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ABSTRACT

Unsteady nonlinear shallow-water flows typically emit inertia-gravity waves through a process called “spontaneous adjustment-emission.” This
process has been studied extensively within the rotating shallow-water model, the simplest geophysical model having the required capability.
Here, we consider what happens when the hydrostatic assumption underpinning the shallow-water model is dropped. This assumption is in fact
not necessary for the derivation of a two-dimensional or single-layer flow model. All one needs is that the horizontal flow field be independent of
height in the fluid layer. Then, vertical averaging yields a single-layer flow model with the full range of expected conservation laws, similar to the
shallow-water model yet allowing for non-hydrostatic effects. These effects become important for horizontal scales comparable to or less than the
depth of the fluid layer. In a rotating flow, such scales may be activated if the Rossby deformation length (the ratio of the characteristic gravity-
wave speed to the Coriolis frequency) is comparable to the depth of the fluid layer. Then, the range of frequencies supporting inertia-gravity waves
is compressed, and the group velocity of these waves is reduced. We find that this change in wave properties has the effect of strongly suppressing
spontaneous adjustment-emission and trapping inertia-gravity waves near regions of relatively strong circulation.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0057707

I. INTRODUCTION

In the atmosphere and oceans, dynamical and thermodynamical
fields often closely satisfy certain relations, called balance relations, the
simplest of which are hydrostatic and geostrophic. The latter apply
when the fluid acceleration is small compared to the remaining terms
in the momentum equations. Such balance relations (which can be
more complicated1–8) are useful for separating relatively high fre-
quency waves, such as inertia-gravity waves, from the remaining rela-
tively low frequency balanced flow.3,7,9–14 This balanced flow can be
thought of as arising from the potential vorticity (PV) field (the master
variable), and the balanced relations provide a means to determine all
of the (balanced) dynamical and thermodynamical fields by “PV
inversion.”15

Balance has been an important theoretical concept, underlying the
derivation of reduced sets of equations like quasi-geostrophic,16–18 which
have proved immensely fruitful. This concept has also enabled research-
ers to better understand the various ways nearly balanced flows sponta-
neously emit inertia-gravity-waves,19–34 or how imbalanced flows adjust
to a nearly balanced state.35–40 Balance has also been important practi-
cally, for example, in estimating oceanic flow fields from limited
data41–44 or in weather forecasting during data assimilation.45

Here, we will not attempt to review the vast literature on the sub-
ject of balance, as excellent reviews can be found in the two collec-
tions,22,23 and more recently in a special issue on spontaneous
imbalance.46 Here, we focus on single-layer rotating shallow-water
(SW) flows, possibly the most widely studied model in this context
due to its relative simplicity: there are just three scalar evolution equa-
tions, one of which can be taken to express material conservation of
PV, while the other two allow for inertia-gravity waves (IGWs), the
imbalance.3 Replacing the latter by balance relations results in a bal-
anced model with no IGWs. The novelty in this paper is to relax the
hydrostatic approximation, which forms the basis of the traditional
SW model. We shall see that this can have a profound impact on
IGWs, generally weakening their emission.

The SW model has a long history going back to Saint-Venant47

in 1871. The model reduces the parent three-dimensional Euler equa-
tions to a single-layer two-dimensional set of equations by assuming
the horizontal flow is independent of depth and by imposing the
hydrostatic approximation. These are valid so long as horizontal scales
L are large compared to the mean fluid depth H. In a rotating flow
with Coriolis frequency f, there is an additional length scale LD ¼ c=f
called the “Rossby deformation length,” where c ¼ ffiffiffiffiffiffi

gH
p

is the
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short-scale gravity wave speed and g is the acceleration due to gravity (or
reduced gravity).18 The tacit assumption is that LD � H, or at least that
L� H even when LD � H. However, commonly, rotating SW flows
develop small scales, especially in PV, as a result of nonlinear flow inter-
actions.48,49 Horizontal scales with L < LD inevitably form, and so the
validity of the rotating SW model requires H � LD, i.e., a mean fluid
depth much smaller than the intrinsic length scale imposed by rotation.
This is trivially satisfied by a non-rotating flow since then LD !1.

Regardless of rotation, the hydrostatic approximation underpin-
ning the SW model breaks down when L � H. Nevertheless, one can
still construct a single-layer two-dimensional flow model that con-
serves PV and all the integral invariants associated with symmetries.
This model was first derived by Serre50 in 1953, then Su and
Gardner51 in 1969, but is often credited to Green and Naghdi52 in their
1976 paper. Miles and Salmon53 in 1985 established its variational
foundation, ensuring conservation, and the model has since seen wide-
spread application to non-rotating, often unidirectional flows.53–67

Given the many people who could be credited for this model, it might
be fairer to call it the “non-hydrostatic shallow-water model,” espe-
cially since the only difference from the SW model is the relaxation of
the hydrostatic approximation. Notably, this model and the original
SW model both still assume that the horizontal flow is independent of
depth. Moreover, one can show that the non-hydrostatic SW model is
simply the vertical average of the three-dimensional Euler equations.49

All conserved quantities, including PV, are just the vertical averages of
their three-dimensional counterparts. For this reason, we call this
model the “vertically averaged (VA) model” below.

The inclusion of rotation, or the Coriolis acceleration (relevant
for applications to geophysical fluid dynamics), is relatively
recent.55,68–70 Pearce and Esler69 derived the VA equations in their
vorticity-divergence form, widely used in SW studies of atmosphere/
ocean dynamics and convenient for a pseudo-spectral numerical treat-
ment. They verified their numerical model for an analytic solution of a
propagating uni-directional Cnoidal wave and studied the PV evolu-
tion in an unstable jet. (We have also done similar tests for the method
used here.49) Recently, Alemi Ardakani70 derived generalized varia-
tional SW and VA models for a shallow fluid sloshing inside a con-
tainer subject to arbitrary (three-dimensional) translations and
rotations. They proved that there exists a materially conserved PV that
is a combination of the PV found by Miles and Salmon53 for the non-
rotating VA equations and the PV found by Dellar and Salmon55 for
the SW equations under arbitrary rotation (complete Coriolis force).

Most of these works have been theoretical. Prior to our own
work,49,71,72 only Pearce and Esler69 studied the evolution of nonlinear
rotating flows (and they restricted attention to the PV dynamics in a
single example). Little, therefore, is known about the actual differences
between the SW and VA models or about the general properties of
rotating VA flows. Significantly, we have shown that the VA model is
substantially more accurate than the SW model by comparing simula-
tions of horizontal shear instability directly with simulations of the
three-dimensional Euler equations with a free surface.49 The greater
accuracy of the VA model is well known in studies of unidirectional
flows without rotation, and this is due in part to the better representa-
tion of wave dispersion, a feature entirely absent in the SW model
(without rotation).

In the present paper, we focus on the IGWs generated from ini-
tially balanced, turbulent, rotating shallow-water flows, comparing

and contrasting the SW and VA models. These flows develop small
scale features, not only in PV, but also in vorticity and (horizontal)
divergence. We find that the key parameter is the frequency ratio f =N ,
where f is the Coriolis frequency and N ¼

ffiffiffiffiffiffiffiffiffiffiffi
3g=H

p
may be called the

“buoyancy frequency” since, like in the parent three-dimensional
model, linear wave frequencies lie between f and N. When f =N � 1,
the SW and VA models agree closely (and agree perfectly in the limit
f =N ! 0). However, when f =N � 1, there is a stark difference in the
form and amplitude of the IGWs emitted in the SW and VA model
simulations, to the extent that IGWs in the VA model are almost
entirely suppressed. Notably f =N � 1 implies LD � H, i.e., that the
Rossby deformation length is comparable to the mean fluid depth.

This parameter regime is not typical in the Earth’s atmosphere
and oceans, where f =N � 10�2–10�1. However, this is an average
estimate,16–18 and there are significant regional variations. Regions of
weak stratification do occur such as in the Mediterranean Sea73,74 and
in polar oceans.75 Furthermore, even when f =N � 1, strong disper-
sion occurs for horizontal scales comparable to or smaller than the
fluid depth, an effect not captured by the SW model. More generally,
studying the impact of this dispersion contributes to our fundamental
understanding of geophysical fluid dynamics, both on Earth and on
other planets.

The plan of this paper is as follows. In Sec. II, we briefly review
the SW and VA models and the numerical method used to perform
simulations. In Sec. III, we present our results, comparing a series of
simulations differing only in the mean depth H, with the limit H ! 0
corresponding to the SW model. Here, we compare the evolution of
various fields, balanced and imbalanced, and also examine wavenum-
ber and frequency spectra. Conclusions are offered in Sec. IV, where
we discuss the significance of our results for geophysical rotating,
weakly stratified flows.

II. THE FLOW MODELS AND THEIR NUMERICAL
TREATMENT

In the momentum-mass formulation, both the SW and VA mod-
els can be written in the form

@u
@t
þ u � ruþ f u? ¼ �rp

h
; (1)

@h
@t
þr � ðhuÞ ¼ 0; (2)

where u ¼ ðu; vÞ is the two-dimensional vector velocity, h is the free
surface height (here above a flat bottom at z¼ 0), f is the Coriolis fre-
quency, u? ¼ ð�v; uÞ, and p is the vertically integrated pressure
(divided by the constant density). In the SW model,

p ¼ 1
2

gh2; (3)

where g is the acceleration due to gravity (or reduced gravity). Then
the pressure gradient term in (1) reduces to the familiar�grh hydro-
static acceleration. In the VA model, there is an additional non-
hydrostatic pressure pn so that

p ¼ 1
2

gh2 þ pn; (4)

where pn is determined from h and u by solving the linear elliptic
equation49

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 086601 (2021); doi: 10.1063/5.0057707 33, 086601-2

VC Author(s) 2021

https://scitation.org/journal/phf


r � h�1rpn

� �
� 3h�3pn ¼ ~c; (5)

where

~c ¼ f f� gr2hþ 2 Jðu; vÞ � d2
� �

; (6)

in which f ¼ �r � u? is the (vertical component of the) vorticity,
d ¼ r � u is the (horizontal) divergence, and Jð�; �Þ is the Jacobian
operator.

Both models possess a material invariant, potential vorticity (PV)
q, a direct consequence of Kelvin’s circulation theorem. That is, PV is
conserved following fluid “particles,” i.e.,

@q
@t
þ u � rq ¼ 0: (7)

In the VA model, PV is the vertical integral of the 3D Rossby–Ertel
PV,49 first shown by Miles and Salmon.53 It is similar to the well-
known SW form but has an additional Jacobian term

q ¼ fþ f
h
þ 1

3
Jðh; dÞ: (8)

Apart from PV, both models conserve energy and (in an infinite
domain) linear and angular momentum.49 They also conserve all inte-
grals of functionals of PV, the “Casimir invariants,” as a consequence
of material conservation of PV.

Numerically, it has proved advantageous to use PV as a prognos-
tic variable, and to use combinations of h and u for the other two vari-
ables, instead of simply h and u directly.3,4,7,49,71,76–80 This improves
the representation of the balanced part of the flow. To also improve
the representation of the imbalanced part, the other two variables
should be chosen to represent the departure from balance. However,
there is no exact definition of balance, so a practical choice is made
that still allows for efficiency. A simple but fruitful choice is to use the
horizontal divergence d ¼ r � u and the quantity c ¼ f f� gr2h,
which is the acceleration divergence in the SW model (and the linear-
ized part of it in the VA model). This choice was also made in the
paper on which the present work is based.49 Notably, this choice
allows one to recover the original variables h and u by solving linear
elliptic equations. Under geostrophic balance, both d and c vanish.

Full details of the numerical method can be found in a previous
paper.49 The only difference here is that we use contour advection81 to
accurately represent the PV evolution. In this method, the PV is repre-
sented by a set of contours, here 80 contour levels equally spaced in PV,
which are advected by the velocity field interpolated from the underly-
ing regular grid. Each contour is represented by a variable number of
nodes connected together by local cubic splines, and “surgery”82 is used
to limit complexity. (Surgery operates at a 16th of the grid spacing.) In
addition to PV contours, two additional PV fields are used to improve
the representation of large scales and energy conservation; these fields
are blended with the PV associated with the contours to provide a highly
accurate representation of PV at all scales.81 This has been demonstrated
repeatedly in a variety of contexts and for complex flows.81,83–85

We consider flow in a doubly periodic domain of side length 2p.
The basic grid resolution is 2562 or 5122, but the effective resolution
for the PV field is 16 times finer in each direction. We mainly report
on the 5122 simulations, but the 2562 simulations produce qualita-
tively, and often quantitatively, similar results. The numerical algo-
rithm settings are otherwise the standard recommended ones.86

III. RESULTS

In this section, we first explain the setup of the numerical experi-
ments, specifically the initialization and the physical parameters used.
We then illustrate the flow evolution in one case, comparing various
fields in the SW simulation (the limit H ! 0) with those in the
VA simulation. Next we turn to the imbalanced fields—the IGWs—
comparing fields, rms. (root mean square) norms, wavenumber, and
frequency spectra. Finally, we briefly discuss analogous results for dif-
ferent initial conditions.

A. Initialization and balance

Eight sets of simulations were performed, composed of two Rossby
deformation lengths, two Rossby numbers, and two resolutions. In
each set, H ! 0 (the SW case), H¼ 0.1, 0.2, or 0.4 (recall that domain
width is 2p). We consider two Rossby deformation wavenumbers,
kD ¼ L�1

D ¼ 6 and kD¼ 12, and two Rossby numbers e ¼ 0:2 and 0.6
(defined below). Without loss of generality, we take the Coriolis fre-
quency f ¼ 4p so that a unit of time is a “day.” In the SW model, note
that only the squared short-scale gravity wave speed c2 ¼ gH appears in
the governing equations, after scaling h by the mean depth H. The defi-
nition of LD ¼ c=f then provides c. In the VA model, H remains in the
equations after this scaling (through pn), but in the limit H ! 0, the
VA model reduces to the SW model. Since we are free to choose a char-
acteristic timescale (here T ¼ 4p=f ¼ 1) and the domain width (here
Ldom ¼ 2p), the only independent parameters in the problem are kD

and e in the SW model, and additionally H in the VA model.
We specify the initial PV field through its power spectrum

SqðkÞ ¼ Cðk2
D þ k2Þk3e�2k2=k2

0 ; (9)

where k is the wavenumber, k0 is the peak enstrophy wavenumber,
and C is determined by requiring jqjmax ¼ ef , where e is the specified
PV-based Rossby number. Note, Sq is the squared spectral amplitude
jq̂ðkÞj2 summed over all wavevectors k lying in the shells
k� 1=2 � jkj < kþ 1=2. Within each shell q̂ðkÞ is otherwise chosen
randomly. We mainly report on simulations with k0 ¼ kD, motivated
by the fact that oceanic eddies typically have scales comparable to LD

and dominate the oceanic enstrophy spectrum, see Ref. 87 and refer-
ences therein. We have also performed simulations starting with
k0 � kD, i.e., large-scale conditions, to verify that non-hydrostatic
effects still strongly suppress high frequency IGWs (see below). While
atmospheric eddies (cyclones) may also exhibit scales comparable to
LD,88 the variation of the Earth’s planetary vorticity (Coriolis fre-
quency) over this scale is much greater than in the oceans and cannot
be neglected.

For each value of kD, we use the same random number seed in all
simulations so that the initial PV field has the same form (for k0 ¼ kD).
This allows the closest possible comparison between flows. However,
the PV field is not only the field required for initialization but also we
need to prescribe the divergence d and (linearized) acceleration diver-
gence c. Here, these fields are determined by the balance relations

@d
@t
¼ 0;

@c
@t
¼ 0; and pn ¼ 0; (10)

which, when explicitly written out, are nonlinear equations to deter-
mine h and u (and hence d and c) after additionally using the defini-
tion of PV in (8).49 Explicitly, the balance relations are
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cþ 2Jðu; vÞ � r � ðduÞ ¼ 0; (11)

gr2ðr � ðhuÞÞ � fr � ððfþ f ÞuÞ ¼ 0; (12)

which must be solved together with (8), r � u? ¼ �f and r � u ¼ d,
given only the PV field q. In practice, these equations are solved itera-
tively by a simple adaption of the full, time-dependent numerical algo-
rithm. Solutions converge strongly, even at high Rossby numbers. The
same balance relations are used diagnostically to find the balanced
fields at any time in a simulation. Note: the mean value of PV is deter-
mined by the requirement that the domain integral of f must be zero
(a consequence of Stokes’ theorem).3

Figure 1 shows the initial fields of q, d, and c for the VA simula-
tion with kD¼ 6, e ¼ 0:6, and H¼ 0.4. The non-zero values of d and c
imply the flow is ageostrophic. Compared with the vorticity f (not
shown), both d and the ageostrophic vorticity c=f ¼ f� gr2h=f are
small, respectively, 0.12% and 8.0% in an rms measure. Recall, these
are balanced fields, not IGWs. The vorticity-based Rossby number
jfjmax=f starts at 0.404 and peaks at 0.511, while the Froude number
ðjuj=

ffiffiffiffiffi
gh

p
Þmax starts at 0.241 and peaks at 0.266. Another indicator of

the flow ageostrophy is the displacement of the free surface, relative to
the mean depth, measured by the dimensionless height anomaly

~h ¼ h�H
H

: (13)

Initially, the min/max values are �0:238=0:367, and these peak at
�0:269=0:529. This asymmetry largely stems from differences in the bal-
anced flow associated with cyclones and anti-cyclones: the latter are more
ageostrophic (more intense with positive height displacements).89–91

B. Flow evolution

The evolution of the PV field is shown at a few characteristic
times in Fig. 2 for both the SW model (top row) and the VA model for
H¼ 0.4 (bottom row). Initially, the flow grows in complexity as like-
signed PV regions, vortices, merge, and weak filamentary debris
stretch and mix in between. In time, the number of vortices decreases
and the PV becomes more well mixed between the vortices. By
t¼ 500, the final time of the simulations, one clearly sees that the anti-
cyclones (in blue) are much more compact and circular than the cyclo-
nes (in red). There are no qualitative differences between the SW and
VA evolution, and the similarity in the PV fields at t¼ 50 is striking.
The differences by t¼ 500 are expected given the slightly different

initial conditions and the different models used. Indeed one might
have expected greater differences.

We next examine the divergence evolution. Figure 3 compares d
in the SW model with that in the VA model, now using a depth four
times smaller, H¼ 0.1. At early times, the fields compare well, but by
t¼ 500, the VA divergence field is significantly broader scale and
nearly twice as large in amplitude. This difference occurs earlier for
larger H (not shown). The key point is that even a small value of H
can have a significant impact on the evolution of d, significantly alter-
ing its spatial structure. Notably, comparing the balanced part of d
(not shown), we find much closer agreement with both fields of larger
scale. The small-scale features in the SW simulation are, therefore,
mainly IGWs, examined in more detail below.

C. Diagnosis of imbalance

As explained above in Sec. III A, the balanced fields are defined
to be those which satisfy the balance relations (10). Henceforth, these
are subscripted by b for clarity, e.g., db for the balanced divergence.
The imbalance is just the difference from the full field at the time of
diagnosis, e.g., di ¼ d� db for the imbalanced divergence. While there
is no perfect balance in a general flow, for low to moderate Rossby and
Froude numbers, the balance defined this way provides a good esti-
mate of the balanced flow, certainly much better than hydrostatic-
geostrophic balance (pn ¼ d ¼ c ¼ 0).3,13

Figure 4 compares the imbalance divergence di at the final time
in the SW simulation (H ! 0) and in three VA simulations
(H ¼ 0:1; 0:2, and 0.4) for the same case illustrated above.
Qualitatively similar results are found at earlier times (not shown). In
the SW simulation, di is of moderately small scale and appears to be
randomly distributed. There is no clear association between di and the
PV field, whose changes induce (weak) IGW emission. A significant
portion of the full divergence field d (shown in the top right panel of
Fig. 3) is imbalanced, about 67.9% in an rms measure. For H¼ 0.1, the
structure of di is similar but at a larger scale and a smaller amplitude:
now only 20.5% is imbalanced. For H¼ 0.2, there is a qualitative
change. Now the imbalance appears to be trapped around intense vor-
tices, predominantly anti-cyclones (see right panels in Fig. 2 for q at
this time and for H ! 0 and H¼ 0.4). The amplitude of this imbal-
ance is even smaller, now only 3.00% of the full divergence. Similar
results are found for H¼ 0.4 with 2.96% of the divergence being
imbalanced. Clearly, finite H has a major influence on IGWs.

FIG. 1. Initial fields of PV q, divergence d, and acceleration divergence c for kD¼ 6, e ¼ 0:6, and H¼ 0.4.
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The trapping effect seen here can be partly explained by the dis-
persion relation for IGWs on a basic state at rest. The frequency x of
such waves satisfies71

x2 ¼ f 2 þ c2k2

1þH2k2=3
; (14)

where k is the wavenumber as before. Notably, in the SW case
(H ! 0), there is no upper bound on jxj and, moreover, short waves
are non-dispersive: all have phase and group velocities equal to 6c.
Hence, all IGWs propagate away from their source, which explains the
random pattern seen in di in the left panel of Fig. 4. For finite H, in
contrast, jxj is bounded between the Coriolis frequency f (when

FIG. 2. PV field q at times t¼ 50, 150, and 500 in the SW simulation and in VA simulation for H¼ 0.4. Here, kD¼ 6 and e ¼ 0:6.

FIG. 3. Divergence field d at times t¼ 50, 150, and 500 in the SW simulation and in VA simulation for H¼ 0.1 (note smaller value compared to the previous figure). Here,
kD¼ 6 and e ¼ 0:6.
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k! 0) and the buoyancy frequency N �
ffiffiffi
3
p

c=H ¼
ffiffiffiffiffiffiffiffiffiffiffi
3g=H

p
(when

k!1). The latter name is given due to the similarity with IGWs in a
three-dimensional rotating statified Boussinesq flow,16,18,38 which also
have frequencies between f and N. In large parts of the atmosphere
and oceans, f =N < 1 (even� 1), so N is normally the maximum fre-
quency. However, when f =N > 1 as in a weakly stratified (or strongly
rotating) flow, the situation is reversed.

For H> 0, the phase velocity cp ¼ jxj=k is a monotonically
decreasing function of k which vanishes as k!1. However, the
group velocity,

cg ¼
����
@x
@k

���� ¼
jc2 �H2f 2=3j kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf 2 þ c2k2Þð1þ H2k2=3Þ3
q ; (15)

reaches a finite maximum of cg;max when l � k2H2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3n
p

� 1
� �

=n, where n ¼ N2=f 2. (This is most easily shown
by expressing c2

g=c2 as a function of l.) The result is that cg;max=c
depends only on the frequency ratio f =N , and in particular, cg;max=c
vanishes when f =N ¼ 1. When this occurs, linear disturbances of all
wavelengths are trapped.

The dependence of cg;max=c on f =N is shown in Fig. 5, along
with the wavenumber k ¼ kmax of the maximum group velocity. For
small f =N , kmax 	 1=

ffiffiffiffiffiffiffiffiffi
LDH
p

and cg;max 	 c: this corresponds to the
hydrostatic, SW limit. As f =N increases toward 1, there is a rapid
decrease in cg;max=c, then for f =N > 1 an increase, ultimately tending
to 2=

ffiffiffiffiffi
27
p� �

f =N for large f =N (meanwhile kmaxH !
ffiffiffiffiffiffiffi
3=2

p
).

For the VA simulations conducted, f =N ¼ 0:3464, 0.6928, and
1.3856 approximately for H¼ 0.1, 0.2, and 0.4, respectively. The two

values straddling unity occur for H¼ 0.2 and 0.4, where we see the
most trapping in Fig. 4. Nonlinear effects, neglected in this analysis, do
not appear to play a major role. However, an additional simulation
conducted for f =N ¼ 1 (for which IGWs are completely trapped in
linear theory) does not exhibit any qualitative differences from the
simulations having H¼ 0.2 and 0.4, suggesting that nonlinearity pre-
vents complete trapping. (Further results are provided below.)

We turn next to the (vertically integrated) pressure field p, which
in the VA model contains a non-hydrostatic part, pn, see (4). This field
is perhaps better thought of as a potential energy density, but then
only the hydrostatic part gh2=2 is relevant.49,71 The non-hydrostatic
part pn is here assumed to be entirely imbalanced, see (10), but there is
also some (often very weak) imbalance in the hydrostatic part gh2=2.
For example, for a VA simulation with H¼ 0.4, Fig. 6 shows how the
imbalance present in h largely cancels that of pn, especially at small
scales. The result is that the imbalanced pressure pi is both substan-
tially smaller in amplitude and larger in scale than pn. Note, these
results are for the most nonlinear flow considered, yet the amount of
imbalance is exceedingly small.

The variation of pi with H is shown in Fig. 7. Compared to the
imbalanced divergence di in Fig. 4, we see that pi is generally of larger
scale but otherwise exhibits a similar variation with H. At small H, pi is
broadly distributed indicating weak or non-existent IGW trapping. At
larger H, when f =N � 1, pi exhibits the same trapping only with fewer
fine-scale features. To appreciate the degree of balance here, in an rms
measure, pi is only 0.023% of the total (vertically integrated) pressure
in the SW simulation (at this time), and this decreases to 0.013% for
H¼ 0.1, then to 0.0015% for H¼ 0.2 and then increases slightly to
0.0046% for H¼ 0.4. Pressure, like height h, is very close to balance in
these flows, despite the moderate values of the Rossby and Froude
numbers (about 0.34 and 0.13 at this time). Flows with f =N � 1 are
particularly devoid of IGWs.

The time variation of the imbalance, measured by the rms diver-
gence di and pressure pi, is shown in Fig. 8. (Other quantities exhibit
similar behaviour.) Notably, in the SW simulation (H ! 0), the
imbalance decreases only slightly after a small initial increase. When
H> 0, the decrease is more marked, especially for H¼ 0.2 and 0.4,
which show a continued decrease until late in the simulation and drop
by a factor of around 10. Except for the very earliest times, the imbal-
ance when H> 0 is significantly weaker than in the SW simulation. In
divergence di, both H¼ 0.2 and 0.4 exhibit a similar decrease in the
rms norm. However, for pi, H¼ 0.2 clearly exhibits the least imbalance
at all times. Notably, the non-hydrostatic pressure pn, which contrib-
utes to pi, actually grows with H [see (5) and recall pn¼ 0 in the SW
limit H ! 0]. So while the flow becomes increasingly non-hydrostatic

FIG. 4. Imbalanced divergence field di at t¼ 500 for simulations with H ! 0 (SW), H¼ 0.1, 0.2, and 0.4 (left to right). Here, kD¼ 6 and e ¼ 0:6.

FIG. 5. Maximum group velocity cg;max relative to c (black) and the wavenumber
kmax of maximum group velocity scaled in two ways (blue and red) as indicated, all
as a function of the frequency ratio f=N.
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as H increases, the degree of imbalance appears to depend mainly on
f =N with a minimum occurring around f =N ¼ 1, where linear IGWs
are completely trapped. Similar results are found for the lower Rossby
number e ¼ 0:2 examined (not shown), except that di and pi are about
10–20 times smaller.

The decay of IGWs in the VA simulations must be due the
reduced range of frequencies f < jxj < N over which IGWs can be
excited by spontaneous adjust emission. As the flow evolves, the PV
field, in particular, develops increasingly sharp gradients (absent at
t¼ 0), and as these fronts move, they excite all frequencies. The high-
frequency cutoff for IGWs in the VA model means that frequencies
jxj > N do not excite IGWs, unlike in the SW model. (This is shown
explicitly below.)

We turn next to the scale distribution of the balance and imbal-
ance by considering the spatial power spectrum of divergence, SdðkÞ.
The power spectrum is defined as usual as the sum of squared spectral
amplitudes in wavenumber shells k ¼ constant in the Fourier space

[see discussion following (9)]. Results for kD¼ 6 and for two Rossby
numbers e ¼ 0:2 and 0.6 at t¼ 500 are shown in Fig. 9 (left and right
panels). At the smaller Rossby number (left panel), the imbalanced
divergence is much smaller than the balanced or total divergence
(which are indistinguishable here), especially at large scales. The turn-
up in imbalanced divergence at the highest wavenumbers is a hyper-
diffusion effect: the full fields are evolved using hyperdiffusion while
the balanced fields were obtained without hyperdiffusion. The differ-
ence results in a spurious imbalance in the range of wavenumbers
affected by hyperdiffusion.

Comparing the SW case (H ! 0) with the VA one for H¼ 0.1,
the most significant feature is the strong reduction in power at small
to intermediate scales, mainly at wavenumbers k >

ffiffiffi
3
p

=H ¼ 10
ffiffiffi
3
p

(or log10k > 1:24 approximately). At such wavenumbers, strong

FIG. 6. Imbalanced height field hi (left), non-hydrostatic pressure pn (middle), and imbalanced pressure pi at t¼ 500 for the VA simulation with H¼ 0.4, kD¼ 6, and e ¼ 0:6.

FIG. 7. Imbalanced vertically integrated pressure field pi at t¼ 500 for simulations with H ! 0 (SW), H¼ 0.1, 0.2, and 0.4 (left to right). Here, kD¼ 6 and e ¼ 0:6.

FIG. 8. Rms imbalanced divergence (left) and vertically integrated pressure (right)
as a function of time, for the set of simulations with kD¼ 6 and e ¼ 0:6.

FIG. 9. Power spectra of divergence d (black), balanced divergence db (blue), and
imbalanced divergence di (red, as labeled) for both H ! 0 (SW, dotted lines) and
H¼ 0.1 (VA, solid lines). The panel on the left is for Rossby number e ¼ 0:2 while
that on the right is for e ¼ 0:6. Both are for flows with kD¼ 6 at the final time
t¼ 500. Note that the black curves often lie beneath the blue ones.
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dispersive effects take hold, as seen, e.g., in the frequency dispersion
relation (14) for linear IGWs. Similar results are found at higher
Rossby number (right panel), except that the reduction in power
occurs over a wider range in wavenumbers, and now the SW flow is
significantly less balanced. In fact, the imbalance exceeds the balance
over an intermediate range of wavenumbers near k¼ 10. In contrast,
the VA flow, even for this small value of H, remains well balanced
across all scales.

The reduction in power is even greater at larger H, as shown in
Fig. 10, which focuses on the imbalanced divergence only, but now
includes an additional value of H for which f =N ¼ 1 (i.e.,
H¼ 0.288675). This demonstrates the strong effect that wave trapping
has on suppressing IGW emission, at both Rossby numbers consid-
ered. At the higher Rossby number, the linear theory behind this wave
trapping mechanism is less accurate, but even so the IGW suppression
is remarkably strong when f =N � 1. Lower resolution simulations
(not shown) indicate that the high wavenumber IGWs are partially the
result of the numerical discretization: they exhibit increased power at
lower resolution in the range k > kmax=4 approximately. Higher reso-
lution simulations, therefore, are likely to exhibit even less power at
high k than shown here. On the other hand, resolution has a negligible
effect on the balanced flow. What Fig. 10 shows is the tiny difference
between the full and balanced divergence fields.

A complementary view is afforded by considering the frequency
power spectrum, measuring the amplitude of imbalance present at
each frequency x. Here, this is done for the divergence field but the
results are similar for other fields. At each time step, the divergence is
recorded at a regular array of 16 grid points. This produces a time
series of divergence (at each of these points), which can be Fourier
analyzed to create a power spectrum as a function of sidereal fre-
quency T�1 ¼ x=ð2pÞ. The 16 spectra, thus formed, are finally aver-
aged to produce the frequency power spectrum Pd.

The results are shown in Fig. 11 for Rossby numbers e ¼ 0:2
(left) and 0.6 (right), for various values of H as indicated. The vertical
dashed lines mark the location of the Coriolis frequency f (cyan) and
the buoyancy frequencies N (colored the same way as the spectra). For
the SW case (H ! 0), there is no corresponding dashed line for N
since N !1. Recall that (linear) IGWs have frequencies between f
and N, and the results in Fig. 11 are consistent: there is a bulge in
power in this range, likely due to IGWs. Note, the power spectrum
also includes the balanced flow, as it is practically impossible to gener-
ate a time series of di. (This would require balancing the flow at every

time step.) Thus, the higher power at lower frequencies mostly corre-
sponds to the balanced flow.

The key finding here is that finite H not only closes the frequency
gap between f and N, leading to wave trapping but also significantly
reduces wave amplitudes. Non-hydrostatic effects reduce imbalance,
so long as f =N is not much larger than unity.

D. Smaller deformation length

We next consider the effect of halving the deformation length LD

or doubling the deformation wavenumber kD from 6 to 12. Likewise,
the initial scale of the flow is halved. [We take k0 ¼ kD in (9).] Again,
two Rossby numbers are considered, e ¼ 0:2 and 0.6, together with
the same four values of H (occasionally adding a fifth corresponding
to f =N ¼ 1). The flow evolves in a similar way to that already illus-
trated for kD¼ 6, albeit at a somewhat slower rate due to the increased
value of kD.89 Results are not shown, but the pattern of the PV field is
closely similar to that already shown in Fig. 2 except on half the scale.

The imbalanced fields are also similar, except that the effects of
finite H come into play sooner since f =N ¼ fH=

ffiffiffi
3
p

c
� �

¼ kDH=
ffiffiffi
3
p

.
Figure 12 shows this for the imbalanced pressure pi. Note that
f =N ¼ 1 corresponds to H¼ 0.144338 approximately, a value which
lies between H¼ 0.1 and H¼ 0.2 (the middle two panels in Fig. 12). A
new feature not seen for kD¼ 6 is found in the right panel for H¼ 0.4;
here, the IGWs are widely distributed across the domain. This is
because the trapping effect weakens again as f =N increases above
unity (here, f =N ¼ 2:771 approximately). Moreover, the IGWs are
larger scale than found in the SW case. Their scale appears to be dic-
tated by the wavenumber at which strong dispersion first occurs,
k ¼

ffiffiffi
3
p

=H, which is about 4.33 for H¼ 0.4. This is consistent with
the scale of the IGWs seen in the right panel of Fig. 12.

The time variation of the rms values of imbalanced divergence di

and pressure pi is shown in Fig. 13. In di, the two values of H either
side of H¼ 0.144338 (for which f =N ¼ 1) exhibit the least imbalance,
as expected, while H¼ 0.4 exhibits significantly larger imbalance
(though not as large as for H ! 0). The large value of H has a corre-
spondingly large value of f =N , for which wave-trapping is weak.
Similar results are found for pi, but now H¼ 0.1 exhibits the least
imbalance (though only 2–3 times smaller than when H¼ 0.2). Here,
H¼ 0.4 exhibits the greatest imbalance (in pi), slightly greater than

FIG. 10. Power spectra of imbalanced divergence di for various values of H (as
indicated) for Rossby numbers e ¼ 0:2 (left) and e ¼ 0:6 (right). Both are for flows
with kD¼ 6 at the final time t¼ 500.

FIG. 11. Frequency power spectra of divergence d for various values of H (as indi-
cated) for Rossby numbers e ¼ 0:2 (left) and e ¼ 0:6 (right). Both are for flows
with kD¼ 6. Note, not all low frequencies are shown in order to focus on the region
where IGWs are present. The power in low frequencies gradually rises toward the
lowest frequency 1=T ¼ 1=500.
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found for H ! 0 at late times. However, the key result is that we again
find a suppression of IGW generation for f =N � 1.

The distribution across scales of the imbalanced divergence is
shown in Fig. 14, for both Rossby numbers and at the final time. The
special value of H corresponding to f =N ¼ 1 (yellow curve) shows a
striking reduction in imbalance, particularly at large and intermediate
scales. IGW suppression is clearly in evidence when f =N � 1, but large
H now stimulates large-scale IGWs, as already seen in pi in Fig. 12 (right
panel). There is a systematic reduction of imbalance as f =N increases
toward 1, followed by a growth as f =N increases beyond 1.

This suppression of imbalance is also seen in the frequency power
spectrum of divergence shown in Fig. 15, again for Rossby numbers
e ¼ 0:2 (left) and 0.6 (right), for various values of H as indicated. Recall
that the vertical dashed lines mark the location of the Coriolis frequency
f (cyan) and the buoyancy frequencies N (colored the same way as the
spectra). The bulges in power between f and N are consistent with
IGWs being (largely) confined to these frequencies. (This is strictly true
only in linear theory.) The confinement is poorer at larger Rossby num-
ber (right), but a substantial reduction in IGW activity still occurs, espe-
cially when H¼ 0.1 and H¼ 0.2, values for which f =N � 1.

E. Larger scale initial conditions

We finally briefly consider a flow initialized at scales much larger
than the Rossby deformation length. To this end, we discuss one case
with k0 ¼ 3 and kD¼ 12 in the initial PV power spectrum (9), and a
Rossby number e ¼ 0:6. We compare a VA simulation for H¼ 0.1
with a SW simulation (H ! 0). The initial scale of the flow L is here
four times larger than LD. This case has f =N ¼ 1:2=

ffiffiffi
3
p
¼ 0:6928….

The flow evolution is slower than when k0 ¼ kD (considered pre-
viously), but inevitably92 small-scale frontal features develop in PV as

a result of nonlinear advection. These frontal features generate high
frequencies as they move, and thus provide a source for the generation
of IGWs by spontaneous adjustment emission. The slower pace of
evolution is reflected in the values of the vorticity-based Rossby num-
ber jfjmax=f and Froude number ðjuj=

ffiffiffiffiffi
gh

p
Þmax, which both remain

around 0.15 (ranging from 0.13 to 0.18). The depth anomaly ~h ranges
from –0.38 in cyclones to 0.94 in anti-cyclones.

The key results are summarized in Fig. 16, showing the diver-
gence spectrum at t¼ 500 on the left and the frequency spectrum on
the right, for both the SW and the VA simulation. The divergence
spectrum shows that the flow is well balanced across all scales with the
greatest imbalance at small to intermediate scales as expected. As
above when k0 ¼ kD (see Figs. 10 and 14), the VA simulation consis-
tently exhibits less imbalance than the SW one. This is not just true at
the time shown but also at all earlier times. Here, the rms di is approxi-
mately two times smaller in the VA simulation than in the SW one
(not shown). Likewise, the frequency power spectrum of divergence in
the right panel shows that finite H reduces imbalance considerably,
especially at high frequencies. Again this is consistent with the disper-
sion relation (14), which shows that, for finite H, IGWs are confined
to a narrower range between f and N (in linear theory). Thus, even
when the initial flow has a scale L much larger than LD, finite H
reduces spontaneous adjustment emission. The most important factor
is not the scale of the initial flow, but the frequency ratio f =N .

IV. CONCLUSIONS

This paper has considered non-hydrostatic effects, which are nor-
mally neglected in the shallow-water theory on the assumption that
horizontal scales L are much larger than the mean fluid depth H.

FIG. 12. Imbalanced vertically integrated pressure field pi at t¼ 500 for simulations with H ! 0 (SW), H¼ 0.1, 0.2, and 0.4 (left to right). Here, kD¼ 12 and e ¼ 0:6. The
analogous results for kD¼ 6 are shown in Fig. 7.

FIG. 13. Rms imbalanced divergence (left) and vertically integrated pressure (right)
as a function of time, for the set of simulations with kD¼ 12 and e ¼ 0:6. The anal-
ogous results for kD¼ 6 are shown in Fig. 8.

FIG. 14. Power spectra of imbalanced divergence di for various values of H (as
indicated) for Rossby numbers e ¼ 0:2 (left) and e ¼ 0:6 (right). Both are for flows
with kD¼ 12 at the final time t¼ 500. The analogous results for kD¼ 6 are shown
in Fig. 10.
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Practically, however, there always exist scales L<H, only these are
often too small to model directly in numerical simulations. The hydro-
static approximation no longer holds for these scales, and a generalized
model is required. One can resort to a fully three-dimensional
model,49 but this is considerably more costly than the shallow-water
model. An alternative is to directly average the three-dimensional
model, assuming only that the horizontal flow is independent of depth
as in the traditional shallow-water theory. By making no other approx-
imation, one arrives at a non-hydrostatic form of the shallow-water
model, first derived (without rotation) by Serre50 in 1953, and re-
derived by numerous authors since. We call this model the vertically
averaged (VA) model. In a previous study,49 it was shown to be signifi-
cantly more accurate than the traditional shallow-water model when
compared to solutions of the full three-dimensional Euler equations
with a free surface.

Here, we have examined how non-hydrostatic effects in the VA
model modify inertia-gravity wave (IGW) emission and propagation,
an important topic in atmospheric and oceanic fluid dynamics.22,23,46

The key parameter is the Coriolis-buoyancy frequency ratio f =N ,
where N �

ffiffiffiffiffiffiffiffiffiffiffi
3g=H

p
and g is the gravity (or reduced gravity for appli-

cations to the upper ocean18,93 or the lower atmosphere94). Linear
waves on a basic state of rest have frequencies between f and N. In the
traditional shallow-water model, N !1 and so there is no upper
limit to the frequency of IGWs; moreover, such high-frequency waves

are non-dispersive with constant phase and group velocities. In the
VA model, in contrast, waves are dispersive and, in particular, their
group velocities tend to zero with wavelength. As f =N ! 1, the maxi-
mum group velocity vanishes, implying that waves at all scales are
trapped: they cannot propagate away from their source (in linear
theory).

A wide range of numerical simulations of the nonlinear VA
equations demonstrate that this wave-trapping effect can have a pro-
found impact on both the emission and the propagation of IGWs. For
values of f =N near unity, IGW emission weakens considerably com-
pared to that occurring in the traditional shallow-water model, and
moreover, the waves remain largely confined to active regions of circu-
lation (intense vortices, especially anti-cyclones). Their spatial form is
also modified: the characteristic wave scale Lw increases with H, and
this scale is where non-hydrostatic dispersive effects become impor-
tant (specifically, dispersion becomes strong for wavenumbers
k >

ffiffiffi
3
p

=H 	 p=Lw).
Even when f =N � 1, as typically found in the Earth’s atmo-

sphere and oceans,18,75 non-hydrostatic effects should not be neglected
at horizontal scales L comparable to the mean or nominal fluid depth.
While the non-hydrostatic model is often considered to be more
complicated, it has the advantage that it suppresses short-scale high-
frequency motions, physically, without the need for numerical damp-
ing. Another advantage is having an upper frequency limit, which
means larger time steps can be taken in numerical modeling.

The frequency ratio f =N is not uniformly small in geophysical
flows. Regions of weak stratification (small N) exist in various parts of
the oceans, including the Mediterranean Sea,73,74 deep sea trenches,95

and in polar oceans.75 Experimental studies of rotating stratified
flows96 also commonly study regimes where f =N � 1. While a verti-
cally averaged model of the fluid motion may be too idealized, it at
least offers a relatively straightforward way to comprehensively exam-
ine non-hydrostatic effects within a simplified framework. Here, we
have found that such effects can greatly reduce inertia-gravity wave
emission and can lead to wave trapping for f =N � 1.

In future work, we would like to explore the role of bottom
topography,58,97 specifically how the topographic generation of IGWs
is altered by non-hydrostatic effects. Another extension would be to
include a background planetary vorticity gradient to model the varia-
tion of the Coriolis frequency with latitude or to consider full spherical
geometry. One can also include the full Coriolis force, not just the
component aligned with gravity.55,70 A two-layer model would addi-
tionally permit the study of baroclinic processes (vertical shear).
However, the assumption that the horizontal flow is independent of
height in each layer leads to short-scale shear instability—interestingly
only in the non-hydrostatic model—and a loss of regularity without
diffusion.98–100 A different starting assumption is required that ensures
continuity of the horizontal velocity at the layer interface, and this
requires at least a linear dependence on height.101 In short, there is sig-
nificant scope for further research.
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FIG. 15. Frequency power spectra of divergence d for various values of H (as indi-
cated) for Rossby numbers e ¼ 0:2 (left) and e ¼ 0:6 (right). Both are for flows
with kD¼ 12. The analogous results for kD¼ 6 are shown in Fig. 11.

FIG. 16. Left panel: power spectra of divergence d (black), balanced divergence db
(blue), and imbalanced divergence di (red, as labeled) at t¼ 500 for both H ! 0
(SW, dotted lines) and H¼ 0.1 (VA, solid lines). Right panel: frequency power spec-
tra of divergence d, comparing the SW and VA simulations. (The cyan vertical
dashed line corresponds to the Coriolis frequency f and the blue one corresponds
to the buoyancy frequency N in the VA simulation.) Both panels are for Rossby
number e ¼ 0:6 and kD¼ 12, and for large-scale initial conditions having k0 ¼ 3.
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