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Abstract. In the context of humanitarian support for forcibly displaced
persons, camps play an important role in protecting people and ensuring
their survival and health. A challenge in this regard is to find optimal
locations for establishing a new asylum-seeker/unrecognized refugee or
IDPs (internally displaced persons) camp. In this paper we formulate this
problem as an instantiation of the well-known facility location problem
(FLP) with three objectives to be optimized. In particular, we show that
AI techniques and migration simulations can be used to provide decision
support on camp placement.
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1 Introduction

Forced displacement is a complex global phenomenon, which refers to the move-
ment of people away from their home or origin countries due to many factors, such
as conflict, violence, persecution, etc. In 2020, almost 26.4 million people had fled
their countries according to the UNHCR (https://www.unhcr.org/uk/figures-at-
a-glance.html). In this situation, relocating asylum-seekers/unrecognized refugees
to camps becomes an urgent issue to humanitarian organizations or governments.
Camps, as important infrastructures, provide protection and allocate available
humanitarian resources to thousands of forcibly displaced people. As resources
are commonly limited, it is critical to make optimal decisions in seeking the best
location for establishing a new camp. Camp placement can be formulated as the
well-known facility location problem (FLP) [6]. The FLP can be considered as a
multiobjective optimization problem (MOP), which includes two or more objec-
tives to be optimized simultaneously. The objectives of the FLP can include mini-
mizing the total travel distance and maximizing the demand coverage, meanwhile
satisfying some constraints [8].
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Several MOP-FLP approaches have been proposed, including traditional goal
programming, ε-constraint approaches and, more recently, metaheuristic opti-
mization algorithms [13] such as particle swarm optimization (PSO) and evolu-
tionary algorithm (EA). As a population-based metaheuristic optimization app-
roach, EA may effectively handle MOPs as it can generate a set of trade-off
solutions in a single run. It has specifically been applied to tackle the FLP in
disaster emergency management [14], making it natural to employ EA in the
context of camp placement. The main challenge here is to have exact number of
forcibly displaced persons arriving in destination countries. Due to the ongoing
conflicts in origin countries, the number of asylum-seekers/unrecognized refugees
or IDPs continuously changes over time.

Here we aim to assist humanitarian organizations and governments in their
decision-making on camp placement, and the paper has the following contribu-
tions: (1) we present an MOP for camp placement with three objectives regard-
ing travel distance, demand coverage, and idle camp capacity; (2) we use an
agent-based simulation to capture the demand uncertainty (i.e., the number of
camp arrivals), which is crucial for camp placement but has not been considered
in most existing literature; (3) we present a new multiobjective simulation opti-
mization approach for our MOP, which consists of EA and an agent-based forced
migration simulation; and (4) we successfully apply the proposed approach to a
case study of the South Sudan conflict, and identify a group of optimal solutions
for decision-makers.

1.1 Related Work

The camp location selection problem is a complex task for the humanitarian
organizations to deploy aid. The research areas related to this problem can be
generally divided into the modelling the movements of people [11], and the FLP
in humanitarian logistics [1,4,7,9]. Here we attempt to address the optimization
problem of how to find the optimal locations for establishing a new camp. This
problem can be formulated as an MOP. Current approaches for multiobjective
FLPs can be classified into two categories. The first is concerned with the tra-
ditional single-objective optimization approach, such as the goal programming
approach [1], the weighted sum approach [9] and the ε-constraint [4]. The second
is the multiobjective optimization approach searching for the whole Pareto front,
from which the decision makers choose their preferred solution. For example, the
classic NSGA-II and a multiobjective variant of the PSO algorithm were applied
in the earthquake evacuation planning problem [7]. The reason we consider the
second category is that optimization approaches in the first may require prior
knowledge, such as the relative importance of the objectives in the weighted sum
approach. Such knowledge may not be easy to access, and even if it is available
it has been shown that the search aiming for the whole Pareto front may be
more promising since it can help the search escape the local optima [3]. Another
strand of research is multiobjective optimization under uncertainty. Recently,
some studies have proposed a number of robust or stochastic models for FLPs
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Fig. 1. An illustration of the route network for a basic camp placement, where 1) a
source country is represented by a square region with one conflict zone (i.e., point A),
three towns (i.e., points B, C, and D) and all possible links among these points, and
2) one camp (i.e., point Z) is connected to the nearest location in the source country.

under uncertainty [2]. However, there is a lack of studies on FLPs under uncer-
tainty that take the preferences of people into account. As popular simulation
approaches, different agent-based modelling frameworks have been developed to
model the movements of displaced persons (or the preferences of those people).

2 A Multiobjective Camp Location Selection Model

Our multiobjective model aims to determine the optimal location of a new camp
and is constructed according to four main steps. First, we create a source country
with conflict zones and towns, and interconnecting links. Second, we add a camp
at given coordinates in a destination country. Third, we create a link between the
camp and its nearest location in the source country, and lastly we run the Flee
simulation [11] and calculate the objectives. Figure 1 illustrates the route network
for a basic camp placement problem with one conflict zone, three towns and one
camp, and interconnecting roads (lines). The coordinates (x, y) associated with
each conflict zone, town or camp are used to indicate their positions.

We have the following model assumptions: the locations of conflict zones
and towns, the number of asylum-seekers/unrecognized refugees or IDPs (i.e.,
agents in Flee simulation), and the conflict period are given, agents are spawned
in conflict zones, destination countries are represented by a continuous region,
camps have limited capacities, agents move during each time step based on
predefined rules in [11], and agents stop moving once they reach the camp. With
the notation in Table 1, the MOP can be formulated as follows:

minimize : f1(j) =
∑nsim,t,j

i dsim,t,i,j

nsim,t,j
, t = T (1)

maximize : f2(j) = nsim,t,j , t = T (2)

minimize : f3(j) =
∑

t |c − nsim,t,j |
T

, t = 1, 2, . . . , T (3)
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Table 1. Notations for the MOP.

Notations Type Explanation of notations

J Set The set of candidates sites indexed by j

a Parameter The total number of agents in all conflict zones

n Parameter The number of potential camp sites

c Parameter Camp capacity (unit: agent)

k Parameter The total number of new camps that will be
placed and open

T Parameter The simulation period or the conflict period
(unit: day)

j Decision variable The index of a candidate site

dsim,t,i,j Dependent variable The distance travelled by an agent i ∈ Isim,t,j in
the new camp at
candidate site j at time t based on the simulation
predictions

nsim,t,j Dependent variable The number of agents served by the new camp at
candidate site j

at time t based on simulation predictions,
indexed by i

subject to

1 ≤ j ≤ n (4)

The objective function Eq. (1) minimizes the average distance travelled by
each arriving agent in a destination camp at the end of the simulation. This
objective focuses on the efficiency (i.e., distance) of allocating people to facilities.
The objective function Eq. (2) maximizes the number of people in the camp at
the end of the simulation. This objective function can be easily changed to a
minimization problem by calculating the negative value of successful arrivals
(i.e., −nsim,t,j , t = T ). The objective function Eq. (3) minimizes the average idle
camp capacity over simulation days for the new camp. Note that the new camp
can be overpopulated, and if the idle capacity is a negative value, we simply take
the absolute value. Constraint (4) restricts the search space of the MOP (i.e., a
set of n possible sites), from which we select the optimal camp site. In our MOP,
the decision variable j is known as a solution to the problem. Different from the
single-objective optimization problem, the MOP has a set of trade-off solutions,
called Pareto front, rather than a single optimal solution. In this paper, only one
camp will be established (i.e., k = 1) and we aim to find the Pareto front of the
MOP. This MOP can be further extended to jointly solve the MOP for multiple
camps by replacing the current single decision variable with a set of decision
variables, expressed as a k-dimensional decision vector �j = (j1, j2, . . . , jk), and
considering all people who arrived at these new camps.
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2.1 A Simulation-Optimization Approach

We develop a simulation-optimization approach, which combines a (Flee) simu-
lation with a multiobjective optimization algorithm. For the optimization algo-
rithm, we adopt a representative multiobjective evolutionary algorithm, called
NSGA-II [5]. Our algorithm works as follows: for each generation of NSGA-II, a
group of candidate solutions (each solution is a sequence of k selected sites) are
generated, followed by the Flee simulation taking the coordinates corresponding
to each solution as input parameters, and assessing and outputting the objective
values for the optimization stage. To implement NSGA-II, a candidate solu-
tion is represented as a chromosome using a grid-based spatial representation
strategy. Each grid cell has longitude and latitude coordinates corresponding
to its centroid. The chromosome is then sequentially encoded by the indexes
of k selected site(s), where k is the number of camps that will be placed and
opened. Note that in this paper we only consider one new camp (i.e., k = 1).
To automate the simulation process, we utilize FabFlee [12], which is a plugin of
FabSim3 (https://github.com/djgroen/FabSim3). Due to data complexity, sim-
ulation runs for a group of solutions (i.e., candidate camp locations) are compu-
tationally expensive. To reduce the runtime, we employ QCG-PilotJob (http://
github.com/vecma-project/QCG-PilotJob) to schedule submitted ensemble runs
for different camp locations.

3 Test Setup and Results

To demonstrate the application of our MOP, we conducted a case study for the
South Sudan conflict in 2013. The geographic coordinates of examined region are
N0◦ −N16◦ and E20◦ −E40◦, and the region was divided into 26842 0.1◦ ×0.1◦

(around 11 km ×11 km) grids. Our simulation instances (ssudan c1 and ssu-
dan c2 ) are constructed based on the South Sudan simulation instance presented
in [12], which involves almost 2 million fleeing people in a simulation period of
604 days starting from the 15th December 2013, 25 conflict zones and 16 towns
in South Sudan, as well as ten camps in neighboring countries Sudan, Uganda
and Ethiopia. The ssudan c1 has no camp in place yet and aims to establish
one new camp with a capacity of 80, 000 (i.e., c = 80, 000), while the ssudan c2
involves all ten existing established camps and aims to add one new camp with a
capacity of 12, 000 (i.e., c = 12, 000). For both simulation instances, the distance
between camp and its nearest location in South Sudan was estimated by using
the route planning method in [10]. Furthermore, to shorten the execution time,
we reduced the number of agents from all conflict zones by a factor 100 (i.e.,
a = a/100), and accordingly, the camp capacity for ssudan c2 and ssudan c2 are
reduced to 800 and 120, respectively. Figure 2 plots the optimal camp locations
for the two conflict instances. The objective values of optimal solutions obtained
by NSGA-II are summarized in Table 2. For each conflict instance, NSGA-II can
find a set of optimal solutions, which are incomparable based on the concept
of Pareto optimality. In other words, each solution is a trade-off among average
travel distance, the number of camp arrivals, and the average idle camp capacity.

https://github.com/djgroen/FabSim3
http://github.com/vecma-project/QCG-PilotJob
http://github.com/vecma-project/QCG-PilotJob


502 Y. Xue et al.

Fig. 2. Optimal camp locations (blue circles) obtained by NSGA-II on the (a) ssu-
dan c1 and (b) ssudan c2 conflict instances, respectively. (Color figure online)

Table 2. The objective values of the optimal solutions obtained by the NSGA-II on
the ssudan c1 and ssudan c2 conflict instances.

Conflict instance Camp location Objectives

Longitude Latitude Travel distance No. camp arrivals Idle capacity

ssudan c1 30.55 3.75 1380.2211 801 77.0182

25.25 11.25 6785.469 809 173.0762

31.55 3.65 1354.2624 803 82.1556

30.25 3.35 1995.5878 804 91.2666

ssudan c2 30.35 3.85 558.905 166 49.7136

29.85 3.85 651.9379 124 11.6589

29.95 3.65 598.6553 120 7.6788

28.25 10.35 440.0152 120 8.2483

28.85 9.65 226.7078 143 29.096

28.35 9.45 283.3134 150 35.351

28.55 9.55 313.1518 160 44.2268

28.45 9.55 281.1019 156 40.6904

28.65 9.55 433.7734 147 32.5613

28.05 10.05 507.1222 121 8.9636

28.45 9.65 336.701 140 26.048

28.55 9.85 262.416 132 19.0679

30.75 3.45 580.9609 126 13.6225

28.55 9.75 364.0978 129 16.0894

28.45 9.45 397.1481 158 42.5331

28.35 10.05 539.0705 131 18.0646

29.75 4.15 634.4269 123 10.6474

28.55 9.65 322.0341 138 24.2169

28.05 9.45 371.0897 135 21.9901

28.55 9.45 388.0439 144 29.7268
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4 Conclusion

In this paper, a multiobjective model for the FLP in the context of humani-
tarian support for forcibly displaced people has been proposed, and the model
has been solved by using a simulation-optimization approach. The proposed
model has been employed in a case study of South Sudan conflict with a sim-
ulation period of 604 days from 15th December 2013. The results obtained by
our simulation-optimization approach have demonstrated its ability to provide
decision makers with diverse solutions, which strike a balance among the indi-
vidual travel distance, the number of camp arrivals, and the average idle camp
capacity. In the future, other algorithms in multiobjective optimization will be
explored. In addition, it would be interesting to consider other factors in the
context of forced migration, e.g., construction and transportation costs.
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