North 644 

China, South China and New South Wales of peri-Gondwanan terranes. It should be noted 645 

that none of the Camptodictyon species have been found in North China, despite the wide 646 

distribution of Camptodictyon amzassensis during the Late Ordovician (Fig. 18), ranging 647 

from the Altai-Sayan Fold Belt (Khalfina, 1960), Tarim (Dong and Wang, 1984), South 648 

China (present study, Jeon et al., 2022) to New South Wales (Webby, 1969). However, Late 649 

Ordovician stromatoporoids have not been well-studied from North China and other adjacent 650 

terranes (i.e., Qaidam, Mongolia and Central Asia). Further studies are required for a 651 
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comprehensive evaluation of stromatoporoids and paleobiogeographic patterns of these 652 

terranes. 653 

The Peri-Gondwana–Tarim–Altai Province of clathrodictyid stromatoporoids corresponds 654 

well with the recently proposed brachiopod benthic faunal province, named ‘Cathay-Tasman 655 

Province’ by Cocks and Torsvik (2020). However, the Alati-Sayan Fold Belt is not included 656 

in Cocks and Torsvik’s faunal provinces, which is the only difference from the present 657 

clathrodictyid faunal provinces. The accurate paleogeographic location of Tarim continues to 658 

be controversial, but consistent in the paleobiogeographic analyses among different fossil 659 

groups (compare Fig. 18 and fig. 6 of Cocks and Torsvik, 2020). The occurrence of 660 

brachiopod Altaethyrella-Schachriomonia assemblage in Tarim provided useful evidence, 661 

indicating a close paleobiogeographic connection with South China (Sproat and Zhan, 2019), 662 

which corresponds with the occurrence of Cam. amzassensis in Tarim and South China. 663 

Laurentia, Baltica, and Siberia do not share any common clathrodictyid species. The species-664 

level diversity of clathrodictyids in these terranes is much lower than those of labechiids 665 

(Jeon et al., 2021). The limited dispersal of clathrodictyid species in these faunal provinces is 666 

possibly due to the later appearance of clathrodictyid stromatoporoids than labechiids, so 667 

there was insufficient time for dispersal of clathrodictyids through terranes before the Late 668 

Ordovician glaciation. 669 

 670 

Role of clathrodictyid stromatoporoids in intergrowth associations and implications in 671 

relation to the Great Ordovician Biodiversification Event.— During the Ordovician, in 672 

conjunction with spectacular diversity increases of marine invertebrate organisms, the rise of 673 

the Paleozoic Evolutionary Fauna is well-known to possess a much expanded ecospace and 674 

greater ecological complexity than in the earlier Cambrian period (Zhang et al., 2010; Servais 675 
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et al., 2010). These complexities include better developed food webs and increased 676 

competition between taxa (Zhang et al., 2010; Servais et al., 2010), which have been 677 

interpreted to be major controlling factors of this magnificent evolutionary event (Harper et 678 

al., 2004). Accordingly, the fossil record of paleoecological interactions remarkably increased 679 

during the Ordovician and multiplied in subsequent periods, together with the increase of 680 

predation pressure (Huntley and Kowalewski, 2007; Zhang et al., 2010). It is considered that 681 

there were various modes of the paleoecological associations (e.g., mutualism, 682 

commensalism, parasitism, competition) during the Ordovician (e.g., Young and Xu, 2002; 683 

Tapanila and Holmer, 2006; Lee et al., 2016a; Jeon et al., 2020b), but it may have been 684 

underestimated in the development of Ordovician marine ecosystems (Zhang et al., 2010); 685 

such associations may have played critical roles in community organization and evolution 686 

through deep time (Young and Xu, 2002).  687 

Almost coinciding with the appearance and development of massive calcareous skeletal 688 

organisms (e.g., bryozoans, corals, stromatoporoids) during the Great Ordovician 689 

Biodiversification Event (GOBE), a new symbiotic growth mode occurred during the 690 

Ordovician, which is well-known as an intergrowth association (also commonly referred to as 691 

an endosymbiotic association). Before the Ordovician, a facultative simple attachment of one 692 

skeleton to another is dominant in paleoecological associations (e.g., Topper et al., 2015, 693 

Zhang et al., 2020), an association referred to as ‘ectosymbiotic’. Vinn (2017) interpreted 694 

Cambrian epibionts to have simply benefited from a suspension feeding strategy. One of the 695 

representative example of this ectosymbiotic interaction is Wiwaxia sp. and Nisusia sp. in the 696 

Cambrian Burgess Shale of Canada (Topper et al., 2015). The earliest known intergrowth 697 

association involved the early bryozoan Orbiramus and diverse sclerobionts were reported 698 

from the Early Ordovician of South China (Ma et al., 2021). Bryozoans commonly hosted 699 

various endobionts, such as cornulariid tubeworms and rugose corals in the subsequent stages 700 
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of the Ordovician (e.g., Vinn and Mõtus, 2012; Vinn et al., 2014, 2016, 2017, 2018a, b, 2019) 701 

and later (e.g., Plusquellec and Bigey, 2019; Sendino et al., 2019). In contrast, early 702 

stromatoporoids (i.e., labechiids) seemingly did not involve intergrowth associations during 703 

the late Early to early Late Ordovician interval. The growth surface of those labechiid 704 

stromatoporoids with superposed vertical skeletal elements (i.e., pillars, papillae) has been 705 

interpreted as an unfavorable substrate for the settlement of endobionts’ larvae (Mori, 1970), 706 

which may explain the lack of endobionts during the entire evolutionary history of labechiids. 707 

Along with the appearance of clathrodictyid stromatoporoids during the middle Late 708 

Ordovician, diverse endobionts have been found within the skeletons of clathrodictyids 709 

(Table 2). Endobionts were first described from the middle Katian strata (Upper Ordovician) 710 

of New South Wales (Webby, 1969; Webby and Morris, 1976), including three clathrodictyid 711 

species and three different types of endobiont coral Bajgolia (formerly described as Propora 712 

in p. 657 of Webby, 1969), tubeworms and unidentified tabular organisms (Webby, 1969; 713 

Webby and Morris, 1976). Other records are from the Upper Ordovician successions of 714 

Tasmania (Webby and Banks, 1976) and South China (Lin and Webby, 1988; Young and Xu, 715 

2002; Lee et al., 2016a; Jeon et al., 2020b). In particular, diverse endobionts are found in 716 

diverse clathrodictyid species from the Xiazhen Formation of South China (Table 1), which 717 

may correspond with the high biodiversity in South China during the GOBE (Rong et al., 718 

2006). Few examples of the intergrowth association between stromatoporoids and other 719 

organisms are known from peri-Gondwanan regions of Late Ordovician (e.g., Lin and 720 

Webby, 1988; Lee et al., 2016a; Jeon et al., 2020b; Table 2), while much more examples 721 

have been reported world-widely in Silurian and Devonian limestones (e.g., Da Silva et al., 722 

2011; Kershaw, 1987; Kershaw et al., 2018; Mori, 1970; Nestor et al., 2010; Stearn, 2015b; 723 

Vinn, 2016; Vinn and Mõtus, 2014; Vinn and Wilson, 2010; Young and Noble, 1989; Zhen 724 

and West, 1997).  725 
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Reef-forming organisms (i.e., bryozoans, corals and sponges) diversified during the late 726 

Middle to the Late Ordovician, with their biodiversity peaks in the Katian (Carrera and 727 

Rigby, 2004; Ernst, 2017; Servais and Harper, 2018; Webby, 2004) and it is apparent that the 728 

GOBE likely underpins the establishment of complex reef communities (Servais and Harper, 729 

2018). For benthic sessile organisms, their occupation of higher substrate elevated by 730 

encrusting other skeletal organisms was more promising for suspension feeding efficiency 731 

than direct settlement on seafloor (Vinn and Wilson, 2010; Lee et al., 2016a; Vinn et al., 732 

2015; Vinn, 2016; Jeon et al., 2020b). The intergrowth associations may have offered 733 

protection for the endobionts from water turbulence and benefited suspension feeding as well 734 

(e.g., Kershaw, 1987; Vinn and Wilson, 2010; Vinn et al., 2018a). Some cases of specificity 735 

between endobionts and particular host stromatoporoids may reflect complex biological 736 

interactions (see Fig. 10.6; Kershaw et al., 2018). 737 

Understanding intergrowth association between stromatoporoids and associated endobionts 738 

provides valuable information about not only paleoecological interactions but also 739 

paleobiological features on growth characteristics of associated organisms (Kershaw et al., 740 

2018). Bending laminae (including both up- and down-bending) in host stromatoporoids has 741 

been proposed as an indicator for judging the paleoecological relationships between host 742 

stromatoporoid and endobionts (e.g., Zapalski and Hubert, 2010). Down-bending of 743 

stromatoporoid laminae is common in the vicinity of the endobionts (black arrows in Fig. 744 

15.1–5), and up-bending laminae are commonly developed as well, even inside the same 745 

stromatoporoid skeleton (white arrows in Fig. 15.1, 3, 6). The deflection of host 746 

stromatoporoid laminae near endobiont tubes is variably developed during Siluro–Devonian 747 

depending on host stromatoporoid species and intergrown organisms (e.g. Da Silva et al., 748 

2011; Kershaw, 2013; Kershaw et al., 2018; Vinn 2016). This is interpreted to indicate 749 

variation of growth rates between each host stromatoporoid and intergrown organisms during 750 
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their syn-vivo interactions (Fig. 15.7–17).  It is difficult to determine whether the interaction 751 

strategy is commensalism or mutualism due to lack of critical evidence (Zapalski, 2011), but 752 

it seems unlikely that such interactions are results of hostile actions, judging from the absence 753 

of skeletal distortion. 754 

Overall, the increasingly diverse examples of the intergrowth association during the GOBE 755 

may be regarded as an evidence for early development of complex reef ecosystems. The new 756 

growth strategy of syn-vivo association reflects increased competition for food and space in 757 

response to the dynamic increase of marine biodiversity. For stromatoporoids, the 758 

intergrowth association seems to have been facultative, depending on the emergence of the 759 

clathrodictyids as a new group of stromatoporoids. Those host clathrodictyids represent high 760 

skeletal density, compared to the earlier labechiids (Mistiaen, 1994; Vinn, 2016). The 761 

laminate structure of clathrodictyid stromatoporoids seemingly contributed to development of 762 

a complex reef ecosystem during the GOBE by providing stable substrate, enabling an 763 

increased substrate availability by suitable host clathrodictyid taxa (Fig. 17). As a result, the 764 

examples of intergrowth association between host clathrodictyid stromatoporoids and other 765 

intergrown organisms in the Xiazhen Formation reflect the highly complex paleoecological 766 

interactions of organisms in benthic communities during the Great Ordovician 767 

Biodiversification Event.  768 

 769 

Conclusions 770 

Clathrodictyid stromatoporoids are abundant and rich fossils in the Upper Ordovician 771 

Xiazhen Formation of South China. A total of nine species belonging to four genera of 772 

clathrodictyids are identified, including Clathrodictyon idense Webby and Banks, 1976, Cl. 773 
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megalamellatum Jeon n. sp., Cl. cf. Cl. mammillatum (Schmidt, 1858), Cl. cf. Cl. 774 

microundulatum Nestor, 1964 Ecclimadictyon nestori Webby, 1969, E. undatum Webby and 775 

Banks, 1976, Camptodictyon amzassensis (Khalfina, 1960) and Labyrinthodictyon cascum 776 

(Webby and Morris, 1976). This clathrodictyid assemblage is characterized by a combination 777 

of taxa recorded in New South Wales and Tasmania, although these two Australian regions 778 

themselves do not show any faunal affinity in terms of clathrodictyid stromatoporoids. The 779 

occurrence of the Xiazhen Formation clathrodictyid assemblage may have resulted from 780 

independent faunal migration between South China and these two Australian regions. The 781 

northward shift of South China in northeastern peri-Gondwanan region during the Middle to 782 

Late Ordovician may have facilitated the development of a favorable environment for the 783 

migration of clathrodictyid stromatoporoids among peri-Gondwanan terranes. Frequent 784 

intergrowth associations of these diverse clathrodictyid species with other sessile organisms 785 

are interpreted as evidence of increasing paleoecological interactions, which is critical for the 786 

development of complex benthic communities. The emergence of clathrodictyids in late 787 

Ordovician time increased the paleoecological complexity and benthic community stability of 788 

reef environments during the Great Ordovician Biodiversification Event.  789 
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Figure Captions 1177 

 1178 

Figure 1. (1) Locality of the study area in China. (2) Location of the Zhuzhai section, Yushan 1179 

County, Jiangxi Province near the border with Zhejiang Province. (3) Geological map of 1180 

the Xiazhen Formation at Zhuzhai section, which is divided into three partly coeval sub-1181 

sections, ZU1, ZU2, and ZU3. Modified after Lee et al. (2012). 1182 
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Figure 2. Stratigraphic column of the Xiazhen Formation with the 18 stromatoporoid-bearing 1183 

intervals. The red-colored intervals (i.e., S1–S5, S7, S9–S18, lower and upper part of 1184 

sub-section ZU3) indicate where clathrodictyid stromatoporoids were found. The black-1185 

colored intervals (i.e., S6 and S8) indicate where only labechiid stromatoporoids occur. 1186 

C= claystone; M = mudstone or lime mudstone; W = wackestone; P = packstone; G = 1187 

grainstone, F = floatstone or framestone; R = rudstone. LLM = lower limestone member; 1188 

LSM = lower shale member; MMM = middle mixed-lithology member; USM = upper 1189 

shale member. Modified after Lee et al. (2012) and Park et al. (2021). A large size 1190 

version of this figure is presented in Supplementary Data 1. 1191 

Figure 3. Lithology, interpreted depositional energy-level, stratigraphic distributions of 1192 

clathrodictyid stromatoporoids and their growth forms from each stromatoporoid-1193 

bearing intervals of the Xiazhen Fomation; SBI = stromatoporoid‐bearing interval; M = 1194 

mudstone, W = wackestone, P = packstone, G = grainstone, L–S couplets = limestone–1195 

shale couplets in wackestone to packstone, F = floatstone, Fr = framestone, R = 1196 

rudstone; L = low‐energy depositional environment; M = medium‐energy depositional 1197 

environment; H = high‐energy depositional environment; Cl. id. = Clathrodictyon 1198 

idense; Cl. cf. mmll. = Clathrodictyon cf. Cl. mammillatum; Cl. cf. mc. = Clathrodictyon 1199 

cf. Cl. microundulatum; Cl. mglm. = Clathrodictyon megalamellatum Jeon n. sp.; Cl. pl. 1200 

= Clathrodictyon plicatum; E. nst. = Ecclimadictyon nestori; E. und. = Ecclimadictyon 1201 

undatum; Cam. amz. = Camptodictyon amzassensis; L. csc. = Labyrinthodictyon 1202 

cascum. 1203 

Figure 4. Thin-section photographs of Clathrodictyon idense Webby and Banks 1976 from 1204 

the S3 interval. (1) Longitudinal section of dendroid growth form of Clathrodictyon 1205 

idense, NIGP 177104-1. (2, 3) Enlargement of the rectangular area in (1), showing 1206 

longitudinal section and axial part. Note sharply folded, crumpled laminae in the axial 1207 
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part of (3). (4) Tangential section, NIGP 177103. (5) Tangential section of single (left) 1208 

and branching (right) dendroid forms of Clathrodictyon idense, NIGP 177106. Note that 1209 

a thin laminar form encrusted on the branching dendroid form (right). 1210 

Figure 5. Holotype specimen of Clathrodictyon megalamellatum Jeon n. sp. from the S18 1211 

interval. (1, 3, 4) Longitudinal sections of Clathrodictyon megalamellatum Jeon n. sp., 1212 

showing widely-spaced laminae and well-developed pillars; (1) NIGP 177124-1, (3, 4) 1213 

NIGP 177124-2, respectively. (2) Enlargement of the rectangular area in (1). (5–7) 1214 

Tangential sections of Clathrodictyon megalamellatum Jeon n. sp., showing irregularly 1215 

developed pillars with some circular structure, particularly in (3); (5, 6) NIGP 177124-1, 1216 

(7) 177124-2, respectively. (8) Enlargement of the rectangular area in (4), showing 1217 

astrorhizae-like structures in the mamelon-like up-growth areas.  1218 

Figure 6. (1) Longitudinal to tangential view of Clathrodictyon cf. Cl. mammillatum from the 1219 

S18 interval, NIGP 169634. (2) Longitudinal section from the S18 interval, NIGP 1220 

177134. (3) Enlargement of the rectangular area in (2). (4) Longitudinal section of 1221 

dendroid form, showing sharply-folded, crumpled Ecclimadictyon-like laminae in the 1222 

axial part from the S9 interval, NIGP 177127-1. (5) Tangential section from the S9 1223 

interval, NIGP 177130. 1224 

Figure 7. (1) Longitudinal section of Clathrodictyon cf. Cl. microundulatum from the S18 1225 

interval, NIGP 177194-4 (2) Enlargement of the rectangular area in (1). (3) Enlargement 1226 

of the rectangular area in (1), showing longitudinal section of a vertically developed 1227 

skeletal structural tube. (4) Astrorhizal structure of Clathrodictyon cf. Cl. 1228 

microundulatum from the S18 interval, NIGP 177194-13. (5) Tangential section of 1229 

Clathrodictyon cf. Cl. microundulatum with intergrown Bajgolia from the S18 interval, 1230 

NIGP 177194-4. 1231 
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Figure 8. Thin-section photographs of Clathrodictyon plicatum from the S10 interval. (1) 1232 

Longitudinal section of Clathrodictyon plicatum, showing skeletal variation from the 1233 

axial to lateral part NIGP 177200-3. Note the variation from the normal phase in the 1234 

lateral phrase of (2) and the sharply-folded, crumpled Ecclimadictyon-like axial part of 1235 

(3). (4, 5) Longitudinal and tangential sections of Clathrodictyon plicatum, respectively, 1236 

NIGP 177204. (6) Sharply folded, crumpled Ecclimadictyon-like structure in the axial 1237 

part in Clathrodictyon plicatum NIGP 177205. (7) Tangential section of Clathrodictyon 1238 

plicatum, showing well-developed mamelons, NIGP 177213-1.  1239 

Figure 9. (1–3) Thin-section photographs of Ecclimadictyon nestori from the S18 interval. 1240 

(1, 2) Longitudinal section, NIGP 177286, 177287, respectively. (3) Tangential section, 1241 

NIGP 177288.  1242 

Figure 10. (1–2) Longitudinal section of Ecclimadictyon undatum from the S15 interval, 1243 

NIGP 177302-1 and 177305, respectively. (3, 4) Tangential section from the S15 1244 

interval, NIGP 177302-7 and 177302-8, respectively. (5) Intergrown ‘Eofletcheria-like 1245 

tubulates’ in Ecclimadictyon undatum, NIGP 177299. (6) Enlargement of the rectangular 1246 

area in (5). Note that the endobionts are vertically grown, while free-living grown 1247 

tabulates have varying orientations in the matrix under the Ecclimadictyon skeleton. 1248 

Figure 11. (1–3) Longitudinal sections of Camptodictyon amzassensis from the S15 interval, 1249 

(1, 2) NIGP177308-1; (3) NIGP 177308-2. (4) Tangential section of Camptodictyon 1250 

amzassensis from the S15 interval, NIGP 177308-1.  1251 

Figure 12. (1–4) Longitudinal section of Labyrinthodictyon cascum from the S15 interval, 1252 

(1–3) NIGP 177311-1; (4) 177312-1. (5) Tangential section of Labyrinthodictyon 1253 

cascum from the S15 interval, NIGP 177312-2. 1254 

Figure 13. Diverse paleoecological interactions among stromatoporoid and other organisms. 1255 

(1) Field photograph of dendroid growth form of Clathrodictyon idense Webby and 1256 
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Banks 1976 and intergrown solitary rugose coral Tryplasma. (2–3) Longitudinal and 1257 

tangential section of Clathrodictyon cf. Cl. microundulatum and intergrown tabulate 1258 

coral Catenipora, NIGP 177149-1, NIGP 177190, respectively. (4) Encrustation and 1259 

intergrowth association among Clathrodictyon cf. Cl. mammillatum and tabulate corals 1260 

Agetolites and Heliolites, NIGP 177313. Note irregular physical contacts between 1261 

tabulates and stromatoporoid. Upper right is a single tube with a flat base, encrusted and 1262 

partly embedded in the stromatoporoid surface. (5) Clathrodictyon idense and 1263 

intergrown Tryplasma and encrusted Agetolites, NIGP 177112-10. (6) Multi-intergrowth 1264 

association among Agetolites, Clathrodictyon idense and Tryplasma, NIGP 177101. (7) 1265 

Intergrowth association between Clathrodictyon megalamellatum Jeon n. sp. and 1266 

Tryplasma.  1267 

Figure 14. Diverse paleoecological interactions among stromatoporoid and other organisms. 1268 

(1) Longitudinal section of Clathrodictyon cf. Cl. microundulatum showing Bajgolia 1269 

were clustered along the growth surface of the stromatoporoid, and finally encrusted by 1270 

Clathrodictyon cf. Cl. microundulatum, NIGP 177194-6. (2) Poorly-preserved 1271 

clathrodictyid stromatoporoid and interlayering bryozoan Rhombotrypa, NIGP 177314. 1272 

It is difficult to distinguish whether bryozoan grew on a partially dead or living growth 1273 

surface of stromatoporoid, but the growth of bryozoan was terminated by the overgrown 1274 

host stromatoporoid. Note the difference in preservation between bryozoan and 1275 

stromatoporoid, likely indicating different original mineralogy of bryozoan and 1276 

stromatoporoid. (3) Unidentified tubular ‘Eofletcheria-like organism’ in the skeleton of 1277 

Ecclimadictyon undatum, NIGP 177303. Note that this endobiont is only found in 1278 

Ecclimadictyon undatum. (4) Crinoid stem and encrusting Clathrodictyon plicatum with 1279 

intergrown Bajgolia and Tryplasma, NIGP 177250-4. (5) Oblique section of micrite-1280 

filled, enigmatic borings in the skeleton of Ecclimadictyon nestori, NIGP 177263. (6) 1281 
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Paleoecological interaction between Clathrodictyon cf. Cl. mammillatum and Labechia 1282 

sp., interpreted as spatial competition judging from their skeletal distortion (Jeon et al., 1283 

2020b), NIGP 169634-14. 1284 

Figure 15. (1–6) Thin-section examples of down- and up-bending of clathrodictyid 1285 

stromatoporoid laminae, caused by the intergrown corals. Black arrows indicate down-1286 

bending laminae and white arrows indicate up-bending laminae; (1) NIGP 177179-14; 1287 

(2) NIGP 177194-4; (3) NIGP 177194-11; (4) NIGP 159437; (5) NIGP 176515; (6) 1288 

NIGP 177289. Down-bending laminae of Clathrodictyon cf. Cl. microundulatum occur 1289 

near Bajgolia in (1–4), while the up-bending laminae are in the vicinity of intergrown 1290 

Tryplasma (1, 3). (5) Down-bending laminae of Clathrodictyon plicatum occur near the 1291 

sharp irregularly shaped outer wall of Bajgolia (see also figures and corresponding text 1292 

in Jeon et al., in press). (6) Up-bending laminae of Ecclimadictyon nestori occur around 1293 

intergrown Bajgolia. (7–17) Schematic drawings to illustrate the process of forming 1294 

bending stromatoporoid laminae in the vicinity of endobiont. (7–8) Initial stage of 1295 

settlement of endobionts on the growth surface of clathrodictyid species. (9–11) With 1296 

the faster growth rate of clathrodictyid species than the endobionts, down-bending 1297 

laminae developed near the endobionts. The endobionts were commonly killed by the 1298 

overgrowth of clathrodictyid. (12–14) Process of up-bending laminae caused by the 1299 

faster growth rate of endobionts than host clathrodictyid species, commonly terminated 1300 

by sediment interruption. (15–17) Process of both up- and down-bending laminae 1301 

around endobionts. Up-bending laminae formed by encrustment of re-existed encrusting 1302 

endobiont in (15). Faster growth of host clathrodictyid species reached up to same 1303 

growth level of endobiont, and caused down-bending laminae in (16, 17).  1304 

Figure 16. (1–2) Longitudinal section of astrorhizae (black arrows) of Clathrodictyon cf. Cl. 1305 

microundulatum with encrusted intergrown Bajgolia. Note that none of the distorted 1306 
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skeletal structures occurs near the contacts with endobionts, NIGP 177196-4 and 12, 1307 

respectively from the S18 interval. (3) Field photograph of feather-like growth form of 1308 

clathrodictyid (probably Ecclimadictyon) and intergrown Bajgolia cluster from the S17 1309 

interval. (4–7) Thin-section photographs of feather-like growth form of clathrodictyids 1310 

and intergrown Bajgolia clusters. (4) Dendroid Ecclimadictyon nestori with intergrown 1311 

Bajgolia, NIGP 159443 from the S18 interval. (5) Dendroid Clathrodictyon cf. Cl. 1312 

mammillatum with intergrown Bajgolia, NIGP 175173 from the S18 interval. (6) 1313 

Dendroid Clathrodictyon plicatum with intergrown Bajgolia NIGP 159448 from the S18 1314 

interval. (7) Branching dendroid Clathrodictyon plicatum with intergrown Bajgolia, 1315 

NIGP 159447 from the S18 interval. Specimens NIGP 159443, 159447 and 159448 in 1316 

(4, 6, 7) were also illustrated in Lee et al. (2016). (8) Abnormally widely spaced laminae 1317 

of Clathrodictyon cf. Cl. microundulatum, NIGP 159446 from the S18 interval. 1318 

Figure 17. (1–5) Encrustation of diverse sessile organisms on the growth surface of 1319 

clathrodictyid species. (1) Encrusted and vertically grown Tryplasma on the growth 1320 

surface of Clathrodictyon plicatum, NIGP 177245 from S17 interval. (2) Encrusted 1321 

Heliolites on the growth surface of Clathrodictyon cf. Cl. microundulatum, showing 1322 

possible spatial competition judging from their irregular physical contact, NIGP 179198 1323 

from S15 interval. (3) Syn-vivo interaction between microbe and Clathrodictyon idense, 1324 

showing their twisted growth direction, NIGP 177107-1 from S3 interval. (4) Structure 1325 

interpreted as a spiculate sponge encrusted on Clathrodictyon plicatum from the S17 1326 

interval, NIGP 177243. (5) Multiple encrustations of tabulate coral, calcimicrobes and 1327 

bryozoans on the growth surface of Clathrodictyon cf. Cl. mammillatum, NIGP 177135 1328 

from S18 interval. (6) Schematic reconstruction to show a variety of paleoecological 1329 

interactions between clathrodictyid stromatoporoids and intergrown sessile organisms, 1330 

including labechiid stromatoporoid, rugose and tabulate corals.  1331 
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 1332 

Figure 18. (1) Network analysis diagram of Ordovician clathrodictyid stromatoporoid during 1333 

the Late Ordovician. These listed species are clathrodictyids shared between two or 1334 

more paleo-continents. (2) Three major faunal provinces of clathrodictyid 1335 

stromatoporoid distribution during the Late Ordovician. Red question marks on 1336 

Mongolia and Kazakh terranes indicate uncertain provinces to be included in peri-1337 

Gondwana-Tarim-Altai faunal province due to insufficient investigation of 1338 

clathrodictyid stromatoporoid faunas. Paleogeographic reconstruction modified from 1339 

Cocks and Torsvik (2020). Note that this faunal province has a high similarity with the 1340 

‘Cathay-Tasman Province’ proposed by Cocks and Torsvik (2020). 1341 

 1342 

Table Captions 1343 

 1344 

Table 1. Stratigraphic distribution of host clathrodictyid stromatoporoids and endobionts in 1345 

the Xiazhen Formation. The gray-colored intervals are occupied by labechiids 1346 

(Stylostroma and Thamnobeatricea, respectively) without any clathrodictyid species. 1, 1347 

Clathrodictyon cf. Cl. mammillatum; 2, Clathrodictyon cf. Cl. microundulatum; 3, 1348 

Clathrodictyon idense; 4, Clathrodictyon megalamellatum Jeon n. sp.; 5, Clathrodictyon 1349 

plicatum; 6, Ecclimadictyon nestori; 7, Ecclimadictyon undatum. Question mark 1350 

indicates unidentified poorly preserved clathrodictyid stromatoporoid.  1351 

 1352 

Table 2. All reported occurrences of intergrowth associations between stromatoporoids and 1353 

other organisms in the Ordovician are compiled by age and locality. Note that the Katian 1354 

occurrences are all from peri-Gondwanan terranes, together with the earliest known 1355 
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appearances of clathrodictyids; (T), tabulate coral; (U), uncertain; (SR), solitary rugose 1356 

coral; (St), stromatoporoid; (B), bryozoan; (TW), tubeworm. 1357 




