
A Hybrid Incentive Program for Managing Electric 
Vehicle Charging Flexibility 

Abstract—With the mass roll-out of electric vehicles 
(EVs) and rapid progress in battery technology, utilizing 
EV charging flexibility has become a promising solution for 
supporting economic and secured power system operations. 
This work proposes a novel hybrid incentive program, 
which encourages EV owners to sell their charging 
flexibility to a charging station (CS) and achieve a win-win 
situation for both EV owners and the CS. Unlike existing 
approaches, the proposed hybrid incentive program is 
simultaneously featured with simplicity, consistency, and 
controllability. To determine the incentive payment 
parameters, an optimal incentive price selection model is 
developed. In the solution methodology, we first linearize 
the original problem, then develop an adaptive ADMM 
algorithm to efficiently solve the formulated problem. Case 
studies confirm the superiority of the proposed hybrid 
incentive program over the state-of-the-arts, achieving 
22.51% of EV owners’ cost reduction, 31.18% of energy 
market bill reduction, and 64.13% of potential charging 
flexibility utilization.  

Index Terms—EV charging flexibility, incentive program, 
optimal incentive price selection, adaptive ADMM  

I. INTRODUCTION  
LIMATE change is one of the biggest challenges for 
mankind [1], which has seen the global response to reduce 

carbon emissions across all sectors of the economy in the last 

decade [2]. Transportation is one of the largest emitting sectors 
of greenhouse gas largely due to the internal combustion engine 
vehicles (ICEVs) [3]. Hence, shifting from ICEVs to electric 
vehicles (EVs) has been widely recognized as one of the most 
effective means to decarbonize the transportation sector 
because EVs can be powered by electricity generated from 
renewable sources. 

The EV charging demand has grown dramatically over the 
past few years [4]. This is contributed by the mass roll-out of 
EVs and the advances in EV battery technology. The increased 
charging demand can impose significant challenges to the 
power network operation if the EV charging behavior is 
uncontrolled and unregulated [5]. Previous research reveals 
that the EV parking time is often longer than that is required for 
charging in many scenarios [6], which leads to charging 
flexibility that can support economic and secured power system 
operations in the future [7].  

Due to the distributed nature and large quantities of EVs, 
direct control of EV charging by the system operator is 
computationally challenging. Hence, EV charging coordination 
is often accomplished by intermediary agents including EV 
aggregators, parking lots, charging stations (CS), virtual power 
plant (VPP) operators, and microgrid operators. For these 
intermediary agents, the EVs under their control can act as 
flexible demand response resources to generate revenues and 
benefits in many ways, such as participating in the energy 
market to reduce the energy procurement cost [8]–[10], 
providing ancillary services to generate income [11]–[13], and 
gaining remunerations by responding to the demand response 
signals [14], [15]. The underlying assumption in these works is 
that the intermediary agents can utilize EV charging flexibility 
without incentivizing EV owners, which is bluntly unrealistic 
as scheduled charging may bring considerable inconvenience 
to EV owners, and convenience is the primary motivation for 
personal ownership of vehicles. Hence, the design of incentives 
for EV owners is vital for the intermediary agents to acquire 
EV charging flexibility. 

Since EV owners tend to charge their EVs as quickly as 
possible [16], incentive programs are needed to remunerate EV 
owners for acquiring their charging flexibility and reshaping 
EV charging load. Otherwise, EV owners will not be motivated 
to participate in the demand response programs (DRP). In a 
demand response incentive program, the DRP operator should 
specify what kinds of EV owners’ actions will be rewarded and 
how much will be paid for these actions. Hence, this work is 
specifically focused on the design of EV owners’ remunerable 
actions and the pricing methods for these actions.  

In the literature, a variety of incentive programs have been 
proposed for inspiring EV owners to participate in DRPs 
managed by intermediary agents. These incentive programs, 
though varying from one to another, can be categorically 
classified as static programs and dynamic programs from the 
incentive signal update frequency angle.  
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The incentive signal update frequency of static incentive 
programs is relatively low, which keeps the incentive programs 
unchanged over a relatively long period. The advantages of 
such programs are that they are consistent and simple for 
implementation, EV owners can easily use them as a reference 
for scheduling their charging plans.  

Practices of static incentive programs include time-of-use 
(TOU) pricing and critical peak pricing (CPP). In [17], an 
optimal TOU tariff plan decision model is proposed to shift the 
EV charging load from high-price hours to low-price hours. In 
[18], an optimal TOU tariff plan is proposed by evaluating 
various aspects of EV charging behavior under the TOU tariff. 
In [19], several strategies including TOU tariff is applied to EV 
charging load to mitigate the transformer burden imposed by 
the high penetration level of EVs. In [20], a TOU charging price 
program with a price reduction strategy is applied to reduce the 
energy procurement costs and distribute the benefits between 
EV owners and charging infrastructure operators. In [21], both 
TOU and CPP mechanisms are applied to the EVs to improve 
the VPP’s profitability. Similarly, both TOU and CPP 
programs are used in [22] to increase the profit of a distribution 
company. In static incentive programs, consumers are allowed 
to sacrifice a certain degree of convenience in return for 
reduced charging fees in a simple way. However, existing static 
programs do not offer the intermediary agents the 
controllability to maximize their benefit from the short-term 
market and system fluctuations. 

Compared with static programs, dynamic programs update 
incentive signals more frequently in response to short-term 
market and system information, which enables more 
controllable actions to handle short-term market and system 
fluctuations, hence encouraging more proactive participation of 
EV owners in offering flexibility services to the power grid 
through intermediary agents.  

The most popular dynamic programs are dynamic pricing 
and transactive control programs. In [23], a CS uses real-time 
energy and reserve price signals to incentivize EV owners for 
altering their charging schedules. In [24], an EV aggregator 
sends dynamic price signals to encourage EV owners to change 
their charging plan or authorize the battery access right to the 
aggregator. In [25], a dynamic pricing model is proposed for 
multiple CSs to coordinately shift EV charging load from 
residential load peaks. A dynamic pricing framework for CSs 
is proposed in [26] to concurrently maximize the profit of CSs 
and reduce the peak load. In [27], the EV aggregator manages 
the charging load by clearing the transactive market according 
to the day-ahead energy procurement and real-time requests of 
EV owners. The charging load in [28] is controlled through a 
transactive market to which EV owners need to submit their 
real-time charging requirements and preference setting of 
demand response. A sensitivity-based real-time transactive 
control framework is proposed in [29] to coordinate the EV 
charging behavior through a local energy market. 

Although dynamic programs are more controllable, they 
lack simplicity and consistency compared to static programs. 
Besides, dynamic incentive programs assume that EV owners 
can actively respond to the price signals and alter their charging 
behavior responsively [30], which is too optimistic as it takes 
effort and specific knowledge to complete these tasks. 
Furthermore, in order to make the optimal decisions to 
maximize the benefit, EV owners have to be constantly updated 
with the latest market information, which demands extra effort 
from the EV owners. 

Considering the pros and cons of existing EV incentive 
programs, we propose a hybrid incentive program for a CS that 
aims to offer incentives to the EV owners to share their 
charging flexibility. The proposed hybrid incentive program 
combines static incentives with dynamic control. Under the 
proposed hybrid incentive program, the consistency and 
simplicity of static programs are retained, while the 
controllability of dynamic programs can be achieved. Table I 
compares the key features of the proposed incentive program 
with both static incentive programs and dynamic incentive 
programs. 

TABLE I 
KEY PROPERTIES OF DIFFERENT TYPES OF 

INCENTIVE PROGRAMS 
 Simplicity Consistency Controllability 

Static programs 
[17]–[22] 

Medium High  Low  

Dynamic programs 
[23]–[29] 

Low  Low  High  

Proposed  
program 

High  High  Medium  

 
The considered CS faces volatile day-ahead wholesale 

market-clearing prices (MCP) and variability of EV owners’ 
willingness to sell their charging flexibility. For the CS, the 
incentive prices can affect both the incentive payment and the 
amount of charging flexibility that can be acquired to reduce 
energy bills. Therefore, the selection of incentive prices is 
crucial for the performance of the proposed hybrid incentive 
program. To maximize the CS’s benefit while encouraging 
proactive participation of the EV owners, an optimal incentive 
price selection model is developed in this paper to determine 
the incentive prices for the EV charging flexibility.  

As the proposed hybrid incentive program needs to retain 
consistency for a relatively long period, market price patterns 
at different times should be considered in the optimization 
model to ensure unbiased incentive price selection. Increasing 
the number of price scenarios leads to a larger number of EVs 
under consideration, which makes the solution process 
computationally challenging. In confronting the dimensional 
problem for large EV fleets, distributed and meta-heuristic 
methods are the most popular approaches in the literature [31]. 
Compared with meta-heuristic approaches, distributed methods 
are more specific and take less time to converge [32]. Hence, a 
distributed solution process based on the ADMM method is 
developed in this paper to guarantee computational efficiency 
in solving the optimal incentive price selection problem.  

The major contributions of this work are as follows: 
l A hybrid incentive program is proposed to encourage 

EV owners to sell their charging flexibility to the CS. 
The proposed hybrid incentive program combines the 
advantages of both static and dynamic incentive 
programs, namely, it has the features of simplicity, 
consistency, and controllability. 

l An optimal incentive price selection model is 
developed to minimize the CS’s cost in the electricity 
market and the DRP. The optimization results of the 
proposed model can serve as a reference for 
policymakers who adopt the proposed hybrid incentive 
program. 

l An ADMM with adaptive penalty (ADMM-AP) 
solution algorithm is presented to efficiently solve the 
problem in a distributed manner for large EV fleets.  



The remainder of this paper is organized as follows. Section 
II gives an overview of the CS operational framework. Section 
III provides the details of the proposed hybrid incentive 
program. Section IV presents the optimal incentive price 
selection model. The proposed solution methodology is 
detailed in Section V. Section VI presents the numerical results 
and discussions. Section VII concludes this paper. 

II.   CHARGING STATION OPERATIONAL FRAMEWORK  
The configuration of the CS’s operational framework is 

presented in Fig. 1.  

 
Fig. 1. Operational framework of the charging station. 
 

The CS under consideration is a public CS, which can 
directly control the charging rates of its charging piles. To 
acquire the information about the EV owners’ demand response 
preferences, it is assumed that EV owners can directly 
communicate with the CS in advance before they choose to 
park and charge there. In the day-ahead wholesale market, the 
clearing resolution is one hour, and the CS is a price-taker who 
purchases energy at the MCP to satisfy EV energy requirements. 
Due to market entrance requirements, the considered CS may 
not be able to have access to the wholesale market and benefit 
from competitive wholesale prices. Hence, an intermediary 
agent that can integrate the CS and access the wholesale market 
(e.g., EV aggregators or virtual power plants that can integrate 
the charging stations) is needed in the energy procurement 
process. Since the CS cannot affect the market price, it is 
motivated to shift the EV charging load from high-price hours 
to low-price hours to reduce the energy bills.  

Under the TOU pricing scheme, EV owners who want to 
reduce their charging fee must wait for low-price hours to park 
and charge, which reduces the simplicity of the incentive 
program by significantly limiting EV owners’ convenience. 
Hence, to minimize the restrictions on EV owners’ traveling 
and parking plans, a flat charging price is applied in the CS. 
The charging loads are shifted through the CS’s DRP, which 
provides certain remuneration to EV owners in exchange for 
the access right to EV batteries. The DRP managed by the CS 
includes the buy-out (BO) program and pay-as-use (PAU) 
program, which correspond to different incentive payment 
calculation methods in the proposed hybrid incentive program.  

The CS needs to set up proper incentive prices to encourage 
EV owners to sell their charging flexibility. Also, the CS is 
responsible for scheduling the charging flexibility to minimize 
the energy procurement cost. For EV owners, they only need to 
claim their charging demands and DR preferences upon arrival. 

Besides the dwelling time, other battery information including 
the initial state-of-charge (SOC), battery capacity, and 
maximum charging rate can be directly acquired from the 
battery management system (BMS) of the EVs. The DR 
preference information includes which incentive they want to 
receive and the minimum prices they can accept for authorizing 
the battery access rights.  

There are several advantages to apply such a flat pricing and 
incentive DRP operational framework. Firstly, EV owners do 
not have to wait for low price hours to park and charge. 
Secondly, EV owners do not need to actively respond to the 
incentive signals during the charging duration. Instead, they 
only need to clarify their DR preferences upon arrival. Thirdly, 
the negotiation process for real-time demand response is 
avoided since all the information needed to approach the 
optimal solution is pre-communicated.  

Because the infrastructure for the vehicle to grid (V2G) 
operation is still an underdeveloped area and frequent 
discharging of the EVs will accelerate battery degradations, 
only the grid to vehicle operation mode is considered in this 
work. 

III. PROPOSED HYBRID INCENTIVE PROGRAM  
A. Discussion on Key Properties of Incentive Programs 

In this work, an incentive program is considered to be 
simple if the required actions from the EV owners are minimal. 
Consistency of an incentive program means that EV owners’ 
knowledge about the incentives does not have to be updated 
frequently. Besides, controllability of incentive programs refers 
to the ability to match the charging load with short-term market 
price variations. Simplicity and consistency can be difficult to 
quantify because the criteria can vary from person to person. 
One example of simple and consistent incentive programs is the 
TOU pricing, where prices for peak-flat-valley periods are 
stable for a relatively long period to allow decision-making 
simple and straightforward. An opposite example is the 
transactive control program, where EV owners need to actively 
respond to the incentive signals that change in real-time. For 
controllability, a controllability index (CI) is defined in this 
work to quantitatively reflect how controllable a DRP incentive 
program is: 

𝐶𝐼($/𝑘𝑊ℎ) = 	"#$%&'	()**	+$,-./)0#($)
"44$./)5$	6*$7)8)*)/'(9:;)

        (1) 

where energy bill reduction is the reduced energy procurement 
cost (measured in $) in the wholesale market, and effective 
flexibility (measured in 𝑘𝑊ℎ) is the flexibility that is utilized. 
Larger CI implies more efficient utilization of each unit of 
effective flexibility, which can be achieved by more exactly 
matching the charging load with the variable market price.  

For EV owners, simplicity and consistency are favorable 
properties for an incentive program. From the CS’s point of 
view, controllability is a desirable property as it can achieve 
more benefits. However, achieving controllability may 
contradict the simplicity and consistency if EV owners have to 
actively respond to incentive signals. To address this 
contradiction, we propose a hybrid incentive program for the 
CS, which consists of the BO incentive and the PAU incentive. 
The prices for both the BO and PAU incentives will remain 
unchanged for a relatively long period. Under the proposed 
hybrid incentive program, if EV owners accept the CS’s offer, 
they would receive payments for the access right of their EV 
batteries. With the access right to the batteries, the CS can 
achieve accurate EV charging load control under the constraint 



of satisfying EV charging demand. Specifically, by directly 
controlling the operation of its charging piles, the CS can 
determine the charging time and charging rates of EVs which 
are chosen to participate in the DRPs. 

Towards this end, the proposed hybrid incentive program 
features simplicity in terms of EV owners’ participation, while 
consistency is retained regarding the incentive price update 
frequency. Moreover, controllability can be achieved by the 
dynamic charging control of the CS.  
B. BO Incentive 

For EV owners who accept the offers from the BO program, 
they will receive a payment to buy out all the potential charging 
flexibility (measured in 𝑘𝑊ℎ), which may or may not be used 
in the charging scheduling. Since the battery charging rates are 
assumed to be continuously controllable [33], the potential 
flexibility 𝑓) of the 𝑖𝑡ℎ EV can be calculated as: 

  𝜏) = 𝑡),0-/ − 𝑡),)#                (2) 

𝐸) = (𝑆𝑂𝐶)=>7 − 𝑖𝑆𝑂𝐶))𝐶𝑎𝑝)          (3) 

𝑓) = min{𝐸) , 𝜏)𝑃)=>7 − 𝐸)}            (4) 
where 𝑖 is the index for EVs in the BO program. The plug-in 
and plug-out times are represented by 𝑡),)#  and 𝑡),0-/ , 
respectively. Term 𝜏)  denotes the total parking time. The 
energy requirement 𝐸)  is calculated using the initial SOC 
(iSOC) and battery capacity 𝐶𝑎𝑝)  through Eq (3), in which 
𝑆𝑂𝐶)=>7  represents the maximum SOC. The potential 
charging flexibility 𝑓) is given by Eq (4), which states that 𝑓) 
is the maximum shiftable load. The calculation of 𝑓)  is 
schematically illustrated in Fig. 2.  

 
Fig. 2. EV Flexibility in the BO program. 

 
Fig. 2 displays two possible charging scenarios for a typical 

EV whose parking time is longer than the time required for 
charging. Real charging load represents the energy that the EV 
consumes when parking; virtual charging load is the energy that 
the EV is parking but not consuming because the battery is 
already fully charged. In both scenarios, the real charging load 
can be shifted to the virtual charging load, which yields 
potential EV charging flexibility. In Fig. 2a, only part of the 
real charging load can be shifted to the virtual charging load, 
whereas all real charging load can be shifted to virtual charging 
load in scenarios illustrated in Fig. 2b. When only part of the 
real charging load can be shifted to the virtual charging load, 
the potential charging flexibility is given by the totality of the 
virtual charging load. Otherwise, the potential flexibility is 
restricted by the real charging load. For EVs with the required 
charging time less than the parking time, their potential 
charging flexibility is 0.  
C. PAU Incentive 

Unlike paying for all the potential flexibility in the BO 
program, the remuneration in the PAU program depends on 

effective flexibility. Hence, to calculate the payment in the 
PAU program, the uncontrolled load profile for each EV must 
be identified. In the uncontrolled charging scenario, the EV will 
charge at the maximum rate before reaching the battery 
capacity 𝐶𝑎𝑝?: 

𝑃?,/-. = 𝑃?=>7 , <𝑆𝑂𝐶?,/@A +
B!
"#$∆/

D>E!
> ≤ 𝑆𝑂𝐶?=>7     (5) 

where 𝑗  is the index for EVs in the PAU program. The 
uncontrolled charging rate of the 𝑗𝑡ℎ EV at time 𝑡 is given 
by 𝑃?,/-., whose upper bound is 𝑃?=>7. The scheduling interval 
is given by ∆𝑡 . 𝑃?,/-.  with superscript ‘uc’ stands for the 
charging power under the uncontrolled charging scenario. 

When the EV is about to be fully charged, it will charge at 
a rate such that the EV just reaches the maximum SOC: 

𝑃?,/-. =
(FGD!

"#$@FGD!,&'()D>E!
∆/

,
B!
"#$∆/

D>E!
≥ 𝑆𝑂𝐶?=>7 − 𝑆𝑂𝐶?,/@A(6) 

After the EV is fully charged, the charging rate becomes 0 
because discharging is not considered:    

𝑃?,/-. = 0,				𝑆𝑂𝐶?,/@A = 𝑆𝑂𝐶?=>7           (7) 
As Eqs (5) – (7) are derived for uncontrolled EV charging 

of the PAU program, they also apply to the BO program. After 
acquiring the uncontrolled charging profile, the change in 
charging power can be obtained as the difference between the 
uncontrolled charging power 𝑃?,/-. and the scheduled charging 
power 𝑃?,/H : 

∆𝑃?,/ = 𝑃?,/H − 𝑃?,/-.                (8) 
To avoid double remuneration, only the downward power 

change will be accounted for when calculating the incentive 
payment. Hence, the power change in the PAU program is 
divided into downward ∆𝑃?,/,  and upward ∆𝑃?,/-  changes: 

∆𝑃?,/ = ∆𝑃?,/- − ∆𝑃?,/,               (9) 
E∆𝑃?,/- , ∆𝑃?,/, F ≥ 0              (10) 

Thus, the power changes are obtained as: 
∆𝑃?,/- − ∆𝑃?,/, = 𝑃?,/H − 𝑃?,/           (11) 

The flexibility calculation for the PAU program is 
schematically depicted in Fig. 3.  

 
(a) Uncontrolled and scheduled load scenarios. 



 
(b) Load change result 

Fig. 3. EV flexibility in the PAU program. 
 
Fig. 3a shows the uncontrolled (left) and scheduled (right) 

charging load profiles for a typical EV. Comparing the 
uncontrolled load with the scheduled load, it is observed that 
only the charging loads between hours 9 and 13 are shifted to 
hours between 17 and 21, whereas the loads at hours 14, 15 and 
16 remain unchanged. The load change result from the 
uncontrolled charging scenario to the scheduled charging 
scenario is summarized in Fig. 3b, which shows that only the 
reduced load is counted as remunerable effective flexibility.  
D. Participation Status Decision 

As the price threshold for authorizing the battery access 
right can vary among a large group of EV owners, it is not likely 
that all the EVs will be involved in the DRP. Instead, only EV 
owners with minimum acceptable prices (MAP) lower than the 
incentive prices are willing to sell their charging flexibility. 
Besides, the price for each unit of charging flexibility in each 
incentive program should be uniform to ensure fairness. Hence, 
the incentive prices must be determined before EV owners can 
decide if they want to join the DRP. 

In the proposed hybrid incentive program, two prices need 
to be specified. In the BO program, the incentive price 𝛼 
represents the financial incentive paid to EV owners for each 
unit of potential flexibility they can provide. In the PAU 
program, the incentive price 𝛽 is the financial incentive paid 
to EV owners for each unit of effective flexibility. 

 Once the incentive price information becomes available, 
the participation status of each EV can be determined through 
the following relationship: 

 𝑦)(𝛼 − 𝜔)) ≥ 0              (12) 
𝑦?K𝛽 − 𝜔?L ≥ 0              (13) 
E𝑦) , 𝑦?F ∈ {0,1}              (14) 

where 𝜔) and 𝜔? are the MAPs for EV owners to authorize 
their battery access right in the BO and PAU programs, 
respectively. Correspondingly, binary terms 𝑦)  and 𝑦?  are 
availability indicators for the battery access rights in the BO 
and PAU programs, respectively. As stated in (12) and (13), EV 
owners will allow the CS to control their EV charging rates 
only if the incentive price is higher than their MAPs.  

In real-life applications, the MAPs of EV owners depend on 
their specific features. Hence, the CS needs to perform surveys 
of its consumers in order to determine the prices that would 
yield the best outcome. 

IV. OPTIMAL INCENTIVE PRICE SELECTION MODEL 
From the CS’s perspective, higher incentive prices can 

encourage more EV owners to share their charging flexibility, 
which allows the CS to reduce the energy procurement cost. 
Meanwhile, the financial incentives paid to EV owners will also 
increase due to uplifted incentive prices and a larger purchased 
flexibility volume. Hence, the selection of incentive prices 𝛼 
and 𝛽  is of vital importance to the performance of the 
proposed hybrid incentive program. 

 To determine the optimal incentive price set (𝛼,𝛽) that will 
maximize the CS’s overall benefit, an optimal incentive price 
selection model is developed in this section. In the developed 
optimization model, the objective is to minimize the total cost 
from the wholesale energy market and the DRP. Therefore, 
before presenting the optimal incentive price selection model, 
the incentive payment of EV owners needs to be calculated. 
The payments of EV owners are calculated as follows: 

𝛾)( = 𝛼𝑓)                 (15) 

𝛾?B = ∑
I∆B!,&

)

+/                (16) 

where 𝛾)(  and 𝛾?B  are the payments in the BO and PAU 
programs, respectively. The term 𝑅 is the ratio between one 
hour and the scheduling resolution of the CS. 

After obtaining the incentive payment of EV owners, the 
optimization problem can be formulated as: 

min
J,I,'*,'!,∆B*,&,∆B!,&

+ ,∆B!,&
) ,",,&

{∑ 𝜆/𝐸K,// + ∑ 𝛾)(𝑦)) + ∑ 𝛾?B? } (17)  

s.t. 
(2)	–	(7), (10)	–	(16)              (18) 

(𝑃),/ + 𝑃?,/ + ∆𝑃),/ + ∆𝑃?,/- − ∆𝑃?,/, )∆𝑡 = 𝐸K,/     (19)   
0 ≤ 𝑃),/ + ∆𝑃),/ ≤ 𝑃),=>7             (20) 

−𝑦)𝑃),=>7 ≤ ∆𝑃),/ ≤ 𝑦)𝑃),=>7           (21) 
0 ≤ 𝑃?,/ + ∆𝑃?,/- − ∆𝑃?,/, ≤ 𝑃?,=>7          (22) 

E∆𝑃?,/, , ∆𝑃?,/- F ≤ 𝑦?𝑃?,=>7             (23) 
∑ ∆𝑃),// = 0                 (24) 

∑ (∆𝑃?,/, − ∆𝑃?,/- )/ = 0              (25)  

0 ≤ 𝛼 ≤ 𝛼W                  (26) 
0 ≤ 𝛽 ≤ �̅�                  (27) 

where 𝜆/ and 𝐸K,/ represent the MCP and energy purchased 
from the market at time 𝑡, respectively. The time interval for 
one charging scheduling period is given by ∆𝑡. The objective 
function contains the energy procurement cost and the 
incentive payments. Parameters 𝛼W  and �̅� are upper bounds 
for the incentive prices, which are selected as the highest MAPs 
of EV owners so as not to affect the optimality of the problem. 

Constraint (19) is the power balance constraint. Constraints 
(20) – (23) represent the battery charging rate limitations under 
the EV participation status restrictions. Constraints (24) and (25) 
ensure that EV charging demands are satisfied across the 
scheduling horizon. Constraints (26) and (27) provide 
reasonable ranges for the incentive prices to reduce the 
searching domain and ensure problem convergence. 

V. PROPOSED SOLUTION METHODOLOGY 
The proposed optimization model has bilinear terms 𝛽∆𝑃?,/,  

from the PAU program and 𝛼𝑦)  from the BO program. 
Besides, the solution process for EV charging scheduling under 



large EV fleets is challenged by the curse of dimensionality 
issue. Hence, in this section, we first provide a linear 
reformulation of the original problem, then develop an 
ADMM-AP algorithm to efficiently solve the reformulated 
problem for large EV fleets. 

A. Problem Linearization  
 The bilinear term 𝛼𝑦)  is the product of a bounded 

continuous variable 𝛼 and a binary variable 𝑦). According to 
the method proposed in [34], this term can be modeled by 
introducing a new continuous variable 𝜎)  and the following 
constraints: 

𝛼𝑦) = 𝜎)                  (28) 
𝛼 − (1 − 𝑦))𝑀 ≤ 𝜎) ≤ 𝛼 + (1 − 𝑦))𝑀     (29) 

−𝑦)𝑀 ≤ 𝜎) ≤ 𝑦)𝑀              (30) 
where 𝑀 is a large enough positive constant. 

Another bilinear term 𝛽∆𝑃?,/,  is the product of two bounded 
continuous variables 𝛽  and ∆𝑃?,/, . To handle this term, we 
first use the optimality condition to transform the variable ∆𝑃?,/,  
into the product of a binary variable 𝑦?,/,  and a constant 𝑃?,/-. 
derived in (5) – (7), then model this new term 𝛽𝑦?,/, 𝑃?,/-. by the 
method proposed in [34]. 
 Firstly, when ∆𝑃?,/, > 0, from the objective function one 
can conclude that: 

𝜆?,0-/ − 𝜆?,)# > 𝛽               (31) 
where 𝜆?,0-/ is the market price when the load is shifted out, 
and 𝜆?,)# is the market price when the load is shifted in. In this 
case, the profit improvement ∆𝑃𝑟𝑜𝑓𝑖𝑡 from shifting the load 
∆𝑃?,/,  is: 

∆𝑃𝑟𝑜𝑓𝑖𝑡 = ∆𝑃?,/, K𝜆?,0-/ − 𝜆?,)# − 𝛽L        (32) 
which is an increasing function of ∆𝑃?,/, . Hence, in the optimal 
solution, the value of ∆𝑃?,/,  is either 0 or its maximum possible 
value 𝑃?,/-.. To this end, the continuous variable ∆𝑃?,/,  can be 
transformed into the product of a binary variable 𝑦?,/,  and a 
constant 𝑃?,/-..  
 The new term	 𝛽𝑦?,/, 𝑃?,/-.  is the bilinear product of a 
bounded continuous variable 𝛽, a binary variable 𝑦?,/, , and a 
constant 𝑃?,/-.. Similarly, the term 𝛽𝑦?,/, 𝑃?,/-. can be modeled by 
introducing a new continuous variable 𝜑?,/,  and the following 
constraints: 

𝛽𝑦?,/, 𝑃?,/-. = 𝜑?,/, 𝑃?,/-.             (33) 
𝛽 − K1 − 𝑦?,/, L𝑀 ≤ 𝜑?,/, ≤ 𝛽 + K1 − 𝑦?,/, L𝑀  (34) 

−𝑦?,/, 𝑀 ≤ 𝜑?,/, ≤ 𝑦?,/, 𝑀            (35) 
where the bilinear term 𝛽𝑦?,/,  is replaced by the auxiliary 
variable 𝜑?,/,  bounded by constraints (34) and (35).  

Hence, the original problem can be reformulated as: 

min
!,#,$!,$",∆&!,$,∆&",$

% ,∆&",$
& ,'',$,(!,𝜑",$

$∑ 𝜎)𝑓)) +∑ )
∑ 𝜑",$"

+
+ 𝜆,𝐸-,,,, - (36) 

s.t. 
(18)–	(35)                 (37) 

B. A Distributed Solution Algorithm 
As the numbers of price scenarios as well as EVs need to be 

large enough to obtain statistically significant results, the 
dimensional disaster in EV charging scheduling problem is 
hardly avoidable. To address this challenge, the original 
problem (36) – (37) is decomposed into a distributed form 
based on the ADMM algorithm. In the distributed problem, 

EVs are divided into different groups according to the date they 
park in the CS. Specifically, EVs that are parked on the same 
day will be clustered as a group. In the ADMM method, the 
primary problem is responsible for coordinating the optimal 
incentive prices from different groups. By using the scaled form 
of the ADMM method, the primary problem in the (𝑣 + 1)𝑡ℎ  
iteration can be written as: 

min
!	,#	,$",$#

$∑ 𝑦%(𝛼 	𝑓% − 𝐶𝑅%,')% + ∑ 𝑦(/𝛽	
	∆𝑃(,') − 𝐶𝑅(,'3( + ∑ 4/𝛼 	 − 𝜶*'3

2 +*

/𝛽	 − 𝜷*'3
2 + 𝝆$%

,
||𝛼 	 − 𝜶*' − 𝑨*'||2

2 + 𝝆$%

,
||𝛽	 − 𝜷*' − 𝑩*'||2

29:       (38)                                                                              

s.t.  

(2) 	−	(4), (12) 	−	(14)            (39) 

∆𝑃?,5, = A
+
∑ ∆𝑃?,/,5,
/                (40) 

𝐶𝑅),5 = − A
+
∑ ∆𝑃),/,5𝜆/	/              (41) 

𝐶𝑅?,5 =
A
+
∑ 	(∆𝑃?,/,5, − ∆𝑃?,/,5- )𝜆//          (42) 

min	{𝜶&5} ≤ 𝛼	 ≤ max	{𝜶&5}           (43) 
min	{𝜷&5 } ≤ 𝛽	 ≤ max	{𝜷&5 }           (44) 

where ∆𝑃?,5,  is the total power reduction of the 𝑗𝑡ℎ  EV 
calculated in the 𝑣𝑡ℎ iteration. The cost reductions 𝐶𝑅),5 in 
the BO program and 𝐶𝑅?,5  in the PAU program are also 
calculated values obtained from the scheduling results of the 
secondary problems by using Eqs (41) and (42). The optimal 
incentive price set to be coordinated is represented by (𝛼	,𝛽	). 
Incentive price set (𝜶&5 , 𝜷&5 ) are the optimal values of the 𝑔𝑡ℎ 
group obtained in the 𝑣𝑡ℎ  iteration. The term 𝝆&5  is the 
penalty for the 𝑔𝑡ℎ  group in the 𝑣𝑡ℎ  iteration. Terms 𝑨&5  
and 𝑩&5  are scaled dual variables in the ADMM method. The 
ranges of the coordinated optimal incentive prices are given by 
Eqs (43) and (44). The bilinear terms in (38) are handled in a 
similar way as (28) - (30). 

 Upon receiving the optimized values of (𝛼5MA	,𝛽5MA	) from 
the primary problem, each group re-calculates the incentive 
prices using the secondary problem that considers the deviation 
penalty from the coordinated optimal incentive prices: 

min
𝜶-	 ,𝜷-	 ,'*,'!,∆B*,&,∆B!,&

+ ,∆B!,&
) ,𝜎𝑖,P!,&,",,&

	l∑ 𝜎𝑖𝑓𝑖) + ∑ m
∑ P!,&!

+
+/

𝜆/𝐸K,/n +	∑ oK𝛼5MA − 𝜶&	 L
R + K𝛽5MA − 𝜷&	 L
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R
||𝛼5MA −&

𝜶&	 − 𝑨&5||2
2 + 𝝆-0

R
||𝛽5MA − 𝜷&	 −𝑩&5||2

2pq                   (45)                  

s.t.  
(18)	–	(35)                 (46) 

where 𝜶/	  and 𝜷/	  are incentive prices to be optimized by 
group 𝑔. Notably, the penalty terms are not included in the 
secondary problems in the first iteration.  

By solving the primary and secondary problems, the scaled 
dual variables (𝑨	5MA,𝑩	5MA) are updated: 

𝑨&	5MA = 𝑨&	5 + 𝛼5MA − 𝜶&	5MA          (47) 
𝑩&	5MA = 𝑩&	5 + 𝛽5MA − 𝜷&	5MA          (48) 

The convergence of the problem is declared when the 
change in scaled dual variables falls below a certain criterion: 

r||𝑨	5MA−𝑨	5||RR + ||𝑩5MA−𝑩	5||RR ≤ 𝜀TUKK    (49) 



C. Adaptive Penalty Factors 
The conventional ADMM method applies the same penalty 

factors to all groups, which cannot reflect different qualities of 
the obtained incentive price sets. To accelerate the convergence 
of the solution process, an adaptive algorithm is proposed in 
this work to adjust the penalty factors at the early stages of the 
consensus optimization problem. The proposed adaptive 
algorithm assigns heavier penalties to price sets with better 
qualities to increase their significance in the coordination 
process. The quality of each price set is evaluated by 
calculating the CS’s final gain 𝑭&5  using that price set: 

𝑭&5 = ∑ 𝑦)(𝜶&5𝑓) − 𝐶𝑅),5)) +∑ 𝑦?K𝜷&5∆𝑃?,5, − 𝐶𝑅?,5L?   (50) 
The first and second terms represent the CS’s gains from the 

BO and PAU programs, respectively. In (50), the values of 
{𝜶&5 , 𝜷&5 , 𝑓) , ∆𝑃?,5, , 𝐶𝑅),5, 𝐶𝑅?,5}  are optimized results of the 
secondary problems for each group. Besides, the participation 
status {𝑦) , 𝑦?} in the BO and PAU programs can be determined 
through Eqs (12) – (14). Hence, the CS’s gain under each group 
incentive price set can be obtained from a simple calculation 
process that only takes negligible computation time. 

After obtaining the qualities of the price sets, the adaptive 
weight 𝝋&

5  of each group is acquired from (51) – (53): 
𝐹=>75 = 𝑚𝑎𝑥{𝑭&5 , 𝑔 ∈ 𝐺}         (51) 
𝐹=)#5 = 𝑚𝑖𝑛{𝑭&5 , 𝑔 ∈ 𝐺}         (52) 

𝝋&
5 = 6-0@6"*1

0

6"#$
0 @6"*1

0                 (53) 

where 𝐹=>75  and 𝐹=)#5  denote the CS’s maximum and 
minimum gains under different price sets in the 𝑣𝑡ℎ	iteration. 
The adaptive weight 𝝋&

5  is calculated based on the quality of 
each group by using (53). 

Denote 𝜌V as the initial penalty factor, the penalty factors 
for different groups in each iteration can be acquired by: 

}
𝜌&5MA = 𝜌VK1 + 𝝋&

5L				∀𝑣 < 𝑣=>7
𝜌&5MA = 𝜌V																					∀𝑣 ≥ 𝑣=>7         (54) 

where 𝑣=>7 is the iteration threshold, after which the adaptive 
update of the penalty factors is terminated.  
D. ADMM-AP Convergence Discussion 

In the early stages of the consensus optimization problem, 
the optimized incentive prices among different groups deviate 
hugely from each other, resulting in large quality variations. By 
using the adaptive algorithm, the qualities of different price sets 
are accounted for to accelerate the convergence. After some 
iterations, such quality differences become insignificant. Hence, 
the adaptive update of penalty factors is not needed, and the 
subsequent iterations work as the standard ADMM method to 
guarantee the convergence of the solution process.  

In this work, we propose an event-triggered mechanism to 
determine the timing 𝑣=>7 for switching from the pre-event 
stage to the post-event stage without requiring pre-knowledge 
on the problem convergence speed. The switch between stages 
occurs when the maximum quality difference among the price 
sets falls below a given threshold: 

6"#$
0 @6"*1

0

6"*1
0 ≤ 𝜀>,>E/)5$           (55) 

After the switch of stage, the adaptive update of penalty 
factors is terminated, and the solution process enters the post-
event stage for convergence. To this end, the ADMM-AP 
algorithm can be summarized as follows: 

Algorithm 1: Solution algorithm based on ADMM-AP 

1. Initialize: 𝜀TUKK = 0.0001 , 𝜌V = 100 ，

𝜀>,>E/)5$ = 0.01  
2. While (49) is not True  
3. Obtain 𝜌&5MA for each group from (50) – (55) 
4. Solve (38) – (44) and Derive (𝛼5MA, 𝛽5MA)	
5. Solve Problem (45) – (46) for each group and    

Derive (𝜶/123,𝜷/123) 
6. Update 𝑨	5MA and 𝑩	5MA using (47) – (48) 
7. End While 

VI. CASE STUDY 

A. Basic Data 
The case study considers 24 operating days that are 

uniformly distributed over the year 2020. The price data for 24 
days from the Nord Pool UK day-ahead market [35] is shown 
in Fig. 4.  

 
Fig. 4. Day-ahead price data for 24 operating days. 

 
Four typical EV models displayed in Table II are selected to 

generate EV charging scenarios through the Monte-Carlo-
Simulation method introduced in [36]. For each EV, the 
charging efficiency is assumed to be 0.95 and the maximum 
SOC is 0.95 [37]. A total of 2,400 EV charging scenarios are 
generated and evenly distributed to the selected 24 operating 
days. Among the 2,400 EV charging scenarios, it is assumed 
that half of the EV owners prefer the BO program and the rest 
prefer the PAU program. In the BO program, EV owners’ 
MAPs are assumed to follow the normal distribution with mean 
and variance equal to 25% of the average energy market price. 
Since the PAU incentive is risker than the BO incentive, the 
MAPs for EV owners in the PAU program are assumed to be 
50% higher than the BO programs. The scheduling resolution 
of the CS is set to be 15 minutes [38].  

TABLE II 
EV MODEL PARAMETERS 

Model Tesla 
model Y 

Tesla 
model 3 

BYD          
Qin plus 

Volkswagen 
ID.4 

Capacity 66 𝑘𝑊ℎ 62	𝑘𝑊ℎ 57 𝑘𝑊ℎ 62 𝑘𝑊ℎ 

Charging rate 11.5 𝑘𝑊 11.5 𝑘𝑊 11	𝑘𝑊 11 𝑘𝑊 

B. Results and Discussions 
The potential flexibility distributions of the generated EV 

charging scenarios are displayed in Fig. 5 regarding different 
flexibility amounts and EV arrival times. The distribution of 
EV charging flexibility amount is provided in Fig. 5a, which 
shows that most EVs can provide an amount of charging 
flexibility between 30 𝑘𝑊ℎ	and 45 𝑘𝑊ℎ. Given the battery 
capacities shown in Table II, it can be concluded that most of 
the EV charging demand in this work can be treated as flexible 



loads. The potential flexibility distribution regarding different 
EV arrival times is shown in Fig. 5b. The peaks in Fig. 5b 
correspond to the time windows when most EVs come and 
charge, one is from hour 8 to hour 9, and the other is between 
hours 18 and 21. Especially, the second peak covers the price 
spikes shown in Fig. 4, which makes this part of flexibility 
extremely valuable. Hence, the amount and value of EV 
charging flexibility make it promising for supporting the 
economic operation of the CS. 

 
Fig. 5. Flexibility distributions for a) different flexibility amounts and 
b) different EV arrival times. 

 
Fig. 6a displays the optimal incentive price selection results 

together with the MAP distributions. By considering the typical 
price scenarios over a year, the incentive prices that can 
maximize the CS’s benefit are selected to be 0.0114 $/𝑘𝑊ℎ 
and 0.0177 $/𝑘𝑊ℎ  in the BO and PAU programs, 
respectively. In the PAU program, all the remunerated charging 
flexibility is effective for reducing the energy procurement cost 
of the CS. However, in the BO program, the CS must pay for 
potential charging flexibility that may not be useful. Hence, the 
BO incentive price is lower than the PAU incentive price. Fig. 
6b shows the participation status of EV owners. Under the 
selected incentive prices, 44% and 46% of EV owners are 
involved in the BO and PAU programs, respectively. In total, 
90% of EV owners are incentivized to offer their EV charging 
flexibility.  

 
Fig. 6. a) EV owner MAPs and optimized incentive prices, b) 
participation results.  

 
In the case study, 1,066 EV owners are participating in the 

BO program. Because the BO program remunerates EV owners 
based on their potential charging flexibility, all the participating 
owners are paid even if their charging flexibility is not utilized 
during the charging scheduling. Thus, the average incentive 
payment is $0.42 per EV owner in the BO program. On the 
other hand, 1,113 EV owners are participating in the PAU 
program. However, since the PAU program only considers 
effective charging flexibility, some EV owners are not 
rewarded because their charging flexibility is not used during 
the charging scheduling. Consequently, only 762 EV owners 
are paid in the PAU program with an average incentive 
payment of $0.57 per EV owner, and a total of 351 EV owners 

participating in the PAU program are not rewarded at all. From 
the EV owners’ perspective, this result implies that the PAU 
program is a more risky program but with a higher average 
return. Hence, for conservative EV owners, the BO program 
can be a better choice because it offers a stable return. For risk-
seeking EV owners, the PAU program may be preferable 
because it has a higher average return. 

An important criterion to assess the incentive programs is 
the potential flexibility utilization ratio (PFUR), which can 
reflect the effectiveness of incentive programs in motivating 
the utilization of potential charging flexibility: 

𝑃𝐹𝑈𝑅 = "44$./)5$	6*$7)8)*)/'(9:ℎ)
B0/$#/)>*	6*$7)8)*)/'(9:ℎ)

           (56) 

In the optimization result, the PFUR for individual EVs in 
both the BO and PAU programs are displayed in Fig. 7. The 
PFUR distribution for EVs in the BO program is shown in Fig. 
7a. The number of EVs whose potential flexibility is not 
utilized at all is 134, which is in line with the participation 
status displayed in Fig. 6b. In the BO program, the PFUR for 
699 EVs reaches 100%, which implies that all their potential 
charging flexibility is utilized to reduce the energy procurement 
cost. It is also shown that the PFURs for some EVs are 
distributed between 0% and 100%, indicating that their 
potential flexibility is not fully utilized. Since utilizing the 
purchased potential flexibility will not induce extra costs to the 
CS, the only reason for this result is that some potential 
flexibility is useless in terms of reducing the CS’s energy 
procurement cost. In total, 71.05% (31,328 𝑘𝑊ℎ  out of 
44,091 𝑘𝑊ℎ) of the potential flexibility is used by the CS 
through the BO incentive program. 

Fig. 7b illustrates the PFUR distribution for EVs in the PAU 
program. Similar to the BO program, two peaks are observed at 
PFUR equals to 0% and 100%, respectively. However, the 
number of EVs whose potential flexibility is not utilized is 438, 
which exceeds the number of EVs that are not selected in the 
PAU program (87 EVs). This is because the utilization of 
charging flexibility in the PAU program will lead to extra costs. 
The utilization of charging flexibility depends on the 
competing result of the flexibility price and energy bill 
reduction. Hence, though some EVs are involved in the PAU 
program, their flexibility is not utilized because the reduced 
energy procurement cost cannot cover the incentive payment. 
In the PAU program, there are also some EVs with PFUR 
distributed between 0% and 100%. The reason for this situation 
is twofold, one is that some flexibility cannot be used to reduce 
the energy cost, and the other is that the cost of utilizing some 
flexibility is larger than the benefit. Overall, 59.06% (25,072 
𝑘𝑊ℎ  out of 42,452 𝑘𝑊ℎ ) of the potential EV charging 
flexibility is deployed through the PAU incentive program. 

 
Fig. 7. PFUR distribution for individual EV owners in a) BO program 
and b) PAU program. 

 



The convergence rates of the proposed ADMM-AP and the 
conventional ADMM approaches using different numbers of 
groups are shown in Fig. 8. It can be seen that the convergence 
speed of the proposed ADMM-AP algorithm becomes more 
accelerated as the number of groups increases. This is due to 
the fact that a larger number of groups leads to larger variations 
of EV charging information and market price data among 
different groups, and hence reflecting the quality of different 
price sets becomes more important in the algorithm design.  

 
Fig. 8. Convergence rates of a) the proposed ADMM-AP algorithm 
and b) the conventional ADMM algorithm. 

 
C. Comparative Case Studies 

To demonstrate the performance of the proposed hybrid 
incentive program, we compare it with the TOU program and 
transactive control program in this subsection. In the 
comparative case studies, typical day price data from the Nord 
Pool market is used to evaluate these incentive programs. The 
flat and TOU prices [39] at the CS are presented in Fig. 9a. In 
the proposed hybrid incentive program, EV owners with MAPs 
lower than the incentive prices (i.e., 0.0114 $/𝑘𝑊ℎ in the BO 
program and 0.0177 $/𝑘𝑊ℎ  in the PAU program) will be 
involved in the DRP. In the TOU program, EV owners with 
MAPs lower than the peak-flat-valley price differences will 
participate in the DRP. In the transactive control program, the 
CS determines the price signals to shift EV charging load based 
on the relationship between the load change and incentive price 
signal 𝜆)#. , which is illustrated in Fig. 9b [27]. The 
comparative cases are tested using 200 EV charging scenarios 
shown in Fig. 10. 

 
Fig. 9. a) Charging prices at the charging station. b) EV response curve 
in the transactive control program. 

 
Fig. 10. EV charging scenarios. 

 
The energy market price and net load change in the TOU 

program are displayed in Fig. 11, in which one can observe that 
the load is only shifted from hours between 16 and 24 to hours 
between 1 to 4 of the next day. No load shift is observed in 
other periods of the day because the charging load is shifted 
based on the fixed TOU price, which cannot accurately reflect 
the short-term market price fluctuations. Notably, in some flat-
price periods, there are both loads shifted in from higher price 
hours and loads shifted out to lower price hours, which cancel 
each other in the net load change result. Hence, the net load 
change is less than the deployed charging flexibility. 

In the TOU program, the CS’s revenue and energy bill for 
charging the EVs are $260.90 and $227.46, respectively. 
Compared to the uncontrolled charging scenario, the CS’s 
revenue and energy procurement cost have been reduced by 
$44.95 and $65.84, respectively. In total, the CS’s profit is 
increased by $20.89 (from $12.55 to $33.44). Meanwhile, by 
shifting the charging load in the TOU program, EV owners’ 
cost is reduced by $44.95.  

 

Fig. 11. Load shift results in the TOU pricing program. 
 
The net load change and optimized incentive price signals 

in the transactive control program are shown in Fig. 12. 
Compared to the load shift in the TOU program, the load 
change in the transactive control program can more accurately 
capture the market price variations. For instance, in the 
transactive control program, the load increment is more 



concentrated at hours 2 and 3, which have lower energy prices. 
Also, the transactive control program shifts loads from high-
price hours (10 to 14) to low-price hours (15 to 17), whereas 
the TOU program does not react to the price differences during 
this period.  

When the market price is high, the CS uses high incentive 
prices to shift the EV charging load. At low-price hours, to 
motivate EV owners to charge at large power, the incentive 
prices can be very low or even zero, such as hours 2 to 7.  

In the transactive control program, the CS pays $25.06 for 
utilizing the charging flexibility, which reduces the energy 
procurement cost by $57.15. In total, the CS’s profit is 
increased by $32.09 (from $12.55 to $44.64) compared to the 
uncontrolled charging scenario. For EV owners, their charging 
fee is reduced by $25.06 due to the incentive payment.   

 

Fig. 12. Load shift results in the transactive control program. 

 
The net load shift result in the proposed hybrid incentive 

program is presented in Fig. 13. In the BO program, the 
charging load is shifted from high-price hours to low-price 
hours even if the price differences are small, which can 
maximize the CS’s gain because utilizing the charging 
flexibility in the BO program will not induce extra costs. In the 
PAU program, because shifting the load can bring extra 
incentive costs, the charging load is only shifted between hours 
with large price differences (e.g., price differences between 
hours 18 to 24 and hours 2 to 3) to be profitable.  

 

Fig. 13. Load shift results in the proposed hybrid incentive program. 
 

By applying the proposed hybrid incentive program, the 
CS’s electricity bill is reduced by $91.45. The incentive 
payments in the BO and PAU programs are $37.75 and $31.11, 
respectively. Overall, the CS’s profit is increased by $22.59 
compared to the uncontrolled charging scenario. For EV 
owners, their charging fee is significantly reduced by $68.86 
from the proposed hybrid incentive program. 

The performances of the uncontrolled charging scenario and 
investigated incentive programs are all summarized in Table III. 
Among the investigated programs, the proposed hybrid 
incentive program achieves the smallest EV owners’ cost, 
which is reduced by 22.51% compared to the uncontrolled 
charging scenario (from $305.85 to $236.99). Hence, the 
proposed program is the most attractive program for EV owners. 
It also reduces 31.18% of wholesale market energy 
procurement cost for the CS (from $293.30 to $201.85), which 
is more than other programs. Among the investigated incentive 
programs, the proposed hybrid incentive program has the 
largest PFUR of EVs, which confirms that it is the most 
efficient program in encouraging the utilization of EV charging 
flexibility and makes it more attractive to the power system. As 
a simple and consistent incentive program, the controllability 
of the proposed hybrid incentive program is much better than 
the TOU program. Though the CI of the transactive control 
program is higher than the proposed hybrid incentive program, 
it has however sacrificed simplicity and consistency.  

TABLE III 
SCHEDULING RESULTS 

 CS profit 
[$] 

EV owner 
cost [$] 

Market 
bill [$] 

CI 
[$/kWh] 

PFUR 
(%) 

Uncontrolled 
charging 

12.55 305.85 293.30 0 0 

TOU 
program 

33.44 260.90 227.46 0.0183 50.25 

Transactive 
control 

44.64 280.79 236.15 0.0225 35.50 

Proposed 
program 

35.14 236.99 201.85 0.0200 64.13 

 
The CS’s profit obtained from the proposed hybrid 

incentive program is higher than the TOU program and lower 
than the transactive control program. The better profitability of 
the transactive control program comes from the adjustability of 
flexibility prices. Notably, the CS’s profits shown in Table III 
are obtained under the assumption that the numbers of EVs 
participating in the listed incentive programs are all the same. 
However, compared to the transactive control program, the 
proposed hybrid incentive program is simpler, more consistent, 
and less costly to EV owners. Hence, it is very likely that a CS 
adopting the proposed hybrid incentive program can attract 
more EVs than a CS applying the transactive control program, 
which can potentially increase the CS’s profit. 

In summary, the proposed hybrid incentive program is 
consistent and simple for EV owners to participate. Meanwhile, 
the proposed hybrid incentive program can minimize the 
potential restrictions and impacts on EV owners’ daily plans 
and charging costs. Thus, the proposed hybrid incentive 
program can be a highly attractive and practical program for 
real-world EV owners that are willing to participate in the 
DRPs. Besides, the high potential profitability feature of the 
proposed hybrid incentive program makes it also attractive to 
the CSs facing volatile electricity prices. Hence, the proposed 
hybrid incentive program has a great potential for its practical 
implementations.  



 Notably, to avoid disturbances of uncertain factors, 
deterministic price and EV charging scenarios are used in the 
case studies to compare the proposed hybrid incentive program 
with existing methods. However, uncertainties in the variable 
market price and the EV charging demand are inevitable in real-
world applications. These uncertainties may have several 
impacts on CS operations. Firstly, in the day-ahead scheduling 
stage, to consider the price and EV charging demand 
uncertainties, some uncertainty handling techniques such as 
stochastic and robust optimization approaches are required to 
determine the energy procurement in the wholesale market. 
Secondly, due to the information gap between the forecast and 
real EV charging demand, the real-time operational stage needs 
to simultaneously consider the deviation penalty and price 
differences. 

VII. CONCLUSION 

This work has proposed a novel hybrid incentive program 
for motivating EV owners to share their EV charging flexibility. 
The proposed hybrid incentive program combines the 
advantages of both the static and dynamic incentive programs, 
making it simple and consistent for EV owners, as well as 
controllable for the charging station. To determine the incentive 
prices, an optimal incentive price selection model is developed 
in this work. Because large EV fleets are involved in the 
optimization model, an improved ADMM algorithm with 
adaptive penalties is proposed to efficiently solve the incentive 
price selection problem.  

The proposed hybrid incentive program is compared with 
the TOU and transactive control programs using real-world 
price data. The numerical results confirm that the proposed 
hybrid incentive program is highly efficient in cutting down the 
CS’s energy market bill, reducing EV owners’ charging fees, 
and encouraging the utilization of EV charging flexibility. The 
proposed hybrid incentive program has superior controllability 
compared to the TOU program while maintaining simplicity 
and consistency. Though the transactive control program is 
more controllable than the proposed hybrid dynamic incentive 
program, it is more demanding for EV owners in order to 
participate. The CS’s profit is also improved considerably by 
applying the proposed hybrid incentive program. Although the 
improvement is not as significant as the transactive control 
program, the proposed hybrid incentive program is more 
attractive to EV owners, which may further increase the CS’s 
profit. 

Future works may consider the impacts of the V2G 
operation on the design of incentive programs. Also, 
competition among different CSs can be considered to assess 
the necessity of fairness in benefit distribution between the CS 
and EV owners. 
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