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We present a methodology for systematically extending epidemic models to multilevel and
multiscale spatio-temporal pandemic ones. Our approach builds on the use of coloured
stochastic and continuous Petri nets facilitating the sound component-based extension of
basic SIR models to include population stratification and also spatio-geographic
information and travel connections, represented as graphs, resulting in robust stratified
pandemic metapopulation models. The epidemic components and the spatial and
stratification data are combined together in these coloured models and built in to the
underlying expanded models. As a consequence this method is inherently easy to use,
producing scalable and reusable models with a high degree of clarity and accessibility
which can be read either in a deterministic or stochastic paradigm. Our method is
supported by a publicly available platform PetriNuts; it enables the visual construction
and editing of models; deterministic, stochastic and hybrid simulation as well as structural
and behavioural analysis. All models are available as Supplementary Material, ensuring
reproducibility. All uncoloured Petri nets can be animated within a web browser at https://
www-dssz.informatik.tu-cottbus.de/DSSZ/Research/ModellingEpidemics, assisting the
comprehension of those models. We aim to enable modellers and planners to
construct clear and robust models by themselves.

Keywords: SIR model, coloured Petri nets, stochastic Petri nets, continuous Petri nets, ODEs, simulation,
geographic spatio-temporal modelling, multiscale models

1 INTRODUCTION

We present a methodology for modelling pandemics, the development of which was motivated
by the current COVID19 outbreak. The key point of our approach is the introduction of
geography and travel connections in a well founded manner, facilitating intuitive understanding
by modellers, clinicians, epidemiologists, public health strategists, politicians, and other key
stakeholders.

Our modelling approach builds on the use of coloured stochastic and continuous Petri nets which
facilitates the sound component-based extension of basic compartment SIR (Suscptible, Infectious,
Recovered) models to include population stratification and also spatio-geographic information,
resulting in robust stratified pandemic metapopulation models. The use of colour in Petri nets
enables the construction of larger Petri nets from smaller nets which then serve as components, using
an automated expansion technique by unfolding a compact coloured net describing the components
and their interconnections into a larger standard Petri net maintaining the complex
interconnectivities. This permits us to model both stratified populations as well as the
geographical relations between the local epidemic components of a wider pandemic model. This
method is inherently easy to use, producing scalable and reusable models with a high degree of clarity
and accessibility which can be read either in a stochastic or deterministic paradigm, the latter
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mapping to Ordinary Differential Equations (ODEs). The ODEs
are uniquely defined by the Petri net models and are
automatically generated by our simulators. In turn this
conforms with sound model engineering practice, with the aim
of minimising encoding errors.

The models which we obtain by our method are multilevel, the
lower level comprising homogeneous SIR models, and the upper
level being a network of geographical connections. Thus our
methodology enables the construction and analysis of
metapopulation models. The models are multiscale in terms of
distances, which are explicit at the upper geographical level and
implicit at the lower homogeneous level, and multiscale in terms
of time in that we assume that geographical connections (travel)
occur at a much lower rate than infections in lower level epidemic
components.

Our method is supported by a publicly available platform
PetriNuts comprising a set of tools including Snoopy (Heiner
et al., 2012), Spike (Chodak and Heiner, 2019), Charlie (Heiner
et al., 2015), and Patty (Schulz, 2008), which enable visual
construction and editing of models; deterministic, stochastic
and hybrid simulation; structural and behavioural analysis as
well as animation within a web browser. All the models presented
in this paper are provided as Supplementary Material, and can
be processed using the platform, thus ensuring reproducibility.
All uncoloured Petri nets can be animated in a purely qualitative
manner at https://www-dssz.informatik.tu-cottbus.de/DSSZ/
Research/ModellingEpidemics, assisting the comprehension of
those models in an easily approachable way.

Our coloured models are by their very nature easily adaptable
and incorporate geospatial, mobility and population stratification
information. Thus the epidemic components (SIR and related)
and this information are combined together in the coloured
models and are thus built-in to the underlying unfolded
models. As a consequence of our well-founded methodology
the modification of the models and development of new
models is very clear and easy, and the possibility of making
modelling errors to do with spatial/stratafication aspects is
minimised. This follows sound model engineering principles.
Models can either be analysed and simulated within the
PetriNuts platform or be exported to any of the exchange
formats supported; see Section 3 for details. Thus we aim to
enable modellers and planners to construct clear and robust
models by themselves.

2 RESULTS

In this section we outline our stepwise modelling methodology,
which guides us from modelling various epidemic scenarios to
modelling pandemics involving spatio-geographic information
and travel connections.

2.1 Basic Epidemic SIR Model in Petri Nets
To introduce our technology, we start off with the standard SIR
epidemic model and the usual assumptions (see Section 3). We
do this so that later we can use this net as a component in a larger
coloured pandemic model, where the SIR components are

connected in a way to reflect the geographical relationships of
the areas affected. The use of colour in this manner facilitates the
rigorous model engineering principles of sound component-
based construction of large systems.

A Petri net describing the SIRmodel is given in Figure 1where
Petri net places (circles) represent the Susceptible (S), Infectious
(I) and Recovered (R) compartments. Petri net transitions
(squares) represent the actions, which are associated with rates
of becoming infectious and recovering.

The infection rate is effectively the observed increase in the
number of daily infections, more generally the number of
infections in a given time period, typically described by mass
action kinetics (Wilson and Worcester, 1945). An alternative
approach, called the standard incidence, normalises the infection
rate by the total population size N, based on the assumption that
daily encounters between individuals in the population are largely
independent of community size (Hethcote, 2000). The rate
constant of infection kinfect (the parameter for mass action
kinetics) is driven by both the infectiousness of the disease, as
well as any societal prevention measure in place (isolation, etc.).
Likewise, the recovery rate is governed by the rate constant of
recovery krecover which reflects the contribution of all the factors
contributing to recovery—health of the individuals in the
population, treatment etc.

These infection and recovery rates correspond to the rate
functions associated with the transitions Infect and Recover in the
Petri net model. Rate functions can be interpreted in two different
ways: stochastic or deterministic, thus yielding stochastic Petri
nets (SPN ) or continuous Petri nets (CPN ). The semantics of
SPN is given by continuous time Markov chains (CTMC), and
the semantics of CPN by Ordinary Differential Equations
(ODEs). The ODEs generated reading the Petri net in
Figure 1 as a CPN are given in Eq. 1, which correspond
exactly to the ODEs given in the literature. We observe that
each place gets its own equation (see Section 3 for the automatic
translation of CPN into ODEs). In the equations we have
replaced the long place names by their standard short forms
for readability. The formulae governing the rates according to the
standard incidence can be easily adjusted to use the mass action
kinetics by setting N = 1.

dS

dt
� −kinfect · S

N
· I (1)

dI

dt
� kinfect · SN · I − krecover · I

dR

dt
� krecover · I

To obtain a flexible model, we introduce constants S0, I0 and
R0 to initialise the places Susceptible, Infectious and Recovered;
thus, N = S0 + I0 + R0. In general, the initial values of all the places
in a model form its initial state at time t = 0. We also use, for
example, the notation S0 to stand for the value of St=0, or generally
St for time point t.

These models are typically simulated, which for SPN means
making random walks through the CTMC, applying, e.g.,
Gillespie’s stochastic simulation algorithm (SSA) (Gillespie,
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1976), and for CPN solving the underlying ODEs. Figure 1B
gives simulation traces for both cases. Even without realistic rate
constants, this basic model already permits some interesting
computational experiments, see Section 2.7.

We make some observations about the behaviour of the
system. There is a trivial, i.e., disease free steady state for I0 =
0 so that no infections or recovery occur, otherwise the steady
state is reached when It = 0. We note some interesting SPN
behaviour of single runs—there is a probability that the infection
dies out early, whatever the balance between the rates of infection
and recovery, due to the underlying Markov chain. In contrast,
the ODE behaviour can be thought of as the average over many
stochastic runs, and thus ignores the variability inherent in a
stochastic model. Besides exploring time series of model variables,
we can also define derived measures as observers, such as the
reproduction number R (Heffernan et al., 2005; van den
Driessche, 2017); see Section 3 for details.

All our models can be equally read as SPN or CPN , or as a
Hybrid Petri net (HPN ), which is a combination of these two.

2.2 Extended Epidemic Models
The SIR model can be extended by extra compartments such as
deaths (D), maternally-derived immunity (M), exposed/
incubation period (E), etc., and extra variables such as total
number of infectious, total deaths, mutant, etc., yielding
variations of the basic SIR model including SIS, SIRS, SIRD,
MSIR, SEIR, SEIS, MSEIR, MSEIRS (Hethcote, 2000). Their
representation as a Petri net model is straightforward, and

Petri net animation supports the modeller in getting the
model structure right.

Here we consider four examples which are relevant to the
current COVID19 epidemic:

• SIVR—an SIR model extended by a virus variant,
represented as an HPN , in this case together with its
hybrid simulation trace (Figure 2).

• SIQR model which describes, as an additional route to
recovery, the possibility of infectious people being subject
to quarantine before recovery (Anand et al., 2020)
(Figure 3A).

• SIAR model which differentiates infectious people into
symptomatic and asymptomatic compartments (Sen
et al., 2017) (Figure 3B).

• SIXR model describing a vaccination regime which assumes
that the vaccine needs to be delivered to a person in two
doses, and that the person will be vulnerable to some extent
between the first and second dose (Figure 4).

All these Petri nets can be animated in a purely qualitative
manner at https://www-dssz.informatik.tu-cottbus.de/DSSZ/
Research/ModellingEpidemics.

2.3 Stratified Epidemic Models
In general, modelling the stratification of a population in terms of
epidemics means that the overall population is partitioned into a
number of strata and a suitable model is defined for each stratum

FIGURE 1 | SIR model. (A) A Petri Net describing the SIR model where Petri net places (circles) represent the Susceptible (S), Infectious (I) and Recovered (R)
compartments. Petri net transitions (squares) represent the actions (events) of becoming infectious and recovering, and arcs connect places with transitions enabling
events to occur and describing the effect of the occurrence. At the Infect transition, an infection will only occur when a susceptible and infectious person meet reducing
the number in both compartments by 1. This results in two people being added to the Infectious place which is represented by an arc weight of 2 (shorthand
notation for two arcs). Note that the default arc weight of 1 is not given. Also the number of infectious people can be reduced by 1 via the Recover transition, increasing
Recovered by 1. Each transition preserves the number of persons (the number of incoming arcs equals the number of outgoing arcs), thus the net is conservative and the
total population size is constant. (B) From left to right: Two single stochastic runs and the deterministic run, with the initial marking (state): S0 = 100, I0 = 1, and rate
constants kinfect = 0.1, krecover = 1. Note, in the second stochastic run, Infectious dies out much earlier than in the deterministic simulation.
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and their appropriate interconnections. The compartments are
equally divided into disjunctive sets, such that each partition is
internally homogeneous and distinctively differs from all the
other partitions, and there are corresponding partitions in all
compartments.

In the following we assume that the same epidemic model is
equally applied to each stratum. As an example we consider SIR-
Sage2 , an SIR model with two age strata (Figure 5A); see Section
2.6 for an explanation of our naming convention for models.

Clearly the stratification in this model is very minimal; the
standard practice when collecting statistics of infections is to use
more than two age groups—often in 10 deciles from 0 to 100 years
old. A model should describe all the possible combinations of
cross infections, in this case we obtain 10·10 = 100 infect
transitions. The modelling effort invites modelling errors; this
will be further compounded if gender is added to age in the
stratification. To cope with this modelling challenge, we use

coloured Petri nets, which provide an elegant solution to the
given combinatorial problem by pattern compression of the
repeated parts (components) of a Petri net, while maintaining
the overall structure. Each repeated component is associated with
a unique integer (“colour”); see Section 3 for details. This
colouring principle, supporting component-based model
construction, can be equally applied to SPN , CPN or HPN ,
yielding coloured SPN (SPN C), coloured CPN (CPN C) or
coloured HPN (HPN C).

In summary, Figure 5 gives the same model in two different
but equivalent representations, uncoloured (Top) and coloured
(Middle), which also means that both generate the same ODEs.
Obtaining the coloured model from the uncoloured one is called
folding (compression), and the reverse operation is called
unfolding (expansion). Folding is typically performed manually
because the degree of folding is subjective, while unfolding can be
done automatically as long as all colour sets are discrete and finite.

FIGURE 2 | SIVR model. (A)HPN describing the introduction of a virus variant, using a deterministic transitionMutation which fires with a delay of 1 time unit after
simulation start, while all other nodes are continuous (indicated by thick grey pen). Kinetic parameters: ratio between Infect and Recover, RecoverVariant is 1:10; ratio
between Infect and InfectVariant is 1:5. (B) Hybrid simulation trace for Infectious and InfectiousVariant.
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Increasing the number of strata while ensuring that all needed
connectivities are present just requires extending the colour set
Strata; nothing else in the structure of the coloured model needs
to be touched, apart from adjusting the initial marking. In this
way, our modelling approach supports scalability in an easy to use
manner. In general the unfolded SIR model for s strata comprises
3s places, s2 + s transitions and 4s2 + 2s arcs, and the ODEs
generated consist of 3s equations.

2.4 Pandemic Models
The distinguishing characteristic of a pandemic model is the
concept of multiple intercommunicating epidemic models in a
spatial (geographic) context. In the following we prefix standard
epidemic model names by ‘P’ for pandemic, thus obtaining PSIR,
PSIVR, PSIQR, etc.

2.4.1 Two Countries, Linked by Travel
Figure 6A shows a PSIR model comprising epidemic SIR models
in each of two countries, with population movement permitted
between the countries for all compartments. As for the age strata
model, we can fold it into a coloured version (Figure 6B). The

process of colouring is very similar to that described for SIR-Sage2
(see Section 3).

2.4.2 N Countries, Linked by Travel
Generalising this idea to more than two countries, the travel
connectivities between countries need to be defined. For example,
when considering surface travel, not all countries are directly
connected to each other. We assume that the connectivity is
described by a graph (Figure 7A); this could be directly encoded
as a standard Petri net (Figure 7B), which we fold for convenience
into a coloured Petri net (Figure 7C), see Section 3 for details.
Equally the graph could include air and/or sea connections; even
then, connectivity could still be less than fully connected.

The coloured Petri net representation of the PSIR over four
countries (Figure 7D) is derived by adjusting the colour
definitions in the SIR for two countries (Figure 7E)
according to the connectivity graph, and getting the initial
marking right.

The generalisation to connectivity graphs representing
different geographical relationships is straightforward, merely
requiring adjusting the two related colour definitions

FIGURE 3 | Two extended epidemic models. (A) SIQR—an SIR model extended by quarantine. (B) SIAR—an SIR model with symptomatic/asymptomatic
compartments. There are four different cases of infection reflected by the four transitions connected with the Susceptible place. The two which involve only one infectious
compartment—InfectiousSymptomatic or InfectiousAsymptomatic—follow the standard SIR pattern, reflected in the outgoing arc weights of 2. In the cases of the two
dual outcome infections—Susceptible and InfectiousSymtomatic to InfectiousAsymptomatic or vice versa, there are two outgoing arcs to the two infectious places
each of which has an arc weight of 1 (not shown by default). The total rate of infection in the whole population is the sum of the rates of the four infection transitions. The
ODEs of these two models are given in the Supplementary Material.
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(Countries, Connections) and the initial marking. This example
illustrates how our modelling approach supports reusability in an
easy to use manner. In general the unfolded PSIR model for n
countries with overallmmutual connections comprises 3n places,
2n + 6m transitions and 6n + 12m arcs, and the ODEs generated
consist of 3n equations.

We provide a number of PSIR pandemic models in the
Supplementary Material, including Europe (P10SIR: 10
countries, 15 mutual connections, P48SIR: 48 countries, 85
mutual connections), China (PChinaSIR: 34 provinces, 71
mutual connections) and the United States (PUSASIR: 50
states, 105 connections), and the guidelines how to obtain
the corresponding ODEs using our tool platform. For
illustration, we give the connectivity graph and
deterministic simulation traces for P10SIR in Figure 8.

2.5 Combined Models
These three extensions—SIR variations, stratification and
space—are orthogonal, and thus any combination is possible.
For illustration we provide two examples:

• P10SIQR combining space (Europe with 10 countries) with
an extended epidemic model (Supplementary Figure S3)
which yields 4n = 40 ODEs, and

• P48SIR − Sage10 combining space (Europe with 48 countries)
and stratification (10 age strata per country; coloured
version in Figure 7E, unfolded version in Figure 9)
which yields 1,440 ODEs.

In general the unfolding of a PnSIR-Ssmodel with s strata and
n countries with m mutual connections comprises 3sn places,
n(s2 + s) + 6ms transitions and 2n(2s2 + s) + 12ms arcs.

2.6 Model Summary
Table 1 provides a summary of the models provided. The naming
convention of our models basically follows the Extended BNF
given in Table 2.

2.7 Parameter Fitting
Apart from defining the structure of a model, it is also important
to find suitable rate constants. This can be naively achieved by
scanning over parameter values, or in a more sophisticated
manner heuristically by target driven parameter optimisation.

Even without fitted values derived from real world data, a great
deal of useful analysis can be achieved using comparative rate
constant values. Examples include scanning by

• Varying the ratio between infection rate and recovery rate
while maintaining the recovery rate constant resulting in

FIGURE 4 | SIXRmodel describing a vaccination regime which assumes
that the vaccine needs to be delivered to a person in two doses, and that a
person will be vulnerable to some extent between the first and second dose.
The amount of vaccine available (V0) may be less than that required to
doubly vaccinate the entire susceptible population (S0). However, some
people may become immune through infection or die before they are partially
or fully vaccinated.

FIGURE 5 | SIR-Sage
2;20 models. Two variations of the SIR model

describing stratification of a population into two age groups (young and old) or
20 age groups, and the cross infections between the groups. Transmission of
infection does not change the age group of the infectious person. At the
start there are no old infectious people, and only very few young infectious
people. (A) CPN for two age strata, each of which is associated with a
separate, but structurally identical SIR model, and linked by cross infections.
(B) The same model represented as a coloured CPN . The markings of
coloured places always show the sum of the markings of the corresponding
uncoloured places. The colour definitions are given in Section 3, and the
ODEs in the Supplementary Material. (C) Unfolded CPN of a 20-strata SIR
model, with coloured graphics.
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changes in the Rt value (SIR), and comparison between
geographic regions (PSIR),

• Varying the ratio between direct and quarantine recovery
(SIQR), and varying quarantine regimes

(see Supplementary Figures S5, S6 both referring to the
model P10SIQR in Supplementary Figure S3 (Top)).

• Varying the initial state of the infectious compartments in
the different countries of a pandemic model (PSIR),

• Varying the strength of the connectivities between
countries—road, train, sea and air—in a pandemicmodel (PSIR).

Refining a model automatically involves increasing the
number of required kinetic rate constants. Specifically in the
SIR-Sage2 model, the kinetic constants can be different for both
intra-stratum and inter-strata transitions. This can be achieved in
the coloured version using colour-dependent rates, see Section 3.

More generally, we can establish equivalence classes for rate
constants, for example in a PSIR travel model, there can be
different rate constants between classes of movements such as
road versus air and/or frequent versus rare, while the rate
constants within classes are the same.

When real world data are available, then we can attempt to fit
models to them. We did this for the pandemic model for ten
European countries (P10SIR, Supplementary Figure S6), based
on source data for daily new infections obtained from
WorldOmeters (https://www.worldometers.info/coronavirus/)
during the period 19th January to 16th August 2020. The rate
constants fitted were for infection, and the inter-country
movement for all three compartments. The values for the
Susceptible, Infectious and Recovered compartments for
movement in one direction between a pair of countries were
kept the same, thus reflecting the assumption that the rate
constant for travel does not depend on the compartment, but
only on the journey. Initial markings for Infectious were set at
1% of the total population for each country according to

FIGURE 6 | P2SIR model. (A) CPN for two countries, each of which is
associated with a separate, but structurally identical SIR model, and linked by
travel. (B) The same model represented as a coloured CPN . Eeach travel
transition is associated with a guard [x != y] (x and y are unequal) to
ensure that travellers do not immediately return to their country of origin. The
uncoloured and coloured model are equivalent, thus generate the same
ODEs, which are given in the Supplementary Material.

TABLE 1 | Summary table of models. I Basic and extended epidemic models. II Stratified models. III Pandemic models. IV Combined models; CANDL files provided as
separate files in Supplementary Material.

Type Id Long name References

I SIR Standard SIR model Figure 1
SIVR SIR with disease variant Figure 2
SIQR SIR with local quarantine Figure 3A
SIAR SIR with asymptomatic infectious Figure 3B
SIXR SIR with 2-dose vaccination regime Figure 4

II SIR-S Stratified SIR —

SIR-Sage
2 Stratified SIR, 2 age strata Figures 5A,B

SIR-S10 Stratified SIR, 10 age strata —

SIR-Sage
20 Stratified SIR, 20 age strata Figure 5C

SIR-Sage, gender
10x2 Stratified SIR, 10 age and 2 gender strata —

III PSIR Pandemic SIR —

PnSIR Pandemic SIR, n locations Figure 6: (n = 2), Figure 7: (n = 4)
P10SIR Pandemic SIR with CummulativeInfectious, Western Europe (10 countries, 15 mutual

connections)
Supplementary Figure S6, Figure 8,
P10SIR.candl

P48SIR Pandemic SIR for Europe (48 countries, 85 mutual connections) P48SIR.candl
PChinaSIR Pandemic SIR for China (34 provinces, 71 mutual connections) Figure 10, PchinaSIR.candl
PUSASIR Pandemic SIR for United States (50 states, 105 connections) PusaSIR.candl

IV P48SIR-S
age
10 Pandemic SIR, Europe, 10 age strata Figure 7E, Figure 9

P10QISIR Pandemic SIR with may-quarantine on arrival for Infectious, Western Europe Supplementary Figure S3 (Top)
P10QSIR Pandemic SIR with must-quarantine on arrival for all compartments, Western Europe Supplementary Figure S3 (Bottom)
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Wikipedia, divided by 1,000. Daily new cases were standardised
and smoothed using a 7-day rolling average (Supplementary
Figure S7) and the magnitude and timing of the peaks were
detected computationally (Supplementary Table S1).

The goals of the fitting were (Objective 1) to reproduce the
order of the time taken from the first five deaths to a peak for daily
new cases, (Objective 2) to reproduce the order of the height of
the peaks for daily new cases, and (Objective 3) combining

Objective 1 and Objective 2. Fitting was performed in all three
cases using target driven optimisation employing Random
Restart Hill Climbing (see Section 3 for details, and
Supplementary Tables S2–S5).

2.8 Analysis
For an initial validation of (unfitted) pandemic model behaviour
we performed correlation analyses between real world variables
and model variables for P10SIR and P48SIR; for details see
Supplementary Table S6 and Supplementary Figures S8,
S10. These results support our assumption that even the
unfitted pandemic models behave well, and that the geography
incorporated into the model appropriately influences behaviour.
Thus, an analysis of the unfitted pandemic PSIR model can give
useful insights even in the absence of detailed real data;
specifically given the geographical connections between regions
and their populations, we can predict to some extend the expected
peak height of infections and thus inform planners how to cope
with the impact on health services, etc, ; some examples are
given below.

FIGURE 7 | PnSIR models. (A) Connectivity graph for four countries. (B) Petri net representation of the connectivity graph. (C) Coloured Petri net representation of
the connectivity graph; see Section 3 for details. (D) Coloured Petri net representation of the pandemic P4SIR; structural identical with P2SIR in Figure 6B; both CPN C

differ by their colour definitions encoding different connectivity graphs. The unfolded Petri net of P4SIR is give in Supplementary Figure S2. (E) P48SIR-S
age
10 coloured

Petri net for 48 countries in Europe, each with 10 age strata, see Figure 9 for its unfolded version.

TABLE 2 | Extended BNF for model naming convention.

ModelName ::= [PandemicComponent] EpidemicComponent
[‘−’ StratifiedComponent]

PandemicComponent ::= ‘P’ [Parameter] [PandemicRest]
PandemicRest ::= ‘Q’ | ‘QI’

Parameter ::= Number | Country
Country ::= ‘USA’ | ‘China’
EpidemicComponent ::= ‘S’ ‘I’ [EpidemicOption] ‘R’
EpidemicOption ::= ‘A’ | ‘Q’ | ‘V’ | ‘X’
StratifiedComponent ::= ‘S’ {StratificationParameter}+

StratificationParameter ::= [Type] Number
Type ::= ‘age’ | ‘gender’
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An initial analysis can be performed by inspection of the
visualised time series plots. Properties of interest include the
values of Susceptible and Recovered over time (e.g., for herd
immunity), and the existence, order and height of peaks for
Infectious, see, e.g., Figure 8. This can be extended to derived
measures such as the R value, computed over time and
plotted for the different geographic regions.

Going beyond visual inspection, the order and height of peaks
can be ascertained computationally from the traces. More
generally, many behavioural properties of interest can be
expressed using linear temporal logic and analysed in practice
via simulative model checking (Donaldson and Gilbert, 2008;
Gilbert et al., 2019), which is specifically useful for exploring

larger models by the use of property libraries, see Section 3 and
Figure 10.

In addition, the general relationships between the behaviour of
related compartments or derived measures in different
geographical regions can be determined via cluster analysis.
The results for hierarchical clustering can be represented, for
example, via dendrograms, see Supplementary Figures S11, S12.

Furthermore, the results of such comparative analyses above
could be related to the genomic data of the causative infectious
agent, for example, a virus which exhibits high mutation rates.
Thus the variants or strains of the virus which evolve over the
time of an epidemic can be related to the behaviour of pandemic
models.

FIGURE 8 | P10SIR behaviour. (A) Connectivity graph for 10 Western European countries connected by road. AT = Austria, BE = Belgium, CH = Switzerland, DE =
Germany, DK = Denmark, ES = Spain, FR = France, IT = Italy, NL = Netherlands and PT = Portugal. (B) Traces of modelled infections. Plots for countries under
100 Infectious are not visible due to the scale of the graph.
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Finally, pandemic models can be used to predict the effects of
various control measures. These include travel restrictions in terms
of inter-country connections, and quarantine restrictions on
international travellers. In addition, the effects of the imposition
and lifting of lockdowns in different regions and at different times
can be investigated, but requires the dynamic variation of rate
constants during simulation. In order to facilitate this, we have

recently extended the Spike simulator to include event-driven
triggers, which enables the modelling of these control measures,
for an example see Figure 12.

Given a pandemic PSIR model with fitted parameters, as
developed in the previous section, we can perform a detailed
comparative analysis over the geographic regions, going beyond
the analysis based on comparative values.

FIGURE 9 | P48SIR-S
age
10 model (A)Map of 48 European countries created with https://mapchart.net. (B)Undirected graph representation of the map where edges

represent two-way surface connections. Blue edges stand for road connections, orange dashed edges for sea connections. (C) Unfolded version of the coloured net in
Figure 7E; unfolding takes about 1 s on a standard laptop computer; layout automatically generated. Iceland appears as an isolated subnet because it is not connected
by surface to the rest of Europe, and is thus similar to the SIR net with 20 strata in Figure 5C. Model size: 1,440 places; 10,380 transitions. With initially 100,000
susceptible persons per strata in every country, making a total population of 48,000,000, continuous simulation up to simulation time 1 takes less than 1 min and
stochastic simulation (Gillespie’s SSA, single run) about 4 min.
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3 METHODS

3.1 Related Work
In order to put our work in context, we give a brief overview of
related work. A general review paper on epidemic modelling
including metapopulation models can be found in (Brauer, 2017).
Early basic pandemic approaches include mathematical models
based on ODEs for the global spread diseases, where travel
connectivity is described by adjacency matrices (Rvachev and
Longini, 1985; Longini, 1988), and by graphs (Sattenspiel and
Powell, 1993; Sattenspiel and Dietz, 1995). However, the ODE
formalism does not incorporate features which support
component-based model design and construction; thus there is
no natural way to move from simple SIR-like epidemic models to
pandemic models comprising SIR components in a spatio-
temporal relationship.

Some recent case studies incorporating spatial aspects include
(Chen et al., 2014) considering dynamics of a two-city SIR
epidemic model and (Aràndiga et al., 2020; Goel and Sharma,
2020) for the current COVID-19 pandemic. However none of the
models are downloadable and adaptable.

The GLEaM, viz, computational tool (Van den Broeck et al.,
2011) has been developed to model multiscale mobility networks
and the spatial spreading of infectious diseases building on a
series of papers including (Colizza and Vespignani, 2008; Balcan
et al., 2009; Balcan et al., 2010) and has been used to model the
2009 H1N1 pandemic (Bajardi et al., 2011). Although the core
epidemic model components can be exported, the spatio-
temporal data (geographical relationships, mobility and
population) cannot.

The Spatiotemporal Epidemiologic Modeler (STEM) is an
Eclipse based monolithic framework to support the
development and simulation of geographic disease models
(Edlund et al., 2010). It builds on a component-based
architecture (plugins); models can be simulated
deterministically or stochastically. Models are encoded in Java,
and it is not obvious how to export a model if one wants to apply
any analysis technique not supported by the framework.

Age-based stratification has been addressed in, for
example, (Del Valle et al., 2013; Balabdaoui and Mohr,
2020), and the effects of intervention strategies for
COVID19 in Balabdaoui and Mohr (2020), Giordano et al.
(2020), Prem et al. (2020).

Other approaches besides ODE modelling include
stochastic models (Nandi and Allen, 2019)—not spatio-
temporal, and (Oka et al., 2020)—a case study on China,
agent-based models (Mahmood et al., 2020) and coloured
Petri nets (Castagno et al., 2020)—the latter being without
spatio-temporal aspects.

Some groups have developed methods for simulating Petri
nets directly at the coloured level (Beccuti et al., 2015; Cardelli
et al., 2017). However these techniques are only applicable to
symmetric nets; none of the coloured models reported in this
paper conform to this constraint.

In the following we describe the methods underlying our
technology.

3.2 Modelling
3.2.1 Modelling Assumptions
Our approach employs compartment-based modelling principles,
where the population is divided into a set of homogeneous
compartments. For example, the population in the basic SIR
model population is divided into three compartments—Susceptible
(S), Infectious (I) and Recovered (R). These three compartments are
considered to be homogeneous, thus there is an equal probability of
any event occurring to any member of each compartment.

We also assume for all our models that a susceptible person is
infected by an infectious person so that they are both infectious;
thus getting infected and becoming infectious coincide. A
susceptible person can become recovered. In the traditional
SIR model, recovered people are resistant and cannot become
susceptible or infectious. Although this model was widely used to
describe the behaviour of the COVID-19 epidemic, it became
clear that the assumption regarding the resistance of recovered
people to reinfection did not hold as new variants of the virus
emerged. Thus an SEIS (Susceptible, Exposed, Infectious,
Susceptible) model was more relevant for that situation.

Ourmodels do not consider births or natural deaths so that the
total population size is constant, as can be seen, e.g., from the
structure of the SIR model in Figure 1, which shows a
conservative Petri net covered by a single minimal P-invariant
(compare paragraph below on Petri net analysis techniques).
However, the models could be easily extended to incorporate
births and/or deaths, without any impact on their ability to be
simulated.

It is also generally assumed that S0 ≫ I0, and (for obvious
reasons) I0 > 0 and R0 = 0.

3.2.2 Petri Nets
Petri nets are a family of formal languages which come with a
graphical representation as bipartite directed multi-graphs,
enjoying an operational (execution) semantics. They can be
either untimed and qualitative, or timed and quantitive; for
details see (Heiner et al., 2008). All these net classes share the
following graph properties.

• Bipartite: There are two types of nodes, called places and
transitions, which form disjunctive node sets. Places,
graphically represented as circles, typically model passive
objects (here compartments and derived measures, possibly
in different locations), while transitions, graphically
represented as squares, model active events (such as
infect, recover, travel), changing the state of the
passive nodes.

• Directed: Directed arcs, represented as arrows, connect
places with transitions and vice versa, thereby specifying
the relationship between the passive and active nodes. The
bipartite property precludes arcs between nodes of the
same type.

• Multigraph: Two given nodes may be connected by multiple
arcs, typically abbreviated to one weighted arc. The weight is
shown as a natural number next to the arc. The default value
is 1, and usually not explicitly given.
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The execution semantics builds on movable objects,
represented as tokens residing on places. The number zero is
the default value, and usually not explicitly given. The current
state (marking m) of a model is defined by the token situation on
all places, usually given by a place vector, which is a vector with as
many entries as we have places, and the entries are indexed by the
places. The initial state is denoted by m0.

The specific details of the execution semantics slightly differ
for qualitative and quantitative Petri nets, and if the Petri net

class belongs to the discrete or continuous modelling
paradigm.

We start off with standard Petri nets, which are inherently
untimed and discrete. Their (non-negative integer) token
numbers are given by black dots or natural numbers. The
current state is given by the number of tokens on all places,
forming a place vector of natural numbers. The (integer) arc
weights specify how many of these tokens on a certain place are
consumed or produced by a transition, causing the movement of

FIGURE 10 | PChinaSIR model checking. (A) Time series traces of Infectious for the 34 provinces, with infection starting in Hubei. The ratio between rate constants
for Infect and Recover is 1:104 (kinfect = 1.0e−6, krecover = 1.0e−2). (B)Model checking reveals three provinces with more than one peak. (C) Network of China highlighted
to indicate the geographical context of the three provinces: HB—red, NX—green, QH—brown, XZ—blue.
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tokens through the net, which happens according to the following
rules (Blätke et al., 2015):

• Enabledness: A transition is enabled, if its pre-places host
sufficient amounts of tokens according to the weights of the
transition’s ingoing arcs. An enabled transition may fire
(occur), but is not forced to do so.

• Firing: Upon firing, a transition consumes tokens from its
pre-places according to the arc weight of the ingoing arcs,
and produces new tokens on its post-places according to the
arc weights of the outgoing arcs. The firing happens
atomically (i.e., there are no states in between) and does
note consume any time. Firing generally changes the current
distribution of tokens; thus the system reaches a new state.

• Behaviour: We obtain the dynamic behaviour of a Petri net
by repeating these steps of looking for enabled transitions
and randomly choosing one single transition among the
enabled ones to let it fire.

3.2.3 Rate Functions
These standard untimed Petri nets, which are entirely qualitative,
can be extended by enriching transitions with firing rate
functions. We obtain timed and thus quantitive Petri nets, out
of which we use in this paper stochastic Petri nets (SPN )
generating continuous time Markov chains, and continuous
Petri nets (CPN ) generating Ordinary Differential Equations
(ODEs). Both net classes merely differ by the interpretation of
the rate functions; thus SPN and CPN , sharing the same net
structure, can be easily converted into each other.

Rate functions are, technically speaking, arbitrary
mathematical functions, typically depend on the given state,
and are often governed by popular kinetics, such as mass
action kinetics (Wilson and Worcester, 1945).

Stochastic rate functions specify how often a transition occurs
per time unit, technically achieved by stochastic waiting times
before an enabled transition actually fires. SPN with
exponentially distributed waiting times for all transitions fulfil
the Markov property; thus their semantics are described by
continuous time Markov chains (CTMC), and the current
state of an SPN is still defined by a place vector of natural
numbers. The CTMC for a given SPN is basically isomorphic
to the state transition system of its corresponding untimed Petri
net. Thus, all Petri net analysis techniques (see Section 3.2.7) can
still be applied, and all behavioural properties that hold for the
untimed Petri net are still valid for the corresponding SPN .

In contrast, deterministic rate functions define the strength
of a continuous flow, turning the traditionally discrete
modelling paradigm of Petri nets into a continuous one:
the discrete number of tokens on each place is replaced by
a (non-negative) real number, called token value. Thus, the
current state of a CPN is defined by a place vector of real
numbers. A CPN transition is enabled if the token value of all
its pre-places is larger than zero. This coincides for mass
action kinetics with transition rates larger than zero. Due to
the influence of time, a continuous transition is forced to fire
as soon as possible. Altogether, the semantics of a CPN is
defined by ODEs.

3.2.4 How to Transform a CPN into Ordinary
Differential Equations
Each place subject to changes gets its own equation, describing
the continuous change over time of its token value by the
continuous increase of its pre-transitions’ flow and the
continuous decrease by its post-transitions’ flow. Thus, in the
generated ODEs, places are interpreted as (nonnegative) real
variables. A transition that is pre- and post-transition for a
given place yields two terms, which can be reduced by
algebraically transforming the right-hand side of the equation.
Thus, each equation corresponds basically to a line in the
incidence matrix (Heiner et al., 2008).

To formalise the transformation of CPN into ODEs, we need
to introduce a few technical notations. Let •p denote the set of pre-
transitions of the place p, and p• the set of post-transitions, v(t)
gives the rate function for transition t, f(t, p) the weight of the
arc going from t to p, and f(p, t) the weight of the arc going from
p to t. Then the ODE generated for the place p is given by Eq. 2.

d p( )
dt

� ∑
t∈•p

f t, p( )v t( ) − ∑
t∈p•

f p, t( )v t( ) (2)

In words: the pre-transitions t ∈ •p increase the token value
of p, thus their weighted rate functions occur as plus terms,
while the post-transitions t ∈ p• decrease the token value of p,
thus their weighted rate functions occur as minus terms of the
ODE’s right hand side.

The models presented in this paper always generate as many
ODEs of this style as we have places. This is automatically
triggered when simulating a CPN , which can be done in our
platform either with Snoopy or Spike. In summary, CPN can be
seen as a structured approach to write ODEs (Breitling et al.,
2008); they uniquely define ODEs, but generally not vice versa,
compare (Soliman and Heiner, 2010; Heiner and Gilbert, 2011).

3.2.5 Coloured Petri Nets
Coloured Petri nets combine Petri nets with the powerful concept of
data types as known from programming languages (Genrich and
Lautenbach, 1981; Jensen and Kristensen, 2009). Tokens are
distinguished via colours; there are no limits for their
interpretation. For example, colour allows for the discrimination of
compartments by, e.g., age strata or gender, or to distinguish
compartments in different geographical locations. In short, colours
permit us to describe similar network structures in a compressed, but
still readable way. A group of similar model components (subnets) is
represented by one component coloured with an appropriate colour
set, and the individual components become distinguishable by a
specific colour in this colour set. See (Liu et al., 2019) for a review
of the widespread use of coloured Petri nets for multilevel, multiscale,
and multidimensional modelling of biological systems.

Coloured Petri nets consist, as uncoloured Petri nets, of places,
transitions, and arcs. Additionally, a coloured Petri net is
characterised by a set of discrete data types, called colour sets,
and related net inscriptions.

• Places get assigned a colour set and may contain a multiset of
distinguishable tokens coloured with colours of this colour set.
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Our PetriNuts platform supports a rich choice of data types for
colour set definitions, including simple types (dot, integer,
string, Boolean, enumeration) and product types.

• Transitions get assigned a guard, which is a Boolean
expression over variables, constants and colour functions.
The guard must be evaluated to true for the enabling of the
transition. The trivial guard true is usually not explicitly given.

• Arcs get assigned an expression; the result type of this
expression is a multiset over the colour set of the
connected place.

• Rate functions may incorporate predicates, which are again
Boolean expressions. They permit us to assign different rate
functions for different colours (colour-dependent rates).
Otherwise, the trivial predicate true is used; for examples
see Supplementary Material.

Elaborating the behaviour of a coloured Petri net involves the
following notions (Blätke et al., 2015).

• Transition instance: The variables associated with a
transition consist of the variables in the guard of the
transition and in the expressions of adjacent arcs. For the
evaluations of guards and expressions, values of the
associated colour sets have to be assigned to all transition
variables, which is called binding. A specific binding of the
transition variables corresponds to a transition instance.
Transition instances may have individual rate functions.

• Enabling: Enabling and firing of a transition instance are
based on the evaluation of its guard and arc expressions. If
the guard is evaluated to true and the pre-places have
sufficient and appropriately coloured tokens, the
transition instance is enabled and may fire. In the case of
quantitative nets, the rate function belonging to the
transition instance is determined by evaluating the
predicates in the rate function definition.

• Firing: When a transition instance fires, it consumes
coloured tokens from its pre-places and produces
coloured tokens on its post-places, both according to the
arc expressions. which generally results into a new state.

3.2.5.1 Colouring Example
Let us illustrate the use of colour bymeans of the stratified age SIR
example (SIR-Sage2 ), see Figure 5. The common pattern is a single
basic SIR model. In order to design the coloured model, shown in
Figure 5C, we introduce an enumerated colour set Strata =
{young, old} (where each element is internally mapped onto an
integer) and two variables of this colour set x and y, each of which
can hold either young or old. Arcs in this model are now labelled
with expressions over these variables. The bindings to the
variables are considered only in the local environment
(incoming and outgoing arcs) of each transition. The
incoming and outgoing arcs of the coloured transition Recover
are both labelled with the same variable x because that transition
only operates within one stratum. However the coloured
transition Infect has connections both within one stratum and
between strata; this is accomplished by using the two variables x

and y on the two incoming arcs from Susceptible and Infectious,
each of which independently hold as bindings either young or
old, giving in total four combinations, two of which standing for
the inter-strata cross infections and the other two for the intra-
stratum infections. The x represents the person who becomes
infectious, and y the infecting person. Thus the outgoing arc from
the transition to the place Infectious is labelled with the multiset
{x,y} written as x ++ y. If x and y hold the same colour, x ++ y
corresponds to an arc weight of two in the standard Petri
net model.

3.2.5.2 Folding/Unfolding
Any (standard) Petri net can be folded into a coloured Petri net
comprising just a single (coloured) place and a single (coloured)
transition. Then, the entire structure is hidden in the colour
definitions, which can always be revealed by automatic unfolding.
Generally, the decision regarding howmuch structure to fold into
colours is a matter of taste. We follow the rule that a model should
be still completely comprehensible by reading the structure and
its colour annotations. In general, folding of epidemic models
should preserve the pattern of the SIR (or related) model. For
illustration, we provide a coloured version of the SIAR
symptomatic/asymptomatic model in the Supplementary
Material.

In principle, coloured Petri nets could be simulated directly on
the coloured level with the constraint that the model is symmetric
(Beccuti et al., 2015), thus avoiding blowing up the model
structure which often comes with unfolding. However, the
corresponding algorithms are much more complicated, often
involve an implicit partial unfolding, and only a few of them
are actually available in practice (Beccuti et al., 2019; Amparore
et al., 2021). In addition, our models are generally not symmetric.

In contrast, unfolding to the corresponding uncoloured Petri
net can be efficiently achieved (Schwarick et al., 2020) and
permits to re-use the rich choice of analysis and simulation
techniques, which have been developed over the years for
uncoloured Petri nets, including SPN and CPN , many of
them are now supported by highly efficient libraries and
reliable software tools.

This is why we exclusively adopt the second approach. All our
coloured models are automatically unfolded when it comes to
analysing and/or simulating them. In contrast, animation is
achieved by unfolding in every step only the transition to fire
next; no complete unfolding needs to be generated.

3.2.5.3 Encoding Space and Locality
The use of colour enables us to encode matrices, where colours
(natural numbers) represent indices; multidimensional matrices
can be represented by appropriate colour tuples. Previously we
have used this approach to encode one, two and three
dimensional Cartesian space where coordinates were
represented as tuples over the entire matrix (Gilbert et al.,
2013), for example, modelling diffusion and cell movement in
biological systems: planar cell polarity in the Drosophila wing
(Gao et al., 2013), phase variation in bacterial colonies (Pârvu
et al., 2015), bacterial quorum sensing (Gilbert et al., 2019) and
intra-cellular calcium dynamics (Ismail et al., 2020).
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In this research we use tuples to index sub-matrices,
permitting us to represent graphs as adjacency matrices and
hence to encode geographical spatial relationships. This
overcomes the limitations of the previous Cartesian coordinate
approach for representing pandemics, because whole matrices
represent travel diffusion-wise in a regular grid, rather than
specific travel connections.

For illustration we consider the encoding of the
connectivity graph for four European countries, where
connectivity reflects border sharing, see Figures 7A–C. In
order to achieve this we define a colour set of enumeration
type comprising all countries and next a matrix as a product
over this colour set.

colorsets:
enum Countries = {BE,DE,ES,FR};
Matrix = PROD (Countries, Countries);

A subset of the matrix is defined by a Boolean expression
(given in square brackets) comprising all required connections.

colorsets:
Connections = Matrix[
// subset defined by Boolean expression

(x=ES & (y=FR)) |
(x=FR & (y=ES | y=BE | y=DE)) |
(x=BE & (y=DE | y=FR)) |
(x=DE & (y=FR | y=BE ))];

Finally we define a colour function connected to be used as
guard for the Travel transitions, which constrains travel
according to the connectivity graph.

colorfunctions:
bool connected (Countries p, Countries q)
{ (p,q) elemOf Connections };

This acts in the same way as the more simple constraint
[x ! = y] used in Figure 6. Now, colour-dependent rates may
model different disease control policies in different
subpopulations or in different locations.

Besides this, we need two variables of the colour set Countries
to be used in the arc inscriptions and thus occurring as
parameters in the transition guards.

variables:
Countries: x;
Countries: y;

3.2.6 Framework
These colouring principles can be equally applied to qualitative
and quantitative Petri nets, yielding, among others, coloured
SPN (SPN C) and coloured CPN (CPN C): Our PetriNuts
platform supports the handling of all of them, which includes
the reading of a quantitative Petri net as either SPN or CPN
(supported by Snoopy and Spike) and the automatic unfolding of
SPN C and CPN C to their uncoloured counterparts (supported

by Snoopy, Marcie and Spike). See Supplementary Figure S1 for
an overview of the modelling paradigms integrated in the
unifying framework of the PetriNuts platform and the
relations among the supported net classes (Heiner et al., 2012).

3.2.7 Petri Net Analysis Techniques
Petri net theory comes with a wealth of analysis techniques
(Murata, 1989), some of them are particularly useful in the
given context due to the specificity of the net structures of our
SPN and CPN models, which we obtain by design.

• Conservative: A Petri net is called conservative, if the
number of tokens is preserved by any transition firing.
This is the case if it holds for all transitions that the sum
of the weights of incoming arcs equals the sum of the
weights of outgoing arcs. In our models, most of the
transitions have exactly one incoming and one outgoing
arc, with the exception of Infect transitions which have two
incoming and two outgoing arcs (the latter combined to one
arc with a weight of 2).

• P-invariant: A P-invariant (as it occurs in the models
considered here) corresponds to a set of places, holding in
total the same amount of tokens in any reachable state.
Generally, P-invariants induce token-preserving subnets.
A P-invariant is minimal, if (roughly speaking) it does not
contain a smaller P-invariant; see (Heiner, 2009) for
details. The models discussed in this paper have the
remarkable property that the are covered by non-
overlapping minimal P-invariants, and each minimal
P-invariant comprises the places (compartments) of
one stratum.

Extending a model by cumulative counters, such as the total
number of infectious over time, destroys the conservative net
structure and induces additional overlapping P-invariants; thus
the model is still covered with P-invariants (CPI); see
Supplementary Figure S3 for an example.

More generally speaking, any epidemic/pandemic
model without birth (transition without pre-place) and/
or death (transition without post-place) is covered with
P-invariants.

We use both criteria for model validation to avoid modelling
mistakes. They are independent of the initial marking and can be
easily decided by exploring the net structure only. This is done in
our PetriNuts platform by the tool Charlie. Both criteria prove
independently the boundedness of a model (the number of tokens
on each place is limited by a constant), which ensures in turn a
finite state space.

The finite state space could possibly open the door to
analyse SPN models by numerical methods to determine
popular Markov properties (Schwarick and Heiner, 2009),
such as the probability to reach a (transient) state where, e.g.,
half of the population is effected. However, a closer look on
the typical size of the generated CTMC soon questions this
endeavour, as numerical methods rely on a real-numbered
square matrix in the size of the state space (Heiner et al.,
2010). So we basically have to confine ourselves to simulation
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and analysis techniques working over simulation traces, such
as simulative model checking; see Section 2.8.

It is obvious from exploring the model behaviours that they
reach a dead state (there is no enabled transition), as soon as the
infectious compartment becomes empty, because there is no way
to add something to the infectious compartment as soon as it got
empty. In Petri net terms this corresponds to a bad siphon (a
siphon not containing a trap); all these are further popular
notions of Petri net theory, requiring structural analysis only,
while permitting conclusions on behavioural properties; see
(Heiner et al., 2008) for details.

Often, epidemic/pandemic models are by design
irreversible, reflecting the (optimistic) assumption that a
once gained immunity is never lost, and a model will reach
a dead state at the very latest when the entire population is
recovered. Loosening this assumption by adding a transition
from either Infectious or Recovered to Susceptible and refilling
Infectious in each epidemic model component will introduce
cycles to a model which now becomes a chance to be reversible
and live (which in turn precludes dead states), if it is covered
with T-invariants; see (Heiner, 2009) for details. This
obviously requires that the geographical connectivity graph
is strongly connected.

3.2.8 Petri Net Simulation
Besides structural analysis for model validation, we apply
simulation techniques generating traces of model behaviour.
Simulation traces are time series reporting the current variable
values at the n + 1 time points ti of a specified output grid i = 0, . . .
n, typically splitting the simulation time into n equally sized time
intervals. We consider here two basic types of traces:

• traces of place markings, i.e., time series of the current
marking (state) of the compartments at the specified time
points of the simulation run:

s(ti): P → N, with s(t0) = m0,

i.e., s (ti) are (non-negative) integer place vectors over all place
markings, indexed by the set of places P;

• traces of transition rates, i.e., time series of the number of
occurrences which each individual event had in total in the
latest time interval,

v(ti): T → N, with v(t0) = 0,

i.e., v(ti) are (non-negative) integer transition vectors over all
transition rates, indexed by the set of transitions T.

Reading a transition rate vector as Parikh vector immediately
leads us to the state equation specifying the relation between both
traces:

s(ti) � s(ti−1) + C · v(ti), i � 1 . . . n,

where C is the incidence matrix of a Petri net (Heiner et al.,
2008). Thus, the place trace can be derived from the transition

trace, but generally not vice versa. In the stochastic setting, the
transition trace cannot be uniquely deduced from the place trace
due to alternative and parallel transitions, which specifically holds
for individual traces. Therefore, we directly record the transition
traces during simulation.

Often we consider averaged traces, and the deterministic
simulation of CPN and CPN C is bound to do so, such that
the individual values at each time point are non-negative real
numbers (R̂+) instead of natural numbers (N):

s(ti): P → R̂+, with s(t0) = m0 (traces of place markings),
v(ti): T → R̂+, with v(t0) = 0 (traces of transition rates)

Simulation traces may include coloured places/transitions,
where a coloured node always gives the sum of the values of
the corresponding unfolded nodes. For example, in the SIR-
S2 model given in Figure 5, the coloured place Susceptible
always shows the sum of its two unfolded nodes
Susceptible_Young and Susceptible_Old; likewise for
transitions and their rates.

3.2.9 Derived Measures
A measure often used in the daily news is the daily or weekly
number of new infections, given at time point t by

ΔI1
t � St − St−1 or ΔI7

t � St − St−7.

These can also be defined by:

ΔI1
t � It − It−1( ) + Rt − Rt−1( ) or ΔI7

t � It − It−7( ) + Rt − Rt−7( ).

These numbers are typically normalised to a specific population
size, e.g., 100,000, thus permitting the comparison of the local
incidence numbers among regions.

A more scientific measure for characterising the progress of
an epidemic is the reproduction number R (Heffernan et al.,
2005; van den Driessche, 2017) which is the average number of
secondary cases produced by one infectious individual
introduced into a population of susceptible individuals. It
allows modellers to work out the extent of the spread, but
not the rate at which the infection grows (Adam, 2020). This
measure has several interpretations. R0 assumes that
everybody in a population is susceptible to infection; this is
only true when a new virus is introduced into a population
which has never experienced it before and is a measure of the
potential virulence of the disease. Rt (sometimes called Re, or
“effective R”), is calculated over time as an epidemic
progresses, and is a measure of the potential virulence of
the disease. The value of Rt varies during the course of an
epidemic, as people gain immunity after an infection or a
vaccination, or have adjusted their social interactions. Thus
generally it holds that Rt ≤ R0.

In our SIR model, we calculate Rt for a time window of 1 by
Eq. 3; the generalisation to wider time windows is
straightforward.

Rt � ΔI1
t /ΔI1

t−1 (3)
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Rt � St − St−1( )/ St−1 − St−2( )
Rt � It − It−1( ) + Rt − Rt−1( )( )/ It−1 − It−2( ) + Rt−1 − Rt−2( )( )

3.3 Parameter Fitting
The solution space for these models is so large that it is not
feasible to attempt to fit parameters via a comprehensive search.
In addition, parameter scanning is unlikely to find the best
combination of parameters because of the combinatorial
overheads of searching through possible values. Instead, we
decided to employ target driven optimisation in order to find
best solutions via heuristic search.

There are two types of target driven optimisation which are
systematic and local search (Russell and Norvig, 2013). Systematic
approaches store information about the path to the target, whereas
local searches do not retain such information. Local searches have
two key advantages: 1) they use very little memory due to not
storing the path, and 2): they can often find reasonable solutions in
large state spaces (Russell and Norvig, 2013).

One type of local search algorithm is the Hill-Climbing algorithm
(HCA). This algorithm generates a random solution and makes
small changes to the solution to increase the fit to target data. The
HCA is greedy as it only accepts a solution better than its current
state. As a result, the HCA can get stuck firstly, in a local maximum,
which is a peak higher than each of its neighbours but lower than the
global maximum; secondly, in a flat local maximum, which is a local
maximum that has many solutions and is difficult for the algorithm
to navigate; and finally, at a shoulder, which is a flat region of space
that is neither a local or global maximum (Russell andNorvig, 2013).
To overcome such sticking points the HCA can be modified into a
stochastic Random-Restart Hill-Climbing algorithm (RRHCA) by
defining a number of times to re-run the whole program. The final
solution is the best of all runs.

The goals of the fitting were (Objective 1) to reproduce the order of
the time taken from the first 5 deaths to a peak for daily new cases,
(Objective 2) to reproduce the order of the height of the peaks for daily
new cases, and (Objective 3) combining Objective 1 and Objective 2.
Fittingwas performed in all three cases using target driven optimisation
employing Random Restart Hill Climbing. RRHC was used for
parameter optimisation with code developed in Python which
called Spike. This Python program automatically optimises input
parameters to better represent the target data. Using this approach,
the three objectives were investigated for West Europe10.

First, optimisation was performed for the order of peak new
daily infections (PNDI). Each country was given a unique letter and
a string produced to represent the order of peaks, for example:
France = A, Spain = B, if Spain peaked first the string was “BA”, else
it was “AB”. The fitness function for Objective 1 was achieved by
encoding the required country order for peak time as a ten
character string, and minimising the Levenshtein distance
between the target string and the corresponding string
representing the order of peaks obtained from the model.
Results are given in Supplementary Table S2. A smaller
distance symbolises model predictions to be closer to the
observed data, and the RRHC algorithm searched for country
specific and inter-country infection parameters that reduced the
distance measure for this objective and the two below.

Secondly, optimisation was performed for the magnitude of
PNDI by minimising the result of Eq. 4. The measure produces a
normalised value between 0 and 1, where 0 represented a perfect
fit between target and modelled data, and 1 the worst possible fit,
see Supplementary Table S3. Finally, for Objective 3,
optimisation was performed for both the order and magnitude
of PNDI. The distance measure used was a combination of the
LD, and the measure in Objective 2, Eq. 5. The distance measure
produces a normalised value between 0 and 1, where 0
represented a perfect fit between modelled and predicted data,
and 1 the worst fit. Order andmagnitude were given equal weight;
see infection rates in Supplementary Table S4, and travel rates in
Supplementary Table S5.

distanceM �
| Target1−Model1
Max Target1 ,Model1( )| + | Target2−Model2

Max Target2 ,Model2( )| +/ + | Targetn−Modeln
Max Targetn ,Modeln( )|

n
(4)

distanceM+O � distanceM + LD
n

2
(5)

Pseudo code for RRHCA:

The Levenshtein distance (Levenshtein, 1966) between two strings
a,b (of length |a| and |b| respectively) is given by leva,b(|a|, |b|), where

leva,b i, j( ) �
max i, j( ) If min i, j( ) � 0

min
leva,b � i − 1, j( ) + 1
leva,b � i, j − 1( ) + 1, otherwise
leva,b � i − 1, j − 1( ) + 1 ai≠bj( )

⎧⎪⎨
⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

where 1(ai≠bj) is the indicator function equal to 0 when ai = bj and
equal to 1 otherwise. A normalised edit distance between two
strings can be computed by

lev_norma,b � leva,b
max | a |, | b |( )

3.4 Data Analytics
3.4.1 Supervised Analytics Via Linear Temporal Logic
and Simulative Model Checking
Model checking permits us to determine if a model fulfils given
properties specified in temporal logics, e.g., probabilistic linear-
time temporal logic PLTL (Donaldson and Gilbert, 2008). Here
we employ the simulative model checker MC2 (Donaldson and
Gilbert, 2008) over time series traces of behaviours generated by
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simulation of epidemic and pandemic models. Our simulation
platforms (Snoopy, Marcie, Spike) not only support the checking
of time series behaviours of (uncoloured/coloured) places/
compartments but also of (uncoloured/coloured) transitions/
events, for example, Infect, Recover and Travel, or derived
measures over both (observers). All of these can be subsumed
under the general term observables.

The basic element of any temporal logic is the Atomic
Proposition (AP) which is part of a property without temporal
operators. The syntax of PLTL is:

φ ::� Xφ | Gφ | Fφ | φUφ | φRφ | φ ∨ φ | φ ∧ φ | ¬φ |
φ → φ | AP

AP ::� AP ∨ AP | AP ∧ AP | ¬AP | AP → AP |
z = z | z ≠ z | z > z | z ≥ z | z < z | z ≤ z | true | false

z ::� z + z | z − z | z p z | z/z | ≪x≫ | d (≪x≫) | max (≪x≫) |
Int | Real

Where ≪x≫ is the name of any observable in the simulation
output, Int is any integer number, Real is any real number, and d is the
differential operator.

The temporal operators are:

• Next (X)—The property must hold true in the next
time point.

• Globally (G)—The property must hold true always in the
future.

• Finally (F)—The property must hold true sometime in the
future.

• Until (U)—The first property must hold true until the
second property holds true.

• Release (R)—The second property can only ever not hold
true if the first property becomes true.

When checking small models with few variables, it is possible to
check the properties of specific observables, for example, that of
infectious in a simple SIR model. However, when checking larger
models withmany observables, for example P48SIR-S10, we runmodel
checking for a set of observables against a library of PLTL properties,
and employmeta-variables indicated by double angle brackets in our
queries, to be substituted one by one by all observables in the set:

P ≥1[G(≪x≫>10)]

which “Holds for any observable whose value is always greater
than 10”, which in turn could be generalised to a general pattern
“x is always greater than some threshold”.

A library of appropriate property patterns, provided in the
Supplementary Material, allows us to categorise all model
observables into (not necessarily disjunctive) sets fulfilling the
individual property patterns. Example patterns include

1) Always zero. When applied to places, this indicates that a place
has never been initialised to a value greater than zero, and that it
never participates in the progress of the model. For transitions it
indicates those which are never active, indicating that they are
part of the network that is always dead.

P ≥ 1[G(≪x≫= 0)], which is equivalent to P ≥ 1 [¬F(≪x≫ ≠ 0)]

2) At some point greater than zero, and eventually zero Places
which have some marking, and then hold a zero value at then
end of the simulation; transitions with changing activity and
finally a steady state of zero activity.

P ≥ 1[F(d(≪x≫) ≠ 0) ∧ F(G(≪x≫ = 0 ∧ d(≪x≫) = 0))]

3) Activity peaks and falls:

P≥ 1 [F(d(≪x≫)> 0)∧ (d(≪x≫)> 0 U G(d(≪x≫)< 0))]

4) Activity peaks and falls, then steady state:

P≥ 1 [F(d(≪x≫)> 0)∧ d(≪x≫)> 0 U
(F(d(≪x≫)< 0 ∧ G(d(≪x≫)< 0 U
G(d(≪x≫)) � 0)))]

5) At least one peak:

P ≥1[F((d(≪x≫)>0) ∧ F((d(≪x≫) < 0)))]

6) At least two peaks:

P≥ 1 [F((d(≪x≫)> 0 ∧F((d≪x≫)< 0)∧
F((d(≪x≫)> 0) ∧F((d≪x≫)< 0)))))]

We have applied this to PChinaSIR, and discovered some
provinces with multiple peaks in Infectious when the infection
was initiated in Hubei province (the capital of which is Wuhan),
due to their geographical placement, see Figure 10.

3.4.2 Unsupervised Analytics
Out of the rich choice available for unsupervised analytics, we use
the following three methods; clustering, bar charts and
correlation matrices.

Clustering is a method of creating groups where objects in one
group are very similar and distinct from other groups (Gan et al.,
2020). In particular, agglomerative hierarchical cluster analysis was
performed, which sequentially combines individual elements into
larger clusters until all elements are in the same cluster. Time-series
cluster analysis was performed on the Infectious compartment in
non-fitted Europe10 (Supplementary Figure S11) and non-fitted
Europe48 (Supplementary Figure S12), where the infection was
started in all locations. The distance between time-series traces of
Infectious compartments for each country was computed using
Euclidean distance and a distance matrix was constructed.
Clustering was performed using the complete link method, which
takes the largest distance between clusters to construct a dendrogram.

Exploratory data analysis involves using graphs and summary
statistics to explore data; this was exploited largely by plotting model
outputs for visualisation to ascertain whether or not the models were
behaving as expected. The bar chart in Supplementary Figure S5was
produced using simulation data exported as CSV files, and generated
in Excel.
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Correlation matrices were computed to assess model
behaviour in more depth and was used to validate both
unfitted and fitted models. Non-fitted models were
simulated several times with the infection starting in a
different location, and then with all locations infected.
The magnitude and timing of peak infections were
detected for all simulations and combined into a single
data frame. For the P10SIR fitted model, the best result
from the RRHCA optimisation was taken, and peak and
timing of peaks were detected. Data were loaded into R and
real-world data on country population density, country size,
and the number of borders a country had were joined.
Correlations between variables were computed to
determine the parameters that were closely linked to
higher numbers of infections. The correlation matrix was
then plotted to visualise and statistical significance

determined at p < 0.05. Non-significant correlations were
displayed with a black cross. For details see Supplementary
Table S6 and Supplementary Figures S8–S10.

3.5 Hardware and Software Requirements
3.5.1 Hardware
A standard computer with a Windows, Mac or Linux operating
system (preferably 64-bit). The minimum RAM required is 8 GB;
depending on the size of the constructed model, more memory
may be needed. More heavy simulation experiments take
advantage of multiple cores.

3.5.2 Software
The research reported in this paper has been achieved by help of
the PetriNuts platform, which is also required to reproduce the
results. The platform comprises several tools, which can be

FIGURE 11 | SIR model—Dynamic change of infection rates: lockdown. Output from the SIR model in Figure 1where infection rates were stepwise decremented
during simulation. Figure legend shows cumulative infections for different number of decrements.

FIGURE 12 | SIR model, dynamic change of infection rate increased back to pre-intervention level at time step 20.
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downloaded from http://www-dssz.informatik.tu-cottbus.de/
DSSZ/Software. All these tools can be installed separately, are
free for non-commercial use, and run on Windows, Linux, and
Mac OS.

• Snoopy (Heiner et al., 2012) is a Petri net editor and
simulator supporting various types of hierarchical
(coloured) Petri nets, including all Petri net classes
used in this paper, with an automatic conversion
between them. Snoopy supports several data exchange
formats, among them the Systems Biology Markup
Language (SBML, level 1 and 2). For communication
within the PetriNuts platform, Snoopy reads and writes
ANDL (Abstract Net Description Language) and CANDL
(Coloured ANDL) files, and writes simulation traces
(places, transitions, observers) as CSV files. The ODEs
induced by a CPN or CPN C can be exported to LaTeX, as
plain text, or be written to be read by Octave, Matlab, or
ERODE (Cardelli et al., 2017; Cardelli et al., 2021).
Snoopy’s proprietary file format uses XML technology;
default file extensions indicate the net class (i.e., pn, spn,
cpn, colpn, colspn, colcpn). A Snoopy2LATEX generator
supports documentation.

• Patty (Schulz, 2008) is a lightweight JavaScript to
support Petri net animation (token flow) in a web
browser; it does not require any installation on the
user’s site. Patty reads (uncoloured) Petri nets in
Snoopy’s proprietary format. All uncoloured Petri
nets given in this paper can be animated in a purely
qualitative manner at https://www-dssz.informatik.tu-
cottbus.de/DSSZ/Research/ModellingEpidemics.

• Charlie (Heiner et al., 2015) is an analysis tool of
(uncoloured) Petri net models applying standard
techniques of Petri net theory (including structural
analysis, such as conservativeness, and invariant
analysis), complemented by explicit CTL and LTL
model checking. Charlie reads ANDL files, and writes
some analysis results (invariants, siphons, traps) into
files, to be read by Snoopy for visualisation; for details
see (Blätke et al., 2015).

• Marcie (Heiner et al., 2013) is a Model checker for
qualitative Petri nets and SPN , and their coloured
counterparts; it combines exact analysis techniques
gaining their efficiency by symbolic data structures (IDD)
(Heiner et al., 2016) with approximative analysis techniques
building on fast adaptive uniformization (FAU) and
parallelized stochastic simulation (Gillespie, tau leaping,
delta leaping). It supports CTL, CSL and PLTLc model
checking. Marcie reads ANDL and CANDL files, and writes
stochastic simulation traces (places, transitions, observers)
as CSV files.

• Spike (Chodak and Heiner, 2019) is a command line tool for
reproducible stochastic, continuous and hybrid simulation
experiments of large-scale (coloured) Petri nets. Spike reads
a couple of file formats, among them are SBML, ANDL and
CANDL, and writes simulation traces (places, transitions,
observers) as CSV files.

Snoopy, Marcie and Spike share a library of simulation
algorithms, comprising four stochastic simulation algorithms
(besides Gillespie’s exact SSA, three approximative algorithms)
and a couple of stiff/unstiff solvers for continuous simulation;
some of them use the external library SUNDIAL CVODE
(Hindmarsh et al., 2005). See (Chodak and Heiner, 2019) for a
quick reference.

• MC2 (Donaldson and Gilbert, 2008) is aMonte CarloModel
Checker for LTLc and PLTLc, operating on stochastic,
deterministic, and hybrid simulation traces or even
wetlab data, given as CSV files. We use MC2 to analyse
deterministic and stochastic traces generated by Snoopy or
Spike.

Additionally, we recommend the use of several third-party
tools for post-processing of simulation traces.

• R—3.6.2 and R Studio—Version 1.1.463, with packages
dplyr 0.8.5, ggplot2 3.3.0, openxlsx 4.1.4, corrplot 0.84,
RColorBrewer 1.1-2, dtwclust 5.5.6, reshape2 1.4.3.

• Python—Version 3.6.5 and Visual Studio Code—1.42.1,
used for

• RRHCA (Random Restart Hill Climbing) using packages
pandas 1.1.0, Levenshtein 0.12.0, and packages pre-installed
with Python: os, time, random, datetime.

• PythonWeb Scraper, used to collect COVID-19 Data, using
packages urllib3 1.25.10, requests 2.24.0, lxml 4.5.2,
bs4 0.0.1.

• Excel 16.40

4 DISCUSSION

4.1 Model Engineering
Model engineering is in general the science of designing,
constructing and analysing computational models. We have
previously discussed this concept in the context of biological
models (Heiner and Gilbert, 2013; Blätke et al., 2015), and the
principles are equally applicable to epidemic and pandemic
models. Major objectives of this approach are the sound
reusability of models, and the reproducibility of their
simulation and analysis results, both being facilitated by the
use of colour in Petri nets. In terms of the models presented
in this paper, we employ an approach based on orthogonal
extensions of the basic SIR model, enabling robust step-wise
model development. Examples include the extension of epidemic
SIR models to pandemic models in a reusable manner, where
models can be scaled by modifying stratification colour sets, or
adjusted to different geographies by merely replacing the related
colour definitions. More specifically, model engineering in this
context comprises three aspects: engineering model structure,
spatial aspects, and rates.

4.2 Engineering Model Structure
We exploit the concept of colour as supported in coloured Petri
nets, which facilitates parameterised repetition of model
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components, as for example, required to encode stratified
populations. This enables modelling at a higher level of
abstraction akin to principles in high level programming
languages. Abstraction generally reduces design errors in
large and complex models, but can introduce some
implementation errors due to misunderstanding of the
coloured annotations.

This calls for robust model validation before entering the
simulation phase. With increasing model size, this can hardly be
accomplished by visual inspection only. Petri nets offer
structural analysis techniques for this purpose. For example,
all the models presented in this paper are by construction
covered by P-invariants, and most models are also
conservative. Both properties can be easily checked using our
Petri net analysis tool Charlie (see Section 3 for details). Besides
this, animation of discrete Petri nets offers the option to play
with a net in order to follow the token flow, suggested as an early
check to reveal design faults. All our models can be animated
with Snoopy; animation of coloured models involves stepwise
partial unfolding of the transition to fire next. Uncoloured
models can additionally be animated within a web browser
using Patty.

Our use of colour enables us to construct multilevel models
in a sound manner. Specifically they encode two levels, the lower
one being based on an SIR or its extensions, and the upper level
comprising a network of geographical connections, resulting in
a metapopulation model (Brauer, 2017). The models are
multiscale in terms of distances at the upper level; regarding
time, we assume that geographical connections, i.e., travel, occur
at much lower rates than infections in the lower level SIR
components.

4.3 Engineering Spatial Aspects
The crucial difference between epidemic and pandemic models
is the notion of space and connectivities permitting population
movement and hence the geographic transmission of disease.
Our approach which is based on colour and associated
functions enables the encoding, for example, of set
operators. This in turn facilitates model design based
directly on abstract representations of spatial relationships
as graphs. Modification of geographical relationships then
merely involves modifying the corresponding graph at the
coloured high level, rather than attempting to change the
expanded and more complex unfolded low level. This all
occurs within one smooth coherent framework of coloured
Petri nets, implemented seamlessly in our PetriNuts platform.

Petri nets can be designed in a graphical or textual way,
depending on personal preferences. A combination of both is
also possible; for example, designing the Petri net structure
graphically and writing all colour-related definitions using
CANDL; Supplementary Material for details.

4.4 Engineering Rates
The increase in model size results in an increase both in the
number of kinetic parameters that need to be fitted, as well as

an increase in the complexity of their interdependencies. Our
paper is a methodology paper, and parameter fitting has been
included as an illustration of what can be done with our
approach.

In this paper we have discussed models where the rate
constants are fixed for the entirety of a simulation.
Modelling lockdown situations, however, requires that rate
constants are changed dynamically during a simulation run.
The imposition of lockdown measures which are driven by
social disease control policies effectively diminishes the
infection rate constant, and likewise lifting of the measures
increases this value. These changes are typically event driven,
in response to changing Rt values for example. We have
recently extended the Spike simulator to include event-
driven triggers, which enables the modelling of these
control measures, for example, Figure 11—lockdown only,
Figure 12—lockdown followed by unlock. The methodology
enables the imposition of changes in an some incremental
manner, in order to better represent the transitional nature of
the uptake of lockdown measures in practice. In more general
terms modelling features such as the dynamic modification of
rate constants is a step towards self-adaptable models.
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