Deep Learning with Multiresolution Handcrafted Features for Brain MRI Segmentation
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Abstract

The segmentation of magnetic resonance (MR) images is a crucial task to create pseudo computed tomography (CT) images
which are used to achieve positron emission tomography (PET) attenuation correction. One of the main challenges of creating
pseudo CT images is the difficulty to obtain an accurate segmentation of the bone tissue in brain MR images. Deep convolu-
tional neural networks (CNNs) have been widely and efficiently applied to perform MR image segmentation. The aim of this
work is to propose a segmentation approach that combines multiresolution handcrafted features with CNN-based features to
add directional properties and enrich the set of features to perform segmentation. The main objective is to efficiently segment
the brain into three tissue classes: bone, soft tissue, and air. The proposed method combines non subsampled Contourlet
(NSCT) and non subsampled Shearlet (NSST) coefficients with CNN'’s features using different mechanisms. The entropy value
is calculated to select the most useful coefficients and reduce the input’s dimensionality. The segmentation results are eval-
uated using fifty clinical brain MR and CT images by calculating the precision, recall, dice similarity coefficient (DSC), and
Jaccard similarity coefficient (JSC). The results are also compared to other methods reported in the literature. The DSC of the
bone class is improved from 0.6179+0.0006 to 0.6416+0.0006. The addition of multiresolution features of NSCT and NSST
with CNN'’s features demonstrates promising results. Moreover, NSST coefficients provide more useful information than NSCT
coefficients.
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1. Introduction ple approach that has been adopted in commercial PET/MR
scanners [5]. The segmented MR images are converted to
pseudo CT images by assigning a linear attenuation coeffi-
cients to each tissue class. The attenuation coefficients gen-
erate attenuation maps which are used to reconstruct PET
images for photon attenuation. One of the limitations of the
segmentation methods is the accurate delineation of bone

tissue which is the objective of the proposed method herein.

The segmentation of magnetic resonance (MR) images
has various applications in the process of disease’s diagno-
sis, treatment planning, and quantification of image-derived
metrics. One of these applications is the generation of pseudo
computed tomography (CT) images for positron emission to-
mography (PET) attenuation correction.

Due to the loss of photons during PET acquisition pro-
cess, the acquired PET images suffer from attenuation which
should be corrected to achieve the full potential of PET quan-
tification and disease’s characterization. The common way to
address PET attenuation is using the attenuation coefficients
from CT images since there is a direct mapping between the
CT Hounsfield units and the attenuation coefficients at 511
keV. The main drawback of CT imaging is the radiation expo-
sure which harms children and patients who need to undergo
CT scanning regularly [1]. Alternatively, MR images with their

Convolutional neural networks (CNN) has been widely ap-
plied to segment different medical images including MR im-
ages. The process of automatic extraction of features using
CNN has shown its superiority in various applications to per-
form different tasks. The CNN-based features remove the
burden of creating handcrafted features which includes fea-
tures extraction and selection tasks. However, in some prob-
lems and with specific types of data, the handcrafted features
are critical to enhance the performance [6, 7].

excellent soft tissue contrast can replace CT images, yet this
replacement is not straightforward since there is no direct
mapping between the MR proton intensities and the linear
attenuation coefficients at 511 keV [2].

Among the MR-based attenuation correction methods [3,
4], MR images segmentation is considered a robust and sim-
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The combination of handcrafted features with CNN'’s fea-
tures is becoming a popular approach to address various
problems in different domains such as image scene geom-
etry recognition [8], classification of working condition in
froth flotation [9], signal gesture recognition [10], land cover
content-based image retrieval [11], and pedestrian detection
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[12]. Moreover, it has been widely used in the medical field
to perform classification [13], segmentation [8], and detec-
tion [14] tasks. Additionally, this approach has been applied
to both images and signals such as MR images [13], histol-
ogy images [15], iris images [14], electromyographic (EMG)
signals [10], and electroencephalogram (EEG) signals [16].
The addition of multiresolution features such as Contourlet
and Shearlet coefficients as handcrafted features with CNN’s
features is able to enrich the set of features with multiscale
and multidirectional properties to perform the segmentation
task. Various CNN’s architectures have been proposed in the
literature, yet none of them has focused on the combination
of handcrafted features which introduce directional proper-
ties with CNN'’s features.

The aim of this work is to propose a CNN architecture
capable of segmenting brain MR images into three tissue
classes: bone, soft tissue, and air and enhance the bone
class segmentation particularly. The proposed approach
aims at combining multiscale and multidirectional features
with CNN’s based features. Another objective is studying
the impact of both low pass and directional sub-bands of
non-subsampled Contourlert (NSCT) and non-subsampled
Shearlet (NSST) transforms. The main contributions herein
are designing a 3D encoder decoder convolutional network
with NSCT and NSST coefficients, applying entropy score as a
features selection approach, and combining NSCT and NSST
features with CNN’s features.

The paper is structured as follows. Section 2 reviews briefly
the related work on handcrafted features with CNN with a
focus on Contourlet and Shearlet transforms. The data de-
scription and the applied methods are described in section
3. The conducted experiments with the obtained results are
presented in section 4. Finally, the discussion and conclusion
are given in section 5.

2. Related Work

Recently, deep CNN has been applied successfully to per-
form segmentation tasks in different medical imaging appli-
cations [17-21]. In particular, brain MR images segmenta-
tion has been addressed extensively using multiple architec-
tures of CNN. For instance, a 2D deep generative network
which employs P-norm convolutional layers has been pro-
posed by Takrouni et al. [22] to perform brain tumor seg-
mentation task. They have also applied a conditional ran-
dom field based deep discriminative network to refine the
segmentation results. In addition to that, multi-modality MR
images have been used to enhance the brain tumor segmen-
tation where a dual path model which consists of DenseNet
and features pyramid networks is proposed by Fang et al. [23].
Additionally, a 2D deep convolutional encoder decoder net-
work is proposed by Jiang et al. [24] to segment the brain tu-
mor in MR images by adding an additional encoder that cap-
tures the edges features. This network forms a dual-stream
decoding architecture that extracts both semantic and edges
features. Another dual paths network is proposed by Chai

et al. [25] to segment the gray matter nuclei in 3D MR im-
ages. The convolutional encoder decoder network consists
of dual encoder paths each of which takes a different resolu-
tion of MR patches as input to capture features from differ-
ent field of views. Likewise, Bose et al. [26] have proposed
a deep dense dilated encoder decoder network with addi-
tional multi-resolution paths where they have introduced the
concept of deep supervision by calculating the loss at each
multi-resolution path. The whole model is optimized us-
ing the aggregated loss. This architecture has shown its effi-
ciency in performing segmentation of different medical im-
ages datasets and brain MR images is one of them. Multi-
view information of brain MR images is another approach
that has been proposed by Li et al. [27] to segment the claus-
trum structure. Two 2D U-Net based networks are applied to
train slices with axial and coronal views. The outputs of each
network are aggregated to create a 3D segmentation map.

All above reviewed recent research studies focus on im-
proving the brain segmentation by either employing multi-
paths deep networks or using multi-resolution and multi-
views images to extract additional spatial information. Al-
though these approaches look promising, none of them has
investigated the addition of spectral domain features using
multi-resolutions transforms. The multi-resolution trans-
forms can be combined as handcrafted features with CNN
based spatial features to enhance the segmentation perfor-
mance.

The most common handcrafted features reported in the lit-
erature which are combined with CNN’s features are statis-
tical and textural features from the source images. For in-
stance, Shang et al. [13] have combined radiomics statisti-
cal and textural features with CNN'’s features to perform soft
tissue tumor classification, Khan et al. [8] have applied a dif-
ferent set of statistical features to segment the brain tumor,
and Choudhary et al. [14] have combined another set of sta-
tistical features with CNN'’s features to perform iris spoofing
detection.

Multiresolution analysis techniques such as Contourlet
and Shearlet transforms provide multiscale and multidirec-
tional features by decomposing the image into low and high
frequency sub-bands. Unlike Wavelet transform, they are
shift-invariant and can capture rich information with differ-
ent scales and directions in the spectral domain. The addition
of handcrafted features that capture multiscale and multidi-
rectional information has been proposed in the literature to
improve the performance of different tasks.

2.1. Contourlet Transform

The Contourlet transform is combined with CNN’s features
to perform multiple tasks including medical images fusion
and multimodality merging [6, 28, 29], natural images clas-
sification [30, 31], remote sensing classification [32], breast
cancer classification [33], Seismic images denoising [34], and
bone age assessment in X-ray images [35].

Lietal. [32] have proposed a complex domain CNN which
uses Contourlet filter banks for polarimetric synthetic aper-
ture radar (PolSAR) image classification. They have suggested



to redefine the operations of the conventional CNN’s layers in
complex domain to provide more useful features. They have
also employed non subsampled Contourlet (NSCT) filter with
complex CNN filters to obtain multiresolution and multidi-
rectional information. The proposed network has been tested
on three PolSAR data sets and shown the efficiency of this
method to capture abstract features in different directions
and frequency bands. Additionally, Liu et al. [30] have pro-
posed a Contourlet based CNN for SAR image despeckling.
They have designed multiple multidirectional and multiscale
subnetworks. Each independent subnetwork takes a different
Contourlet sub-band as input and trains the network until it
reaches a clean image with minimal noise. The inverse Con-
tourlet transform is applied to the output of all subnetworks
to obtain the clean image. Different CNN'’s architectures are
applied for each sub-band to fit the properties of each sub-
band. The proposed approach has been evaluated using syn-
thetic and real SAR images and validated with the state of the
art methods. This method has shown its superiority in sup-
pressing speckle with minimal runtime.

In the medical domain, the employment of the Contourlet
transform with CNN is proposed by Nahid et al. [33] to clas-
sify histopathological images. They have conducted a com-
parison in the performance between CNNs that take differ-
ent sets of inputs such as raw images, statistical informa-
tion of the Contourlet sub-bands, histogram information, lo-
cal binary pattern features, and other frequency-domain fea-
tures. It has been found that the statistical information of the
Contourlet coefficients combined with histogram informa-
tion outperform other approaches in terms of different eval-
uation metrics. The bone age assessment using X-ray images
has been addressed by Liu et al. [35] who have used the NSCT
coefficients of the raw images as inputs to the CNN. Each
NSCT sub-band is fed to a single CNN then the output of all
networks are merged to perform the regression task. By com-
paring this approach with other approaches that adopt spa-
tial domain images as network’s input, the proposed method
is superior for the bone age assessment task.

2.2. Shearlet Transform

The Shearlet transform has been recently employed with
CNN to perform different tasks in different domains such as
RGB images classification [36], remote sensing images de-
noising [7], panchromatic and multispectral images fusion
[37], and classification of video quality [38]. In the med-
ical field, the Shearlet coefficients have been widely com-
bined with CNN’s features to perform CT and MR images fu-
sion [39, 40], multimodality MR images fusion [41], cancer
classification [42, 43], Alzheimer’s disease classification [44],
prostate Gleason grading [42], and image enhancement and
denoising [29].

Rezaeilouyeh et al. [42] have applied classification of
histopathology images using the magnitude and phase of
Shearlet coefficients along with raw images as inputs to CNN.
They have employed one CNN for each phase sub-band,
magnitude sub-band, and raw RGB images. The outputs of all
networks are concatenated using one fully connected layer.

They have evaluated this method on performing the classifi-
cation of breast cancer and Gleason grading tasks. It has been
shown that this method performs better than other meth-
ods which use different set of handcrafted features. Similarly,
Liang et al. [43] have applied the same approach of com-
bining the raw histopathology images with their phase and
magnitude coefficients of the Shearlet transform to identify
colon cancer. They have also shown the capability of Shear-
let coefficients to enrich the CNN'’s features and improve the
classification performance. Jabason et al. [44] have com-
bined the PET images with their Shearlet coefficients as an
input to the CNN to classify the different types of Alzheimer’s
Disease. Yang et al. [36] have proposed a sparse represen-
tation CNN layer which employs Shearlet and Wavelet trans-
forms to boost the feature extraction operation. The sparse
layer generates non-trainable low pass and high pass fea-
ture maps during the back propagation process. The pro-
posed approach has been evaluated by performing classifi-
cation on five different natural images datasets (FOOD-101,
CIFAR10/100, DTD, Brodatz and ImageNet). The results have
shown that the multidirectional representation is able to en-
hance the classification performance where the best classifi-
cation accuracy of different classes is achieved by either the
Shearlet or the Wavelet transforms.

The employment of Contourlet and Shearlet coefficients
with CNN'’s features has been proposed to perform different
computer vision tasks. Yet, it has not proposed yet to per-
form MR images segmentation task and particularly to ad-
dress the pseudo CT generation for PET attenuation correc-
tion. The use of multiresolution analysis features such as
Contourlet and Shearlet transforms in the medical domain
tasks have shown the efficacy of the addition of multidirec-
tional and multiscale features to the CNN’s features. How-
ever, the proposed methods in the literature have employed
complex solutions including multiple cascaded CNNs for dif-
ferent multiresolution sub-bands. Moreover, they have used
all resultant coefficients without any dimensionality reduc-
tion. A less complicated design is required to combine the
multiresolution features with CNN’s features to perform the
segmentation task.

3. Materials and Methods

3.1. Data Acquisition

The clinical brain datasets consist of fifty patients which
undertook CT and MR scanning after giving informed con-
sent [45]. The demographics and clinical characteristics of
the patients are summarised in Table 1. The MR images were
acquired using a 3T MAGNETOM Skyra with 64-channel head
coil (Siemens Healthcare, Erlangen, Germany). The MR scans
are 3D T1-weighted magnetization-prepared rapid acquisi-
tion gradient echo (T1-w MP-RAGE) sequence with the fol-
lowing scanning parameters: TE= 2.3 ms, TR= 1900 ms, T1=
970 ms, flip angle 8°, NEX = 1. The matrix dimension is 255 x
255 x 250 and the voxel size is 0.86 x 0.86 x 1 mm.

The CT scans were acquired using two different PET/CT
Siemens scanners. The Biograph mCT scanner was used to



Table 1: The datasets demographics and clinical characteristics.

Gender Age (Mean + SD)

Clinical diagnosis

28 women and 32 men 61+12 years

44 neurodegenerative disease, 3 epilepsy,
and 3 brain tumours

acquire the CT scans of fifteen patients and the scans of the
remaining thirty five patients were acquired using the Bio-
graph 64 True Point scanner. The matrix size of the CT images
is 512 x 512 x 150 with voxel size of 0.97 x 0.97 x 1.5 mm.

3.2. Data Preprocessing and Labelling

In order to remove the redundant and unnecessary infor-
mation, the slices of each patient’s volume are reduced by
identifying the region of interest and selecting only forty eight
slices. Additionally, the background pixels are reduced by
cropping each slice into 256 x 256 x 48 image. Due to dif-
ferent resolutions, the bilinear interpolation is applied to re-
sample some volumes into 300 x 300 matrix. The resultant
images are then cropped into 256 x 256 x 48 to obtain the
same dimensions for all patients. Data normalisation using
local contrast normalization technique is applied on MR im-
ages.

The class labelling is performed using CT images. Firstly,
Each MR slice is co-registered with its corresponding CT slice
to obtain common coordinates and overcome the temporal
gap between the acquisition of MR and CT images (2-3 days).
Rigid Euler transformation followed by the non-rigid B-spline
transformation are applied using Elastix tool [46]. Afterwards,
the labelling of CT images is performed by applying pixel
intensity-based thresholding to segment the brain into three
tissue classes which are air, bone, and soft tissue. The thresh-
olds of the Hounsfield values for each tissue class are illus-
trated in Table 2.

3.3. 3D CNN Architecture

The baseline architecture is similar to 2D U-Net architec-
ture [47] that has been applied widely in various medical ap-
plications [48]. This network follows the shape of convo-
lutional encoder-decoder architecture with the employment
of linking paths from the high-resolution levels to the low-
resolution levels. This network is firstly modified by convert-
ing 2D layers to 3D layers. Secondly, the number of down-
sampling layers which cause loss of useful features is de-
creased. Moreover, the number of convolutional layers is
increased by using three convolutional layers at each depth
leading to a total of twenty one 3D convolutional layers. Each
three convolutional layers are followed by batch normaliza-
tion, rectified-linear unit (ReLU) activation function, and 3D
maxpooling layer with stride size of 2. The kernel size of all
convolutional layers is 3 x 3 x 3. The number of filters of
the first layer is sixty four and increases by the double as the
depth of the network increases. In the decoder part, the max-
pooling layers are replaced with deconvolution layers which
allow the network to learn the weight of the upsampling pro-
cess. The last layer of the network is a fully connected layer

that consists of three neurons that represent the number of
classes with a multiclass sigmoid activation function. An-
other amendment to the network is the employment of the
dice coefficient loss as an objective function to address the
problem of classes unbalancing which leads to a biased clas-
sification towards the majority classes. The dice coefficient
loss for multi-class segmentation is defined as:

C Zzthlzll’UV:l):dD:lp(c,h,w,d)gt(c,h,w,st
c=1 ZhH:IZZLIZdDzl p(c,h,w,d)zgt(c,h,w,d)zas)
where £ is the index of the height, w is the index of the width,
d is the index of the channels, p is the probability of each
voxel (output of the segmentation), gt is the one hot encoded
value of the ground truth for class ¢, C is the number of tis-
sue classes, and sis a smoothing variable to avoid division by
Zero.

Lgice = 1-)

3.4. Non-Subsampled Contourlet Transform Features with
CNN-based Features for MR Segmentation

Contourlet is a multiscale and multidirectional transform
which decomposes an image using the Laplacian pyramid
and the directional filter bank (DFB). Due to the applica-
tion of down-samplers and up-samplers in Contourlet fil-
ters, Contourlet transform is shift variant. The Contourlet ad-
dresses the drawback of wavelet which operates only in 2D
without any capability to capture the directional information.
The Contourlet has the ability to encapsulate the directional-
ity and anisotropy at various scales.

Non-subsampled Contourlet (NSCT) transform is a multi-
scale, multidirectional, and shift invariant transform which
was proposed for the first time by Da Cunha el al. [49] to ad-
dress essentially the image denoising and enhancement. This
transform is a shift invariant version of the Contourlet trans-
form with better frequency selectivity and regularity. This
type of transforms include redundancy which enrich the de-
tails representation.

The Laplacian pyramid mechanism decomposes the image
into one low pass sub-band and one band pass sub-band.
The band pass represents the difference between the input
image and the low pass image. Afterwards, the resultant low
pass image is decomposed iteratively with the same mech-
anism at each stage. The band pass image is processed by
the DFB to extract the directional details which generate the
Contourlet coefficients. The DFB generates 2* directional co-
efficients or sub-bands at k scale levels where k is a positive
integer.

In this work, the MATLAB non-subsampled Contourlet
toolbox [50] is utilised to generate the NSCT coefficients. The
toolbox takes the 2D image, the number of directional de-
composition levels (k), the pyramidal filter, and the direc-



Table 2: The Hounsfield values threshold for generating the ground truth images.

Hounsfield value threshold

Tissue class assignment

HU > 600
HU < -500
Others

Bone
Air
Soft tissue

tional filter as inputs. Then, it generates k+1 coefficients
where the first coefficient is the low pass sub-band and the re-
maining ones represent different directional band pass sub-
bands. The number of the directional filter decomposition
levels is defined by vector K:

K=11,1,2,2] @)

where the K levels generate C Contourlet coefficients which
are calculated by:

K
c=) 2F+1 3)
k=0

The actual generated NSCT coefficients are thirteen sub-
bands (twelve directional sub-bands + one low pass sub-
band). The NSCT produces coefficients with the same di-
mensions as the input image. Figure 1 shows an example of
some NSCT directional sub-bands at different scales in addi-
tion to the low pass sub-band for a single slice of a randomly

selected patient from the brain dataset.

Figure 1: Four directional NSCT sub-bands from four scales (a-d) and one
low pass sub-band (e) for a single slice of a randomly selected patient from
the training dataset.

3.4.1. Non-Subsampled Contourlet Coefficients Selection

The application of the NSCT decomposition generates
twelve redundant coefficients for each slice. The redundant
directional information is reduced by selecting the coeffi-
cients that include more amount of information than others.
The coefficients selection is performed by calculating the en-
tropy score for each NSCT coefficient of each slice. The en-
tropy score is a statistical measure of the information content

and randomness to capture the texture characteristics of the
image. The entropy is calculated as:

Entropy=-Y_cilogs(c;) )
i

where c; is the histogram count of ;" bin.

Figure 2 illustrates the entropy values of the top ten se-
lected NSCT directional sub-bands coefficients of one ran-
domly selected slice with a minimum value of 3.028 and a
maximum value of 3.772. The figures demonstrate that there

m Coeff 1
m Coeff 2
= Coeff 3
Coeff 4
m Coeff 5
m Coeff 6
m Coeff 7
m Coeff 8
m Coeff 9
m Coeff 10

3.720 3710

3.520

3513 3496

Coefficients of slice 44

3.772 3742
3.483

Figure 2: The entropy values of the top ten selected NSCT directional sub-
bands coefficients of one randomly selected slice (slice 44) of patient 1.

Entropy

3.028
|

are variations on the entropy values within and among each
slice. The variation indicates there are some NSCT coeffi-
cients which are more useful than others. Each NSCT coeffi-
cient with higher entropy value implies the inclusion of more
information which can add more directional features to help
improving the segmentation performance.

Out of fifty six directional sub-bands, the top ten coeffi-
cients with the highest entropy values are selected as hand-
crafted features which will be combined with CNN’s features.
It is observed from this figure that the directional sub-bands
which are located between indices 9 and 12 represent the
highest entropy values which are generated at the third and
fourth decomposition levels. The directional sub-bands of
the first and second decomposition levels are not revealing
dominant features for most of the slices. The more decompo-
sition levels of NSCT coefficients, the more useful directional
features are produced.

3.4.2. Fusion of Non-Subsampled Contourlet and CNN-based
Features

The selected NSCT coefficients are concatenated to create

an input image with size 256 x 256 x 48 x10. The original im-



age size is divided into nine overlapped patches with size 128
x 128 x 48 x 10 to firstly overcome the memory size limita-
tion and secondly to preserve the contextual information.

The handcrafted NSCT features are concatenated with the
CNN-based features using three different mechanisms. The
first mechanism which is illustrated in Figure 3 aims at con-
catenating the NSCT coefficients with the input MR images.
The second mechanism concatenates the NSCT features at
the end of the features extraction task of the CNN and just be-
fore the classifier layer as shown in Figure 4. The third mech-
anism adds another dimensionality to the input MR images
by adding the low pass sub-band of the NSCT coefficient as a
new channel. The input size of this network is 128 x 128 x 48
x 2. Moreover, at the end of this network, only one directional
sub-band with the highest entropy value is concatenated with
CNN-based features to add some directionality information.
This mechanism is depicted in Figure 5.

Directional sub-band
NSCT/NSST

Raw MR
image

Figure 3: The network design of concatenating the NSCT directional coeffi-
cients with the input MR images.

Directional sub-band
NSCT/NSST

Figure 4: The network design of concatenating the NSCT directional coeffi-
cients with the CNN features at the end of the network.

Directional sub-band
NSCT/NSST
Low pass sub-band
NSCT/NSST 3
\

image

Figure 5: The network design of concatenating the NSCT low pass coeffi-
cients with the input MR images. The NSCT directional coefficients are also
concatenated with the CNN features at the end of the network.

3.5. Non-Subsampled Shearlet Transform Features with CNN-
based Features for MR Segmentation

Shearlet transform is a multivariate expansion of the
wavelet transform in multidimensional space. Despite the
curvelet which utilises the rotation, Shearlet utilises the
shearing mechanism to provide directional selectivity and lo-
calisation.

The non-subsampled Shearlet (NSST) is the shift invari-
ant version of the Shearlet transform with high capability
of directional sensitivity. It consists of multiscale decompo-
sition using non-subsampled Laplacian pyramid transform
and multidirectional decomposition using Shear filter with
translation invariance. The Shear filter overcomes the lim-
itation of the number of directions which exists in non-
subsampled Contourlet [51, 52].

In general, the NSST transform outperforms NSCT trans-
form thanks to their well-localisation at different scales and
directions which enables the fine detection of edges and
boundaries. These advantages make the NSST a suitable tool
to identify the different brain tissue classes [42]. In this work,
the NSST coefficients are generated using the ShearLab 3D
tool [53]. Each 2D slice is decomposed using the NSST up to
four scales using different shearing levels defined by the vec-
tor L:

L=1[1,1,2,2] (5)

Each level k generates S Shearlets coefficients which are cal-
culated by:

Sp=2x(2x 20 4 2 (6)

The total number of generated NSST coefficients is fifty
seven (fifty six directional high frequency sub-bands + one
low frequency sub-band). The size of each sub-band is the
same as the size of the input image. Figure 6 shows an exam-
ple of some directional high frequency sub-bands from differ-
ent scales and one low frequency sub-band for a single slice
of one randomly selected patient from the training dataset.

Figure 6: Four NSST directional sub-bands from four scales (a-d) and one
low frequency sub-band (e) for a single slice of one patient.



3.5.1. Non-Subsampled Shearlet Coefficients Selection

The dimensions of the resultant sub-bands of each volume
is 128 x 128 x 48 x 57. In order to reduce the dimension-
ality and the redundancy, the entropy for each NSST coef-
ficient per slice is calculated to select only the coefficients
that contain dominant information. The mathematical for-
mula of the entropy is defined in Equation 4 in Subsection B.
Figure 7 illustrates the entropy values of the top ten selected
NSST directional sub-bands coefficients of one randomly se-
lected slice of one patient with a minimum value of 4.04 and a
maximum value of 4.61. Similar to NSCT, the figures demon-
strate that there is variation on the entropy values within and
among each slice but with higher entropy values.

4614
45692
45172
4.4627
4.4022
4.3518 4 342
42227
I 4.04034.0394

Coefficients of slice 44

m Coeff 1
m Coeff 2
Coeff 3
Coeff 4
m Coeff 5
u Coeff 6
m Coeff 7
m Coeff 8
m Coeff 9
m Coeff 10

Entropy

Figure 7: The entropy values of the top ten selected NSST directional sub-
bands coefficients of one randomly selected slice (slice 44) of patient 1.

Out of fifty six directional sub-bands, the top ten coeffi-
cients with the highest entropy values are selected as hand-
crafted features which will be combined with CNN’s features.
It is observed from this figure that the directional sub-bands
which are located between indices 28 and 34 represent the
highest entropy values which correspond to the third scale.
It is also clear from the same figure that the directional sub-
bands of the first level are not representing truly dominant
features for most of the slices of each patient.

3.5.2. Fusion of Non-Subsampled Shearlet and CNN-based
Features

The fusion mechanisms of the NSST features with CNN-
based features are similar to the applied mechanisms for
NSCT features which are described in 3.4.2. The main ob-
jective is to explore the efficiency of adding NSST coefficients
which includes more dominant features than NSCT coeffi-
cients with less complexity.

3.6. Combining Non-Subsampled Contourlet and Non-
Subsampled Shearlet Features with CNN-based Features
for MR Segmentation

The NSCT and NSST transforms generate different set of
directional features using different decomposition filters and
they are performed with different complexity manners. In or-
der to achieve the full potential of the directional features as

well as the low frequency sub-band, the NSCT and NSST co-
efficients are combined then fused with CNN’s features.

The first fusion approach considers the directional features
from the NSCT bandpass and the NSST high-pass sub-bands.
The NSCT and NSST coefficients are concatenated with the
CNN'’s features at the end of the features extractor part of the
network and just before the last activation function (sigmoid)
as depicted in Figure 8.

The second approach aims at exploring the benefit of con-
catenating the low frequency sub-bands of NSCT or NSST co-
efficients with the MR image to increase the input dimension-
ality and add more data for training. Additionally, the direc-
tional sub-bands of both NSCT and NSST are concatenated at
the end of the network with CNN’s features as shown in Fig-
ure 9.

Directional NSST
sub-band

Directional NSCT
sub-band

Figure 8: The network design of concatenating the NSCT and NSST direc-
tional coefficients with the CNN'’s features.

Directional NSST
sub-band

Low pass NSST
sub-band

Directional NSCT
sub-band

Figure 9: The network design of concatenating the NSCT low pass coeffi-
cients with the input MR images. The NSCT and NSST directional coeffi-
cients are also concatenated with the CNN's features at the end of the net-
work.

3.7. Model’s Input

The input size of the designed CNN is 256 x 256 x 48 where
48 is the number of selected slices per patient. This huge
number of pixels overwhelm the GPU memory and creates
limitations when designing the network architecture and se-
lecting the hyperparameters such as the number of filters per
convolutional layer and the batch size. To overcome this sit-
uation, each volume is divided into overlapped patches to



minimize the input size and increase the size of the train-
ing datasets. The application of overlapped patches preserves
the spatial contextual information for each volume. Each vol-
ume is divided into nine overlapped patches with the size of
128 x 128 x 48.

3.8. Model’s Training

The deep network is trained from scratch using thirty pa-
tients for training, ten patients for validation, and ten pa-
tients for testing. The network weights are initialised using
Xavier/Glorot Uniform initialisation scheme which relies on
the numbers of input and output neurons to determine the
scale of initialization automatically. The network is trained
using Adam optimizer with an initial learning rate that is set
to 0.0001 then reduces by a factor of 0.75 on plateau mode
when the training accuracy is not increasing for five continu-
ous epochs. The momentum and the weight decay hyperpa-
rameters are set to 0.9 and 0.0005, respectively. The batch size
is 2 and the training process stops after 200 epochs or before
that when the training accuracy stops decreasing for 10 con-
tinuous epochs. All experiments are conducted on Tesla V100
GPU with 16 GB RAM. Keras with the backend of TensorFlow
APIs are used to implement the proposed model.

3.9. Model’s Evaluation

The segmentation results are evaluated using a set of met-
rics by comparing the segmented MR image with the ground
truth which are generated from CT images. The calculated
evaluation metrics are:

e Precision (PRE)

TP
PRE= —— (7)
TP+ FP
¢ Recall (REC)
TP
REC= —— 8)
TP+FN

* Dice similarity coefficient (DSC)

~ 2x TP
" @2xTP)+FP+FN

e Jaccard similarity coefficient (JSC)

DSC
2-DSC
where TP is true positive, FP is false positive, and FN is false
negative. These metrics are calculated from the confusion
matrix of the testing datasets in pixel-wise and patient-wise
as shown in the results section.

The segmentation performance is assessed with 95% con-
fidence intervals (CIs) where the p value is computed as fol-
lows:

DSC

9)

JSC= (10)

(I

\/metric(l—metric)
p=z

N
where N is the number of test samples, and z is the signifi-

cance level (1.96 for 95% CI). All values are computed over the
overall confusion matrix that accumulates all test datasets.

4. Results

The segmentation results of the conducted experiments of
adding either directional or low pass multi-resolution fea-
tures for bone, soft tissue, and air classes are illustrated in
Tables 3, 4, and 5, respectively.

4.1. Evaluating the Effectiveness of Adding Handcrafted Di-
rectional Coefficients

The impact of adding the directional NSCT coefficients
with the CNN’s features to perform MR segmentation is firstly
evaluated by concatenating only one directional NSCT or one
directional NSST coefficient per slice which has the highest
entropy value. The NSCT/NSST coefficient is concatenated
at the end of the network with the CNN'’s extracted features.
Secondly, the top ten selected NSCT/NSST coefficients with
the highest entropy values are concatenated at the end of the
network in order to increase the directional features. The ad-
dition of the ten NSCT/NSST coefficients is also evaluated by
concatenating the directional features at the beginning net-
work with the MR input images to pass through the convolu-
tional layers and perform another features extraction process
to maintain only the most useful and dominant features.

4.1.1. NSCT

The segmentation results of the three brain classes using
different mechanisms of concatenating the NSCT directional
features with the CNN-based features show that the aggrega-
tion of only one directional NSCT coefficient with the input
images has no improvement effect on the segmentation per-
formance. The increase of the dimensionality of the NSCT co-
efficients which are concatenated with the input image leads
to include more directional features and hence improves the
segmentation performance. On the other hand, the conser-
vation of the raw NSCT coefficients is able to improve the seg-
mentation by concatenating these features with the resultant
CNN'’s features at the end of the network. The reduction of the
NSCT coefficients dimensionality by selecting only the coeffi-
cient with the highest entropy value decreases the segmenta-
tion performance. Overall, the concatenation of NSCT coeffi-
cients at the end of the features extraction process generates
the best segmentation results even with the use of less coef-
ficients. The inclusion of more NSCT coefficients and con-
catenating them with CNN’s features without passing them
through the convolutional layers is the winning approach to
improve the segmentation accuracy of the three brain classes:
air, soft tissue, and bone. By comparing the DSC of the differ-
ent methods, it is noticeable that the accuracy of the bone
class is improved with a significant amount while the seg-
mentation of soft tissue and air classes is slightly improved.

The visual segmentation results of the brain classes using
the different proposed mechanisms of combining NSCT co-
efficients with CNN'’s features are depicted in Figure 10. The
observations from the three randomly selected slices reveal
that the baseline model which is represented in column c
generates many false positive pixels of air class in the nasal



Table 3: The evaluation metrics of the bone tissue segmentation using different mechanisms of concatenating the NSCT directional features with the CNN’s

features

Bone tissue

Model

PRE

REC

DSC

JSC

Baseline
+ 1 directional NSCT (input)
+ 1 directional NSCT (end)

0.6890+0.0006
0.6905+0.0006
0.6821+0.0006

0.5601+0.0006
0.5637+0.0006
0.5717+0.0006

0.6179+0.0006
0.6207+0.0006
0.6221+0.0006

0.4471+0.0006
0.4500+0.0006
0.4515+0.0006

+ 10 directional NSCT (input) 0.6910+0.0006 | 0.5539+0.0006 | 0.6149+0.0006 | 0.4439+0.0006
+ 10 directional NSCT (end) 0.6883+0.0006 | 0.5962+0.0006 | 0.6390+0.0006 | 0.4695%0.0007
+ 1 directional NSST (input) 0.6882+0.0006 | 0.5582+0.0006 | 0.6164+0.0006 | 0.4456+0.0006
+ 1 directional NSST (end) 0.7027+0.0006 | 0.5690+0.0006 | 0.6288+0.0006 | 0.4586+0.0007
+ 10 directional NSST (input) 0.721+0.00061 | 0.5595+0.0006 | 0.6301+0.0006 | 0.4600+0.0007
+ 10 directional NSST (end) 0.6737+0.0006 | 0.5779+0.0006 | 0.6221+0.0006 | 0.4515%0.0006
+ 1 LP NSCT (input) + 1 directional NSCT (end) 0.6931+0.0006 | 0.5744+0.0006 | 0.6282+0.0006 | 0.4580+0.0007
+ 1 LP NSCT (input) + 10 directional NSCT (end) 0.7072+0.0006 | 0.5446+0.0006 | 0.6153+0.0006 | 0.4444+0.0006

+ 1 LP NSST (input) + 1 directional NSST (end)
+ 1 LP NSST (input) +10 directional NSST (end)

0.7029+0.0006
0.7031+0.0006

0.5730+0.0006
0.5703+0.0006

0.6313+0.0006
0.6298+0.0006

0.4612+0.0007
0.4596+0.0007

+ 1 directional NSCT and NSST (end)

+ 10 directional NSCT and 10 directional NSST (end)
+ 10 directional NSST (input) and 10 directional
NSCT (end)

0.7218+0.0006
0.7113+0.0006
0.7128+0.0006

0.5485+0.0006
0.5831+0.0006
0.5484+0.0006

0.6233+0.0006
0.6416+0.0006
0.6199+0.0006

0.4528+0.0006
0.4723+0.0007
0.4492+0.0006

+ 1 NSST LP (input) + 1 directional NSCT and 1 direc- || 0.6941+0.0006 | 0.5751+0.0006 | 0.6290+0.0006 | 0.4588+0.0007
tional NSST (end)

+ 1 NSST LP (input) + 10 directional NSCT and 10 di- 0.6980+0.0006 | 0.5645+0.0006 | 0.6242+0.0006 | 0.4537+0.0006
rectional NSST (end)

Segnet [54] 0.6278+0.0006 | 0.3649+0.0006 | 0.4616+0.0007 | 0.3000+0.0006
Segnet + CRF [55] 0.6278+0.0006 | 0.3649+0.0006 | 0.4616+0.0007 | 0.3000+0.0006

Table 4: The evaluation metrics of the soft tissue segmentation using different mechanisms of concatenating the NSCT directional features with the CNN’s

features

Soft tissue

Model

PRE

REC

DSC

JSC

Baseline
+ 1 directional NSCT (input)
+ 1 directional NSCT (end)

0.8913+0.0001
0.8936+0.0001
0.8918+0.0001

0.9232+0.0001
0.9178+0.0001
0.9194+0.0001

0.9070+0.0001
0.9056+0.0002
0.9054+0.0001

0.8298+0.0002
0.8274+0.0001
0.8271+0.0002

+ 10 directional NSCT (input) 0.8906+0.0001 | 0.9214+0.0001 | 0.9058+0.0001 | 0.8277+0.0002
+ 10 directional NSCT (end) 0.8981+0.0001 | 0.9171+0.0001 | 0.9075+0.0001 | 0.8306+0.0002
+ 1 directional NSST (input) 0.8908+0.0001 | 0.9218+0.0001 | 0.9060+0.0001 | 0.8282+0.0002
+ 1 directional NSST (end) 0.8947+0.0001 | 0.9237+0.0001 | 0.9090£0.0001 | 0.8332+0.0002
+ 10 directional NSST (input) 0.8934+0.0001 | 0.9286+0.0001 | 0.9107+0.0001 | 0.8360+0.0002
+ 10 directional NSST (end) 0.8933+0.0001 | 0.9155+0.0001 | 0.9043+0.0001 | 0.8252+0.0002
+ 1 LP NSCT (input) + 1 directional NSCT (end) 0.8950+0.0001 | 0.9194+0.0001 | 0.9070£0.0001 | 0.8299+0.0002
+ 1 LP NSCT (input) + 10 directional NSCT (end) 0.8893+0.0004 | 0.9274+0.0003 | 0.9079+0.0004 | 0.8314+0.0005

+ 1 LP NSST (input) + 1 directional NSST (end)
+ 1 LP NSST (input) +10 directional NSST (end)

0.8940+0.0001
0.8946+0.0004

0.923540.0001
0.9221+0.0003

0.9085+0.0001
0.9081+0.0004

0.9085+0.0001
0.8317+0.0005

+ 1 directional NSCT and 1 directional NSST (end)

+ 10 directional NSCT and 10 directional NSST (end)
+ 10 directional NSST (input) and 10 directional
NSCT (end)

0.8905+0.0002
0.8943+0.0001
0.8917+0.0001

0.9296+0.0001
0.9273+0.0001
0.9287+0.0001

0.9096+0.0001
0.9105+0.0001
0.9098+0.0001

0.8342+0.0002
0.8357+0.0002
0.8345+0.0002

+ 1 NSST LP (input) + 1 directional NSCT and 1 direc- || 0.8940+0.0001 | 0.9219+0.0001 | 0.9078+0.0001 | 0.8311+0.0002
tional NSST (end)

+ 1 NSST LP (input) + 10 directional NSCT and 10 di- 0.8920+0.0001 | 0.9241+0.0001 | 0.9078+0.0001 | 0.8311+0.0002
rectional NSST (end)

Segnet [54] 0.8696+0.0002 | 0.8810+0.0002 | 0.8753+0.0002 | 0.7783+0.0002
Segnet + CRF [55] 0.8696+0.0002 | 0.8810+0.0002 | 0.8753+0.0002 | 0.7783+0.0002




Table 5: The evaluation metrics of the air tissue segmentation using different mechanisms of concatenating the NSCT directional features with the CNN

features
Air tissue

Model PRE REC DSC JSC
Baseline 0.9632+0.0001 | 0.9614+0.0001 | 0.9623+0.0001 | 0.9274+0.0001
+ 1 directional NSCT (input) 0.9600+0.0001 | 0.9642+0.0001 | 0.9621+0.0001 | 0.9270+0.0001
+ 1 directional NSCT (end) 0.9629+0.0001 | 0.9614+0.0001 | 0.9621+0.0001 | 0.9270+0.0001
+ 10 directional NSCT (input) 0.9615+0.0001 | 0.9622+0.0001 | 0.9619+0.0001 | 0.9265+0.0001
+ 10 directional NSCT (end) 0.9615+0.0001 | 0.9634+0.0001 | 0.9625+0.0001 | 0.9276+0.0001
+ 1 directional NSST (input) 0.9628+0.0001 | 0.9620+0.0001 | 0.9624+0.0001 | 0.9276+0.0001
+ 1 directional NSST (end) 0.9614+0.0001 | 0.9625+0.0001 | 0.9620+0.0001 | 0.9267+0.0001
+ 10 directional NSST (input) 0.9631+0.0001 | 0.9636+0.0001 | 0.9633+0.0001 | 0.9293+0.0001
+ 10 directional NSST (end) 0.9615+0.0001 | 0.9619+0.0001 | 0.9617+0.0001 | 0.9262+0.0001
+ 1 LP NSCT (input) + 1 directional NSCT (end) 0.9615+0.0001 | 0.9639+0.0001 | 0.9627+0.0001 | 0.9281+0.0001
+ 1 LP NSCT (input) + 10 directional NSCT (end) 0.9632+0.0002 | 0.9619+0.0002 | 0.9625+0.0002 | 0.9278+0.0003
+ 1 LP NSST (input) + 1 directional NSST (end) 0.9633+0.0001 | 0.9633+0.0001 | 0.9633+0.0001 | 0.9297+0.0001
+ 1 LP NSST (input) +10 directional NSST (end) 0.9613+0.0003 | 0.9635+0.0002 | 0.9624+0.0002 | 0.9276+0.0003
+ 1 directional NSCT and 1 directional NSST (end) 0.9632+0.0001 | 0.9624+0.0001 | 0.9628+0.0001 | 0.9283+0.0001
+ 10 directional NSCT and 10 directional NSST (end) 0.9647+0.0001 | 0.9616+0.0001 | 0.9631+0.0001 | 0.9289+0.0001
+ 10 directional NSST (input) and 10 directional || 0.9637+0.0001 | 0.9635+0.0001 | 0.9636+0.0001 | 0.9289+0.0001
NSCT (end)
+ 1 NSST LP (input) + 1 directional NSCT and 1 direc- || 0.9629+0.0001 | 0.9625+0.0001 | 0.9627+0.0001 | 0.9281+0.0001
tional NSST (end)
+ 1 NSST LP (input) + 10 directional NSCT and 10 di- || 0.9636+0.0001 | 0.9622+0.0001 | 0.9629+0.0001 | 0.9285+0.0001
rectional NSST (end)
Segnet [54] 0.9083+0.0002 | 0.9510+0.0001 | 0.9291+0.0001 | 0.8677+0.0002
Segnet + CRF [55] 0.9083+0.0002 | 0.9510+0.0001 | 0.9291+0.0001 | 0.8677+0.0002

cavities area as well as misclassified air and soft tissue pix-
els. Moreover, the quality of the segmentation of the bone
in some challenging locations (e.g., nasal cavities area) is not
good. However, the segmentation of the bone in other parts
of the head is promising. The slices in column d show that
the addition of only one NSCT coefficient with the input MR
image removes some discontinuities in the bone class com-
pared to the baseline model. Additionally, the segmentation
of the air cavities pixels is enhanced. The increase of the di-
mensionality of the input by adding ten NSCT coefficients is
not improving the segmentation as the false positive pixels
of bone in nasal cavities area are increased with the appear-
ance of more bone discontinuities. The results of concate-
nating the NSCT coefficients at the end of the network with
CNN’s features by adding one or ten NSCT coefficients show
the expansion of the false positive pixels of air class in most of
the selected slices. However, the slice in the first row (column
e) shows that the segmentation of some challenging areas in
the head is improved. Overall, the visual comparison indi-
cates that the increase of the NSCT coefficients dimensional-
ity which in turns increases the input size is necessary to im-
prove the segmentation results. The capability of the model
is improved when more directional features are added.

4.1.2. NSST

The quantitative results of the segmentation of the brain
using different mechanisms of concatenating the NSST di-
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Figure 10: The segmentation results of some randomly selected slices from
the testing datasets. (a) MR images, (b) the CT images which used as ground
truth, (c) the segmentation results with the baseline model, (d) the segmen-
tation results with the addition of one directional NSCT coefficient with the
input, (e) the segmentation results with the addition of ten directional NSCT
coefficients with the input, (f) the segmentation results with the addition of
one directional NSCT coefficient with CNN’s features at the end of the net-
work, (g) the segmentation results with the addition of ten directional NSCT
coefficients with the CNN’s features at the end of the network.

rectional features with the convolutional network based fea-
tures reveal that the aggregation of the directional NSST coef-
ficients is able to improve the segmentation results when it is
concatenated at the end of the network. The concatenation
of these handcrafted features with the generated CNN-based
features at the end of the network shows good improvements



in terms of most of the evaluation metrics and specially for
the bone and soft tissue classes. For the air class, only the
recall metric is slightly improved. The increase of the dimen-
sionality of the NSST coefficients which is experimented by
selecting the top ten directional coefficients and concatenat-
ing them at the end of the network shows no improvements.
Thus, only one directional NSST coefficient is able to add suf-
ficient directional information and enriches the features as
well as the segmentation performance. However, the con-
catenation of one directional NSST features with the input
MR images does not have any impact due to injection of few
examples of a new type of data to the network. The increase
of the dimensionality of the network’s input by concatenat-
ing ten NSST directional coefficients increases the capability
of the network to learn enough features from the directional
NSST data then outperforms other proposed mechanisms of
adding the NSST coefficients to the CNN.

The visual segmentation results of some randomly selected
slices of the testing datasets are illustrated in Figure 11. The
slices shown in column d are the outputs of the model which
concatenates only one NSST directional coefficient with the
input MR image. Compared to the visual output of the base-
line model, this model is not an efficient approach to en-
hance the brain segmentation as it increases the false nega-
tive of the bone which decreases the model sensitivity. On
the other hand, the addition of more NSST coefficients to in-
crease the input’s dimensionality enhances the segmentation
of the challenging areas of the bone class. The outputs of the
models which concatenate one NSST directional coefficient
and ten NSST directional coefficients with the CNN'’s features
at the end of the network are shown in column f and column
g, respectively. The results show some misclassified soft tis-
sue pixels as air and other misclassified bone pixels as soft
tissue. Moreover, the discontinuities in the bone class are in-
creased. By comparing the slices in column f and g, it is clear
that the segmentation of the model which uses ten NSST di-
rectional coefficients is better than the model that takes only
one NSST coefficient especially in the nasal cavity area. The
concatenation of the NSST coefficients with the CNN’s fea-
tures as raw features without passing them through the con-
volutional layers shows its ability to generate more accurate
results by using only one NSST coefficients rather then ten
NSST coefficients. One directional coefficient per slice is able
to add the useful directional features to improve the segmen-
tation results.

4.2. Evaluating the Effectiveness of Adding Handcrafted Low
Pass Coefficients

The decomposition of NSCT and NSST generate only one
low pass (LP) sub-band which represents the approximate in-
formation which can be used as an additional data input to
the MR images. Both NSCT and NSCT apply the Laplacian
pyramid filter which resulted into one identical low pass sub-
band. Hence, the same low pass sub-band is concatenated to
the input MR image while the NSCT/NSST directional coef-
ficients are concatenated at the end of the network to study
the effect of combining low pass sub-band and NSCT/NSST
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Figure 11: The segmentation results of some randomly selected slices from
the testing datasets. (a) the MR images, (b) the CT images which used as
ground truth, (c) the segmentation results with the baseline model, (d) the
segmentation results with the addition of one directional NSST coefficient
with the input, (e) the segmentation results with the addition of ten direc-
tional NSST coefficients with the input, (f) the segmentation results with the
addition of one directional NSST coefficient with CNN’s features at the end of
the network, (g) the segmentation results with the addition of ten directional
NSST coefficients with the CNN'’s features at the end of the network.

high pass sub-bands. The inclusion of low pass sub-band in-
creases the size of the training datasets and tends to add more
visual representations. Moreover, the directional features of
one or more multi-resolution features are concatenated with
CNN’s features at the end of the network.

4.2.1. NSCT

The results of the objective evaluation of the brain segmen-
tation using both low pass and band pass NSCT sub-bands
concatenated with the CNN’s features indicate that the addi-
tion of the low pass NSCT sub-band with only one directional
NSCT coefficient at the end of the network is able to attain
better segmentation performance for the bone class.

The visual segmentation results of the brain using the pro-
posed mechanisms are depicted in Figure 12. The figures
show that the addition of the low pass sub-band of NSCT
is improving slightly the segmentation accuracy of the bone
class in the nasal cavities area. However, the model that con-
catenates the low pass sub-band with the input and ten di-
rectional NSCT coefficients with the CNN'’s features is not im-
proving the segmentation and is even performing worst than
the baseline model.

4.2.2. NSST

According to the segmentation results of the the three
classes by concatenating the low pass sub-band of the NSST
with the input image and the high pass sub-bands of NSST
coefficients with CNN'’s features, the addition of the low
pass sub-band is enhancing the segmentation accuracy and
specifically with the inclusion of only one directional NSST
sub-band. The second model that takes ten NSST coefficient
while the low pass is concatenated with the input shows bet-
ter performance compared to the model that only concate-
nates ten NSST coefficients without low pass sub-band inclu-
sion. The inclusion of low pass coefficient of NSST is able
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Figure 12: The segmentation results of some randomly selected slices from
the testing datasets. (a) the input MR images, (b) the CT images which used
as ground truth, (c) the segmentation results with the baseline model, (d) the
segmentation results with the addition of the NSCT low pass sub-band (in-
put) and one directional NSCT coefficient (end), (e) the segmentation results
with the addition the NSCT low pass sub-band (input) and ten directional
NSCT coefficients (end).

to reduce the false positive of bone class and the false neg-
ative of air class. Collectively, the model that takes less data
and produces better results is the model of choice. Hence,
the inclusion of low pass sub-band with one NSST directional
coefficient is the winning approach. Moreover, the results
prove that the model that uses the low pass sub-band con-
catenated with the input MR image is able to extract useful
features from two different inputs with different nature and
resolutions. Therefore, this model is robust and reliable to be
used for other transfer learning applications.

The visual segmentation results of the brain using the pro-
posed mechanisms are depicted in Figure 13. The slices show
that the inclusion of low pass sub-band of NSST coefficient
is improving the bone segmentation significantly compared
to the baseline model segmentation. It is also able to seg-
ment the bone in the challenging areas of the head such as the
nasal cavity and reduces the discontinuities. However, there
are some misclassified soft tissue pixels as air. The concate-
nation of the low pass sub-band with the input and adding
one NSST directional coefficient with the CNN’s features at
the end of the network is producing more accurate segmen-
tation than using ten NSST directional coefficients since the
bone discontinuities are reduced as well as the false positive
of the air and bone classes. However, the model with ten di-
rectional NSST coefficients is able to segment the challenging
bone area in the head.

4.3. Evaluating the Effectiveness of Adding Combined Hand-
crafted NSCT and NSST Coefficients
Aiming at taking the full potential of directional hand-
crafted features and adding more useful features to the seg-
mentation model, the coefficients of both NSCT and NSST
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Figure 13: The segmentation results of some randomly selected slices from
the testing datasets. (a) the MR images, (b) the CT images which used as
ground truth, (c) the segmentation results with the baseline model, (d) the
segmentation results with the addition of the NSST low pass sub-band (in-
put) and one directional NSST coefficient (end), (e) the segmentation results
with the addition the NSST low pass sub-band (input) and ten directional
NSST coefficients (end).

are combined with different designs. Firstly, only one di-
rectional coefficient with the highest entropy value of each
transform is selected and concatenated with the CNN'’s fea-
tures. Secondly, the dimensionality of the directional features
is increased by selecting the top ten directional coefficients
of both transforms. The third experiment is inspired by the
achieved results of concatenating ten directional NSST coef-
ficients with the input or concatenating ten directional NSCT
coefficients at the end of the network with CNN'’s features.
Hence, both mechanisms are combined by concatenating ten
directional NSST coefficients with the input and ten direc-
tional NSCT coefficients at the end of the network. Addition-
ally, the addition of the low pass sub-band is evaluated where
the low pass sub-band of NSST is concatenated with the in-
put MR image and the directional coefficients of both NSCT
and NSST are combined with CNN’s features at the end of the
network.

The results show that the combination of only one direc-
tional coefficient of each transform is not improving the seg-
mentation accuracy significantly. It is slightly improving the
soft tissue and air and reduces the false positive of the bone
class. Increasing the dimensionality of the directional coeffi-
cients of both transforms is improving the segmentation re-
sults by comparing the DSC of the three classes. This combi-
nation is outperforming all other combination mechanisms
and shows that adding more directional features using dif-
ferent multiresolution transforms is adding value to the seg-
mentation model. Combining NSCT and NSST while pro-
cessing each multi-resolution type differently (i.e., NSST with
the input and NSCT at the end) is not a promising approach.
NSCT coefficients are used as raw features while NSST co-
efficients are combined with the input and passed through



the network layers for further processing. The results of each
tissue class reveal that the segmentation performance is de-
creased compared to other combination mechanisms. The
proposed segmentation model is not capable to handle this
variety of features and a more sophisticated model should be
proposed to address this combination. The results of adding
the low pass sub-band with the input image while concate-
nating one or many directional coefficients with the CNN’s
features are not revealing any significant segmentation im-
provement except for some slight improvements in the air
class.

Table 6 and Figure 14 show the evaluation metrics per
patient of the testing datasets while using the model which
combines ten directional coefficients of NSCT and ten direc-
tional coefficients of NSST sub-bands with CNN’s features at
the end of the network. The box plot of the bone class in-
dicates a high variability on the segmentation performance
with high standard deviation value. One reason of this high
variability is the inclusion of patients with different neurolog-
ical diagnosis where each neurological condition affects the
bone health differently [56]. As illustrated in Table 6, the DSC
value of the bone class of patient 7 is very low compared to
patient 9. The proposed model has the capability to segment
the bone class accurately for some patients while it fails with
others. The variability of the results of bone segmentation
does not provide any guarantee that this method is robust for
patients with different anatomical structures.

0.20
0.10

0.00

1 1

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30

——

Precision
DSC

M Air ® Soft tissue ¥ Bone B Air = Soft tissue ® Bone

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70 . [
0.60 :

0.50

0.40

0.30

0.20

0.10

0.00

—_—
==

=

® Air ® Soft tissue ™ Bone

Recall
JSC

B Air = Soft tissue ® Bone

Figure 14: The box plots of the evaluation metrics of the three tissue classes
of the testing datasets using the method which uses the combined ten direc-
tional NSCT and NSST coefficients concatenated with CNN features at the
end of the network.

The segmentation results of the proposed mechanisms are
depicted in Figure 15 where the slices that are located at
columns d and e show that the combination of two different
directional handcrafted features is improving the segmenta-
tion performance compared to the baseline model in column
c. The inclusion of one directional coefficient of each trans-
form helps to identify the soft tissue class in very challeng-
ing areas in the head. It also decreases the false positive of
air class which increases the precision of air class inside the
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head contour. The increase of the number of directional fea-
tures and concatenating them with CNN'’s features reduces
the false positive of air and bone classes although some mis-
classified bone pixels as soft tissue pixels are still exist. Col-
umn f depicts that the addition of low pass sub-band with
the directional coefficients is improving the bone class seg-
mentation while decreasing the sensitivity and the precision
of soft tissue class. The results of the dimensionality increase
of the directional coefficients which are shown in column g
indicate the appearance of more discontinuities in bone class
which are not appearing in column f. Moreover, the false neg-
ative pixels of soft tissue class are increased. Overall, the per-
formance of adding the low pass sub-band with one or ten
directional coefficients is not adding a substantial improve-
ment in the segmentation task.

Figure 15: The segmentation results of some randomly selected slices from
the testing datasets. (a) the MR images, (b) the CT images which used as
ground truth, (c) the segmentation results with the baseline model, (d) the
segmentation results by combining one directional NSCT and NSST coeffi-
cients, (e) the segmentation results by combining ten directional NSCT and
NSST coefficients, (f) the segmentation results by adding the NSST low pass
sub-band with the input image and combining one directional NSCT and
NSST coefficients with CNN's features at the end of the network, (g) the seg-
mentation results by adding the NSST low pass sub-band with the input im-
age and combining ten directional NSCT and NSST coefficients with CNN’s
features at the end of the network.

4.4. Validation

The proposed methods are compared with other segmen-
tation studies that applied CNN to segment T1-w MR images
for PET attenuation correction [54, 55] . These methods are
re-implemented then trained and tested using the existing
datasets to segment the brain into three tissue classes: air,
soft tissue, and bone. The first method which is proposed
by [54] is a deep CNN that follows the SegNet architecture to
segment the 3D brain MR image into three classes: air, bone,
and soft tissue. The network is trained with T1-w MR images
and evaluated using CT images. The same network architec-
ture is re-implemented with some slight changes to cope with
the size of the existing datasets using the same training pa-
rameters and hyperparameters. The second approach which
is proposed by [55] has applied transfer learning technique
by using a pre-trained model with T1-w MR images. The
pretrained model is retrained using MR UTE images as in-
put to the network. 3D fully connected conditional random



Table 6: The evaluation metrics of the segmentation of the three tissue classes of each patient in the testing dataset using the combination of ten directional
NSCT and ten directional NSST coefficients with CNN’s features at the end of the network.

Bone

Soft tissue

Air

Patients ‘

PRE

REC

DsC

JAC

PRE

REC

DsC

JAC

PRE

REC

DSC

JAC

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8
Patient 9
Patient 10

0.8129+0.0005
0.8478+0.0005
0.6361+0.0006
0.6816+0.0006
0.8975+0.0004
0.4683+0.0007
0.1960+0.0005
0.5477+0.0006
0.9123+0.0004
0.6400+0.0006

0.5180+0.0007
0.6804+0.0006
0.3906+0.0006
0.3604+0.0006
0.7856+0.0005
0.5309+0.0007
0.0909+0.0004
0.7918+0.0005
0.8238+0.0005
0.4761+0.0007

0.6328+0.0006
0.7549+0.0006
0.4840+0.0007
0.4715+0.0007
0.8378+0.0005
0.4976+0.0007
0.1242+0.0004
0.6475+0.0006
0.8658+0.0004
0.5460+0.0006

0.4628+0.0007
0.6063+0.0006
0.3192+0.0006
0.3084+0.0006
0.7209+0.0006
0.3312+0.0006
0.0662+0.0003
0.4788+0.0007
0.7633+0.0006
0.3755+0.0006

0.9197+0.0004
0.9269+0.0001
0.9079+0.0001
0.8585+0.0002
0.9416+0.0001
0.9200+0.0001
0.9232+0.0001
0.9588+0.0001
0.9581+0.0001
0.6749+0.0002

0.9586+0.0003
0.9424+0.0001
0.9255+0.0001
0.9373+0.0001
0.9574+0.0001
0.8743+0.0002
0.9185+0.0001
0.8796+0.0002
0.9727+0.0001
0.9037+0.0001

0.9387+0.0003
0.9346+0.0001
0.9166+0.0001
0.8962+0.0001
0.9494+0.0001
0.8965+0.0001
0.9208+0.0001
0.9175+0.0001
0.9653+0.0001
0.7727+0.0002

0.8845+0.0004
0.8773+0.0002
0.8460+0.0002
0.8119+0.0002
0.9037+0.0001
0.8125+0.0002
0.8532+0.0002
0.8476+0.0002
0.9329+0.0001
0.6296:+0.0002

0.9716+0.0002
0.9583+0.0001
0.9507+0.0001
0.9731+0.0001
0.9814+0.0001
0.9683+0.0001
0.9543+0.0001
0.9815+0.0001
0.9848+0.0001
0.9136:+0.0002

0.9896+0.0001
0.9862+0.0001
0.9707+0.0001
0.9805+0.0001
0.9914+0.0001
0.9909+0.0001
0.9896+0.0001
0.9922+0.0001
0.9889+0.0001
0.7516+0.0002

0.9805+0.0002
0.9720+0.0001
0.9606+0.0001
0.9768+0.0001
0.9864+0.0001
0.9794+0.0001
0.9716+0.0001
0.9868+0.0000
0.9869+0.0001
0.8247+0.0002

0.9617+0.0003
0.9456+0.0001
0.9242+0.0001
0.9547+0.0001
0.9731+0.0001
0.9597+0.0001
0.9448+0.0001
0.9740+0.0001
0.9741+0.0001
0.7017+0.0003

field (CRF) is applied to the segmentation results as a post-

tissue.

processing and refinement technique.

The results of the evaluation metrics of three brain classes
segmentation of the three proposed methods compared with
other studies in the literature show that the proposed meth-
ods which introduce the concatenation of different features
from NSCT and NSST coefficients with CNN’s features with
different aggregation mechanisms and designs are enhancing
the segmentation performance of the three brain classes. The
baseline model which represents the CNN without the addi-
tion of any handcrafted features is outperforming the other
proposed methods in the literature. Liu et al. [54] applied the
Segnet architecture to perform the MR images segmentation
for PET attenuation correction and Jang et al. [55] applied
the same pretrained model as [54] using UTE MR images by
applying the transfer learning technique in addition to condi-
tional random field as post processing technique. The model
which combines both directional features of NSCT and NSST
shows its superiority in performing the segmentation of the
bone and soft tissue classes.

Figure 16: The segmentation results of some randomly selected slices from
the testing datasets. (a) the input MR images, (b) the CT images which used
as ground truth, (c) the segmentation results of the baseline model, (d) the
segmentation results with ten directional NSCT coefficients concatenated
with CNN’s features (end), (e) the segmentation results with the addition of
the NSST low pass sub-band (input) and one directional NSST coefficients
(end), (f) the segmentation results by combining ten directional NSCT and
NSST coefficients (end), (g) the segmentation results of the model proposed

. . by [54], (h) the segmentation results of the model proposed by [55].
The segmentation results of some randomly selected slices Y & prop Y

are illustrated in Figure 16. The visual observations indi-
cate that the models that include the handcrafted NSCT and
NSST coefficients for segmenting the brain are outperform-
ing the other proposed methods in the literature. The ap-
proach of [54] which is shown in column g is not able to iden-
tify the bone and air classes in challenging areas. Moreover,
the precision and the sensitivity of the bone and air classes
are considerably lower than the proposed baseline model.
The approach of [55] is also not showing any improvement in
the segmentation results since the conditional random field
which used for post processing is not enhancing the segmen-
tation performance.

4.5. Pseudo CT Generation

The segmentation maps are converted into pseudo CT im-
ages by assigning a Hounsfield unit value to each tissue class.
The Hounsfield unit values are obtained from another study
[54] where bone, soft tissue, and air classes are represented
with 939 HU, 42 HU, and - 1000 HU values, respectively. The
mean absolute error (MAE) between the generated pseudo
CT and CT images with continuous HU values are calculated
as shown in Table 7.

The main differences of the three proposed methods
(shown in columns d - f) are as follows. The addition of the
NSCT coefficients with CNN'’s features is able to distinguish
between the soft tissue and the bone classes although they
appear more cases of false positive of air class in different lo-
cations. Besides that, the concatenation of NSST coefficients
increase the sensitivity of soft tissue class and improves the
performance of the bone segmentation. Moreover, the com-
bination of both transforms coefficients with the CNN’s fea-
tures increases the competency of the model to segment the
air class. However, there are more discontinues that appear
in the bone class and more misclassified bone pixels as soft

5. Discussion and Conclusion

This work has proposed the aggregation of multiresolu-
tion handcrafted features such as NSCT and NSST transforms
with CNN-based features to enhance the brain T1-w MR im-
ages segmentation. The handcrafted features consist of low
pass sub-band which is concatenated with the input MR im-
ages and directional coefficients of different levels which are
concatenated with CNN’s features at the end of the network.

A quantitative evaluation using the brain MR images of
ten patients has been carried out to study the impact of
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Table 7: MAE between the generated pseudo CT images and the CT images with continuous values. The proposed method refers to the combination of 10
directional NSCT and 10 directional NSST coefficients with CNN based features.

Patient MAE (proposed) MAE ([54])
patient 1 133.52 155.60
patient 2 131.83 194.65
patient 3 167.43 196.30
patient 4 133.25 178.53
patient 5 124.81 163.56
patient 6 104.66 146.67
patient 7 136.86 159.36
patient 8 109.99 138.39
patient 9 113.59 155.66
patient 10 283.86 304.28
Mean 143.98 79.30
SD 49.53 45.44

adding the multiresolution handcrafted features with CNN’s
features. The addition of these features separately or com-
bined has shown their efficiency in enhancing the segmen-
tation results. The approach of adding NSCT directional fea-
tures with CNN’s features has shown the potential to improve
the segmentation results when using ten directional coeffi-
cients. The inclusion of the low pass sub-band with the input
MR image has not shown any improvement in the segmenta-
tion results. One reason of this is the need to design a deeper
model that is able to handle the low pass coefficient of the
NSCT transform and extract the dominant features. The ad-
dition of only raw directional NSCT features without the need
to increase the dimensionality of the input MR images with
the low pass sub-band is the model of choice as it requires
less complicated modelling and processing while improving
the segmentation accuracy.

On the other hand, the model that concatenates the low
pass sub-band with the input image and one directional
NSST coefficients has shown a good segmentation perfor-
mance. The Shear information of one NSST directional co-
efficient are enough to add the directionality features to the
model. Moreover, the combined NSCT and NSST coefficients
has shown even better performance where different direc-
tional information are combined with CNN'’s features.

Furthermore, a subjective evaluation using the testing
datasets of ten patients has been conducted by selecting
three random slices from different patients to draw the vi-
sual observations. The segmentation results have demon-
strated that the low pass sub-band which is generated by the
Laplacian pyramid filter does not add a significant improve-
ment to the brain segmentation. Overall, the directional co-
efficients are the most useful features which have enhanced
the segmentation performance when concatenated as raw
coefficients with CNN’s features at the end of the network.
The experiments have also shown that the proposed mod-
els are able to take inputs with different resolutions such as
the raw MR image and the low pass sub-band of the mul-
tiresolution transform. The model in which one directional
NSST coefficients are concatenated with CNN’s features is the
optimal approach to improve the segmentation performance
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and requires less number of handcrafted features either in the
model input or the additional added ones at the end of the
network. Hence, this model has less complexity and requires
less computation time and resources. Additionally, the NSST
directional coefficients consist of more amount of informa-
tion compared to the NSCT directional coefficients as it was
indicated by the entropy values of different slices of each vol-
ume.

One limitation of these proposed methods is the lack of ex-
perimenting the ideal decomposition levels of the multireso-
lution transforms. The more decomposition levels, the more
useful directional features are produced. However, there is a
trade off between the model complexity and the generation
of useful directional coefficients. In this work, the NSST and
NSCT coefficients are produced by decomposing the system
into four levels where number four is randomly selected. The
decomposition levels value should be carefully chosen em-
pirically to select the optimal number which generates useful
features with a reasonable amount of complexity and com-
putation time.

Another limitation of this work and due to the high vari-
ability of the results of bone class segmentation, there is a
need to use one segmentation model for each neurological
condition where a model should be trained and tested with
datasets that include patients with the same clinical diagno-
sis.
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