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Abstract: In recent years, detecting driver fatigue has been a significant practical necessity and
issue. Even though several investigations have been undertaken to examine driver fatigue, there are
relatively few standard datasets on identifying driver fatigue. For earlier investigations, conventional
methods relying on manual characteristics were utilized to assess driver fatigue. In any case study,
such approaches need previous information for feature extraction, which could raise computing
complexity. The current work proposes a driver fatigue detection system, which is a fundamental
necessity to minimize road accidents. Data from 11 people are gathered for this purpose, resulting in
a comprehensive dataset. The dataset is prepared in accordance with previously published criteria. A
deep convolutional neural network–long short-time memory (CNN–LSTM) network is conceived
and evolved to extract characteristics from raw EEG data corresponding to the six active areas A,
B, C, D, E (based on a single channel), and F. The study’s findings reveal that the suggested deep
CNN–LSTM network could learn features hierarchically from raw EEG data and attain a greater
precision rate than previous comparative approaches for two-stage driver fatigue categorization. The
suggested approach may be utilized to construct automatic fatigue detection systems because of their
precision and high speed.

Keywords: driver fatigue detection; EEG; CNN; LSTM

1. Introduction

According to the World Health Organization, 1.25 million people worldwide lose their
lives every year on the roads because of accidents [1]. Driver fatigue is one of the significant
causes of car crashes worldwide. A report from the U.S. National Highway Traffic Safety
Administration (NHTSA) indicates that 100,000 driver fatigue accidents are estimated to
cause 1550 deaths, 71,000 injuries, and USD 12.5 billion in cash losses annually in the
United States [2]. Hence, car accidents have resulted in material costs and human deaths
due to driver fatigue. The United Nations General Assembly adopted a set of sustainable
development goals (SDGs) in September 2015 to halve worldwide deaths and injuries from
road accidents by 2020 [1]. Reducing car accidents due to drowsiness or driver fatigue is
necessary for achieving this goal and ensuring road safety. Therefore, a smart driver fatigue
monitoring system should be designed to warn the driver during drowsiness.

Fatigue can be brought on by various factors, including insufficient sleep, prolonged
driving time, nighttime driving, and a monotonous route. Drowsiness is a common sign of
fatigue [3–5]. The urge to sleep characterizes drowsiness, while fatigue necessitates rest (not
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always in the form of sleep). Moreover, yawning, irritability, daydreaming, and heavy eyes
are all early indicators of fatigue. In addition, according to studies, driving on a uniform
path and traffic-free route causes mental fatigue in drivers. Driver fatigue diminishes
response time (prolongations), decreases driver awareness, and impairs decision making.
There are several ways to combat fatigue while driving, such as listening to music [5–9].
There are three basic systems for automatically detecting driver fatigue: The first kind
of detection system employs vehicle parameters such as the standard deviation of lane
position and steering wheel movement influenced by external elements, including weather,
road markings, road design, and lighting. In addition, the driver’s desire to move out of
the road may be due to overtaking other cars, antidepressants, and alcohol. In addition,
these actions and vehicle-based parameters are highly dependent on the driver’s behavior;
for example, these algorithms have a favorable response for some drivers, and, conversely,
some other drivers have a high error response [10–12].

Driver behavior data, such as facial expression and eye tracking, are employed in the
second category of driver fatigue detection systems. Such systems, however, are dependent
on lighting conditions [3]. In addition, these systems require the driver to be constantly
monitored by a camera, which affects the driver’s privacy. Furthermore, the driver cannot
use sunglasses [9].

Systems that use physiological signals to identify driver fatigue fall into a third cat-
egory. It is possible to evaluate driver drowsiness and mental fatigue accurately using
physiological signal measurements. These measures focus entirely on the concept that
physiological signals continue to alter during the beginning phases of exhaustion, pro-
viding more time for driver fatigue assessment devices to inform the fatigued driver.
Therefore, such signals may help avoid road accidents. Physiological signals used to
detect driver fatigue automatically include electrocardiogram (ECG), electrooculography
(EOG), electromyography (EMG), electroencephalogram (EEG), respiratory measurement
(RR), photoplethysmography (PPG), and electrodermal activity (EDA). The most efficient
approach for automatically identifying driver fatigue has been discovered as EEG sig-
nals, owing to their non-invasive, accessible, and precise nature [13]. At the same time,
EEG-based fatigue detection systems have limitations:

First, the lower signal to noise ratio (SNR) of EEG makes it very difficult to build
computer algorithms to detect driver fatigue automatically. Various new methods to obtain
useful information from EEG signals, such as the time-frequency analysis, complex network
procedures, and non-linear analysis, have been proposed to solve this problem. Second,
multiple channels of EEG signals can be annoying to the driver and cause computational
complexity. The issue may be solved by using optimization methods, including the in-
dependent component analysis (ICA) and principal component analysis (PCA) [13–15].
Recent experiments using EEG signals to identify driver tiredness automatically were
examined below.

To identify driver fatigue, Correa et al. [16] retrieved the time-frequency characteris-
tics of EEG data. They used nine subjects for their research. Depending on the artificial
neural network (ANN), their classification accuracy was 83%. Using classical feature extrac-
tion/selection methods and low classification accuracy were some of their disadvantages.
Zhang et al. [17] used EEG, EOG, and EMG data to identify driver fatigue. The experiment
was conducted on 20 subjects. They extracted seven frequency and time features from
the recorded signals. According to the researchers, their classification accuracy using the
ANN classifier was 96.5 percent. One of the limitations of their research was the use of
hand-crafted features and low classification accuracy. Xiong et al. [18] used two non-linear
methods of approximate entropy and sample entropy on EEG signals for the two-stage
classification of driver fatigue in 50 subjects. Additionally, two-stage classification was
performed using the support vector machine (SVM). The accuracy of their method was
reported at 90%. Their disadvantages included low accuracy compared to previous studies.
Chai et al. [19] extracted characteristics from EEG data for the two-stage categorization of
driver fatigue in 48 subjects using an autoregressive (AR) model. They also used the ICA
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algorithm to reduce feature dimensions and optimization. Their classification accuracy with
the Bayesian classifier was reported at 88.2%. The lower classification accuracy was one of
the limitations of their research. Yin et al. [20] employed fuzzy entropy for extracting char-
acteristics from the EEG data of 12 subjects to perform a two-stage categorization of driver
fatigue. Additionally, SVM was applied for classification. The accuracy of their research
was reported to be 95%. The low number of participants in the experiment was one of their
disadvantages. Ko et al. [21] employed a fast Fourier transform to extract characteristics
from fifty subjects’ EEG signals to identify driver fatigue. A virtual reality (VR) system was
used for the experiment. Their classification accuracy depending on the linear regression
model was 90%. One of the limitations of this research was the manual selection of discrim-
inative features. Wang et al. [22] identified driver fatigue by extracting characteristics from
EEG recordings using a power spectral density (PSD). Their classification accuracy was
83 percent when using a linear regression model. The low accuracy of classification was
one of the disadvantages of their work. Mou et al. [23] extracted characteristics from EEG
data to predict driver fatigue in twenty subjects using a fast Fourier transform (FFT). Their
classification was estimated to be 85 percent accurate. Nugraha et al. [24] detected driver
fatigue employing the EMOTIV EPOC+ technology and the EEG data of thirty subjects.
The characteristics were extracted using the mean, standard deviation, correlation, and FFT.
The classification was estimated to be accurate 96% of the time. Hu et al. [25] discovered
driver fatigue in 28 subjects by analyzing their EEG signals. They used the spectral entropy
(SE), approximate entropy (AE), sample entropy (SE), and fuzzy entropy (FE) features as
the classifier inputs. Their study was stated to have a 96 percent accuracy rate using the
AdaBoost classifier. One of the limitations of this research was the manual selection of
discriminative features. Min et al. [26] used multichannel EEG signals to identify driver
fatigue. The research included ten participants. They employed the SE, AE, SE, and FE
features as classifier inputs. Their research accuracy, sensitivity, and specificity based on
the ANN classifier were 98.3%, 98.3%, and 98.2%, respectively. Cai et al. [27] identified
driver fatigue using the EEG signal on 28 subjects. They applied the horizontal visibility
graph theory to the EEG signals. Artifacts were also removed using the EEG Lab toolbox.
The classification accuracy was determined to be 98 percent. One of the research limitations
of these researchers was the use of all EEG signal channels, and one of the benefits of this
research was the high accuracy of classification. Luo et al. [28] utilized two channels of
EEG data to assess driver fatigue in fifty participants (Fp1 and Fp2). They employed a
mixture of adaptive scaling factors and entropy methods for feature extraction as classifier
inputs. Their classification accuracy was claimed to be 95 percent. One of the benefits
of this study was the use of only two channels of EEG signal. In addition, the use of the
classical feature extraction method could be considered a limitation of this study. To classify
driver fatigue in two stages, Gao et al. [29] employed a deep neural network (DNN) to
extract characteristics from EEG data on ten subjects. Eleven convolution layers composed
their network architecture. It was stated that their categorization was 95 percent accurate.
The study’s usage of all EEG signal channels was one of its drawbacks, which would make
the computational algorithm complex. One of the benefits of this research was the high
accuracy of classification.

A review of driver fatigue detection research revealed that such research has draw-
backs, even though numerous investigations have been conducted thus far. In most of these
studies, fatigue caused by drowsiness, working, etc., has been studied, and drivers’ mental
fatigue has been less studied. Additionally, since most of this research employed conven-
tional approaches for detecting driver weariness based on feature extraction/selection, the
ideal attributes in one case study may not be optimum in another. As a result, it is critical
to create a system that can learn the optimal features for each case study. Furthermore,
environmental noises such as the car engine noise and driver behavior while driving have
not been considered in earlier research when creating various databases, which is one of
the most significant shortcomings of such investigations. It is vital to consider surrounding
noises before entering the functional area. Accordingly, the significant primary contribution
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of this research is the presentation of a system for detecting driver mental fatigue in the
existence of environmental noise. According to the scientists’ knowledge, the detection
system is innovative compared to other approaches described in the relevant literature.
Following the evaluation of similar publications described above, it was concluded that
there were no comprehensive datasets on driver mental fatigue that could be utilized as a
reference dataset.

Moreover, driver mental fatigue was mainly disregarded in previous research. In this
respect, the second significant contribution of this work attempts to solve this study gap,
i.e., a driver mental fatigue analysis, by concentrating on driver mental fatigue detection,
which is considered a crucial and contentious topic. A rather extensive dataset of driver
mental fatigue is gathered for such a purpose. It includes 5500 specimens from a variety of
subjects. This dataset is collected based on existing standards in previous literature. On
the other hand, DNN has been widely used to analyze different data and has been quite
successful. In the third significant contribution of this article, a deep convolutional neural
network (CNN) and a long short-time memory (LSTM) network are used to learn features
from raw EEG data hierarchically. In the proposed system, active regions are determined
using ICA after the pre-processing of the data. The suggested system may be deemed an
end-to-end solution, since no feature extraction/selection approach is required. The present
investigation reveals that the suggested technique can learn features from raw EEG data
and achieve an acceptable level of accuracy for detecting driver fatigue in the existence of
environmental noise. The following summarizes the contribution of this research:

a. Demonstration of an autonomous driver fatigue detection system in the face of
environmental noises.

b. Selecting active regions to reduce computational complexity.
c. Compiling a complete dataset in accordance with stated norms.
d. Developing a deep CNN–LSTM network capable of obtaining promising outcomes

in all areas in the analyzed dataset.

The following is the remainder of the paper: Section 2 explains how to collect EEG
data using a mathematical foundation in the CNN and LSTM disciplines. Section 3 deals
with the method proposed. Section 4 presents the simulation outcomes and compares the
present study with recent studies. Section 5 examines the advantages and disadvantages
of the suggested methodology and suggestions for future work. Finally, the conclusion is
dealt with in Section 6.

2. Materials and Methods

This section provides an overview of the University of Tabriz’s EEG data collection
studies. A summary of deep CNN and LSTM networks was presented.

2.1. Acquisition of EEG Data

Eleven graduate students ranging in age from 22 to 30 years old participated in a driv-
ing simulation assessment. All participants were required to have a valid driver’s license
and to never have driven in a driving simulator before. The experiment’s participants were
all right-handed. A moral license number IR.TBZ-REC.1399.6 was issued to experiment
with at the Biomedical Engineering Department’s Signal Processing Laboratory at the Fac-
ulty of Electrical and Computer Engineering, University of Tabriz. Before the experiment,
all respondents were invited to freely confirm their participation by completing a permis-
sion form and recognizing the exam conditions (no history of psychiatry, epilepsy, or fatty
food, pre-testing hair washing, adequate sleep throughout the night, and no pre-testing
coffee). The experiment utilized a G-Tec 32-channel EEG recorder, an MSI laptop (Corei7
and 16 GB of RAM), a Logitech G29 Driving Simulator, a City Car Driving Simulator, and a
Samsung 40-inch LCD. Figure 1 depicts the subject’s EEG signal recording during driving in
the simulator. The EEG signal was recorded using the worldwide standard 10–20 electrode
placement technique, with a sampling frequency of 1000 Hz and two A1 and A2 channels
as reference electrodes. Before the experiment, all participants utilized the simulator to
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familiarize themselves with the device and the objective assessment. The driving path in
the simulator was designed to simulate a uniform highway with no traffic to create mental
fatigue in the driver. The final 3 min EEG data were classified as a normal stage, while the
driving process lasted 20 min. The driving procedure continued for 60–100 min, or until
the participant’s questionnaire, until findings (MFI scale) indicated that the subject had
reached the driver’s fatigue stage. The subject’s final three minutes of EEG recordings were
labeled as fatigue.
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Figure 1. A participant while driving in a driving simulator.

Two techniques were used to confirm fatigue: 1. decreasing performance, such as
rising crash rates and highway deviations, and 2. the Chalder fatigue [30] and the Lee
fatigue scales [31]. These questionnaires included the preceding questions: Is it necessary
for you to rest? Are you exhausted? Do you suffer from blurred vision? Do you have
a sense of deficiency? Each question was worth four points, ranging from −1 to 2. In
addition, each score had the following interpretations: Score −1 indicated that something
was better than usual, 0 implied that something was normal, 1 indicated that something
was worse than usual, and 2 implied that something was considerably worse than expected.
A high fatigue score implies a high degree of driving fatigue and has been employed to
corroborate driver fatigue in several current investigations [32–34]. Previous studies did
not refer to the sound of the car engine when recording the EEG signal. They did not
consider this critical parameter to reduce the accuracy of their algorithm.

In contrast to previous studies, we also considered the sound of the car engine when
recording the EEG signal. It was necessary to consider all parameters of the driving
environment to navigate the present study to the practice field. For each topic, the driving
task began at 9:00 a.m. Each day, just one EEG signal was captured to verify that the
recording time was consistent. The raw EEG signal obtained from the two electrodes, FC3
and FCZ, related to two states of fatigue and normal, is illustrated in Figure 2. According to
Figure 2, the visual distinction between fatigue and normal stages is difficult. It depended
on the experience and expertise of the expert, which indicated the need to design automatic
detection of driver fatigue systems based on EEG signals.
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2.2. An Overview of the Deep Convolutional Neural Network (CNN)

The CNN is a deep learning method in which multiple layers are trained in a powerful
way. There are three main layers of a CNN: the convolution layer, the pooling layer, and
the fully connected layer. Each of these layers has different tasks. In each CNN, there
are two stages of training: feed-forward and back-propagation. In the first stage, the
input signal enters the network and this step involves multiplying the point between the
input and the parameters of each neuron and performing convolution operations. The
output of the network is then calculated. The output is used to set network parameters
or training to calculate a network error. The output error of the network is compared to
the correct answer and the final error value is obtained. Based on the calculated error rate,
back-propagation would begin in the second stage. In the second step, each parameter’s
gradient is determined in accordance with the chain rule, and all parameters change their
values according to their error effect. After updating the parameters, the feed-forward step
begins. The network training ends with the proper repetition of these steps [35–37].

The CNN is a hierarchical network in which the convolutional layers are joined one
by one with pooling layers and then a number of fully connected layers are placed. This
layer uses a variety of filters to convolution the input signal, resulting in a variety of feature
maps. The pooling layer is commonly positioned after the convolution layer and is used
to reduce the size of the network feature map and parameters. Pooling layers, such as
convolution layers, are fixed relative to translation. The average-pooling and max-pooling
functions are known as the most common implementation functions of this layer. In this
study, the max pooling function was used due to achieve a faster convergence and better
generalization in the proposed network architecture. The fully connected layer allowed us
to present the result of the network in the form of a vector with a specified size [37,38].

The loss function determined the error ratio during the prediction stage. Following
that, an optimization technique was used to minimize the error criteria. Optimization
findings were employed to update hyper-parameters. The loss function is used in machine
learning algorithms to evaluate and describe model efficiency [31,35]. Generally, CNNs
employ the cross-entropy loss function, which is described as follows [35,39]:

Cij = ∑
n
(P∗

ij × log Pij − (1 − P∗
ij)× log(1 − Pij)) (1)

The amount of cross-entropy loss between i and j is denoted by Cij. The probability
distribution of the output classes determined using the SoftMax activation function is
represented by P∗

ij , and the number of classes is denoted by n.
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2.3. Brief Description of Long Short-Term Memory (LSTM) Network

A particular type of recurrent neural network (RNN) capable of learning long-term
dependencies is the LSTM network. The aim of designing LSTM networks is to solve the
problem of long-term dependency. All standard RNNs are repetitive sequences of ANN
modules. As a result, LSTM networks are no exception to this rule. However, unlike
RNNs with a layer such as tanh, LSTM networks have four layers that interact according
to a specific structure. These networks can add new information to their cell and delete
additional information. This is performed by employing precise structures called gates.
Gateways are a means of entering information that consists of a sigmoid layer of a neural
network with a point multiplication operator. The output of the sigmoid layer is a number
between zero and one that indicates how much input is to be sent to the output. A value
of zero indicates that no information should be sent to the output, while a value of one
indicates that all inputs should be passed to the output [39,40].

These networks also have three similar gates to control the number of cells. The initial
stage in these networks is to determine which information should be removed from the cell.
The decision is determined by the forget gate, a sigmoid layer. Depending on the Xt and
ht−1 values, this gate takes the value of zero or one in cell Ct−1 to output. A value of one
means that the total value of the cell Ct−1 has to be passed to Ct, and a value of zero means
that the data of the current Ct−1 cell have to be deleted, and no value has to be passed to Ct.
They were conducted in the form of Equation (2).

ft = σ(w f ·[ht−1, x] + b f ) (2)

The next stage determines what additional data should be stored in each cell. This is
a two-part decision, and it works such as this: Firstly, we had the entry gate, a sigmoid
layer that determined how much to update. The next step was a tanh layer that formed a
vector of values called C̃t, and could be added to the cell. These two steps were combined
to update the number of cells as follows:

it = σ(wt·[ht−1, x]+bi) (3)

C̃t = tanh(wc·[ht−1, x] + bc) (4)

The old Ct−1 cell was also updated to the new Ct cell: the previous cell value was
multiplied by ft to forget the information, and then it × C̃t was added to it. New cell values
were now obtained based on decisions already taken. They are performed in the form of
Equation (5).

Ct = ft × Ct−1 + it × C̃t (5)

Finally, in the last stage, it had to be decided which information should be taken to the
output. The output’s value should have been calculated based on the cell’s value; however,
it had to additionally pass through a certain filter. The sigmoid layer first determined
which section of the cell would be output, and then passed the cell value to the tanh layer
(the values were between −1 and +1). Its value was multiplied by the preceding sigmoid
layer’s output, so that only the sections we desired were output (ht). These steps are shown
in Equations (6) and (7) [39,40].

Ot = σ(wO·[ht−1, x]+bO) (6)

ht = tanh(Ct)× Ot (7)

3. Proposed Method

This part outlines the suggested system’s phases for automatically detecting driver
fatigue based on the proposed deep CNN–LSTM network. Figure 3 demonstrates the
general structure of the suggested system. This section was divided into two subsections:
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data preprocessing and design of the proposed deep CNN–LSTM network architecture.
Details of each subsection were explained below.
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3.1. Data Preprocessing

A notch filter was employed initially, followed by a first-order Butterworth low-pass
filter with a frequency of 0.5 to 45 Hz to eliminate the 50 Hz frequency of the power supply
from data. Third, the features of each participant were standardized using a scale of 0 to 1
and the min–max method [41–48] to optimize detection quality with a time-saving strategy.
It is essential to determine which EEG channels were active to develop a system that used
the minimum possible number of EEG channels. To this end, an ICA algorithm was used
in EEG Lab ver. 15 (MATLAB Toolbox) to identify active regions. Figure 4 shows the active
areas of the ICA algorithm with selective electrodes in two dimensions, 2D and 3D.
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and FCz; region C = Pz and P4; region D = O1 and O2; region E = T6; region F = FP2 and F8).

As illustrated in Figure 4, six areas of the brain (A, B, C, D, E, and F) were employed
for the automated identification of driver fatigue; consequently, the simulation used just
those six regions (A, B, C, D, E, and F). According to Figure 4, the distribution of selected
electrodes was not dispersed, as previously demonstrated in previous studies. A detailed
interpretation of the selected regions can be found in [48], which shows that the EEG
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bursts were uniform when driving in the central and posterior regions. In addition, from
the point of view of the EEG signal frequency analysis, it can be stated that theta and
gamma rhythms increased with increasing fatigue, particularly in the central and forehead
areas, and beta rhythms increased with decreasing consciousness in the posterior regions.
Fifth, the suggested technique selected three minutes of the recorded signal for normal
and fatigue phases for every channel. In such a scenario, we possessed two classes of
data (180,000 dimensions) for every channel. Then, with the overlap method to avoid
over-fitting, the data in each channel were divided into 5-second intervals. Accordingly,
every electrode was separated into 250 samples based on the size of the shift, so we had
n × 250 × 5000, where n is the number of electrodes. Since there were 11 subjects and two
classes (normal and fatigue) in this study, the final dimension of the network input matrix
would be equal (2 × 11 × 250)× (n × 5000). Figure 5 shows overlap operation.
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3.2. Proposed Deep CNN–LSTM Network Architecture

The suggested network architecture utilized a cross-library in the Python program-
ming language to combine seven convolutional 1D layers and three LSTM layers. The
fusion of the LSTM network with the CNN network increased stability and reduced oscil-
lation. The details of the proposed deep network architecture for region E are offered in
Table 1 and Figure 6. The dimensionality decrease in the hidden layers progressed from
5000 (the number of starting features) to 100, as shown in Table 1 and Figure 6 (selected
feature vector). Ultimately, to compute scores, the chosen feature vector was connected
to an FC layer using the SoftMax activation function. The stride length in the first layer
of the proposed network was considered different for various regions. As can be seen, a
large-sized filter was considered in the first layer of the proposed network, which helped to
overcome high-frequency noises. Filters with small sizes were also used in the next layers
of the proposed network, which would result in a better representation of input data. It
should be mentioned that the values for hyper-parameters were adjusted, relying on a
study of relevant investigations and tests performed on them. Finally, the Cross-entropy
loss function and Adam optimizer [49] with a learning rate of 0.001 were selected for the
training process. The total number of parameters for region E was 102,878. The total
number of samples for each region was 5500; 2750 samples (50%) were randomly selected
for network training, 550 samples (10%) were used for validation, and 2200 samples (40%)
were used for testing. EEG data distribution for training, validation, and testing is depicted
in Figure 7.
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Table 1. The details of the suggested network.

Padding Number of
Filters Strides

Size of Filter
and Pooling Output Shape

Activation
Layer Type L

Function

Yes 16 8 × 1 128 × 1 (None, 625, 16) Leaky-ReLU Convolution1-D 0–1
No - 2 × 1 2 × 1 (None, 312, 16) - Max Pooling1-D 1–2
Yes 32 1 × 1 3 × 1 (None, 312, 32) Leaky-ReLU Convolution1-D 2–3
No - 2 × 1 2 × 1 (None, 156, 32) - Max Pooling1-D 3–4
Yes 64 1 × 1 3 × 1 (None, 156, 64) Leaky-ReLU Convolution1-D 4–5
No - 2 × 1 2 × 1 (None, 78, 64) - Max Pooling1-D 5–6
Yes 64 1 × 1 3 × 1 (None, 78, 64) Leaky-ReLU Convolution1-D 6–7
No - 2 × 1 2 × 1 (None, 39, 64) - Max Pooling1-D 7–8
Yes 64 1 × 1 3 × 1 (None, 39, 64) Leaky-ReLU Convolution1-D 8–9
No - 2 × 1 2 × 1 (None, 19, 64) - Max Pooling1-D 9–10
Yes 64 1 × 1 3 × 1 (None, 19, 64) Leaky-ReLU Convolution1-D 10–11
No - 2 × 1 2 × 1 (None, 9, 64) - Max Pooling1-D 11–12
Yes 64 1 × 1 3 × 1 (None, 9, 64) Leaky-ReLU Convolution1-D 12–13
No - 2 × 1 2 × 1 (None, 4, 64) - Max Pooling1-D 13–14

- - - - (None, 128) Leaky-ReLU LSTM 14–15
- - - - (None, 128) Leaky-ReLU LSTM 15–16
- - - - (None, 128) Leaky-ReLU LSTM 16–17
- - - - (None, 100) Leaky-ReLU FC 17–18
- - - - (None, 2) SoftMax FC 18–19
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4. Results

The simulation results of the proposed method, a comparison with previous research,
the advantages and disadvantages of the proposed method, and suggestions for future
research were presented in this section.
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4.1. Obtained Results

The system specifications used included 8 GB of RAM and a 2.4 GHz CPU. Figure 8
shows the proposed network error for all regions for validation data. As illustrated in
Figure 8, the network error for all areas decreased as the number of iterations increased and
achieved a steady-state value around the 75th iteration. Figure 9 indicates the suggested
method’s accuracy for all areas of validation data. In accordance with this figure, the
suggested technique for two-stage categorization of driver fatigue had an accuracy of
99.23%, 97.55%, 98.00%, 97.36%, 98.78%, and 93.77% after approximately 75 iterations for
areas A, B, C, and D. The confusion matrix for the two-stage categorization of all areas for
testing data is shown in Figure 10 to allow for a more detailed analysis of the suggested
technique. As can be seen, the accuracy achieved by the proposed method for region E was
promising. In addition, as shown in Figure 10, as can be seen from the confusion matrix
for the single-channel region (E), out of 1093 samples, only 17 samples were incorrectly
detected, demonstrating the adequate performance of the suggested network architecture.
It may be utilized to develop an autonomous driver fatigue detection system to achieve a
high execution rate. In addition, Figure 11 depicts a bar chart depiction of accuracy in the
training, validation, and testing processes for all areas. Figure 12 illustrates the receiver
operating characteristic (ROC) curve analysis of the suggested approach for evaluating
data from areas A, C, E, and F. According to Figure 12, the curved position was in the left
hemisphere for all regions.
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Moreover, Figure 13 demonstrates the t-sen diagram of the raw signal, Conv3, Conv7,
LSTM1, LSTM3, and FC1 layers for the testing data of region E. The final layer indicated that



Electronics 2022, 11, 2169 14 of 22

all samples were properly segregated, revealing that the suggested technique performed
well in two-stage classification. Table 2 displays the kappa coefficient of the suggested
approach for the two-stage categorization of driver fatigue for all locations.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 23 
 

 

  

  

  

Figure 13. The t-sen diagram of the suggested method for single-channel region (E). 

4.2. Comparison of the Proposed Method with Recent Research and Methods 
The comparison of methods was conducted in two different sections: 1. comparison 

of the proposed method to recent research; 2. comparison of the proposed method with 
the different methods of extraction/selection and classification of features. Several auto-
matic detections of driver fatigue methods were proposed using EEG signals in recent 
years. In Table 3, the accuracy of the proposed method is compared with different two-
stage classification studies based on EEG signals. It is clear from Table 3 that the proposed 
method offered a greater degree of accuracy for the two-stage categorization of driver 
fatigue among all the comparative methods. The two-stage classification accuracy was 
99.23%, while in [25,26], accuracies of 97.5% and 98.3% were reported for the same scenar-
ios. The feature extraction was performed automatically based on deep learning from raw 
EEG data in the proposed method. 

Figure 13. The t-sen diagram of the suggested method for single-channel region (E).

Table 2. The kappa coefficient of the suggested method for all regions.

Region A B C D E F

Kappa 0.98 0.96 0.97 0.96 0.98 0.92



Electronics 2022, 11, 2169 15 of 22

4.2. Comparison of the Proposed Method with Recent Research and Methods

The comparison of methods was conducted in two different sections: 1. comparison
of the proposed method to recent research; 2. comparison of the proposed method with the
different methods of extraction/selection and classification of features. Several automatic
detections of driver fatigue methods were proposed using EEG signals in recent years.
In Table 3, the accuracy of the proposed method is compared with different two-stage
classification studies based on EEG signals. It is clear from Table 3 that the proposed
method offered a greater degree of accuracy for the two-stage categorization of driver
fatigue among all the comparative methods. The two-stage classification accuracy was
99.23%, while in [25,26], accuracies of 97.5% and 98.3% were reported for the same scenarios.
The feature extraction was performed automatically based on deep learning from raw EEG
data in the proposed method.

Table 3. Performance of the suggested method compared to different two-stage classification studies.

Research Feature Method Accuracy (%)

Correa et al. [16] Multimodal Analysis 83
Xiong et al. [17] Attitudinal Entropy and State Entropy 90
Chai et al. [18] Entropy Rate Bound Minimization Analysis 88.2

Zhang et al. [19] Entropy and Complexity Measure 96.5
Yin et al. [20] Fuzzy Entropy 95
Ko et al. [21] Fast Fourier Transform 90

Wang et al. [22] Power Spectral Density 83
Mu et al. [23] EEG Frequency Ratio 85

Nugraha et al. [24] EMOTIV 96
Hu et al. [25] Multiple Entropy 97.5
Min et al. [26] Multiple Entropy 98.3
Cai et al. [27] Horizontal Visibility Graph 98
Luo et al. [28] Adaptive Scaling Factor and Multiple Entropy 95
Gao et al. [29] Convolutional Neural Network 95

Proposed Method Convolutional Neural Network–Long
Short-Term Memory 99.23

In contrast, traditional techniques based on manual features were used in comparative
methods. However, it seemed that, despite the same scenarios, a one-to-one comparison of
the proposed method with previous research was not fair because of existing uncertainties,
such as varying measurement instruments and ambient circumstances. As a result, it was
required to assess the suggested strategy in noise and no noise environmental conditions
with other methods with the same data.

To demonstrate the efficient effect of the proposed method, we compared the perfor-
mance of our method with CNN, DBM [50], and MLP [51], based on two different modes
of operation (feature learning using raw data and manual feature learning) for region E
(single-channel). Such networks have been commonly utilized to conduct experiments on
automated driver fatigue detection in recent years. For this purpose, the CNN network
architecture was carried out without considering the LSTM networks, as set out in Table 1.
For the MLP and DBM networks, three hidden layers with a learning rate of 0.001 were
considered. Maximum, skewness, variance, minimum, mean, crest factor, and kurtosis
were also used as manual features [52,53]. The accuracy of the classification of the proposed
method based on CNN–LSTM compared to the different methods is shown in Table 4. As
shown in Table 4, the proposed CNN–LSTM, depending on feature learning from raw data,
was able to show the best performance compared to other comparable networks, indicating
the unique and desirable design of the network architecture.
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Table 4. Classification accuracy of the suggested method compared with other methods of comparison.

Methods Feature Learning from Raw Data Manual Features

Proposed Method 98.78% 80.35%
Convolutional Neural Network 90.26% 80.64%

Deep Boltzmann Machine 84.82% 77.78%
Multi-Layer Perceptron 73.45% 79.83%

According to the same table, as we can see, deep networks such as CNN–LSTM,
CNN, and DBM showed better results depending on feature learning from raw signals
compared to feature learning from manual features. As a result, we inferred that deep
learning networks do not need a previous understanding of the issue/theme. However,
according to Table 4, based on feature learning with manual features, the CNN–LSTM,
CNN, and DBM networks showed a relatively similar performance. Figure 14 compares
the suggested CNN–LSTM network to the comparable networks in terms of accuracy in
applying feature learning from primary data in 100 iterations. According to this figure, the
proposed network had a high convergence speed, low oscillation (due to the presence of
the LSTM network), and high classification accuracy compared to the comparable networks.
The time required for the training and testing of the proposed CNN–LSTM and similar
networks is shown in Table 5 for all active regions. Table 5 shows that the suggested
network’s training time was greater than the alternatives. The test time for the proposed
network was also acceptable compared to other networks. However, there was no need to
worry because, with the advent of new graphics processing units (GPUs) and their use for
processing, the learning time problem for deep learning networks was completely resolved.
The minimum time required for training and testing is related to the MLP network. Still, as
shown in Table 5 and Figure 14 above, the classification accuracy according to that network
was not within acceptable limits.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 23 
 

 

in Figure 15. As can be seen, the proposed method, CNN, DBM, and MLP were robust to 
environmental noise, respectively, up to SNR ≤ 0 dB, SNR ≤ 1, SNR ≤ 10, and SNR ≤ 20, 
such that their accuracies were still approximately 90%, 80%, 80%, and 70%. As a result, it 
may be claimed that the suggested technique, outperforming CNN, DBM, and MLP, was 
also more resistant to environmental noise. The amazing architecture of the proposed net-
work in the first layer of a large-sized filter was used to overcome high-frequency noises. 
Based on the available evidence, it can be stated that the proposed method could also be 
used for noisy data. 

Table 4. Classification accuracy of the suggested method compared with other methods of compar-
ison. 

Methods 
Feature Learning 
from Raw Data Manual Features 

Proposed Method 98.78% 80.35% 
Convolutional Neural Network 90.26% 80.64% 

Deep Boltzmann Machine 84.82% 77.78% 
Multi-Layer Perceptron 73.45% 79.83% 

Table 5. Classification accuracy of the suggested method compared with other methods of compar-
ison. 

Methods Proposed 
Method 

Convolutional Neu-
ral Network 

Deep Boltzmann 
Machine 

Multilayer Per-
ceptron 

Region Train Test Train Test Train Test Train Test 
A 1890 s 5 s 1030 s 3 s 911 s 4.5 s 100 s 2.5 s 
B 1870 s 5 s 1011 s 3.5 s 801 s 4.5 s 82 s 2 s 
C 1820 s 4 s 1100 s 4 s 800 s 4 s 80 s 1.5 s 
D 1892 s 4.5 s 1008 s 3 s 810 s 4 s 77 s 1.5 s 
E 1800 s 4 s 1002 s 3 s 680 s 3.5 s 67 s 1 s 
F 1810 s 4.5 s 1004 s 3.5 672 s 3 s 79 s 2 s 

 
Figure 14. The accuracy of the suggested method compared to the other networks. Figure 14. The accuracy of the suggested method compared to the other networks.



Electronics 2022, 11, 2169 17 of 22

Table 5. Classification accuracy of the suggested method compared with other methods of comparison.

Methods Proposed Method Convolutional Neural
Network

Deep Boltzmann
Machine Multilayer Perceptron

Region Train Test Train Test Train Test Train Test
A 1890 s 5 s 1030 s 3 s 911 s 4.5 s 100 s 2.5 s
B 1870 s 5 s 1011 s 3.5 s 801 s 4.5 s 82 s 2 s
C 1820 s 4 s 1100 s 4 s 800 s 4 s 80 s 1.5 s
D 1892 s 4.5 s 1008 s 3 s 810 s 4 s 77 s 1.5 s
E 1800 s 4 s 1002 s 3 s 680 s 3.5 s 67 s 1 s
F 1810 s 4.5 s 1004 s 3.5 672 s 3 s 79 s 2 s

Environmental circumstances do not remain constant when driving; thus, the sug-
gested approach must be evaluated in ambient sounds such as vehicle engine noise and
driver behavior while driving to determine assumptions that are more realistic. White
Gaussian noise was introduced to the testing data with varying SNR levels to assess the
performance of the various techniques (i.e., suggested approach, CNN, DBM, and MLP)
in the existence of environmental noises (−4 to 20 dB). The test accuracy of the proposed
method, CNN, DBM, and MLP networks based on feature learning for each SNR is shown
in Figure 15. As can be seen, the proposed method, CNN, DBM, and MLP were robust to
environmental noise, respectively, up to SNR ≤ 0 dB, SNR ≤ 1, SNR ≤ 10, and SNR ≤ 20,
such that their accuracies were still approximately 90%, 80%, 80%, and 70%. As a result,
it may be claimed that the suggested technique, outperforming CNN, DBM, and MLP,
was also more resistant to environmental noise. The amazing architecture of the proposed
network in the first layer of a large-sized filter was used to overcome high-frequency noises.
Based on the available evidence, it can be stated that the proposed method could also be
used for noisy data.
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4.3. Intuitive Evaluation

The DNN is generally regarded as a black box. The internal operating mechanism of
a DNN is difficult to understand, and none of the previous studies attempted to explore
that, but to understand more, we tried to explore the internal activity of the proposed deep
CNN–LSTM network by visualizing the activations in this network. First, we examined the
reactions of the neurons in the first convolutional layer. Figure 16 shows the activations
from the first convolutional layer for a sample of normal and fatigue states (region E).
Sixteen convolutional kernels transformed the input signal 5000 × 1 into 625 × 16 maps,
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which were also called feature maps. It can be shown that the feature maps were different
for two types of states, which showed that the first convolutional layer could learn the
discriminant features of the raw EEG signals.
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Second, to demonstrate what each layer could ‘sees’ in the proposed deep CNN–LSTM
network for a sample of normal and fatigue states, the reactions of neurons of convolutional,
LSTM, and FC layers were visualized. As shown in Figure 17, the size of the feature maps
decreased with the exception of the first four layers, as the layer deepened. The powerful
discriminating features learned from deep layers suggested the reasonableness to build a
deep CNN–LSTM.

5. Discussion

As mentioned earlier, in recent years, many methods have been used to diagnose
driver fatigue based on image-based methods, vehicle parameter-based methods, and
physiological signal-based methods. However, image-based methods depend on brightness,
and overshadow the privacy of the driver. Vehicle-based methods also depend on road
marking and weather. For example, due to the coverage of road markings in snowy weather,
these systems cannot perform well. Large companies such as Tesla have recently used
vehicle parameters in the design of their vehicles, but reports of poor performance of
embedded systems have also been reported. According to the above, the most reliable
parameter for diagnosing driver fatigue can be considered the use of physiological signals
such as EEG, because before causing fatigue in the driver, these signals change their nature.
This change in the nature of the signals can be used to reliably detect driver fatigue. The
present study was also designed on the basis of EEG signals. However, such as any other
study, this study had advantages and disadvantages. The main advantages of the present
study could be found in the design of the network architecture, which demonstrated good
robustness to environmental noise. Additionally, as explained before (Section 2.1), previous
research did not take into account the sound of the car engine when acquiring EEG data in
order to not reduce the accuracy of its algorithm. In contrast to previous research, in order
to present a more realistic study, we considered car engine noise in EEG signal acquisition
and, as the simulation results showed, our proposed network was able to performance
adequately because of its noise cancellation nature. Moreover, in view of the fact that the
purpose of this study was to enter into a practical field, it is necessary to assess the different
environmental conditions. The proposed algorithms in the field of driver fatigue detection
must be able to remove noise in order to enter the field of application, because, as we know,
driving is always subject to different environmental noises, such as driver behavior, music
sound, car engine sound, etc.

The second advantage of the proposed method could be considered the provision
of the active region, because to build real-time systems, it is necessary to reduce the
computational complexity of the algorithm. For this purpose, as can be seen from Section 4,
the accuracy of our classification based on the single-channel region (E) was over 97%. The
method presented in this study was created to automatically detect driver fatigue on a
small scale. In order to enter the field of application of the present research, it is necessary
to present a study with a larger statistical population and more scenarios. Given the good
performance of the proposed single-channel method, we predict that it can be used as
a wearable hat for the driver while driving after being evaluated in a larger statistical
community. In addition to reducing the computing volume, the design of a single-channel
system would also result in driver comfort. Unfortunately, this goal was not achieved in
this study due to the COVID-19 epidemic. For future research, we plan to consider more
scenarios, including normal, semi-tired, tired, and alert, in a larger statistical community.
We also plan to use the generative adversarial network (GAN) instead of the classic data
increase (Section 3.1). Given the nature of these networks, we predict that the convergence
rate of the network will increase to the desired value.

6. Conclusions

The objective of this study was to offer a unique approach for automatically detecting
driver mental fatigue utilizing EEG signals in the presence of environmental noises, owing
to a boost in road accidents caused by driver mental fatigue. A relatively comprehensive
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dataset was provided for two stages of mental fatigue (normal and fatigue). Moreover, a
realistic approach was considered while developing the dataset based on stated criteria. A
deep CNN–LSTM network was conceived and evolved to hierarchically extract character-
istics from raw EEG data. The suggested network had seven CNNs, three LSTM layers,
and two FC levels. The designed dataset was compared to manual features and intelligent
networks, such as CNN, DBM, MLP, and CNN–LSTM. The suggested method’s findings
indicated that it could learn features and provide acceptable detection outcomes. Com-
pared to manual characteristics, the suggested strategy improved classification accuracy
while relying less on expert knowledge. As previously noted, combining the CNN and
LSTM networks improved the accuracy and stability of the suggested system in the case of
feature learning.

We obtained a 98 percent accuracy for the single-channel region (E), which was rather
promising compared to earlier techniques for autonomous driver fatigue identification.
White Gaussian noise was utilized to test data with varying SNR levels to simulate environ-
mental noises such as engine noise and driver behavior when driving to obtain results that
were more realistic. The findings revealed that the suggested approach was more resistant
to environmental noise than existing methods. Based on the findings, it can be concluded
that the recommended approach for the automated identification of driver mental fatigue
is ideal, and that it has the potential to minimize accidents and fatalities caused by driver
mental fatigue if used.
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