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Abstract 

 

Non-steroidal anti-inflammatory drugs (NSAIDs) have been available on the market for over 

100 years, and they are some of the most widely and highly consumed pharmaceuticals 

worldwide. Everyday millions of people take NSAIDs to effectively relieve conditions involving 

inflammation and pain, however, their long-term therapeutic use is associated with many 

adverse effects which are characterised by a wide range of severity. Moreover, due to their 

high volume of consumption, NSAIDs excreted by patients are often detected in the aquatic 

environment raising concerns about possible adverse effects in aquatic wildlife. These multi-

species safety concerns led to various regulatory actions aimed at protecting both human and 

environmental health over the last 20 years. Nonetheless, after decades of research our 

understanding of NSAIDs toxicological effects in multiple organs and systems remains 

incomplete. Here, we describe the development and integration of in silico and in vivo 

approaches to help further our mechanistic understanding of NSAIDs-mediated effects and to 

support NSAIDs safety assessment. Novel data mining, integration, and modelling of existing 

multi-dimensional datasets (Chapter 2) was used to generate accurate in silico predictions of 

the hazards and risks associated with exposure to both individual NSAIDs, and their mixtures. 

This computational approach led to the development of an innovative and predictive 

pharmacology-informed framework able to support the environmental risk assessment of 

NSAIDs mixtures in the environment, removing the need for additional in vivo testing (Chapter 

3). This computational workflow also led to the identification of immunomodulation as a key 

mode-of-action for NSAIDs warranting further investigation. The in vivo characterisation of 

NSAIDs immunomodulatory effects in the gastrointestinal tract of zebrafish larvae revealed 

several novel findings (Chapter 4). Firstly, the activation and transendothelial migration of 

neutrophils into the intestine was identified as a probable key event in the pathogenesis of 

NSAIDs-induced enteropathy. Secondly, inhibition of the resolution of inflammation was 

identified as a novel putative mechanism of toxicity for the non-selective NSAID diclofenac. 

These effects may significantly hamper the ability of the gastrointestinal mucosa to resolve 

NSAIDs-induced neutrophilic inflammation, and ultimately lead to tissue damage. 

Furthermore, significant differences between selective and non-selective NSAIDs were 

revealed at both cellular and transcriptomic levels. Overall, the experimental results presented 

in this thesis support the notion that the mechanisms driving NSAIDs effects extend well 

beyond their primary mode-of-action (cyclooxygenase inhibition), and demonstrate the 

significance of immunomodulatory processes in mediating these effects within the 

gastrointestinal tract. 
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Chapter 1 

 

Introduction 

 

1.1 Project overview 

The overall aim of this project is to advance the understanding of non-steroidal anti-

inflammatory drugs (NSAIDs) pharmacology. These compounds exert their main therapeutic 

effect by inhibiting one or both isoforms of the enzyme cyclooxygenase. NSAIDs are used 

every day by millions of people around the world to treat conditions involving pain and 

inflammation. However, their use is also associated with a variety of adverse drug reactions 

that can hamper their clinical efficacy. This introductory chapter will provide an overview and 

perspective on the key elements of this scientific challenge, setting the scene for the detailed 

analyses and discussions that will be presented in the subsequent chapters of this thesis.  

 

1.1.1 Cyclooxygenase and prostanoid biology 

Prostanoids are eicosanoid lipids that are biosynthetically produced via the metabolism of free 

arachidonic acid (AA) in the cytosol. A variety of stimuli, such as cytokine signalling through 

the MAPK (mitogen-activated protein kinase) pathway or oxidative stress, are able to increase 

cytosolic levels of AA via the action of cytosolic phospholipase A2 (cPLA2) or phospholipase 

C (PLC). These enzymes act to release bound AA from phospholipids in the cell membrane. 

Prostaglandin G/H synthase, comprising a cyclooxygenase (COX) complex, transforms the 

AA into two intermediates; PGG2 is produced initially, which is subsequently reduced to PGH2 

(Flower, 2003). Tissue-specific isomerases are then able to couple with COX to catalyse the 

conversion of this substrate into a variety of prostanoids including prostaglandin E2 (PGE2), 

prostacyclin (PGI2), prostaglandin F2α (PGF2α), prostaglandin D2 (PGD2), and thromboxane 

(TXA2) (Flower, 2003). Each prostanoid acts on specific G-Protein coupled receptors (GPCRs) 

in order to exert a multitude of effects (Figure 1.1). The observed effects are likely to be 

spatially and temporally dependent as most prostanoids are able to exert numerous, and 

sometimes contrasting, effects (Ricciotti and FitzGerald, 2011).  

COX exists as a dimeric enzyme complex which elicits hydroperoxidase and cyclooxygenase 

activity and can be subdivided into the variant isozymes COX-1 and COX-2. A third variant, 

COX-3, has been discovered more recently; however, its functional role in humans and other 

species is still largely unknown (Flower, 2003). COX-1 is expressed constitutively in a large 

majority of cell types whilst COX-2 is considered an inducible isoform produced in response 
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to various stimuli including cytokines, hormones, tumour promoters, and shear stress (Ricciotti 

and FitzGerald, 2011; Smyth et al., 2009). Both isoforms have the capacity to catalyse the 

synthesis of any prostanoid, however, they each show a preferential coupling to certain 

isomerases. COX-1 displays preferential coupling with three isomerases: thromboxane 

synthase (TXS), the cytosolic form of prostaglandin E synthase, and prostaglandin F synthase 

(Ricciotti and FitzGerald, 2011). Whereas COX-2 tends to co-localise with the microsomal 

form of prostaglandin E synthase, and prostaglandin I synthase (Ricciotti and FitzGerald, 

2011). 

 

Figure 1.1. Prostanoid biosynthesis pathway, and their receptors. 

 

1.1.2 Prostanoids in health and disease 

In health, prostanoids are thought to function by maintaining homeostatic mechanisms such 

as regulating the gastrointestinal (GI) mucosa, vascular endothelium, blood pressure, and a 

multitude of other processes (Rouzer and Marnett, 2009). For example, PGE2 is the most 

abundant prostaglandin and has been identified as one of the main components responsible 

for regulating blood pressure, maintaining the integrity of the GI mucosa, and mediating the 

immune response (Wallace, 2008). Disruption of PGE2 physiology can lead to a vast range of 

pathological conditions, including intestinal epithelial cell damage through disruption of barrier 
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function, and vasoconstriction of mucosal vasculature (Legler et al., 2010; Wallace, 2008). 

PGE2 has also been found in high abundance in the synovial joints of patients with rheumatoid 

arthritis where it has been shown to downregulate the production of pro-inflammatory 

cytokines such as TNF-α (Akaogi et al., 2006). Paradoxically, there is a wealth of evidence to 

suggest that NSAIDs, which are designed to reduce inflammation, can induce the upregulation 

of TNF-α synthesis as well as other pro-inflammatory molecules (Page et al., 2010). This was 

demonstrated in vitro using human peripheral blood mononuclear cells (PBMCs) and 

rheumatoid synovial cultures exposed to celecoxib; expression of TNF- α was upregulated in 

these cultures (Page et al., 2010). 

Prostanoids are ubiquitous throughout the body, with specific levels of each variant depending 

on tissue/cell type and local homeostatic status. All prostanoids are synthesised from the 

PGH2 substrate via tissue-specific isomerases which couple to the COX complex, so if one 

COX isoform and one tissue-specific isomerase happens to be more abundant in a particular 

tissue, or cell, it is likely that there will be higher levels of that respective prostanoid in that 

tissue or cell. In a non-diseased/non-inflamed state, most cells tend to produce mainly one or 

two PGs which act to regulate homeostasis locally (Ricciotti and FitzGerald, 2011). However, 

uncertainty still surrounds the significance of these endogenous prostanoids in uninflamed or 

healthy tissues, at homeostatic levels of abundance.  

During inflammation, processes are activated by certain unspecific stimuli which evoke an 

increase in free cytosolic AA, and hence, an increase in COX expression/activation and 

prostanoid biosynthesis. COX-2 is the inducible form of the enzyme, expressed in response 

to inflammatory stimuli, and is the major source of prostanoid production during inflammation. 

COX-1, however, is also thought to contribute to the increased production of prostanoids 

during acute inflammation (Ricciotti and FitzGerald, 2011). PGE2 and PGI2 are the most potent 

pro-inflammatory prostanoids as they significantly increase levels of oedema, vascular 

permeability, and leukocyte infiltration as a result of increased blood flow (Smyth et al., 2009). 

Higher levels of prostaglandins, and TXA2, act to rapidly promote localised inflammation and 

pain via interaction with their respective G-Protein Coupled Receptors (GPCRs) (FitzGerald, 

2003). Interestingly, there is also some evidence to suggest that COX-2 derived prostanoids 

can elicit anti-inflammatory effects and contribute to resolution of inflammation. Hence, they 

may not solely be mediators of pro-inflammatory pathways (Ricciotti and FitzGerald, 2011). In 

fact, COX-2 has been significantly implicated in both homeostatic and pro-resolving functions 

such as maintaining the integrity of the GI mucosa, mediating the resolution of GI 

inflammation, and regulating ulcer healing (Wallace and Devchand, 2005).  
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Prostanoids have a very diverse range of outputs which are dependent upon localised spatial 

and temporal elements. Different cell types and tissues will comprise variant patterns of 

expression and activity with regards to receptors, isomerases, and COX isoforms. Specific 

occurrences, such as receptor dimerization, can also result in differing outputs which can even 

be contrasting in some cases (Ricciotti and FitzGerald, 2011). The prostaglandin I2 

(prostacyclin) receptor (IP) and the thromboxane receptor (TP) have been found to interact 

with themselves to form homodimers (IP-IP or TP-TP), as well as with one another to form 

heterodimers (IP-TP). The heterodimer formation is able to promote cyclic adenosine 

monophosphate (cAMP) production via activation of the TP receptor. This increase in 

intracellular cAMP is usually mediated through IP receptor activation (Wilson et al., 2004). 

TXA2 is found in abundance in platelets, synthesised predominantly by COX-1, and acts as a 

potent vasoconstrictor and major factor contributing to platelet activation and aggregation. In 

contrast, PGI2 is most abundant in the vasculature and acts as a vasodilator and inhibitor of 

platelet aggregation via the modulation of TXA2 mechanisms in vivo (Wilson et al., 2004). 

However, as previously mentioned, these actions of PGI2 and TXA2 are dependent upon their 

respective receptors, IP, and TP. They can have different, and even contrasting, modes of 

action depending on receptor status (Wilson et al., 2004). These examples highlight some of 

the difficulties in making predictions about the specific signalling processes taking place at 

localised inflammatory sites during an acute response. Clearly there is still much to learn about 

the exact molecular mechanisms involved in prostanoid biology. 

PGD2 is produced in the central nervous system (CNS) where it is involved in the regulation 

of sleep and pain perception. It is also produced in peripheral tissues by mast cells which if 

activated lead to the initiation of IgE-mediated allergic responses (Ricciotti and FitzGerald, 

2011). Dendritic cells (DCs) and Th2 cells are components of the immune system which also 

produce PGD2, which suggests a potential role for PGD2 in the regulation of antigen-specific 

immune responses (Urade et al., 1989). PGD2 produced by activated mast cells, and other 

immune cells, is capable of eliciting its pro-inflammatory effects via its receptors ‘prostaglandin 

D2 receptor 1’ (DP1) and ‘prostaglandin D2 receptor 2’ (DP2) (Ricciotti and FitzGerald, 2011). 

Contrastingly, PGD2 is also capable of producing anti-inflammatory effects via its DP1 receptor 

expressed on DCs. Another potentially significant role of PGD2 is its inhibitory effect on the 

progression of atherosclerosis. A knock-out of L-PGDS, the specific isomerase which 

transforms PGH2 into PGD2, in mice has been associated with an accelerated progression of 

atherosclerosis (Tanaka et al., 2009). Thus, it is feasible that a depletion of both PGD2 and 

PGI2 may lead to significantly accelerated atherosclerotic phenotypes, combined with 

vasoconstriction and thrombus formation, which could be detrimental to patients with 

increased cardiovascular risk factors.  
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PGF2α elicits its effects through the ‘prostaglandin F receptor’ (FP). When the receptor is 

bound by PGF2α, it couples with protein Gq in order to increase the intracellular concentrations 

of free calcium (Ricciotti and FitzGerald, 2011). As with other prostanoids, PGF2α has been 

associated with many diverse biological roles which include vasoconstriction, pain perception, 

renal function, and tachycardia (Ricciotti and FitzGerald, 2011). In contrast to PGD2, which 

displays cardio-protective properties, increases in PGF2α have been associated with various 

cardiovascular toxicity risk factors including obesity, smoking, and thickening of the carotid 

artery wall (Ricciotti and FitzGerald, 2011). Studies in mice have shown that the deletion of 

the FP receptor leads to a decrease in blood pressure and halts the progression of 

atherosclerosis (Yu et al., 2009). On the other hand, Smyth et al. (2009) suggest that 

prostanoids derived from COX-2 play a pivotal role in the normal functioning of cardiac tissue, 

and that deletion of murine cardiomyocyte COX-2 led to adverse cardiac events such as heart 

failure and fibrosis in the cardiac tissue.  

The whole story is yet to be uncovered, with ambiguity surrounding the exact molecular 

mechanisms that underpin prostanoid biology in both health and disease states. It is critical 

for the development of new, safer, and more efficient anti-inflammatory drugs, to better 

understand the varied and significant actions of prostanoids. 

 

1.1.3 Non-steroidal anti-inflammatory drugs (NSAIDs) 

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of compounds with an 

overarching pharmacological feature: all NSAIDs are COX enzyme inhibitors. COX inhibitors 

or NSAIDs are some of the most highly consumed drugs worldwide. Several of these 

compounds are available over-the-counter and approximately 11.5 million NSAIDs 

prescriptions are dispensed in England alone each year (Machado et al., 2021). They are used 

to treat conditions involving pain and inflammation, and in many cases, are prescribed in 

combination with other drugs to treat specific diseases. Treatment scenarios can range from 

localised shot-term inflammation at the site of a small cut, to headaches and chronic 

inflammatory conditions such as rheumatoid arthritis or osteoarthritis (Machado et al., 2021). 

There is even evidence to suggest that they may aid in the treatment of Alzheimer’s disease 

(Flower, 2003), and some of them have been proposed as preventive therapeutic intervention 

to reduce the risk of developing of cancer (Zhang, Chen, and Shang, 2018). 

NSAIDs can be further subdivided into various categories: some are non-selective for either 

COX isozyme (COX1 and COX2) like ibuprofen, naproxen, and diclofenac, whereas others 

are COX-2 selective inhibitors such as celecoxib and rofecoxib. NSAIDs also differ in terms of 

inhibitory kinetics, such as competitive reversible inhibition versus competitive non-reversible 
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inhibition (Flower, 2003). Due to the heterogeneity between distinct NSAIDs, their 

pharmacokinetic and pharmacodynamic properties are likely to vary between compounds, and 

like most pharmaceuticals there is an array of potential off-target effects. A recent paper by 

Grosser and collaborators highlighted this issue in terms of the cardiovascular risk profiles of 

distinct NSAIDs, and the heterogeneity between these drugs (Grosser et al., 2017). Currently 

there are over 25 NSAIDs available on the market with some drastic differences in effect and 

safety profiles. Some of the most prominent adverse effects associated with NSAIDs exposure 

include serious gastrointestinal (GI), cardiovascular, renal, and hepatic toxicity (Smyth et al., 

2009). In fact, after more than 120 years since aspirin was first introduced to the market, GI 

toxicity still represents one of the major clinical challenges associated with NSAIDs use 

(Wallace, 1997; Bindu, Mazumder, and Bandyopadhyay, 2020). Clearly even after decades of 

research there remains a significant health risk associated with NSAIDs that is yet to be 

solved. Nonetheless, levels of consumption are ever increasing regardless of the evident risks 

associated with their use, due to the lack of safe alternatives. Furthering our knowledge of the 

mechanisms involved in NSAIDs mode-of-action is critical to understanding their risk. 

Although we understand a great deal about prostanoid biology, the promiscuity of these drugs 

is such that mechanisms independent of COX inhibition are likely to be significant contributors 

to some of the adverse effects that we see in the clinical setting. 

 

1.1.4 A brief history of NSAIDs 

Aspirin was the first NSAID introduced to the market in 1897, followed by indomethacin and 

ibuprofen in 1964 and 1969, respectively (Conaghan, 2012). A common feature shared 

between all NSAIDs introduced into the market before 1998 is that they can inhibit both COX-

1 and COX-2 isoforms, with varying degrees of selectivity and potency. Unfortunately, another 

commonality shared by all NSAIDs from this era is the GI toxicity attributed to their long-term 

therapeutic use, which has been evident for many decades, and remains a significant risk 

factor today (Wallace, 1997). Due to the fact that COX-1 is widespread and constitutively 

expressed and is thought to enact homeostatic functions, and that COX-2 is an inducible 

isoform upregulated in response to inflammatory stimuli, it was hypothesised that the adverse 

effects associated with NSAIDs could be attributed to the inhibition of COX-1 (Masferrer et al., 

1994). This theory in combination with some supportive evidence popularised the notion that 

COX-1 derived prostanoids are gastroprotective, whilst the inducible COX-2 derived 

prostanoids solely mediate a pro-inflammatory response (Griswold and Adams, 1996). These 

logical assumptions led to a race to develop the first COX-2 selective inhibitor which could 

specifically inhibit COX-2 mediated inflammation, without interfering with the regulatory or 

‘protective’ properties of COX-1 derived prostanoids (Rouzer and Marnett, 2009). The search 
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for novel selective inhibitors of COX-2 was a success story as celecoxib (Celebrex) was 

developed by the Searle Monsanto programme, becoming the first of its kind to emerge in 

1998, showing good in vitro and in vivo capabilities (Flower, 2003). Celecoxib with shortly 

followed by rofecoxib (Vioxx) which was introduced by Merck in 1999 (Krumholz et al., 2007). 

Selective inhibitors of COX-2 such as celecoxib and rofecoxib have indeed been shown to 

reduce the incidence of adverse gastrointestinal events, compared with non-selective 

NSAIDs, whilst effectively providing anti-inflammatory and analgesic properties. These 

characteristics of COX-2 inhibitors added weight to the idea that COX-1 synthesised 

prostanoids play a pivotal role in the maintenance and protection of the gastric mucosa. What 

was not anticipated, however, was that a significant increase in adverse cardiovascular events 

is apparent with COX-2 selective inhibitors.  

In the case of rofecoxib (Vioxx), mixed results about the cardiovascular safety of this drug 

came from a number of trials including the ‘Vioxx Gastrointestinal Outcomes Research trial 

(VIGOR)’, ‘phase IIb/III osteoarthritis combined analysis study’, and the ‘Alzheimer’s and mild 

cognitive impairment study’ (Goldmann, 2001). However, it was the significant increase in 

serious adverse cardiac events in patients receiving Vioxx during the ‘Adenomatous Polyp 

Prevention on Vioxx’ (APPROVe) trial, which led Merck to implement the immediate 

withdrawal of this drug from the global market in 2004 (Cottor and Wooltorton, 2005). 

Subsequently, the U.S. Food and Drug Administration (FDA) released a study estimating that 

in the five years Vioxx was marketed for, it was responsible for around 56,000 cardiac-related 

deaths in the USA alone (O'Steen and O'Steen, 2006). The story of celecoxib (Celebrex) adds 

further weight to the hypothesis that selective COX-2 inhibitors increase the risk of adverse 

cardiac events in patients. However, initial indications looked positive for celecoxib during the 

‘Celecoxib Long-term Arthritis Safety Study’ (CLASS) trial which began in 1998 and came to 

an end in early 2000. The aim of the study was to determine whether celecoxib, compared 

with non-selective NSAIDs, incurred significantly fewer upper gastrointestinal adverse events, 

as well as other endpoints. The overall conclusions drawn from this study determined that 

celecoxib, at dosages higher than therapeutic, was safer than non-selective NSAIDs at 

standard therapeutic levels (Silverstein et al., 2000). Notably, they reported that “No difference 

was noted in the incidence of cardiovascular events between celecoxib and NSAIDs, 

irrespective of aspirin use” (Silverstein et al., 2000) which does not fit with the hypothesis that 

COX-2 selective inhibitors increase the risk of cardiotoxicity. However, the story does not end 

there, as the ‘Adenoma Prevention with Celecoxib (APC) trial’ began in 1999 and ended in 

2002, which was a longer-term placebo controlled study assessing the efficacy of celecoxib to 

reduce the occurrence of polyps in the colon and rectum (Solomon et al., 2005). In light of the 

APPROVe trial with rofecoxib and the withdrawal of this drug from the market, a cardiovascular 
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safety committee was appointed to define and review end-points based on clinically relevant 

data and the previous data from the APPROVe trial (Solomon et al., 2005). The trial concluded 

that, in terms of serious cardiovascular adverse events, long-term exposure to celecoxib put 

patients at a significantly increased risk. Hence, the clinical data generated for celecoxib are 

also in agreement with the theory that COX-2 selective inhibitors are associated with increased 

risk of serious adverse cardiac events. This led the FDA to determine that all prescribed and 

over-the-counter NSAIDs must include specific information on the potential cardiovascular, 

gastrointestinal, and other associated risks (Cottor and Wooltorton, 2005). A similar story 

became apparent with another COX-2 selective inhibitor called valdecoxib (Bextra). Following 

a safety trial Bextra also proved to significantly increase the risk of adverse cardiovascular 

events in patients, compared with placebo. The result of this trial led to the withdrawal of 

Bextra from the market in 2005, as requested by the FDA (Cottor and Wooltorton, 2005). 

 

1.1.5 Clinical concerns and challenges 

It is clear that long-term therapeutic use of NSAIDs is likely to result in a number of toxic or 

adverse phenotypes, depending on the specific NSAID administered and the specific risk 

factors of the individual. We know that NSAIDs-related toxicity can range from mild conditions 

of dry skin or rashes to more serious gastric, cardiac, and renal adverse events. In fact, 30% 

of all hospital admissions for adverse drug reactions (ADRs) in the UK can be attributed to 

NSAIDs use (Davis and Robson, 2016). This is a worrying statistic when you consider how 

widespread their use is, how easily available they are, and the lack of safe alternatives.  

Contrary to popular opinion, there is evidence to suggest that the ‘constitutive COX-1 and 

inducible COX-2’ theory may not be as accurate as first thought (Zidar et al., 2009). It seems 

that dependent upon the tissues in question, their expression patterns and roles may be very 

different, or even reversed. For example, COX-1 expression is induced in response to 

lipopolysaccharide (LPS) mediated inflammation, whereas COX-2 is constitutively expressed 

in the kidneys, female reproductive organs, and the brain (Rouzer and Marnett, 2009). 

Furthermore, even though COX-1 is constitutively expressed in the GI tract, and COX-2 is 

inducible, inhibiting their function may have more complex effects than initially thought. Studies 

using COX-1 knockout mice and selective COX-1 inhibitors have shown that a depletion of 

COX-1 does not increase the susceptibility of these mice to  GI ulceration, and that selective 

inhibition of COX-1 is insufficient for inducing gastric lesions (Rouzer and Marnett, 2009). 

Moreover, genetic depletion of COX-1 has also revealed a role in mediating LPS-induced 

inflammation in mouse models (Choi et al., 2008). The intricacies of the COX inhibition 

paradigm do not end there, however, as COX-2 has also been implicated in several other roles 
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besides solely initiating inflammation. Several studies have demonstrated crucial roles for 

COX-2 in regulating the defence of the GI mucosa, regulating ulcer healing, and significantly 

contributing to the resolution of GI inflammation (Wallace and Devchand, 2005). In fact, even 

if the risk of significant GI toxicity is ameliorated with the use of COX-2 selective inhibitors 

compared to non-selective NSAIDs, that risk is by no means negligible, as COX-2 selective 

inhibitors induce ulceration at around half the rate of non-selective NSAIDs (Bombardier et al., 

2000; Wallace and Devchand, 2005). Interestingly, although COX-2 selective inhibitors have 

been associated with increased prevalence of cardiovascular disease, a comparison between 

patients taking naproxen (non-selective) or rofecoxib (COX-2 selective) revealed that the 

overall mortality rate from cardiovascular complications was similar between each group 

(Bombardier et al., 2000). Furthermore, it has been reported that all NSAIDs, regardless of 

selectivity for COX-1 or COX-2, increase the risk of hospitalisation due to heart failure by 

twofold (Davis and Robson, 2016). Clearly there is significant evidence which reveals roles for 

both COX-1 and COX-2 beyond the simplistic rationale which drove the development of COX-

2 selective NSAIDs. 

It is possible to hypothesise one plausible mechanism driving the cardiovascular toxicity 

associated with exposure to COX-2 selective NSAIDs. COX-2 is highly expressed in the 

vascular endothelium where it synthesises PGI2, a potent vasodilator and regulator/inhibitor 

of platelet aggregation. Whereas COX-1 is highly expressed in platelets and is responsible for 

the synthesis of TXA2, which is a potent vasoconstrictor and agonist of platelet aggregation 

(FitzGerald, 2003). Therefore, it is feasible that due to the reduced inhibition of platelet 

aggregation and vasodilation via PGI2, and the unopposed action of TXA2, activated platelet 

aggregation and vasoconstriction is able to occur unopposed. If these effects are induced 

through the selective inhibition of COX-2, then it would seem logical that adverse 

cardiovascular events such as thrombosis, atherosclerosis, and even myocardial infarction 

might occur in patients with increased risk factors for cardiovascular disease. Through 

enhancement, deletion, and antagonism experiments using the PGI2 and TXA2 receptors it 

has been shown that PGI2 is responsible for the regulation of interactions between platelets 

and the vasculature, limiting the response to TXA2 in vivo (Cheng et al., 2002). Therefore, it is 

likely that COX-2 selective inhibitors can significantly disrupt these dynamics, leading to the 

clinically-relevant cardiovascular complications commonly associated with these drugs.  

Significant renal toxicity has also been linked to COX-2 selective NSAIDs, including salt and 

water retention, and also hypertension in predisposed individuals (Catella-Lawson et al., 

1999). Studies in murine models have demonstrated these effects of COX-2 inhibitors on renal 

function, and in particular hypertension. Interestingly, it appears that in mice the relationship 

between COX-1 and COX-2 synthesised prostanoids in the kidney share similar 
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characteristics to their cardiovascular interactions (Qi et al., 2002). For example, one study 

assessed the angiotensin-II hypertensive response in mice under a variety of conditions; 

reducing COX-1 activity by deletion or inhibition resulted in a reduced hypertensive response 

to angiotensin-II, which was exacerbated when the angiotensin-II receptor was also deleted. 

Alternatively, selective inhibition or deletion of COX-2 led to an increased hypertensive 

response to angiotensin-II, accompanied by a reduction in medullary blood flow (Qi et al., 

2002). If we consider the relationship between COX-1 derived TXA2 and COX-2 derived PGI2 

(and even PGE2) at the vascular endothelium-platelet interface to have a similar dynamic in 

the kidney, then this would provide a plausible explanation for the hypertensive effects of COX-

2 selective NSAIDs seen in mice (FitzGerald, 2003).  

Serious GI toxicity represents the major limitation to prolonged NSAIDs use. It is clear that the 

inhibition of COX-1 alone is not sufficient for the induction of clinically relevant GI 

complications. On the other hand, it is apparent that the selective inhibition of COX-2 does not 

completely abolish the prevalence of GI toxicity. Therefore, it appears that both COX-1 and 

COX-2 derived prostaglandins together are important mediators of mucosal homeostasis, 

defence, and inflammation (Wallace, 2008) and that inhibition of both isoforms is needed to 

induce GI toxicity (Wallace et al., 2000). In addition to inhibiting the biosynthesis of 

prostanoids, NSAIDs are able to exert topical mechanisms of epithelial cell damage in the GI 

tract. Evidence suggests that NSAIDs can directly induce apoptosis in epithelial cells through 

either osmotic lysis or uncoupling of oxidative phosphorylation (Schoen and Vender, 1989; 

Somasundaram et al., 1995; Wallace 2008). Moreover, NSAIDs have been shown to reduce 

bicarbonate and mucus secretion, disrupting the balance of pH at the epithelial membrane. 

NSAIDs also directly disrupt apical phospholipids on the mucosal surface leading to increased 

barrier permeability (Wallace, 2008). Although topical mechanisms are likely to contribute to 

the pathogenesis of NSAIDs-induced GI toxicity, they are not likely to be solely responsible, 

since injectable NSAIDs have even been shown to induce ulcer formation (Estes et al., 1993), 

which implies that the systemic effects of NSAIDs are critical to the pathogenesis of GI toxicity. 

It is likely that systemic mechanisms, independent of COX inhibition, also significantly 

contribute to the manifestation of NSAIDs-induced enteropathy. The elucidation of some 

putative key events has been important in progressing our understanding of these 

mechanisms. In fact, some evidence suggests that neutrophilic adhesion to the vascular 

endothelium, and subsequent transendothelial migration into the mucosa, may represent an 

important event in the pathogenesis of NSAIDs-induced GI toxicity (Wallace, Keenan, and 

Granger, 1990). The potential significance of neutrophil contribution to GI injury may not be 

negligible, as one study found that attenuation of neutrophil function was shown to be 

protective against NSAIDs-induced gastric damage (Wallace, Arfors, and McKnight, 2008). 
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Although significant progress towards a better understanding of NSAIDs-mediated GI toxicity 

has been made, the mechanisms underpinning their pathogenesis are still not completely 

understood (Wallace, 2008). It is clear that the immunomodulatory effects of NSAIDs do 

indeed extend beyond COX inhibition, and that furthering our understanding of the 

mechanisms involved is critical to making better safety decisions concerning NSAIDs use.  

 

1.1.6 Environmental health concerns 

Pharmaceuticals entering into the environment has been a topic of concern for many years 

and remains a pressing issue to this day. Due to the very high usage of NSAIDs worldwide, 

low but sustained concentrations of these drugs are readily detectable in the aquatic 

environment (Lonappan et al., 2016; Memmert et al., 2013). Currently, wastewater treatment 

plants (WWTPs) do not have the capacity to completely extract all of the diverse types of 

contaminants from the wastewater which ultimately leads to a vast mixture of chemicals 

reaching the aquatic environment, albeit at low concentrations (Kern, 2014). In some 

instances, pharmaceutical contaminants have even been detected in drinking water due to 

incomplete elimination by WWTPs (McEachran et al., 2016). For instance, ibuprofen has been 

detected at concentrations of 1.35 µg/L in drinking water in California (Loraine and Pettigrove, 

2006; Zhang et al., 2020). In the case of NSAIDs specifically, their detection in the environment 

may be somewhat unsurprising considering their global levels of production and consumption. 

For example, in the USA alone it is estimated that around 70 million NSAIDs prescriptions are 

given, and around 30 billion over-the-counter NSAIDs are sold each year (Green, 2001). In 

Spain, ibuprofen concentrations in WWTP effluents have been reported to be as high as 55 

µg/L (Santos et al., 2009; Zhang et al., 2020). Similarly, in Germany diclofenac concentrations 

in surface waters have been detected at concentrations as high as 4.7 µg/L (Heberer, 2002; 

Zhang et al., 2020). 

Due to the significant health risks associated with prolonged NSAIDs exposure in humans, 

safety concerns were raised about the effects that chronic exposure to NSAIDs might have in 

wild fish populations. Thus, regulatory action regarding NSAIDs was sparked in 2015 when 

diclofenac was added to the European Watch List of emerging pollutants, under the European 

Water Framework Directive (European Commission, 2015). Although diclofenac has been 

detected in European rivers at  low concentrations (ng/L - µg/L), which are below the NOEC 

(No Observed Effect Concentration) (Memmert et al., 2013), there remain concerns from 

regulatory bodies about the potential toxicity associated with chronic exposure to 

pharmaceuticals such as NSAIDs. At least 26 studies between 2004 and 2018 have 

investigated the effects of long-term exposure to environmentally relevant concentrations of 
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NSAIDs on fish species, with a variety of adverse effects reported. These include changes in 

prostaglandin levels, effects on testosterone, immunomodulation, liver damage, and even 

effects on reproduction. In fact, a more recent publication, assessing the effects of diclofenac 

and ibuprofen on zebrafish, found that both NSAIDs were able to impair cardiovascular 

development at environmentally-relevant concentrations (Zhang et al., 2020). 

Although most NSAIDs were designed as human pharmaceuticals, due to the conservation of 

the cyclooxygenase enzymes and the prostanoid biosynthesis pathway in teleost fish (Grosser 

et al., 2002), the environmental occurrence of these drugs represents a potentially significant 

risk to aquatic wildlife. In other words, as stipulated by the "read-across hypothesis”, NSAIDs 

are likely to induce similar effects across species due to the conservation of their biological 

targets (Patel et al., 2016). A study in rainbow trout, exposed to environmentally-relevant 

concentrations of diclofenac, ibuprofen, and naproxen, found their biotransformation to be 

efficient, with concentrations of each drug detectable in the plasma and the bile (Lahti et al., 

2011). When fish are exposed to pharmaceuticals in the environment, they will absorb them 

through their skin and gills, before eventually being metabolised predominantly in the liver 

(Lahti et al., 2011). The level of uptake, however, can vary greatly depending on the pH of the 

surrounding water, as NSAIDs are ionisable compounds. Their ionisation, due to changes in 

pH, can markedly reduce their uptake due to a decrease in lipophilicity and therefore, 

membrane permeability (Tanoue et al., 2017). 

Despite our knowledge of the risks associated with NSAIDs use, it is evident that their usage 

remains significant with an ever increasing volume of NSAIDs prescriptions (Davis and 

Robson, 2016). This increasing volume of usage means that concentrations of NSAIDs 

entering into the aquatic environment are likely to increase also. Mechanistic knowledge 

surrounding NSAIDs toxicity in humans is not fully understood, however, our mechanistic 

knowledge of NSAIDs/COX biology in fish species is significantly limited by comparison. 

Hence, there is currently no mechanistic rationale to support the environmental risk 

assessment (ERA) of NSAIDs, which means that the potential for implementation of predictive 

toxicology approaches to support decision making is limited. Furthermore, over 25 different 

NSAIDs are currently available on the market all of which inhibit COX-1 and/or COX-2. This 

suggests that if all of these compounds are able to reach the aquatic environment then the 

risk of additive mixture effects is significantly increased, and diclofenac may not be the only 

NSAID to worry about. This scenario causes a significant problem for regulators, as there are 

currently no defined protocols for the mixture assessment of pharmaceuticals in the 

environment. Generating novel methods of risk assessment, which take mechanistic/mode-

of-action considerations into account and incorporate mixture assessment, will be crucial to 

informing better decision making. 



Philip Marmon  Chapter 1 

20 
 

1.1.7 The zebrafish (Danio rerio) model organism 

Zebrafish offer a powerful and tractable vertebrate model to effectively study the effects of 

human pharmaceuticals in vivo. The prostanoid biosynthesis pathway is highly conserved 

between vertebrates, and the zebrafish COX proteins represent functional orthologs of the 

human isozymes, with high genetic and pharmacological homology (Grosser et al., 2002). 

Mapping of the zebrafish genome revealed large regions of chromosomes to be syntenic with 

human chromosomes, and moreover, both COX enzymes appear to fall within such a region 

(Prescott and Yost, 2002). The genetic, and functional, conservation of these proteins make 

the zebrafish a viable model organism for the study of NSAIDs effects in vivo. In fact, zebrafish 

have severed as a model organism in several thousands’ of studies to date, as they offer an 

attractive alternative to other vertebrate models such as rodents. Practical advantages over 

rodent models include rapid development, transparent embryos, and the ability to produce 

hundreds of offspring with each egg lay (Langova et al., 2020). Similar to human patterns of 

expression, zebrafish COX-1 appears to be widely expressed throughout the embryo, 

whereas the COX-2 isozyme appears to display a more tightly defined pattern of expression 

(Grosser et al., 2002).  

 

Due to the genetic and functional conservation of relevant pathway components, in addition 

to the practical advantages, the zebrafish represents a powerful tool to further study the 

mechanistic effects of NSAIDs. Moreover, due to the risks posed by NSAIDs to wild fish, the 

zebrafish offers a highly relevant model species to investigate these potential effects further. 

 

1.2 Project hypotheses, aims, and methodological vision 

The present project is based on two overarching hypotheses, one methodological and one 

biological. From a methodological perspective, the first hypothesis is that computationally 

driven mode-of-action profiling of NSAIDs can guide the generation of accurate and unbiased 

mechanistic testable hypotheses beyond the traditional COXs inhibition theory. On the other 

hand, this project hypothesises that NSAIDs-mediated immunomodulation may represent a 

major key event in the pathogenesis of NSAIDs-induced GI toxicity. Characterising NSAIDs-

mediated immunomodulation may help to understand the safety profile of individual 

compounds, or of different sub-classes (i.e., non-selective NSAIDs versus COX-2 selective 

NSAIDs). 

The overall goal of this project is to advance our current mechanistic understanding of 

NSAIDs-mediated effects both at system level and, specifically, in the gastrointestinal tract. 

As GI toxicity represents one of the major limiting factors to NSAIDs usage, and decades of 
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research has yet to underpin the exact mechanisms involved, there remains a need to better 

understand the effects of NSAIDs in the GI tract. 

To address this ambitious goal, this thesis will firstly describe the generation of in silico 

predictions of NSAIDs-mediated effects in humans and fish. By data-mining existing 

mechanistic and phenotypic effect data, Chapter 2 will map and integrate the modes-of-action 

of NSAIDs at multiple levels of biological organisation. The newly generated integrated data 

platform will be used to guide the subsequent phases of the project. Chapter 3 will describe 

the application of the mechanistic profiling exercise to explain and predict the effects of 

NSAIDs (individually and in combination) in fish species, and to generate a pharmacology-

informed environmental risk assessment. The results obtained in Chapter 2 and Chapter 3 will 

then be used to tailor hypothesis generation and design of the in vivo phases of the project 

aimed at characterising NSAIDs-mediated effects on innate immune cell trafficking in the GI 

tract in healthy fish (Chapter 4), and in fish displaying an inflamed GI tract (Chapter 5). 

The zebrafish (Danio rerio) was selected as the experimental model for the in vivo phases of 

the project. The larval stages offer a tractable, cost-effective, and highly translational model to 

study the gastrointestinal and innate immune systems. Leveraging the latest advancements 

in the zebrafish genetic engineering, this project will use transgenic zebrafish lines expressing 

fluorescent protein markers on cells of the innate immune system, in order to evaluate the 

immunomodulatory effects of NSAIDs in the gastrointestinal tract. Performing fluorescent in 

vivo imaging of these transgenic zebrafish larvae will enable us to capture immune cell 

dynamics in the GI tract in real time. Moreover, RNA-Sequencing analysis will be used to 

characterise the molecular perturbations associated with NSAIDs exposure. 
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Figure 1.2. Methodological vision for the entire PhD project. 
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Chapter 2 1 

 2 

Multi-dimensional mode-of-action profiling of non-steroidal anti-3 

inflammatory drugs (NSAIDs)  4 

 5 

2.1 Abstract 6 

The class of non-steroidal anti-inflammatory drugs (NSAIDs) is extensive with over 25 7 

compounds currently available on the market. NSAIDs  are also some of the most highly 8 

consumed drugs worldwide, used for their anti-inflammatory and analgesic properties. 9 

Although popular and relatively efficacious these drugs are associated with many adverse 10 

drug reactions, ranging from mild side effects to more serious adverse events, hospitalisations, 11 

and even mortality. A better understanding of NSAIDs mechanisms of toxicity is needed in 12 

order to improve their clinical efficacy, through either safer NSAIDs selection, or through 13 

guiding the development of novel therapeutic strategies to mitigate those mechanisms which 14 

lead to adversity. Here we describe the mapping and integration of NSAIDs modes-of-action 15 

at multiple levels of biological organisation. By using existing mechanistic data from a variety 16 

of sources, we were able to generate an integrated data platform which can be used to 17 

formulate specific testable hypotheses, and tailor the design of future in vivo studies. Our in 18 

silico analyses highlight immunomodulation as a key, but under-investigated, mode-of-action 19 

for NSAIDs-mediated effects. These analyses demonstrate the utility of mining existing 20 

experimental data for guiding the generation of accurate and unbiased mechanism-based 21 

testable hypotheses. 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 
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2.2 Introduction 1 

According to the US NIH National Library of Medicine database PubMed, more than 200,000 2 

scientific articles on non-steroidal anti-inflammatory drugs (NSAIDs) have been published in 3 

the last 50 years. In parallel, according to the US NIH and UK Research Innovation databases 4 

hundreds of research projects involving NSAIDs have been funded in the last two decades, 5 

such as the $18.5M grant awarded by the US NIH to “The Personalized NSAID Therapeutics 6 

Consortium (PENTACON)” in 2012 to advance the understanding of the mechanisms that 7 

underly NSAIDs efficacy and safety. Such high volume of research activity is justified by the 8 

critical therapeutic importance of NSAIDs at the global level for the treatment of numerous 9 

conditions involving inflammation and pain. This clinical importance is further highlighted by 10 

the inclusion of drugs such as ibuprofen, aspirin, and paracetamol in the World Health 11 

Organization (WHO) list of essential medicines. Despite such intensive research efforts, the 12 

full range of direct and indirect multi-scale mechanisms driving NSAIDs efficacy and safety 13 

remain elusive. This is demonstrated, for example, by the recent regulatory concerns related 14 

to the cardiovascular risk associated with NSAIDs administration that emerged after decades 15 

of clinical usage, which has led to regulatory action in both Europe and North America (e.g. 16 

UK Medicines and Healthcare products Regulatory Agency, 2007; UK Medicines and 17 

Healthcare products Regulatory Agency, 2012; US Food and Drug Administration, 2015). 18 

The uncertainties surrounding NSAIDs pharmacology can hinder decision making concerning 19 

NSAIDs safety for both humans and wildlife. From a clinical standpoint, NSAIDs administration 20 

has been associated with numerous adverse drug reactions (ADRs) involving the 21 

cardiovascular, renal, and gastrointestinal systems (Conaghan, 2012; Fanelli et al., 2017). 22 

Risk mitigation strategies are often focused on long-term use; however, it has been reported 23 

that even from “the first day of use, all NSAIDs increase the risk of gastrointestinal (GI) 24 

bleeding, myocardial infarction, and stroke” (Davis and Robson, 2016). Although these ADRs 25 

are relatively well established in the clinic, the current mechanistic uncertainty prevents a 26 

personalised prescription strategy aimed at minimising potential ADRs in patients based on 27 

their specific risk factors. The UK National Institute for Health and Care Excellence (NICE) 28 

provides several Clinical Guidelines (CG) that include recommendations on NSAIDs 29 

administration to general practitioners (GPs) including CG177 Osteoarthritis care and 30 

management in adults, CG79 Rheumatoid arthritis, and CG88 Low back pain. These 31 

guidelines provide a series of general recommendations largely based on empirical evidence. 32 

For example, the NICE CG177 guideline recommends that for the treatment of osteoarthritis 33 

in adults GPs should favour paracetamol and/or topical NSAIDs over oral NSAIDs, COX-2 34 

inhibitors, and opioids. It also suggests using “oral NSAIDs or COX-2 inhibitors at the lowest 35 



Philip Marmon  Chapter 2 

31 
 

effective dose for the shortest possible duration” and to consider individual risk factors. The 1 

guidelines also recommend that oral NSAID/COX-2 inhibitors should be co-prescribed with a 2 

proton pump inhibitor (PPI) (Davis and Robson, 2016). It is clear to see from these examples 3 

that there is a lack of an explicit mechanistic rationale to support these recommendations, and 4 

that there is a complete reliance on GPs’ clinical experience alone. In turn, this can result in a 5 

wide variety of GP-specific prescription strategies (McDonald et al., 2017). Decision making 6 

becomes even more complex if we consider that more than 25 NSAIDs are currently on the 7 

market, and that each patient can display a long list of specific risk factors that can influence 8 

prescription decisions including age, co-morbidities, and polypharmacy. These considerations 9 

suggest that mode-of-action-driven approaches may be highly valuable to support healthcare 10 

professionals to interpret complex clinical scenarios, and to support personalised prescription 11 

strategies.  12 

In addition to the clinical challenges, the presence of low concentrations of NSAIDs in the 13 

aquatic environment has raised the concern that chronic exposure to these drugs may also 14 

cause adverse effects in wild fish populations (aus der Beek et al., 2016; Lonappan et al., 15 

2016; Marmon, Owen, and Margiotta-Casaluci, 2021). In 2015, the NSAID diclofenac was 16 

added to the European Union Watch list of emerging pollutants (European Commission, 17 

2015), and subsequently removed in 2018 (European Commission, 2018). However, the 18 

regulatory debate on the environmental safety of NSAIDs continues to date, with some 19 

stakeholders recommending tighter regulation of over-the-counter NSAIDs and others 20 

proposing the substitution of diclofenac with compounds that display lower environmental risk 21 

(OECD, 2019; Marmon, Owen, and Margiotta-Casaluci, 2021). Independent from the exact 22 

details of this issue (discussed in Chapter 3), a common feature of the regulatory discussions 23 

concerning environmental safety is their reliance on a set of regulatory-relevant apical adverse 24 

phenotypes (reproductive effects, organ damage, and mortality), and the complete lack of 25 

mode-of-action considerations. Similar to the clinical challenges, the lack of mechanistic 26 

understanding represents a striking limitation that hinders the implementation of modern 27 

predictive toxicology approaches to support the environmental safety assessment of NSAIDs. 28 

Improving our mechanistic understanding of NSAIDs toxicology could provide valuable 29 

support for the regulatory decision making process. 30 

The high volume of research published on NSAIDs poses a significant challenge in terms of 31 

knowledge usability, as only a very small proportion of such knowledge is able to reach and 32 

influence the relevant stakeholders. In recent years, the scientific community has started to 33 

address this challenge in a more systematic manner using various strategies. For example, 34 

many important international initiatives and partnerships have been established to support 35 

evidence synthesis activities at the global level. These include 1) Cochrane Collaboration – 36 
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aimed at supporting health care interventions; 2) Collaboration for Environmental Evidence – 1 

aimed at supporting environmental management, sustainability, and conservation of 2 

biodiversity; 3) Collaborative Approach to Meta-Analysis and Review of Animal Data from 3 

Experimental Studies (CAMARADES) – aimed at supporting decision making in translational 4 

medicine; and 4) CAMARADES/ NC3Rs Systematic Review Facility – aimed at supporting 5 

scientists to perform systematic review and meta-analysis of animal studies. A full perspective 6 

on this topic has been recently published by the partnership ‘Evidence Synthesis International’ 7 

(Gough et al., 2020). In the last decade, a unique type of evidence synthesis initiative has 8 

gained significant traction in the toxicology field, supported by the Organisation for Economic 9 

Co-operation and Development (OECD), European Commission, and US Environmental 10 

Protection Agency (US EPA). This initiative is aimed at mapping the causally related multi-11 

scale events that link specific molecular initiating events (chemical-target interactions) to the 12 

manifestation of adverse health effects. A conceptual multi-scale model, called the Adverse 13 

Outcome Pathway (AOP), has been proposed as the pragmatic tool that would enable this 14 

large-scale mapping exercise (Ankley et al., 2011; Ankley and Edwards, 2018). The vision 15 

underlying the AOP development programme is that weight-of-evidence-based mechanistic 16 

knowledge, centralised using a Wiki format (https://aopwiki.org/), may improve the prediction 17 

of chemically-induced adverse effects, and facilitate the implementation of the 3R’s 18 

(Replacement, Reduction, and Refinement) vision in current and future safety testing 19 

strategies. A third type of evidence synthesis strategy is represented by the development of 20 

computational databases. From these databases it is possible to extract experimental 21 

mechanistic data from heterogenous sources (scientific publications, data repositories), 22 

harmonise the ontological features, and explore these data via user-friendly interfaces. Some 23 

examples that are of particular relevance to the present work are the Comparative 24 

Toxicogenomic Database (CTD), ChEMBL, and the CompTox Chemicals Dashboard 25 

(ToxCast). However, it is important to highlight that the number of biological databases is 26 

expanding rapidly. For example, Rigden and Fernandez (2021) identified 189 biological 27 

databases in 2021, though this number is likely to be higher as none of the databases 28 

mentioned above are present in the list generated by this study. The CTD is a database 29 

supported by the US National Institute of Environmental Health Sciences that provides 30 

manually curated information about chemical–gene/protein interactions, chemical–disease, 31 

and gene–disease relationships. The ChEMBL database is maintained by the European 32 

Bioinformatics Institute (EBI) and contains >15 million bioactivity measurements for 1.8 million 33 

distinct chemicals, extracted from >67,000 papers and patents (Mendez et al., 2019). Finally, 34 

the CompTox Chemicals Dashboard (ToxCast) integrates physicochemical, environmental 35 

fate and transport, exposure, usage, in vivo toxicity, and in vitro bioassay data for 883,000 36 

chemicals (Williams et al., 2017). 37 
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Generating accurate in silico models to predict potential toxicity from mechanistic data is 1 

becoming increasingly sought after. This PhD project is founded on the scientific vision that 2 

the mechanistic understanding of drug-mediated effects is essential to support modern 3 

regulatory and/or clinical decision making concerning drug safety assessment. Improving our 4 

mechanistic understanding will help drive the future implementation of predictive 5 

pharmacology and toxicology approaches into the regulatory arena. Moreover, there is an ever 6 

growing demand for reducing the volume of in vivo testing currently required to assess safety 7 

and risk, which is associated with high financial and ethical costs (Hartung, 2017; Burden, 8 

Sewell, and Chapman, 2015). All research groups currently working with animals in the UK 9 

must adhere to the principles of the 3R’s at all stages of research, which coincide with the 10 

regulations and licensing laws set out by the Home Office (under the Animals (Scientific 11 

Procedures) Act 1986). In line with the 3R’s vision, the present Chapter describes the use and 12 

maximisation of existing mechanistic knowledge to generate a multi-dimensional mode-of-13 

action profile of NSAIDs. Specifically, we extracted and integrated data at three different levels 14 

– gene expression (molecular level), functional in vitro profiling (drug-target interaction), and 15 

predicted immunomodulation (cellular level).This valuable information was used to guide the 16 

hypothesis generation and experimental design of all the subsequent animal experiments 17 

conducted throughout this project. 18 

 19 

2.3 Methods 20 

2.3.1 Compound identification 21 

To identify all available NSAIDs, we screened the DrugBank database (www.drugbank.ca; 22 

Wishart et al., 2018) and selected all pharmaceuticals labelled as “COX-inhibitor” or “NSAID”. 23 

 24 

2.3.2 Extraction of NSAIDs-mediated gene expression data (CTD) 25 

Drug-gene interaction, drug-pathway enrichment, and drug-disease association data for 24 26 

different NSAIDs was downloaded from the Comparative Toxicogenomics Database (CTD) 27 

(http://ctdbase.org/; Davis et al., 2021). Due to the vast amount of data available, a list of only 28 

the top 20 interacting genes, pathways, and diseases associated with each NSAID was 29 

compiled into a single Excel data file which was uploaded onto the Brunel Data Repository 30 

System (FigShare), and can be retrieved from the following address: 31 

https://figshare.com/s/e442f3c3e47b80c97cd7. To enhance the interpretation of the biological 32 

significance of the drug-gene interaction data, the CTD provides a list of GO terms that are 33 

statistically enriched by the genes that interact with the chemical of interest. According to the 34 
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CTD, “the significance of the enrichment is calculated by the hypergeometric distribution and 1 

adjusted for multiple testing using the Bonferroni method. The hypergeometric distribution is 2 

used to calculate the probability that the fraction of interacting genes annotated to the GO 3 

term, or its descendants, is significantly higher than the fraction of all human genes annotated 4 

to that GO term, or its descendants in the genome”. To enhance the translational interpretation 5 

of drug-gene interaction data, the CTD also provides curated and inferred chemical–disease 6 

associations. According to the CTD, “curated associations are extracted from the published 7 

literature, whereas inferred associations are established via curated chemical–gene 8 

interactions (e.g., chemical A is associated with disease B because chemical A has a curated 9 

interaction with gene C, and gene C has a curated association with disease B)”. Each 10 

chemical-disease association is coupled with an ‘inference score’ that according to the CTD 11 

“reflects the degree of similarity between CTD chemical-gene-disease networks and a similar 12 

scale-free random network. The higher the score, the more likely the inference network has 13 

atypical connectivity. The inference score is calculated as the log-transformed product of two 14 

common-neighbour statistics used to assess the functional relationships between proteins in 15 

a protein-protein interaction network. The first statistic takes into account the connectivity of 16 

the chemical and disease along with the number of genes used to make the inference. The 17 

second statistic takes into the account the connectivity of each of the genes used to make the 18 

inference.” 19 

 20 

2.3.3 Extraction of in vitro bioactivity data (ToxCast/ChEMBL) 21 

In vitro bioactivity profiling data for 25 different NSAIDs was extracted, via download of csv. 22 

files, from two distinct sources: 1) the ‘US Environmental Protection Agency (US EPA) Toxicity 23 

Forecaster (ToxCast) database (U.S. EPA. 2015. ToxCast and Tox21 Summary Files from 24 

invitrodb_v3.2. Retrieved from https://www.epa.gov/chemical-research/toxicity-forecaster-25 

toxcasttm-data between May 2019 and October 2019. Data released May 2018) (Williams et 26 

al., 2017), and 2) the European Bioinformatics institute (EBI) ChEMBL database 27 

(http://www.ebi.ac.uk/chembl; Gaulton et al., 2017). The data downloaded from ToxCast 28 

included drug target identifier and drug concentration at 50% maximum activity (AC50). Data 29 

extraction was limited to the interactions labelled as ‘active’, hence, those labelled as ‘inactive’ 30 

were excluded from the analysis, via removal from the dataset. The data downloaded from 31 

ChEMBL included drug target identifier and half-maximum inhibitory concentrations (IC50). 32 

Similarly, in this case, data extraction was limited to the interactions labelled as ‘active’, 33 

whereas those labelled as ‘not active’ or ‘not determined’ were excluded from the analysis, via 34 

removal from the downloaded dataset. When data from multiple species were available, 35 

human data were used as the first choice, however if unavailable, rodent data were used 36 
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instead. This bioactivity data was uploaded onto the Brunel Data Repository System 1 

(FigShare), and can be retrieved from the following address: 2 

https://figshare.com/s/e8a7b2adeb285d6f1de8. 3 

 4 

2.3.4 Harmonisation and analysis of ToxCast/ChEMBL data 5 

Due to the differing nomenclature used by the two data sources, the combined data from 6 

ToxCast and ChEMBL was manually harmonised using the database GeneCards 7 

(GeneCards.org; Stelzer et al., 2016) to provide consistent annotation of target identifiers (i.e., 8 

gene names). This manual process involved comparing the genes in these datasets with the 9 

GeneCards database, and aligning the nomenclature accordingly. Additionally, the AC50 10 

values associated with each target were uniformly expressed as nanomolar (nM) 11 

concentrations to ensure inter-database comparability. Once the combined dataset was 12 

harmonised, if any duplicate targets were present, only the lowest AC50 values were retained. 13 

 14 

2.3.5 Human therapeutic Cmax 15 

A range of human therapeutic Cmax (peak plasma concentration) values for each NSAID were 16 

extracted from the scientific literature. Human Cmax values for 19 drugs were extracted from 17 

Schulz et al. (2020) and recorded in our dataset. The Cmax values for the remaining NSAIDs 18 

(amfenac, carprofen, flufenamic acid, rofecoxib, tolfenamic acid, and valdecoxib) were 19 

extracted from six distinct sources (ema.europa.eu/en/documents/scientific-20 

discussion/nevanac-epar-scientific-discussion_en.pdf; zoetisus.com/products/pages/rimadyl-21 

injectable/pdf/tb.pdf; Lentjes and Ginneken, 1987; Prescilla et al., 2004; Niopas et al., 1995; 22 

accessdata.fda.gov/drugsatfda_docs/label/2004/21341lbl.pdf), respectively, and recorded in 23 

our dataset. 24 

 25 

2.3.6 Extraction of immunomodulatory data from existing datasets 26 

In order to assess the immunomodulatory potential of NSAIDs, we data-mined, extracted, and 27 

processed a large dataset published by Kidd et al. (2016), who generated a large-scale 28 

prediction of the interactions between 1,309 drugs and 250 immune cell states. The authors 29 

generated immunological predictions through the computational analysis and comparison of 30 

transcriptomic signatures collected by two distinct projects: 1) the Immunological Genome 31 

project (ImmGen) (https://www.immgen.org/) (Aguilar et al., 2020); and 2) The Connectivity 32 

Map (CMap) (https://clue.io/cmap) managed by the Broad Institute (Boston, USA) (Lamb, 33 

2007). The ImmGen database contains transcriptomic signatures for over 250 distinct 34 
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immunological cell states in mice, 14 categories of immune cell types, collected from 25 tissue 1 

locations. On the other hand, the CMap database contains over 1.5 million transcriptomic 2 

signatures for ~5,000 small-molecule compounds tested in multiple cell types. Kidd et al. 3 

(2016) integrated the two data sources creating a system-wide interaction map between drugs 4 

and immune cells by matching 1,309 drug perturbation profiles to 304 immune cell state 5 

changes. They computed the similarity between the two transcriptional expression patterns by 6 

comparing the top and bottom ranked genes from both profiles. For each immune cell state 7 

change (e.g., A→B), this analysis led to the calculation of an ‘immunomod score’ based on 8 

the overlap of the top- and bottom-ranked genes in each profile. A positive immunomod score 9 

indicates that the specific drug directs the immune cell towards state ‘B’, whereas a negative 10 

score indicates that the drug shifts the cell towards state ‘A’. Here we data-mined this large 11 

dataset to extract immunomod scores for all available NSAIDs (n = 34). This involved 12 

downloading the relevant dataset from the supplemental information provided by Kidd et al., 13 

filtering the data for NSAIDs, and removing all of the remaining data concerning other classes 14 

of pharmaceuticals. Due to the complexity of the ‘immunological cell states’ nomenclature, 15 

each immune cell state transition was manually replaced with a simplified unique code, to 16 

facilitate data handling and analysis. For example, the transition "Mo.6C-II-.Bl --> Mo.6C-II-17 

.BM" was replaced with the code "Mo 1". A human-readable version of IMMGEN annotation 18 

codes is available at https://gist.github.com/nachocab/3d9f374e0ade031c475a. The example 19 

mentioned here would equate to: "Non-classical Monocytes MHCII-negative (blood) --> Non-20 

classical Monocytes (bone marrow)". The full dataset used for this analysis was uploaded onto 21 

the Brunel Data Repository System (FigShare), and can be retrieved from the following 22 

address: https://figshare.com/s/f5e910433971a132eac2. 23 

 24 

2.3.7 Analysis of predicted immunomodulation data 25 

To generate a comparative assessment of the immunomodulatory activity of the 34 NSAIDs, 26 

immunomodulation scores were analysed by hierarchical clustering using the web tool 27 

ClustVis (https://biit.cs.ut.ee/clustvis/). The aim of this analysis was to identify clusters of 28 

NSAIDs displaying similar immunomodulatory activity. Hierarchical clustering facilitates the 29 

understanding of large multi-dimensional datasets, like the one considered here, by visualizing 30 

the data as a collection of progressively smaller clusters with different degree of granularity. 31 

The clustering starts with calculating all pairwise distances among the different elements in 32 

the dataset (i.e. immunomod scores). Elements with the smallest distance are merged in each 33 

step into clusters. On the other hand, defined clustering methods allow the calculation of the 34 

distance between two clusters. In the present analysis, Pearson correlation coefficients were 35 

used to determine the clustering distances, and the Ward linkage method (sum of squared 36 
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distances from points to centroids as the distance) to determine the inter-cluster linkages 1 

(Metsalu and Vilo, 2015). The results of the analysis were visualized using a heatmap plot 2 

integrated with two dendrograms which represented the clustering of 34 NSAIDs and 184 3 

immune cell states, respectively. 4 

 5 

2.4 Results 6 

2.4.1 Selection of NSAIDs 7 

Searching the DrugBank database led to the identification of 25 NSAIDs: amfenac, aspirin, 8 

carprofen, celecoxib, diclofenac, etodolac, etoricoxib, flufenamic acid, flurbiprofen, ibuprofen, 9 

indomethacin, ketoprofen, ketorolac, mefenamic acid, meloxicam, naproxen, niflumic acid, 10 

nimesulide, oxaprozin, piroxicam, rofecoxib, sulindac, tenoxicam, tolfenamic acid, and 11 

valdecoxib. Four compounds were classified as COX-2 selective inhibitors (celecoxib, 12 

etoricoxib, rofecoxib, and valdecoxib), whereas 21 compounds were classified as non-13 

selective COX inhibitors.  14 

 15 

2.4.2 CTD: NSAID-gene, gene-pathway, and pathway-disease associations 16 

The CTD database contained information for all drugs, except amfenac. In addition, it did not 17 

contain pathways enrichment predictions for carprofen and tenoxicam. It is important to note 18 

that these analyses are dependent upon the amount of data recorded in the CTD for each 19 

NSAID (i.e., the number of interacting genes). Therefore, an NSAID with a higher number of 20 

recorded gene interactions may not necessarily indicate a higher level of biological activity 21 

compared to another NSAID which fewer interacting genes. The top 20 drug-gene interactions 22 

were plotted for each NSAID in the CTD (Figure 2.1). However, 20 drug-gene interactions 23 

were not available for four of the NSAIDs identified (carprofen, etoricoxib, oxaprozin, and 24 

tenoxicam). The interaction count (x-axis), which describes the number of times each drug-25 

gene association has been detected in the literature, was plotted against the gene identifier 26 

(y-axis). These drug-gene interaction plots indicate the molecular perturbations that are likely 27 

to stem from exposure to each of the selected drugs. The interaction count for each gene can 28 

be interpreted as an indirect marker of reproducibility, as each count is linked to an 29 

independent study present in the scientific literature. The total number of observed drug-gene 30 

interactions ranged between one (carprofen and tenoxicam) and 4,722 (indomethacin). The 31 

three NSAIDs with the highest number of gene interactions were indomethacin, nimesulide, 32 

and diclofenac. The three NSAIDs with the lowest number of interactions were etoricoxib, 33 

carprofen, and tenoxicam.  34 
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To support the interpretation of the biological significance of the drug-gene interaction data, 1 

the top 20 biological pathways significantly enriched by the genes associated with each NSAID 2 

are displayed in Figure 2.2. No pathway enrichment analysis is displayed for carprofen and 3 

tenoxicam due to the limited number of drug-gene interactions in the database. The number 4 

of statistically significant enriched pathways per NSAID ranged between 18 and 877. The three 5 

NSAIDs with the highest number of enriched pathways were indomethacin, diclofenac, and 6 

sulindac. Whereas the three drugs with lowest number of enriched pathways were mefenamic 7 

acid, oxaprozin, and etoricoxib. Out of all of the ‘top 20 pathways’ enriched by the 22 NSAIDs 8 

in the CTD around 30% (~131/438 pathways) are related to the immune system, highlighting 9 

the immunomodulatory potential of this class of drugs. It is important to note that in some 10 

instances ‘Salmonella’, ‘Malaria’, ‘Allograft rejection’, and ‘Herpes simplex infection’ appear 11 

amongst the drug-pathway interactions listed in Figure 2.2. Due to the nature of the CTD 12 

analysis, the reason these types of association may appear is the result of a number of the 13 

genes involved in these processes’ being significantly enriched. The CTD software is unable 14 

to interpret the biological implausibility of these associations, hence why they appear in the 15 

analysis. For transparency, they remain part of the analysis and are listed in Figure 2.2. 16 

To support the interpretation of the adverse phenotypes that may be associated with each 17 

NSAID-gene interaction set, Figure 2.3 displays the top 20 diseases associated with each 18 

NSAID. These associations are either curated from the literature or inferred via the drug-gene 19 

interactions. Some of the curated associations include direct evidence from the literature, and 20 

so no inference score is recorded. Inferred associations are based upon the enrichment of 21 

interacting genes with several disease annotation sources, including the Gene Ontology (GO) 22 

database. The diseases associated with each NSAID seem to correlate relatively well with the 23 

types of NSAIDs-induced adverse effects reported in the clinic including renal, hepatic, 24 

cardiac, and gastrointestinal pathologies. Interestingly, 22 NSAIDs are associated with 25 

immune-related disease phenotypes, with the exception of flufenamic acid and tolfenamic 26 

acid.27 
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Figure 2.1. Top 20 CTD drug-gene interactions for each NSAID. Drugs are ranked by interaction count from largest to smallest. The number of interactions does not 

necessarily indicate each drugs’ potential for biological activity, as the number of interactions is dependent upon the curation process, and the amount of available data in the 

literature; 24 figures total. 
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Figure 2.2. Top 20 CTD pathways enrichment for each NSAID. These analysis are dependent upon the number of drug-gene interactions, which does not necessarily 

indicate each drugs’ potential for biological activity, as the number of interactions is dependent upon the curation process, and the amount of available data in the literature;  

22 figures in total. 
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Figure 2.3. Top 20 CTD drug-disease associations. Relationships are either inferred, or they are curated from direct evidence so have no inference score. As this analysis 

is based on the number of drug-gene interactions, these results do not necessarily indicate each drugs’ potential for biological activity, as the number of interactions is 

dependent upon the curation process, and the amount of available data in the literature;  24 figures total.
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2.4.3 ToxCast/ChEMBL functional bioactivity 

Drug-gene interaction data can provide useful information on the potential mechanism of 

action of a drug at the molecular level. The next step to inform mode-of-action considerations 

is to determine the functional interaction between drugs and proteins. To do so, we generated 

in vitro bioactivity profiles for each NSAID using the data previously extracted from the 

ToxCast and ChEMBL databases. Drug-target interaction data was available for all of the 25 

NSAIDs identified in DrugBank, including target AC50 values. Figure 2.4 displays the 

bioactivity profile for each NSAID. The three drugs with the highest number of interactions 

were celecoxib, indomethacin, and diclofenac (73, 46, and 38, respectively), whereas 

etodolac, tenoxicam, and amfenac displayed the lowest number of interactions (6, 6, and 3, 

respectively). To support the interpretation of the clinical relevance of the observed interaction, 

each plot also displays the range of human therapeutic Cmax. This visualisation facilitates the 

interpretation of hazard and risk in a real-life scenario (i.e., the clinical setting). For example, 

the Cmax of amfenac ranges from 0.76 to 1.57 nM and the concentration of amfenac required 

to elicit a 50% response of PTGS1 and PTGS2 is 100 nM. This would suggest that at a 

therapeutic dose of amfenac the PTGS1 and PTGS2 proteins are not likely to be modulated 

by this drug despite being primary targets. The explanation for this apparent pharmacological 

discrepancy is that amfenac is only administered topically using eye drops (often as 

nepafenac, its pro-drug). Hence, the drug concentration at the target site is likely to be much 

higher than the circulating concentration, and high enough to inhibit PTGS1 and PTGS2. On 

the other hand, if we consider the bioactivity profile of aspirin all but three targets (CA1, ICAM1, 

TNFA) lie either within the Cmax range or below it, suggesting that the majority of these targets 

can be modulated by a therapeutic dose of aspirin. The data indicated that eight out of 25 

NSAIDs modulate four or less targets at therapeutic doses. Meloxicam, piroxicam, and 

tenoxicam modulate only one or both of the cyclooxygenase enzymes, and amfenac and 

tolfenamic acid do not modulate any targets at therapeutically relevant plasma concentrations. 

Together, these 25 bioactivity profiles integrated with human plasma therapeutic 

concentrations provide a quantitative understanding of the risks associated with exposure to 

distinct NSAIDs at a functional protein level (i.e., target inhibition).
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(1 – 3 out of 25 figures) 
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Figure 2.4. ToxCast/ChEMBL bioactivity profiles for 25 NSAIDs. The human therapeutic Cmax range is displayed 

by the red dashed lines on each plot; 25 figures total.
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2.4.4 Predicted NSAIDs-mediated immunomodulation  

The results obtained through the analysis of NSAID-gene interaction data indicated that 

NSAIDs can perturb numerous immune-related pathways. To investigate this aspect in more 

detail, we mined a database generated by Kidd et al. (2016), to perform a comparative analysis 

of the predicted immunomodulatory activity of NSAIDs. The data mining exercise led to the 

identification of 34 COX-inhibitors, of which only 14 were also present in the DrugBank 

selection process (used in the previous analyses). The analysis revealed that individual 

NSAIDs may vary in their ability to interact with the immune system (Table 2.1). The number 

of predicted interactions ranged from 5 to 113. The three NSAIDs predicted to display the 

highest number of immune interactions with immune cells were isoxicam (113 interactions), 

bufexamac (95 interactions), and flunixin (94 interactions). On the other hand, the three 

compounds with the lowest number of interactions were meclofenamic acid (6 interactions), 

nifenazone (6 interactions), and niflumic acid (5 interactions). The number of predicted 

immune interactions provides a qualitative overview of the immunomodulatory potential of 

each drug. However, each drug can have either a positive or negative effect on each specific 

immune cell state change (e.g., favouring the shift towards ‘A’ or towards ‘B’, in the state 

change from ‘A’ to ‘B’). This quantitative information is captured by the immunomod score, 

which can be either positive or negative. In order to utilise this quantitative data effectively, a 

hierarchical clustering analysis was carried out to identify any potential differences and 

similarities amongst NSAIDs effects on immune cell state transitions (Figure 2.5). The 

clustering exercise led to the identification of 6 main clusters with differential levels of activity. 

Some of the clusters contain medium-highly active drugs that induce contrasting effects on 

specific groups of immune cell types, in particular on T cells (e.g. isoxicam, indoprofen, 

acematicin, and felbinac, versus nimesulide, benzydamine, naproxen, acetylsalicylic acid, 

flurbiprofen, indomethacin, oxaprozin, and aceclofenac). Notably, isoxicam, bufexamac, and 

indoprofen have been withdrawn from the market due to severe adverse drug reactions. Other 

clusters contain low activity NSAIDs (e.g. celecoxib and NS398) with minimal predicted 

immunomodulatory activity that do not display any obvious pattern. 
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Table 2.1. Number of predicted immune interactions for 34 NSAIDs extracted from the 

database generated by Kidd et al. (2016). 

NSAID Number of predicted immune interactions 

Isoxicam 113 

Bufexamac 95 

Flunixin 94 

Fenoprofen 89 

Etofenamate 84 

Nabumetone 84 

Acemetacin 79 

Indoprofen 75 

Acetylsalicylic acid 69 

Ketoprofen 65 

Felbinac 58 

Nimesulide 58 

Flurbiprofen 50 

Oxyphenbutazone 50 

Dexibuprofen 45 

Diclofenac 45 

Naproxen 44 

Fenbufen 41 

Ketorolac 40 

Oxaprozin 36 

Indomethacin 34 

NS398 30 

Epirizole 27 

Etodolac 27 

Azapropazone 25 

Benzydamine 21 

Aceclofenac 18 

Triamcinolone 17 

Piroxicam 16 

Diflunisal 15 

Celecoxib 8 

Mefenamic acid 7 

Meclofenamic acid 6 

Nifenazone 6 

Niflumic acid 5 
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Figure 2.5. Predicted immunomodulatory activity of 34 NSAIDs. The data was extracted from the large-scale drug immunomodulation database generated by  

Kidd et al. (2016) and analysed using hierarchical clustering techniques. Each column represents a distinct immune cell state labelled with a simplified code. The full 

name of the immune state transition corresponding to each code can be visualized in the Excel file available here: https://figshare.com/s/f5e910433971a132eac2. 

Each row indicates a specific NSAID. Abbreviations: Neut = neutrophil; Mono = monocyte; NKT = natural killer T cell; NK = natural killer cell; Mac = macrophage; T4 

= CD4+ T cell; T8 = CD8+ T cell; Tgd = gamma-delta T cell; DC = dendritic cell. 
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2.5 Discussion 

The data mining of biological databases demonstrated that a substantial wealth of mechanistic 

data exists for over 25 distinct NSAIDs. This mechanistic profiling exercise provided a data-

driven foundation able to guide hypothesis generation and experimental design of the 

remaining phases of the project. NSAIDs pharmacology is traditionally focused on the 

biological significance of COX inhibition. The analysis presented here leads to two main 

considerations. Firstly, we demonstrate that NSAIDs can trigger (directly and indirectly) a wide 

variety of biological responses that may be relevant for the assessment of drug-specific 

efficacy and safety. Secondly, multiple lines of evidence indicate that NSAIDs-mediated 

immunomodulation and the perturbation of immune and inflammatory pathways could 

represent a key, but underexplored, mode-of-action that warrants further investigation. 

Starting from these considerations, in Chapter 3 we describe the application and expansion of 

this data-driven approach to characterise and predict NSAIDs-mediated effects in fish species, 

and to assess the toxicological risk of NSAIDs mixtures in the environment. Whereas in 

Chapter 4 and Chapter 5, we describe an innovative experimental approach based on the use 

of transgenic zebrafish larvae to validate our computationally-driven hypothesis and unravel 

the role played by NSAIDs-mediated immunomodulation in the manifestation of 

gastrointestinal toxicity. 

The major novelty of the present work stems from the integrated focus on multiple levels of 

biological and functional organisation. The CTD provided curated NSAID-gene interaction 

data, pathways enrichment analyses, and disease association analysis. Whereas the 

combined data from ToxCast and ChEMBL provided us with functional bioactivity data at the 

protein level. Using the available human Cmax data from the literature, and other online 

sources, we were able to predict the risk of each drug-target interaction occurring at 

therapeutic levels of exposure to each NSAID. Some of the most common targets, pathways, 

and diseases shared between each NSAID in the CTD and ToxCast/ChEMBL datasets appear 

to be immune system-related. These data analyses led us to focus on immunomodulation as 

a pivotal component of NSAIDs-mediated effects which directed our final data extraction 

process. Immunomodulatory data extracted from the publication by Kidd et al. (2016) provided 

us with data at the cellular level of interaction. Hierarchical cluster analysis enabled us to 

simultaneously highlight the effects of NSAIDs on a comprehensive set of immune cell types, 

and group together drugs with a similar interaction profile. Together, these datasets have 

provided us with mechanistic information at multiple levels of biological organisation and point 

towards the potential immunomodulatory effects of NSAIDs as an area of interest for further 

investigation. 
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One of the challenges of using biological databases that use automated or semi-automated 

approaches to extract data from heterogenous sources is the quantification of confidence and 

uncertainty. To estimate the confidence in each drug-gene interaction from the CTD we 

considered the ‘interaction count’ as a surrogate marker of reproducibility, as this value 

represents the number of times that each drug-gene interaction has been experimentally 

observed in the literature. Therefore, drugs like indomethacin which have some of the highest 

interaction counts per drug-gene interaction give us a high level of confidence in the likelihood 

of these perturbations occurring. In contrast, the NSAIDs carprofen and tenoxicam present 

with only one gene interaction and an interaction count of one, indicating a low level of 

confidence. Low numbers of interactions and low interaction counts do not give us high levels 

of confidence in the data. However, it is important to consider that a lack of data, or a low 

interaction count, does not necessarily mean that a drug is less promiscuous/less likely to 

cause an effect at the molecular level. Since the CTD is a database curated from the literature, 

it is entirely dependent upon the quality, and quantity, of research describing the effects of 

these drugs. Additionally, not all drugs have been fully curated in the database which could 

also account for a lack of interaction data. Hence, for drugs with a low number of interactions, 

such as carprofen, it is quite likely that an absence of evidence is not evidence of absence. 

Some NSAIDs are much more highly investigated than others which can have an impact on 

the accuracy of the CTD. For example, PubMed indicates that the popular NSAID ibuprofen 

has been studied in over 11,279 papers in the last 20 years. On the other hand, the less 

popular NSAID tenoxicam is mentioned in only 294 papers. Another important factor is that 

these drug-gene interactions are not associated with any quantitative data, meaning it is 

unclear what concentration of drug would be required to elicit an interaction with each target. 

The CTD also provides pathways enrichment analysis for each of the drug-gene interaction 

sets, from which we extracted the top 20 most significantly enriched pathways (when 

available). This gives us an idea of the types of pathways most likely to be affected by 

modulation of the genes in each respective NSAIDs gene interaction set. Similarly, we 

extracted disease association data from the CTD to give us an idea about the types of 

diseases that are likely to be implicated by exposure to each NSAID. However, it is important 

to note that these associations are largely made through the use of an ‘inference score’ 

statistic calculated by the CTD software, which may not necessarily be accurate. The inference 

score is based upon the curated drug-gene interactions from the literature, and so the quality 

of the inference score is also wholly reliant upon the quality of the underlying data. As this 

underlying data is curated from the literature there is the danger that publication bias, due to 

under-reporting of negative data, may skew the results of downstream analyses, such as the 

generation of the inference score. Evidence demonstrating the existence of publication bias 

supports this notion (Kicinski, 2014), and so it is important to consider these limitations when 
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interpreting the inference score in this case. Nevertheless, using existing data from the CTD 

alone allowed us to predict the perturbation of molecular level targets, pathway level 

interactions, and disease level implications for each drug, to the best of our ability. Other than 

the aforementioned limitations, a lack of quantitative data associated with the drug-gene 

interactions provides us with only an estimation of the hazard, since it is unclear if these 

interactions are likely to occur at realistic exposure concentrations. Nonetheless, the CTD 

provides a good initial indication of the potential mechanistic effects that exposure to 24 

distinct NSAIDs may have. Some of the most common pathways and disease associations 

shared between our drugs involved some level of immunomodulation.  

Out of the 24 NSAIDs, pathways enrichment was only available for 22 of them, and 18 of these 

drugs included immune-related pathways within their top 20 significantly enriched pathways 

(aspirin, celecoxib, diclofenac, etodolac, etoricoxib, flurbiprofen, ibuprofen, indomethacin, 

ketoprofen, ketorolac, mefenamic acid, meloxicam, naproxen, nimesulide, oxaprozin, 

piroxicam, rofecoxib, and sulindac). In terms of disease association, 22 out of the 24 NSAIDs 

included immune-related diseases within their top 20 associations (aspirin, carprofen, 

celecoxib, diclofenac, etodolac, etoricoxib, flurbiprofen, ibuprofen, indomethacin, ketoprofen, 

ketorolac, mefenamic acid, meloxicam, naproxen, niflumic acid, nimesulide, oxaprozin, 

piroxicam, rofecoxib, sulindac, tenoxicam, valdecoxib). From a mechanistic perspective, the 

immunomodulatory potential of NSAIDs may be mediated both directly (i.e., via the inhibition 

of the primary targets PTGS1 and PTGS2, and the perturbation of their immunomodulatory 

functions) and indirectly (i.e., via the indirect/secondary perturbation of genes and pathways 

involved in immunomodulatory functions). We know that inhibition of PTGS1 (COX-1) and 

PTGS2 (COX-2) can lead to a variety of diverse effects, as discussed in Chapter 1, many of 

which are related to the immune system. For example, COX-2 has been identified as both a 

key pro-inflammatory mediator, and a crucial component for the resolution of inflammation 

(Wallace and Devchand, 2005). Moreover, COXs’ downstream products such as PGE2 and 

PGI2 have been shown to significantly increase oedema, vascular permeability, and leukocyte 

infiltration (Smyth et al., 2009). Hence, modulation of PTGS1 and/or PTGS2 is incredibly likely 

to significantly impact immune-related homeostatic mechanisms. Many of the secondary 

targets modulated by NSAIDs, either directly or indirectly, in the CTD are also important 

immune system components; TNF, CXCL8, and IL1B represent just a few of these key 

immunomodulatory genes which are modulated by the majority of NSAIDs, according to the 

CTD. TNF-α is one of the most important pro-inflammatory cytokines, inducing oedema and 

vasodilation, as well as leukocyte adherence to the vascular endothelium (Zelova and Hosek, 

2013). In fact, Page et al. (2010) found that NSAIDs are able to indirectly upregulate TNF-α 

synthesis in rheumatoid arthritis tissues through the inhibition of PGE2, paradoxically 
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exacerbating inflammation. CXCL8 (IL8; interleukin-8) is a potent chemokine which regulates 

many functions including cell trafficking and activation of polymorphonuclear (PMN) 

leukocytes, during inflammatory and homeostatic conditions (Russo et al., 2014). Clearly, 

significant modulation of any of the aforementioned genes by NSAIDs has the capacity to 

disrupt normal immune system function. 

The transition from hazard to risk assessment requires the consideration of quantitative 

information, such as potency and effect concentration data. Compared to the CTD data, which 

is largely focused on gene expression, the bioactivity profiles generated using 

ToxCast/ChEMBL data provide an overview of the functional interaction between NSAIDs and 

protein targets. This profiling exercise also indicates the NSAID concentrations required to 

elicit a half maximal response for each drug-protein interaction. Furthermore, by overlaying 

the range of human therapeutic Cmax values for each NSAID, we are able to assess the risk 

of each target being modulated at therapeutically relevant concentrations. Out of the 25 

NSAIDs assessed, eight of these drugs appear able to modulate four or less targets at 

therapeutically relevant plasma concentrations (amfenac, etoricoxib, meloxicam, nimesulide, 

piroxicam, tenoxicam, tolfenamic acid, and valdecoxib). Out of those eight NSAIDs, only three 

can modulate PTGS1 and/or PTGS2 (meloxicam, piroxicam, and tenoxicam). In contrast, the 

remaining 17 NSAIDs can modulate a higher number of targets at therapeutically relevant 

plasma concentrations, suggesting that these drugs may carry an increased level of risk of 

effects beyond COX inhibition. Many of the targets modulated by the 25 NSAIDs appear to be 

immune-related, some of which are potent regulators of the immune response. For example, 

celecoxib modulates 73 targets of which 17 are important immune system components 

(PTGS1, PTGS2, PTGES, MAPK14, ALOX5, CCL2, CCL26 CXCL8, CXCL9, CXCL10, 

VCAM1, ICAM1, IL1A, IL6, TGFB1, TNF, PPARG, SELE, and SELP). Some important factors 

to again consider include the quality and quantity of data being produced by each database. 

Similar to the limitations surrounding the CTD data, if the research has not been done for a 

particular drug, then the data will not be available in the database. So in terms of ToxCast, 

one NSAID may not show any activity data for a particular target, but this does not necessarily 

mean that this drug lacks the capacity to modulate that target. It may simply mean that this 

particular NSAID has not been tested in the specific in vitro assay required to assess this 

interaction. For example, the data from ToxCast suggests that naproxen modulates PGR 

(progesterone receptor), and that meloxicam does not. However it is unclear whether 

meloxicam was ‘inactive’ in this assay or simply was not tested. Aside from issues surrounding 

the quantity of data, and amount of testing, the quality of these in vitro assays with regards to 

their reliability has certainly come under scrutiny. For example, one such paper highlighted 

that a large percentage of the chemicals classified as PPARγ agonists in ToxCast were in fact 
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false positives (Janesick et al., 2016). Other issues surrounding reliability of the data from 

these sources comes from inter-assay variability. For example, diclofenac was tested in 17 in 

vitro assays designed to detect ESR1 activity and was only active in three of those assays 

(Marmon, Owen, and Margiotta-Casaluci, 2021). 

The immunomodulatory potential of NSAIDs was highlighted by both the CTD and the 

ToxCast/ChEMBL data analyses, at multiple levels of biological organisation. To further 

investigate this emerging pharmacological feature, we data-mined and analysed predicted 

drug immunomodulation data generated by Kidd et al. (2016). This analysis confirmed that 

NSAIDs have the potential to modulate several immune cell types and cell state transitions. 

This prediction is based on complex bioinformatics evaluations of NSAIDs transcriptomic 

signatures. However, several studies in the literature suggest that such immunomodulation 

may also occur in vivo via both COX-dependent and COX-independent mechanisms (Bancos 

et al., 2009; Chen et al., 2021; Villalonga et al., 2010). 

The interaction between drugs and the immune system may have implications for both drug 

efficacy and safety assessment. For example, unintended immunomodulation may play a role 

in the manifestation of adverse drug reactions. Our analysis revealed that isoxicam is the 

NSAID with the highest number of predicted immune interactions (n=113). This compound 

was withdrawn from the market in the 1980s due to its ability to trigger toxic epidermal 

necrolysis (Roujeau et al., 1990; Garcia-Doval et al., 2000), a severe cutaneous adverse drug 

reaction involving significant inflammatory and immune responses (Abe, 2015). This side 

effect and other types of skin toxicity also represented the driving factor that led to the 

withdrawal of oxyphenbutazone (Biron, 1986), and bufexamac (EMA, 2010), which are 

predicted to induce 50 and 95 distinct interactions with a variety of immune cell state changes, 

respectively. Other NSAIDs included in our analysis were also withdrawn from the market due 

to other major adverse effects, such as indoprofen (gastrointestinal bleeding) (Aronson, 2016), 

nimesulide (hepatotoxicity) (Donati et al., 2016), rofecoxib and valdecoxib (cardiotoxicity) 

(Dieppe et al., 2004; Nussmeier et al., 2005). It is important to consider that these types of 

toxicity also represent the major drivers that led to regulatory action. However, this does not 

imply that these are the only types of toxicities detected, as immune-related adverse effects 

are also apparent. This consideration is supported by analysis of the data stored in the World 

Health Organisation (WHO) database for the global monitoring of Adverse Drug Reactions 

(ADRs) – VigiAccessTM. For example, 2,935 and 682 Individual Case Safety Reports (ICSRs) 

of gastrointestinal disorders and hepatobiliary disorders, respectively, have been submitted 

for nimesulide in 110 countries. This data is not surprising as increased risk of liver toxicity 

was the trigger for its withdrawal from the market. However, the data indicate that 254 immune 

system disorders and 3,393 skin and subcutaneous tissue disorder ICSRs were also 
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submitted for this same compound. Moreover, cardiac disorder ICSRs represent 15% of all 

ICSRs submitted for rofecoxib (withdrawn due to increased risk of cardiotoxicity). Whereas 

the combination of immune-related ADRs (blood and lymphatic system disorders, immune 

system disorders, infections, and skin and subcutaneous tissue disorders) represent 8.4% of 

all submitted ICSRs for this same compound.  

These examples highlight the possibility that the ability of NSAIDs to modulate the immune 

system may not be negligible and may explain the risk of developing certain types of side 

effects. Understanding and predicting the intrinsic immunomodulatory potential of drugs can 

therefore enhance drug safety assessment and, for approved drugs, inform clinical decision 

making and personalised medicine approaches. In recent years, several in vitro 

immunotoxicity methods have been developed and applied to preclinical safety testing, and 

some of them have been endorsed and proposed in the guidance document ICH S8 

(Immunotoxicity Studies for Human Pharmaceuticals). Nonetheless, the complexity of the 

immune network is such that our ability to predict system-wide drug-induced effects using in 

vitro approaches remains limited. On the other hand, the implementation of tailored 

immunotoxicity endpoints during standard animal toxicity testing, when possible, is limited by 

the low-throughput nature of in vivo testing. These limitations suggest that the integration of 

in silico predictive approaches into the testing workflow may allow the characterisation of drug 

immunomodulatory potential prior to in vivo testing, leading to an overall improvement of the 

process. The methodology used by Kidd et al. (2016) is an excellent example of the huge 

potential for this type of approach.  

 

2.6 Conclusions 

Here we present multiple lines of evidence highlighting the potential diversity of biological 

targets and processes which may be perturbated by NSAIDs. Some of these key processes 

include, but are not limited to, steroid hormone signalling and several immunomodulatory 

pathways. Immunomodulation may well represent a key mode-of-action that underlies both 

safety and efficacy considerations for NSAIDs. Our data demonstrates the utility of existing 

mechanistic data for specific hypotheses generation and lays the foundations for the 

development of more sophisticated in silico analyses. Considering the fundamental 

importance of the 3R’s concept throughout all areas of research, this work highlights the value 

of using predictive in silico analyses for the refinement of future in vivo study design. 
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Chapter 3 

 

Pharmacology-informed prediction of the risk posed to fish by 

mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the 

environment 
 

3.1 Abstract 

The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the aquatic environment 

has raised concern that chronic exposure to these compounds may cause adverse effects in 

wild fish populations. This potential scenario has led some stakeholders to advocate a stricter 

regulation of NSAIDs, especially diclofenac. Considering their global clinical importance for 

the management of pain and inflammation, any regulation that may affect patient access to 

NSAIDs will have considerable implications for public health. The current environmental risk 

assessment of NSAIDs is driven by the results of a limited number of standard toxicity tests 

and does not take into account mechanistic and pharmacological considerations. Here we 

present a pharmacology-informed framework that enables the prediction of the risk posed to 

fish by 25 different NSAIDs and their dynamic mixtures. Using network pharmacology 

approaches, we demonstrated that these 25 NSAIDs display a significant mechanistic 

promiscuity that could enhance the risk of target-mediated mixture effects near 

environmentally relevant concentrations. Integrating NSAIDs pharmacokinetic and 

pharmacodynamic features, we provide highly specific predictions of the adverse phenotypes 

associated with exposure to NSAIDs, and we developed a visual multi-scale model to guide 

the interpretation of the toxicological relevance of any given set of NSAIDs exposure data. Our 

analysis demonstrated a non-negligible risk posed to fish by NSAID mixtures in situations of 

high drug use and low dilution of waste-water treatment plant effluents. We anticipate that this 

predictive framework will support the future regulatory environmental risk assessment of 

NSAIDs and increase the effectiveness of ecopharmacovigilance strategies. Moreover, it can 

facilitate the prediction of the toxicological risk posed by mixtures via the implementation of 

mechanistic considerations and could be readily extended to other classes of chemicals. 

 

 

 

 

 



Philip Marmon  Chapter 3 

80 
 

3.2 Introduction 

Millions of people worldwide use non-steroidal anti-inflammatory drugs (NSAIDs) to treat a 

wide variety of health conditions involving inflammation and pain (Gunaydin and Bilge, 2018). 

One of the consequences of such widespread therapeutic use is that subsequent to excretion 

from the human body, NSAIDs and their metabolites enter the domestic waste-waters and can 

reach the aquatic environment where they are detected at low concentrations (Aus der Beek 

et al., 2016; Lonappan et al., 2016). Administration of NSAIDs to humans, especially when 

long-term, is associated with an increased risk of adverse events in multiple organs/systems, 

including gastrointestinal and cardiovascular systems (Conaghan, 2012; Fanelli et al., 2017). 

These safety concerns led to various regulatory actions during the last twenty years in both 

North America and Europe, which required drug manufacturers to update product labels with 

explicit warnings that NSAIDs may increase the risk of serious adverse events (e.g. UK 

Medicines and Healthcare products Regulatory Agency, 2007; UK Medicines and Healthcare 

products Regulatory Agency, 2012; US Food and Drug Administration, 2015). In parallel with 

the clinical safety considerations, the presence of low, but sustained, concentrations of 

NSAIDs in the aquatic environment has raised the concern that chronic exposure to these 

compounds may also cause adverse effects in wild fish populations. In 2015, this concern 

triggered regulatory action and one specific NSAID, diclofenac, was included in the European 

Union (EU) Watch List of emerging pollutants under the European Water Framework Directive 

(European Commission, 2015). Diclofenac was subsequently removed from the Watch List in 

2018 (European Commission, 2018) once a larger volume of high-quality monitoring data was 

gathered to allow a refined risk assessment. However, the regulatory and academic 

discussions concerning the environmental risk assessment (ERA) of NSAIDs continued and 

have reached the point that some stakeholders are advocating a stricter regulation of over-

the-counter NSAIDs, such as diclofenac, and even the substitution with compounds 

associated with a lower environmental risk (OECD, 2019). 

Considering the global clinical importance of NSAIDs for the management of pain and 

inflammation, any regulation that may affect patient access to NSAIDs will have considerable 

implications for public health. Thus, it is of paramount importance that all relevant scientific 

evidence, beyond the boundaries of ecotoxicology, is used to inform regulatory decision-

making. The inclusion of diclofenac in the EU Watch List highlighted three potential limitations 

of the current risk assessment of NSAIDs. Firstly, from a toxicological perspective, the original 

decision to include diclofenac in the list was driven by a relatively small set of experimental 

data (e.g. Hoeger et al., 2005; Mehinto et al., 2010; Schwaiger et al., 2004; Triebskorn et al., 

2004) concerning chronic effects in fish species, which were subsequently the object of 

scientific debate (Memmert et al., 2013). The reasons underlying the debate were not related 
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to the widely accepted notion that diclofenac may trigger adverse effects in fish (hazard 

assessment), but rather to the degree of reproducibility of the experiments that characterised 

those effects, and to the range of environmental concentrations that may trigger them (risk 

assessment). Secondly, the current ERA of diclofenac (and any other pharmaceutical) does 

not incorporate mechanistic and mode-of-action considerations, limiting the potential to 

implement predictive toxicology approaches to support decision-making. Finally, more than 20 

different NSAIDs are currently available on the market, and all of them exert their 

pharmacological effects by inhibiting one or both isoforms of the cyclooxygenase enzyme 

(COX-1 and COX-2). This pharmacological aspect implies that diclofenac may not be the only 

NSAID of concern, and that mixture effects might occur. 

To overcome these challenges, we developed a novel pharmacology-informed framework that 

enables the prediction of the risk posed to fish by NSAIDs and their mixtures under realistic 

exposure scenarios. Our framework is centred on the integration of two mechanistic 

perspectives, network-centred and target-centred, and on the consideration of drug 

concentrations inside the organism (rather than in the surrounding water) as an essential 

parameter for the generation of accurate and realistic risk predictions. This research aims at 

providing a valuable tool that can facilitate the implementation of mechanistic considerations 

into the future regulatory environmental risk assessment of NSAIDs and 

ecopharmacovigilance strategies. 

 

3.3 Methods 

3.3.1 Compound identification 

To identify the NSAIDs currently present on the market, we screened the database DrugBank 

(www.drugbank.ca; Wishart et al., 2018) and selected all pharmaceuticals labelled as ”COX-

inhibitor” or “NSAID”. The physico-chemical properties of each compound – including LogKow 

and LogD7.4 - were retrieved from the database ChemSpider (www.chemspider.com). 

 

3.3.2 Prediction of blood concentrations of NSAIDs in wild fish 

Measured surface water concentrations for each compound were retrieved from a database 

curated by the German Environment Agency (Umweltbundesamt – UBA) 

(https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0). At 

the date of access (November 2019), the database contained environmental concentrations 

of human and veterinary pharmaceutical residues in 53 environmental matrices from 75 

countries, extracted from 1519 publications, and 240 review articles (Eike et al., 2019). 
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Measured concentrations in UK freshwaters were used as an example of environmentally 

realistic exposure scenario. Specifically, we used the highest average measured 

concentrations in treated wastewater treatment plant (WWTP) effluents and surface waters 

(i.e. freshwaters). These water concentrations were subsequently used to predict the 

concentration of each compound in the blood of wild fish by applying the Fish Plasma Model, 

as described by Margiotta-Casaluci et al., 2014, Margiotta-Casaluci et al., 2016 (Table 3.1). 

 

3.3.3 Network-centred approach 

The network-centred approach was driven by the hypothesis that NSAID-mediated adverse 

effects are induced through the perturbation of a network of drug targets (i.e. drug 

polypharmacology and bioactivity profile). 

 

3.3.4 Extraction of drug-target interaction and in vitro bioactivity profiling data 

In vitro bioactivity profiling data for 25 different NSAIDs was extracted from two sources: 1) 

the ‘US Environmental Protection Agency (US EPA) Toxicity Forecaster (ToxCast) database 

(U.S. EPA. 2015. ToxCast and Tox21 Summary Files from invitrodb_v3.2. Retrieved from 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data between May 2019 

and October 2019. Data released May 2018) (Williams et al., 2017), and 2) the European 

Bioinformatics institute (EBI) ChEMBL database (http://www.ebi.ac.uk/chembl; Gaulton et al., 

2017). The data extracted from ToxCast included drug target identifier and drug concentration 

at 50% maximum activity (AC50). Data extraction was limited to the interactions labelled as 

‘active’, hence, those labelled as ‘inactive’ were excluded from the analysis. On the other hand, 

the data extracted from ChEMBL included drug target identifier and half-maximum inhibitory 

concentrations (IC50). Similarly, in this case, data extraction was limited to the interactions 

labelled as ‘active’, whereas those labelled as ‘not active’ or ‘not determined’ were excluded 

from the analysis. The bioactivity profiling data used in this study was uploaded onto the Brunel 

Data Repository System (FigShare), and can be retrieved from the following address: 

https://figshare.com/s/acb737422927d3416c70. 

 

3.3.5 Data harmonisation and processing 

The data extracted from ToxCast and ChEMBL were manually harmonised to ensure inter-

database comparability and maximise data usability. AC50 and IC50 values were converted 

to, and uniformly expressed as, ng/mL. When data from multiple species were available, 

human data was used as the first choice; if unavailable, rodent data was used instead. When 
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multiple datapoints were available for the same target, the lowest AC50 (or IC50) value was 

selected for the final analysis. ToxCast and ChEMBL use different target annotation strategies, 

hence all drug target identifiers were converted into human gene symbols to ensure target 

specificity and allow dataset merging. The gene symbol nomenclature was harmonised using 

GeneCards as the reference source (GeneCards.org; Stelzer et al., 2016). The harmonised 

datasets from ToxCast and ChEMBL were finally combined to assess the database-specific 

bioactivity coverage (i.e. degree of overlap between ToxCast and ChEMBL interactions), after 

which duplicate interactions were removed. As before, the lowest AC50 (or IC50) value for 

each target was retained for the final analysis. This process led to the generation of combined 

ToxCast/ChEMBL drug-target interaction profiles, which were used in the subsequent network 

analyses (https://figshare.com/s/acb737422927d3416c70). 

 

3.3.6 Generation of hazard-based and risk-based drug-target interaction networks 

Drug-target interaction networks were generated using the Cytoscape software (Shannon et 

al., 2003). The initial network included all the drug-target interactions present in our database, 

irrespective of any effect concentration data. For this reason, this network represented a 

hazard bioactivity network, which was used as the point of departure for the subsequent 

analyses. To determine the meaningfulness of the network under realistic exposure scenarios, 

each drug-target interaction node was filtered using the drug concentrations predicted to be 

present in the blood of wild fish in the UK (i.e. using the highest average measured 

concentrations in treated WWTP effluents). Using this approach, the refined network 

contained only those interactions that occur at concentrations equal to, or lower than, the 

exposure levels of interest. To evaluate the impact of integrating exposure data within the 

network, we simulated a realistic exposure scenario: the highest average measured 

concentrations in UK treated WWTP effluents. 

 

3.3.7 Target-to-phenotype analysis 

To predict the phenotypic meaning of the risk-based drug-target interaction network (i.e. the 

one occurring at a realistic exposure scenario only), we first identified the gene involved in 

each interaction (e.g. cyclooxygenase 1 inhibition → PTGS1 gene), and subsequently we 

performed a gene-phenotype anchoring analysis using the Monarch Initiative platform 

(www.monarchinitiative.org). The latter is a “collaborative, open science effort that aims to 

semantically integrate genotype–phenotype data from many species and sources in order to 

support precision medicine, disease modelling, and mechanistic exploration” (Mungall et al., 

2017). Using Monarch, we extracted all the available zebrafish-specific phenotypic data 
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associated with alterations of the target genes (e.g. mutations, variants, and artificial 

alterations such as knock out or knock down). This analysis generated an array of phenotypes 

that might potentially occur in wild fish under the considered exposure scenario (i.e. highest 

average measured concentrations in treated WWTP effluents in the UK). 

 

3.3.8 Target-centred approach 

The target-centred approach was driven by the hypothesis that NSAID-mediated adverse 

effects are induced by the inhibition of COX-1 and COX-2, which are the primary targets of 

NSAIDs. 

 

3.3.9 Literature review and data extraction 

To identify all the relevant effects caused by NSAIDs in fish, we performed a literature review 

to identify relevant medium-to-long term in vivo freshwater ecotoxicity studies (four days or 

longer). The literature search was conducted via PubMed and Google Scholar using a 

combination of keywords (e.g. drug name, endpoint name, species, and toxicity) and was 

restricted to English language publications only. Statistically significant effect data was 

extracted from each paper. Whenever available, we also extracted the average value for each 

parameter and the relative uncertainty measure (e.g. standard deviation) to calculate the effect 

size reported in each study. For the studies that reported multiple concentration and/or time 

responses, each dose and/or time point was considered as an independent data point in the 

database. Other extracted information included exposure concentrations, duration of 

exposure, fish species, life stage, and effect direction (increase or decrease). A quality 

assessment of all extracted data and relative database was performed by two different 

operators to evaluate the consistency between extracted data and original values. Considering 

the highly variable vocabulary used in different papers (e.g. same endpoint defined using 

different terms), we carried out a harmonisation process to ensure data comparability. 

 

3.3.10 Prediction of internal effect concentrations and equivalence calculation 

To account for the different uptake profile of each drug, we transformed water exposure 

concentrations for all the identified drug-effect combinations into predicted effect plasma 

concentrations using the Fish Plasma Model (FPM) as described by Margiotta-Casaluci et al. 

(2014), and Margiotta-Casaluci et al. (2016). Considering the hypothesis that NSAID-induced 

effects are mediated by COX-1 and COX-2 inhibition, and that all NSAIDs act via inhibiting 

COX-1 and/or COX-2, we expressed each drug plasma concentration as equivalent to a 
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reference NSAID (diclofenac). To do so, we considered the COX-1 inhibition IC50 of 

diclofenac as the reference value (=1); successively, we calculated a “diclofenac-equivalence 

conversion factor” for every other NSAID using the formula “COX-1-inhibition IC50(diclofenac) 

/ COX-1-inhibiton IC50(other NSAID)”. The resulting conversion factor was used to express 

all NSAIDs plasma concentrations as “diclofenac-equivalent plasma concentrations”. The 

focus on COX-1 rather than COX-2 was justified by two observations: a) all NSAIDs tested in 

vivo were dual COX inhibitors; b) in human pharmacology, COX-1 inhibition is generally 

considered to be the main driver of NSAIDs-mediated side effects, as COX-2 is generally 

expressed at low levels and is induced when the organism is experiencing an inflammation 

(Rouzer and Marnett, 2009). 

 

3.3.11 Generation of a multi-scale COX-1-centred model to predict the risk of in vivo 

chronic effects 

The data described above was integrated to generate a multi-scale model displaying the range 

of NSAID plasma concentrations (expressed as diclofenac-equivalents calculated using 

“diclofenac human COX-1 IC50” as the reference value), associated with mode-of-action-

relevant adverse effects, under medium/long-term exposure scenarios. To facilitate the 

interpretation of the model and its relevance for the ERA process, we incorporated three 

threshold levels. Two of these thresholds represent the concentration of the NSAIDs mixture 

predicted to occur in the plasma of wild fish in a) UK WWTP effluents, and b) UK surface 

waters. The third threshold level represents the range of predicted NSAIDs plasma 

concentrations that are likely to induce mortality. 

 

3.4 Results 

3.4.1 NSAIDs selection and environmental occurrence 

25 NSAIDs were identified in the DrugBank database: amfenac, aspirin, carprofen, celecoxib, 

diclofenac, etodolac, etoricoxib, flufenamic acid, flurbiprofen, ibuprofen, indomethacin, 

ketoprofen, ketorolac, mefenamic acid, meloxicam, naproxen, niflumic acid, nimesulide, 

oxaprozin, piroxicam, rofecoxib, sulindac, tenoxicam, tolfenamic acid, and valdecoxib. Four of 

these compounds were classified as COX-2 selective inhibitors (celecoxib, etoricoxib, 

rofecoxib, and valdecoxib), whereas 21 compounds were classified as non-selective COX 

inhibitors. According to the UBA database of pharmaceuticals in the environment, 18 out of 

25 NSAIDs were detected in the aquatic environment, in 66 different countries around the 

world. This supports our hypothesis that the overall environmental risk of NSAIDs should be 
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addressed from a mixture perspective. This data mining exercise revealed a wide range of 

concentrations detected worldwide in surface waters and wastewater treatment plant (WWTP) 

effluents (Figure 3.1); however, when multiple measurements for the same compounds were 

available, the observed median value was generally below 1 µg/L. Carrying out a detailed 

analysis of the environmental levels of NSAIDs is beyond the scope of the present work. 

Hence, for the next steps of our analysis we only considered the concentrations of NSAIDs 

measured in UK surface waters and WWTP effluents as the default exposure scenario for our 

toxicity predictions (Table 3.1). Specifically, seven out of 25 NSAIDs were detected in UK 

WWTP effluents, and six in surface waters. These numbers are in line with the number of 

NSAIDs detected in other countries characterised by intensive environmental monitoring 

activity (e.g. Canada, USA, Germany, Sweden, Japan). It is important to note that the 

exposure concentrations were selected to represent a worst-case scenario in the UK. For 

example, based on the data generated from two large UK-wide wastewater treatment plant 

monitoring programmes, Comber et al. (2018) estimated a diclofenac median effluent 

concentration equal to 0.33 µg/L, whereas the 95th percentile is 0.5 µg/L. As a term of 

comparison, the effluent concentration of diclofenac used in our simulation was 0.42 µg/L, 

indicating a good degree of agreement with other worst-case scenarios estimated in other 

studies. 

 

Figure 3.1. Range of measured concentrations (µg/L) in surface waters and wastewater 

treatment plant (WWTP) effluents from 66 countries. Data was retrieved from the German 

Environmental Agency (UBA) database “Pharmaceuticals in the Environment” (aus der Beek et al., 

2015). The line within each violin plot represents the median value. Only one concentration value was 

available for etodolac, flufenamic acid, niflumic acid, sulindac, tenoxicam.  
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Table 3.1. Average measured environmental concentrations of NSAIDs in the UK and corresponding 

predicted plasma concentrations in wild fish. This specific exposure scenario was used to generate the 

toxicological predictions described in the present study. The data was retrieved from the German 

Environmental Agency (UBA) database “Pharmaceuticals in the Environment” (aus der Beek et al., 

2015). 

Drug 
Environmental 
concentration 1 

(UK, µg/L) 

Environmental 
matrix 1 

Predicted fish 
plasma 

concentration 1 
(UK, ng/mL)*, ** 

Environmental 
concentration 2 

(UK, µg/L) 

Environmental  
matrix 2 

Predicted fish 
plasma 

concentration 2 
(UK, ng/mL)*, ** 

Aspirin 0.0064 Surface waters 0.01 0.0235 WWTP (treated) effluent 0.02 

Carprofen Not detected / 0 Not detected / 0 

Celecoxib Not detected / 0 Not detected / 0 

Diclofenac 0.04 Surface waters 4.71 0.42 WWTP (treated) effluent 50.71 

Etodolac Not detected / 0 Not detected / 0 

Etoricoxib Not detected / 0 Not detected / 0 

Flufenamic acid Not detected / 0 Not detected / 0 

Flurbiprofen Not detected / 0 Not detected / 0 

Ibuprofen 0.03 Surface waters 1.76 0.94 WWTP (treated) effluent 64.36 

Indomethacin 0.009 Surface waters 0.22 0.02 WWTP (treated) effluent 0.47 

Ketoprofen 0.006 Surface waters 0.09 0.017 WWTP (treated) effluent 0.25 

Ketorolac Not detected / 0 Not detected / 0 

Mefenamic acid 0.007 Surface waters 7.18 0.05 WWTP (treated) effluent 51.27 

Meloxicam Not detected / 0 Not detected / 0 

Naproxen 0.047 Surface waters 0.95 1.23 WWTP (treated) effluent 25.07 

Niflumic acid Not detected / 0 Not detected / 0 

Nimesulide Not detected / 0 Not detected / 0 

Oxaprozin Not detected / 0 Not detected / 0 

Piroxicam Not detected / 0 Not detected / 0 

Rofecoxib Not detected / 0 Not detected / 0 

Sulindac Not detected / 0 Not detected / 0 

Tenoxicam Not detected / 0 Not detected / 0 

Tolfenamic acid Not detected / 0 Not detected / 0 

Valdecoxib Not detected / 0 Not detected / 0 

 

 

3.4.2 Analysis of the primary pharmacological activity of NSAIDs 

The inhibition of COXs is the primary mechanism of action of NSAIDs. The analysis of COXs-

inhibitory activity of the 25 compounds revealed a wide range of pharmacological potencies 

(Figure 3.2). IC50 values for COX-1 inhibition ranged from 2 to 3 nM (indomethacin, 

ketoprofen, and diclofenac) to over 25,000 nM (valdecoxib) (Figure 3.2.a). Similarly, IC50 

values for COX-2 inhibition ranged from 1 to 2 nM (rofecoxib, and celecoxib) to over 89,000 

nM (piroxicam) (Figure 3.2.b). The analysis of the ratio between COX-1 and COX-2 inhibition 

IC50s revealed the selectivity of each compound for the two isoforms of the enzyme (Figure 

3.2.c). Unsurprisingly, COX-2 selective inhibitors such as rofecoxib, valdecoxib, and etoricoxib 

displayed the highest selectivity for COX-2. These compounds have been specifically 

developed to display such a pharmacological feature. However, non-selective NSAIDs - such 

as carprofen, flufenamic acid, nimesulide, and meloxicam – also showed considerable COX-

2 selectivity. Piroxicam was the NSAID with the highest COX-1 selectivity, followed by 

naproxen and ketoprofen (Figure 3.2.c). 
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Figure 3.2. Pharmacological activity of NSAIDs on the primary targets COX-1 and COX-2. A) 

Lowest COX-1 inhibition IC50 values retrieved from ToxCast/ChEMBL. B) Lowest COX-2 inhibition 

IC50 values retrieved from ToxCast/ChEMBL. C) Ratio of COX-1/COX-2 IC50 values, indicating the 

selectivity of each compound towards either COX-1 or COX-2. 
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The AC50 and IC50 values used in this study were retrieved with the explicit intention to 

simulate a worst-case scenario (i.e. when multiple values were available, the lowest value was 

selected for the final analysis). However, it is important to consider that the inter-experiment 

variability in IC50 values can be considerable. To assess such variability, we compared the 

ToxCast/ChEMBL data used in our model with two additional IC50 values retrieved from the 

literature (Figure 3.3). The comparative analysis of COX-1 IC50s confirmed that our data were 

at the bottom of the variability range, except for flurbiprofen. The analysis of COX-2 IC50 

values revealed a less consistent scenario, where ToxCast/ChEMBL values were at the 

bottom of the variability range in only seven out of 25 cases. In some cases, the gap between 

the ToxCast/ChEMBL values and the literature values was considerable (e.g. rofecoxib COX-

2 IC50s: 1, 340, 510 nM). Notably, we also observed a surprising variability between the two 

alternative IC50 values retrieved from Rainsford (2004). It is important to note that those 

values were generated using different test systems. A similar degree of variability was also 

observed in the COX-1/COX-2 IC50 ratios, influencing the interpretation of the selectivity of 

the compound for either COX-1 or COX-2. 
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Figure 3.3. Analysis of the variability of COX IC50 values retrieved from multiple sources 

(ToxCast/ChEMBL and Rainsford 2004). Note that the AC50 or IC50 values used in the present 

analysis were selected to be the lowest available in the database, in accordance with the precautionary 

principle. The three panels display the variability in A) COX-1 inhibition IC50s; B) COX-2 inhibition 

IC50s; C) COX-1/COX-2 inhibition ratio. The IC50 values labelled as “Rainsford (2004)a” were 

generated using human recombinant enzymes, whereas  those labelled as “Rainsford (2004)b” were 

generated using whole human blood. 
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3.4.3 Hazard-based bioactivity networks of NSAIDs mixtures 

Understanding the secondary mechanisms of action of drugs can significantly enhance the 

prediction of their toxicity profile. To explore the mechanisms of action of NSAIDs beyond COX 

inhibition, we leveraged the ToxCast and ChEMBL platforms to generate a bioactivity network 

for the mixture of 25 NSAIDs (Figure 3.4). The combination of the ToxCast and ChEMBL 

databases was aimed at expanding the biological space covered in our analysis. To evaluate 

this aspect, we analysed the gain in biological space due to the merging exercise (Figure 3.5). 

The analysis revealed that the degree of overlap between ToxCast and ChEMBL data was 

minimal (i.e. zero shared interactions for 21 NSAIDs out of 25). The combination of the two 

data sources allowed us to expand the biological space, while increasing the relevance of the 

pharmacological network. 
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Figure 3.4. Drug-target interaction network for a mixture of 25 NSAIDs. The green octagons 

indicate the single drugs. The nodes on the external layer indicate the drug-target interactions that are 

unique for each compound. The nodes in the inner area indicate the drug-target interactions shared by 

at least two different NSAIDs. The larger the size of the inner nodes, the higher the number of NSAIDs 

that interact with that target. The different colours of the inner nodes indicate a different number of 

NSAIDs sharing the target. Each drug-target relationship is associated to a specific AC50 (or IC50) 

value, retrieved from a combined ToxCast/ChEMBL database. No exposure data is incorporated into 

this model (e.g. some AC50 or IC50 values represent unrealistic exposure levels); hence, this network 

can be considered as a hazard-based bioactivity network. (PTGS1 = COX-1, and PTGS2 = COX-2). 
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The mechanistic analysis revealed that the 25 NSAIDs have a wide range of mechanisms of 

action beyond COXs inhibition. The number of recorded interactions ranged from 3 to 74 

(Figure 3.4). The compound with the highest number of interactions was celecoxib (n = 74), 

followed by indomethacin (n = 47), and diclofenac (n = 40). On the other hand, the compounds 

with the lowest number of recorded interactions were etodolac (n = 6), tenoxicam (n = 6), and 

amfenac (n = 3). In total, the mixture of 25 NSAIDs was associated with 507 interactions, 

involving 157 distinct targets; 83 of these targets were shared by at least two NSAIDs, whereas 

74 targets were modulated only by individual drugs. PTGS1 and PTGS2 (corresponding to 

COX-1 and COX-2) were the targets with the highest levels of promiscuity, and were shared 

by 23 and 22 NSAIDs, respectively. Notably, both ToxCast and ChEMBL did not contain any 

information concerning the COXs inhibitory activity for two NSAIDs, sulindac and tolfenamic 

acid, despite the known COX-inhibitory activity of these compounds. After PTGS1 and PTGS2, 

the targets with the highest levels of promiscuity were the bile salt export pump (ABCB11; 

shared by 19 NSAIDs) and the peroxisome proliferator-activated receptor gamma (PPARγ; 

shared by 17 NSAIDs). Other targets shared by 10 or more NSAIDs were the transporters 

ABCC4 (n = 15), ABCC3 (n = 15) and ABCC2 (n = 13), the estrogen receptors ESR1 (n = 11) 

and ESR2 (n = 10), and the nuclear factor erythroid 2-related factor 2 (NFE2L2, n = 10). A 

detailed list of interactions for each target and for each drug is available in the data file located 

at: https://figshare.com/s/acb737422927d3416c70, whilst the full drug-target interaction 

network is represented in Figure 3.4. Of the 25 NSAIDs, 14 interacted with unique targets that 

were not shared by any other compound. The drug with the highest number of unique 

interactions was celecoxib (n = 28), followed by indomethacin (n = 11), and aspirin (n = 9) 

(Figure 3.4). It is important to note that the bioactivity network described above does not 

include any information about the concentration of the drug needed to modulate each target, 

hence it should be considered as a hazard network. 
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Figure 3.5. Effect of ToxCast and ChEMBL data integration on the biological space covered by 

the bioactivity network. Note the minimal overlap between ToxCast and ChEMBL datasets (i.e. blue 

diamonds close, or equal to, zero). 

 

3.4.4 Risk-based bioactivity networks of NSAIDs mixtures 

To interpret the environmental relevance of the hazard bioactivity network, we filtered each 

drug-target interaction using the concentrations of NSAIDs predicted to be present in the blood 

of wild fish in the UK. The targets remaining in the network are only those with drug-specific 

AC50 values below these predicted blood concentrations of NSAIDs. Hence, the resulting 

network displays only the drug-target interactions predicted to occur at the defined exposure 

scenario (i.e. highest average measured concentrations in UK WWTP treated effluents) 

(Figure 3.6) and can be considered as a risk-based network. In the specific example used 

here, the refined network suggests that only eight targets are likely to be modulated in wild 

fish exposed to those effluent concentrations: C-C motif chemokine 2 (CCL2), interleukin-8 

(CXCL8), C-X-C chemokine receptor type 1 (CXCR1), estrogen receptor 1 (ESR1), 

progesterone receptor (PGR), interstitial collagenase (MMP1), prostaglandin G/H synthase 1 

(PTGS1), and prostaglandin G/H synthase 2 (PTGS2) (note that the latter two targets 

correspond to COX-1 and COX-2). Three out of eight targets are shared by multiple NSAIDs, 

whereas the other five targets are only modulated by single drugs. To identify the drivers of 

the risk within the interaction network, we calculated the ratio between predicted blood 
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concentrations and the AC50 (or IC50) values associated with each drug-target interaction. 

The analysis showed that the targets with the highest risk are the two steroid receptors PGR 

and ESR1, as blood concentrations of naproxen and diclofenac were predicted to be 15,375-

fold and 321-fold higher than the drug-specific AC50 values. These high values were driven 

by the low ToxCast AC50s reported for naproxen-induced PGR modulation and diclofenac-

induced ESR1 modulation, which were 0.007 nM and 0.5 nM, respectively. The data for PGR 

was generated employing a GAL4 β-lactamase reporter gene technology using PR-UAS-bla 

HEK 293 T cells, whereas the data for ESR1 was generated with a luciferase-coupled ATP 

quantitation technology using human breast tissue cells. Diclofenac was also the driver of the 

risk for modulation of PTGS1 (ratio = 57), PTGS2 (ratio = 34), CXCL8 (ratio = 21), and CXCR1 

(ratio = 14). 

 

 

Figure 3.6. Drug-target interaction network, for a mixture of 25 NSAIDs, predicted to occur at a 

worst-case exposure scenario (UK highest average measured concentration in wastewater 

treatment plant effluents). The green octagons indicate the single drugs. Drug targets are represented 

by color-coded nodes. Each colour indicates the different number of drugs that act on the associated 

target (PTGS1: 3 drugs, PTGS2: 2 drugs, CXCL8: 2 drugs, CCL2: 1 drug, CXCR1: 1 drug, ESR1: 1 

drug, MMP1: 1 drug, PGR: 1 drug). The numbers indicated next to each drug-target connection 

represent the ratio between the ToxCast/ChEMBL AC50 (or IC50) value and the drug concentration 

predicted to be present in the blood of wild fish in the UK, under the considered exposure scenario. For 

example, the concentration of diclofenac present in the blood of wild fish is predicted to be 57-times 

above the considered IC50 for PTGS1. Abbreviations: CCL2: C-C Motif Chemokine Ligand 2; CXCL8: 



Philip Marmon  Chapter 3 

96 
 

C-X-C Motif Chemokine Ligand 8; CXCR1: C-X-C Motif Chemokine Receptor 1; ESR1: Estrogen 

Receptor 1; MMP1: Matrix Metallopeptidase 1; PGR: Progesterone Receptor; PTGS1: Prostaglandin-

Endoperoxide Synthase 1; PTGS2: Prostaglandin-Endoperoxide Synthase 2. 

 

3.4.5 Phenotypic anchoring of the risk-based bioactivity network 

To elucidate the phenotypic relevance of the targets displayed in the risk-based network 

(Figure 3.6), we performed a gene-phenotype association analysis by data-mining available 

databases. The analysis generated a list of highly specific zebrafish phenotypes that may be 

observed following perturbation of the eight targets of interest (Table 3.2). These phenotypes 

indicate that the risk-based NSAIDs bioactivity network may lead to profound effects on the 

cardiovascular and immune systems, the liver, pancreas, kidneys, growth, reproduction, and 

general development. It is important to note that the effects on development, growth, and 

reproduction have high regulatory relevance as they are considered as apical endpoints that, 

in turn, may perturbate population dynamics. From a risk-assessment perspective, this 

analysis cannot provide quantitative indications on the likelihood that each phenotype may 

occur. However, it provides a highly granular prediction of the endpoints that could be used 

for a potential experimental assessment of the case-specific risk. 
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Table 3.2. Zebrafish-specific phenotypes associated with the perturbation of the NSAIDs-targets 

predicted to be modulated at environmentally relevant exposure scenarios (i.e. UK). (Targets: CXCL8, 

CXCR1, ESR1, MMP1, PGR, PTGS1, PTGS2 (no data available for CCL2)). 

Target Function/system/organ Phenotype Phenotype ID 

PTGS1 Development Abnormal otolith in otic vesicle ZP_0003813 

ESR1 Development Altered sex ratio ZP_0103077 

MMP1 Development Curled notochord ZP_0005644 

PTGS1, PTGS2 Development Disrupted cilium development ZP_0018462 

PTGS1 Development Disrupted gastrulation ZP_0000567 

ESR1 Development Disrupted neuromast development ZP_0001566 

PTGS1 Development Disrupted skeletal muscle plasticity ZP_0100172 

PTGS1, PTGS2 Development Hydrocephalus ZP_0018285 

MMP1 Development Hyperplastic epithelium ZP_0005645 

CXCL8 Development Increased progenitor cells ZP_0022176 

MMP1 Development Kinked post-vent region ZP_0001145 

MMP1 Development Malformed caudal fin actinotrichia ZP_0005646 

MMP1, PTGS1 Development Ventrally curved trunk ZP_0000636 

MMP1 Development Yolk sac oedema ZP_0002060 

PTGS1 Cardiovascular system Abnormal heart symmetry ZP_0002925 

MMP1 Cardiovascular system Decreased blood flow ZP_0003573 

PTGS1, PTGS2 Cardiovascular system Decreased hematopoietic stem cells ZP_0000022 

PTGS1 Cardiovascular system Disrupted heart looping ZP_0002506 

CXCL8 Cardiovascular system Disrupted vasculogenesis GO_0001570 

CXCL8 Cardiovascular system Increased hematopoietic stem cells ZP_0021393 

MMP1 Cardiovascular system Pericardial oedema ZP_0000038 

PTGS1 Reproduction Decreased egg viability ZP_0000212 

ESR1 Reproduction Decreased testis size ZP_0019448 

PGR Reproduction Disrupted ovulation ZP_0017606 

PGR Reproduction Disrupted reproduction ZP_0017607 

PGR Reproduction Increased ovary size ZP_0019913 

PGR Reproduction Sterile female ZP_0004113 

CXCL8, CXCLR1 Immune system Abnormal leukocyte migration GO_0002523 

MMP1 Immune system Abnormal macrophage chemotaxis GO_0048246 

CXCL8, CXCLR1 Immune system Abnormal response to bacteria GO_0009617 

CXCL8, CXCLR1 Immune system Abnormal response to wounding GO_0009611 

CXCR1 Immune system Decreased neutrophil number ZP_0011617 

MMP1 Growth Decreased trunk size ZP_0000027 

PGR Growth Increased trunk size ZP_0014050 

PGR Growth Increased weight ZP_0015745 

PTGS1 Liver Abnormal liver ZP_0018785 

PTGS1, PTGS2 Liver Decreased liver size ZP_0000720 

PTGS1, PTGS2 Pancreas Decreased exocrine pancreas size ZP_0002701 

PTGS1 Kidney Abnormal pronephric distal late tubule ZP_0019006 
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3.4.6 Multi-scale COX-1-centred model to predict the risk of in vivo chronic effects 

The gene-phenotype association analysis, described above, provides a solely qualitative 

result. To overcome this challenge and provide a quantitative estimation of the toxicological 

risk, we generated a multi-scale model portraying the range of blood concentrations of NSAIDs 

(expressed as diclofenac-equivalents, ng/mL - calculated using “diclofenac human COX-1 

IC50” as the reference value) associated with statistically significant adverse phenotypes; 

under conditions of medium-to-long term exposure (longer than four days) (Figure 3.7). The 

model was based on 151 data points generated in 26 in vivo studies, carried out using 10 

different fish species (Bhandari and Venables, 2011; Bickley et al., 2017; Collard et al., 2013; 

Flippin et al., 2007; Ghelfi et al., 2016; Gröner et al., 2017; Han et al., 2010; Hoeger et al., 

2005; Ji et al., 2013; Lister and Van Der Kraak, 2008; Mathias et al., 2018; Mehinto et al., 

2010; Memmert et al., 2013; Morthorst et al., 2013; Morthorst et al., 2018; Näslund et al., 2017; 

Pandey et al., 2017; Patel et al., 2016; Praskova et al., 2014; Ribas et al., 2017; Saravanan 

et al., 2012; Schwaiger et al., 2004; Stancova et al., 2015; Triebskorn et al., 2004; Yokota et 

al., 2016; and Yokota et al., 2017). The data included nine different types of in vivo effect, at 

various level of biological organisation, such as: prostaglandin levels, male and female 

testosterone, immunomodulation, liver damage, gill damage, kidney damage, reproduction, 

and growth. To facilitate the interpretation of the data, we incorporated three different 

reference concentrations (threshold levels) into the model: 1) The lethal range of blood 

concentrations starting at 388,105 ng/mL diclofenac-equivalents; 2) the predicted plasma 

levels of the mixture of seven NSAIDs, detected in UK WWTP effluents, corresponding to 54 

ng/mL diclofenac-equivalents; 3) the plasma levels of the mixture of seven NSAIDs, detected 

in UK surface waters (i.e. freshwaters), corresponding to 5.2 ng/mL diclofenac-equivalents. A 

total of 46 out of 152 effect data points corresponded to plasma concentrations lower than 54 

ng/mL diclofenac-equivalents (exposure scenario considering UK WWTP effluents); whereas 

only 14 out of 152 data points corresponded to plasma concentrations lower than 5.2 ng/mL 

diclofenac-equivalents (exposure scenario considering UK surface waters). The conversion 

factors used to convert all relevant NSAIDs into diclofenac-equivalents are provided in the file 

located at the following address: https://figshare.com/s/acb737422927d3416c70.  
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Figure 3.7. Predicted NSAID plasma concentrations associated with the manifestation of 

adverse phenotypes at multiple levels of biological organisation. NSAID plasma concentrations 

are expressed as ‘diclofenac-equivalents(COX-1inhibition) (ng/mL)’. Each violin displays the distribution 

of plasma concentrations that caused a statistically significant effect in in vivo studies that involved the 

exposure of fish species to NSAIDs, for a minimum of 4 days and a maximum of 132 days. The 151 

experimental data points portrayed in the graph were retrieved from 26 studies published between 2004 

and 2018. The dotted line on the right represents the plasma concentration of ‘diclofenac-equivalents’ 

associated with mortality. The dotted vertical lines on the left indicate the environmental levels of the 



Philip Marmon  Chapter 3 

100 
 

mixture of NSAIDs detected in the UK (i.e. the highest measured average concentrations in surface 

waters, and waste-water treatment plant effluents). These lines can be used to interpret the 

environmental relevance of the effect data and the related risk. Each black dot represents a statistically 

significant experimental value, and the blue diamond represents the median value of each endpoint. 

 

The analyses provided here were based on the assumption that the Fish Plasma Model 

represents a reliable tool to predict the plasma concentration of drugs in adult fish. To validate 

this assumption, we screened the literature to identify a set of experimentally determined 

plasma bioaccumulation factors (plasma BCF) for diclofenac and ibuprofen (Bickley et al., 

2017; Brown et al., 2007; Cucklev et al., 2011; Lahti et al., 2011). The comparison of this data 

with the plasma BCFs predicted by the Fish Plasma Model revealed that the experimental 

values were always within the range of concentrations predicted by the model (Figure 3.8). 

The use of LogKow as the input parameter of the Fish Plasma Model tended to overestimate 

the plasma BCF of the two compounds; whereas the use of LogD7.4 tended to underestimate 

it. The predictions generated in this work were based on the use of LogKow; hence, it is 

plausible that our analysis overestimated the plasma concentrations of NSAIDs in fish. 

Nonetheless, this overestimation is in agreement with the precautionary principle that was 

applied throughout the workflow. The predictive model described here does not currently 

consider drug metabolism in fish, mainly due to the existing knowledge gaps in this field. Some 

studies have demonstrated that NSAIDs reactive metabolites may play a role in the 

manifestation of organ toxicity in mammalian models (Oda et al., 2017). However, the 

ecotoxicological relevance of those findings is currently unknown. 
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Figure 3.8. Predicted versus measured plasma BCF. The range of predicted values were generated 

by considering both LogKow and Log D7.4 as the input parameters of the fish plasma model. Measured 

BCF values were retrieved from four in vivo studies published in the literature (Bickley et al., 2017; 

Brown et al., 2007; Cuklev et al., 2011; Lahti et al., 2011). 

 

The interpretation of mode-of-action driven effects can be strengthened by the analysis of 

effect direction and magnitude. To assess this aspect, we retrospectively analysed those 

parameters for one of the endpoints with the highest regulatory importance, egg production 

(Figure 3.9). Out of 13 experimental cases (retrieved from Flippin et al., 2007; Han et al., 2010; 

Ji et al., 2013; Lister and Van Der Kraak, 2008; Yokota et al., 2017; and Yokota et al., 2015), 

NSAIDs (i.e. diclofenac, ibuprofen, indomethacin) induced a decrease in egg production in 10 

cases, and an increase in three cases. Notably, the observed discrepancy was related to 

ibuprofen, with three cases of decrease and three cases of increase. The effect magnitude 

was 60% or lower in the cases of decreased egg production, and up to 200% in the cases of 

increased egg production. It is currently unknown if the observed discrepancy across the 

literature has a genuine biological explanation, or if it may be due to methodological artefacts. 
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Figure 3.9. Effect of NSAIDs on fish reproduction. The figure displays effect magnitude and direction 

for the endpoint “egg production”. The data were retrieved from 6 studies published in the literature 

(1,2,4,5: Yokota et al., 2017; 3: Yokota et al., 2016; 6,8: Ji et al., 2013; 7,9,10: Han et al., 2010; 11: 

Flippin, Huggett and Foran, 2007; 12, 13: Lister and Van Der Kraak, 2008). 

 

3.5 Discussion 

Implementing pharmacological and mechanistic considerations into the environmental risk 

assessment of pharmaceuticals can facilitate the interpretation of the risk and enable the 

application of modern predictive toxicology approaches. In the last decade, a number of 

experts have called for such implementation (e.g. Ågerstrand et al., 2015; Caldwell et al., 

2014; Gunnarsson et al., 2019; Rand-Weaver et al., 2013; Winter et al., 2010). Several studies 

have experimentally demonstrated the positive impact of this approach (e.g. Margiotta-

Casaluci et al., 2014; Margiotta-Casaluci et al., 2016; Valenti et al., 2012), and dedicated 

comparative pharmacology tools have been developed to facilitate the process (e.g. ECOdrug, 

Verbruggen et al., 2018; SeqPASS, LaLone et al., 2016). Despite these efforts, the current 

ERA process remains mechanistically agnostic and solidly centred on traditional fate/exposure 

predictions, with toxicity levels of individual compounds experimentally determined using 

simple tests focused on apical endpoints (Lee and Choi, 2019). This limitation acquires even 

more significance when mixtures of drugs are considered. In this case, the lack of mechanistic 

rationale behind the ERA of the individual components prevent the application of predictive 

approaches for the assessment of potential mixture effects. Moreover, the virtually endless 

number of exposure scenarios that may occur globally implies that the experimental 

determination of the risk is impossible to achieve, hence predictive approaches are vital to 
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reach the desired future protection goals. The present work - focused on NSAIDs - paves the 

way for the development of an innovative pharmacology-informed ERA of drug mixtures by 

proposing a predictive framework that integrates both drug pharmacokinetic and 

pharmacodynamic features. 

In Europe, the regulatory concern about NSAIDs has until now been focused on diclofenac 

and its effects on fish (European Commission, 2015; European Commission, 2018; Loos et 

al., 2018). A few academic studies have started to explore the potential effects of mixtures of 

NSAIDs, using a limited set of compounds - such as diclofenac, ibuprofen, naproxen, and 

aspirin - mostly using invertebrates (Cleuvers, 2004; Parolini and Binelli, 2012) or, when using 

fish, in combination with other chemicals (Parrott and Bennie, 2009; Stancova et al., 2014; 

Schmitz et al., 2018). Our analyses suggest that the problem of NSAIDs mixtures may be 

more significant than initially thought, as 19 out of 25 NSAIDs considered in the present study 

were detected in the aquatic environment worldwide. What is currently unknown is the level of 

co-occurrence of all these compounds in the same water body, as only a few of them are 

targeted in water monitoring programmes (Comber et al., 2018). Considering the impossibility 

of determining an average exposure scenario, in the present work we considered the 

mechanistic hazard of all 25 NSAIDs. The risk assessment, however, was performed using 

measured NSAIDs concentrations in the UK as the reference exposure scenario. This choice 

was justified by several factors. Firstly, the UK is characterised by a high market penetration 

of NSAIDs (McGettigan and Henry, 2013); secondly, the UK has one of the lowest average 

WWTP effluent dilution factors in the world (Keller et al., 2014); and thirdly, the UK carries out 

intensive environmental monitoring programmes that target pharmaceuticals (Comber et al., 

2018). Nonetheless, the model presented here can be adapted to interpret the risk of any 

exposure scenario once the concentrations of each component of the mixture are provided. 

From a mechanistic standpoint, in a clinical context, the primary target of pharmaceuticals is 

generally involved in the disease pathophysiology, thus its modulation is aimed at achieving 

the desired therapeutic effect. Sometimes the interaction with the primary target is also the 

cause of adverse drug reactions. This is the case with NSAID-mediated COX-inhibition, which 

is considered the driving mechanism underlying many important side effects associated with 

NSAIDs treatment in patients (Grosser et al., 2017; Ricciotti and FitzGerald, 2011). However, 

in many other cases adverse drug reactions are driven by the unintended interaction of 

pharmaceuticals with secondary targets (Lounkine et al., 2012). From an ERA perspective, 

the exposure to pharmaceuticals is always unintended, thus the distinction between primary 

and secondary targets does not apply, and all drug-target interactions should be considered 

relevant for the mechanistic hazard assessment. This consideration led us to generate a 

bioactivity hazard network that captures the mechanistic promiscuity for a mixture of 25 
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NSAIDs, which was indeed significant in demonstrating that NSAIDs can act on many different 

targets beyond COXs (Figure 3.4). 

As expected, the complexity of the mechanistic network was drastically reduced when realistic 

internal exposure scenarios were considered (Figure 3.6). Whereas some of the risk-based 

drug-target interactions were highly predictable (i.e. effects on COXs and interleukins) others 

were, to some extent, surprising. Specifically, the perturbation of estrogen and progesterone 

receptors (ESR1 and PGR) at concentrations of NSAIDs, respectively, hundreds and 

thousands of times lower than those predicted to occur in the plasma of wild fish in the UK. 

Previous research carried out on mammalian models has demonstrated that NSAIDs-

mediated reduction of prostaglandin levels can lead to the down-regulation of the aromatase 

pathway and, in turn, decreased estrogen biosynthesis (Zhao et al., 1996). Diclofenac 

displayed anti-estrogenic activity at receptor level in vitro (Klopčič et al., 2018), whereas a 

study conducted on post-menopausal women also demonstrated that NSAID users had 

significantly lower serum estradiol concentrations than non-users (Hudson et al., 2008). On 

the other hand, the evidence of a direct link between NSAIDs and the progesterone receptor 

are scarcer. NSAIDs administration and NSAID-mediated prostaglandin decrease has been 

associated with the inhibition of ovulation in both pre-clinical mammalian species and humans 

(Gaytán et al., 2006; Stone et al., 2002), although the direct involvement of the progesterone 

receptor remains unclear. These considerations are relevant to the ERA of NSAIDs, as these 

compounds can also inhibit reproductive activity in female fish (Lister and Van Der Kraak, 

2008; Yokota et al., 2016). 

The AC50 value associated with the naproxen-mediated modulation of the PGR and the 

diclofenac-mediated modulation of the ESR1 were much lower than those associated with the 

inhibition of the drugs primary targets (COX-1 and COX-2). To facilitate the interpretation of 

their in vivo relevance, we compared those values with those associated with other potent 

pharmaceuticals that have the PGR and ESR as the primary targets. Runnalls et al. (2015) 

tested the effects of the synthetic progestin levonorgestrel (PGR agonist) and the synthetic 

estrogen ethinylestradiol (ESR agonist) on fish reproduction under chronic exposure 

conditions. Using these two compounds as the benchmark, it is possible to estimate the 

difference between the lowest ToxCast AC50 for the molecular initiating event and the drug 

plasma concentration that caused the statistically significant inhibition of egg production (effect 

size 30–40%). The latter was threefold higher for the levonorgestrel-PGR combination, and 

tenfold higher for the ethinylestradiol-ESR combination. Based on these pharmacodynamic 

considerations, the reported ToxCast data for the interactions between naproxen-PGR and 

diclofenac-ESR would suggest that these compounds could cause PGR- and ESR-mediated 

reproductive effects at plasma concentrations of 5 ng/mL and 1,500 ng/mL, respectively. No 
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reproductive toxicity studies have been carried for naproxen so far, but a few studies have 

been carried out with diclofenac. For example, Yokota et al. (2017) reported a water LOEC for 

reproductive effects of 37 µg/L diclofenac, corresponding to a predicted plasma concentration 

of 4500 ng/mL (prediction based on LogKow), which is only threefold higher than the above-

mentioned prediction. 

Collectively, this set of evidence indicate that pharmacodynamics-driven predictions may 

provide a valuable strategy to interpret the risk of mechanistic profiling data, although the inter-

assay variability may represent a major confounding factor. For example, the ToxCast 

database contains 18 different assays which are able to the detect the perturbation of the 

PGR. Naproxen was only tested in one of those assays, in which it displayed positive activity. 

Similarly, 31 assays are available in the ToxCast database to detect the perturbation of the 

ESR1. Diclofenac was tested in 17 of those assays, displaying activity in three, and inactivity 

in 14. In addition to the inter-assay variability issue, some authors have also raised concerns 

about the reliability of the nuclear receptor assays used in the ToxCast programme, and in 

turn, the reliability of their associated AC50 values. For example, as discussed in Chapter 2, 

Janesick et al. (2016) identified a high percentage of false positives among chemicals 

classified as PPARγ agonists in ToxCast. These considerations, together with the high inter-

study variability observed for COXs IC50s (Figure 3.3), reinforce the hypothesis that data 

generated from large-scale mechanistic profiling programmes are extremely valuable for 

generating testable hypotheses; whereas their direct application to drive the risk assessment 

process requires caution due to the high inter-assay variability of AC50s and IC50s. 

Interpreting the in vivo relevance of the aforementioned in vitro mechanistic profiling data 

remains a major challenge in the field of toxicology. Corsi et al. (2019) tried to overcome this 

challenge by linking the ToxCast-informed bioactivity profile of a mixture of chemicals detected 

in the US Great Lakes with existing Adverse Outcome Pathways (AOPs). Furthermore, the 

ToxCast website itself links bioactivity data to existing AOPs whenever possible. In the present 

work, we observed that only a limited number of targets in our network was associated with 

AOPs in the AOPWiki. Although this approach may be a valuable strategy in the future, we 

concluded that the development stage of the AOPWiki is currently too preliminary to generate 

reliable in vivo predictions when applied to complex networks, such as the one generated for 

the 25 NSAIDs considered here. To overcome this challenge, we applied a different strategy 

by carrying out a zebrafish-specific target-to-phenotype association analysis for all those 

targets modulated at environmentally relevant concentrations of NSAIDs. This approach 

generated highly granular phenotypic predictions that could be used, for example, to guide the 

development of tailored in vivo experimental strategies. 
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Despite the successful application of the network pharmacology approach described here, 

there are some caveats that should be taken into consideration. Firstly, the NSAIDs bioactivity 

networks generated in this study are based on mammalian (largely human) data. Fish and 

human drug targets may display a different sensitivity to the same pharmaceutical compound. 

From a precautionary principal perspective, this factor may represent an issue only if the 

AC50s (or IC50s) for fish targets are significantly lower than the human ones; however, to our 

knowledge there is no evidence to support this hypothesis. A second limitation is that the 

target-to-phenotype association analysis is focused on zebrafish larvae and generates only 

qualitative predictions of the potential drug-induced phenotypes. These qualitative predictions 

cannot be used to infer effect magnitude, limiting the ability to directly inform the risk 

assessment process. 

To overcome the latter limitation and provide a quantitative predictive model of NSAIDs-

mediated effects in fish, we adopted a complementary predictive strategy centred on the 

primary targets of NSAIDs, rather than on their entire bioactivity network. In humans, NSAIDs 

exert their therapeutic action by inhibiting the enzymes COX-1 and/or COX-2, which are 

involved in the biotransformation of arachidonic acid into prostanoids. The biology of COX and 

prostanoids has been extensively reviewed by many authors (e.g. Grosser et al., 2017; 

Ricciotti and FitzGerald, 2011), and it will not be discussed here. However, a basic 

comparative description of COXs functions in humans and fish is essential to appreciate the 

implications for the ERA of NSAIDs. COX‐1 is constitutively expressed in most tissues and is 

involved in basal production of prostanoids. The latter play important physiological functions, 

including gastric epithelial cytoprotection (Grosser et al., 2017). The perturbation of these 

physiological functions by non-selective NSAIDs may increase the risk of developing serious 

adverse effects, including gastrointestinal complications which are considered the most 

common NSAIDs-related adverse effects (Coxib and traditional NSAID Trialists' (CNT) 

Collaboration, 2013). On the other hand, COX‐2 is generally not expressed under basal 

conditions, but it is rapidly upregulated in response to inflammation, and its products (e.g. 

prostaglandin E2) potentiate the acute inflammatory response (Grosser et al., 2017). This 

mechanistic observation justified the development of COX-2 selective inhibitors (Fitzgerald 

and Patrono, 2001). Acting only (or mainly) on the inducible COX-2, this sub-class of NSAIDs 

is indeed associated with a lower risk of gastrointestinal toxicity in the majority of studies 

(Conaghan, 2012; García Rodríguez and Barreales Tolosa, 2007). However, after clinical 

approval, it rapidly emerged that COX-2 selective inhibitors were also associated with higher 

incidence of cardiovascular adverse events (Mukherjee et al., 2001). This unexpected 

scenario led to the withdrawal of rofecoxib and valdecoxib from the market in 2004 and 2005, 

respectively (Cotter and Wooltorton, 2005; Dieppe et al., 2004). However, other COX-2 
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selective inhibitors (e.g. celecoxib) continue to be used in the clinic. Follow-up research 

demonstrated that COX-2 is not only upregulated during inflammation but is also involved in 

the production of prostanoids with homeostatic functions under basal conditions. For example, 

gastrointestinal mucosa, vasculature, and brain tissue have all been show to express COX-2 

in absence of inflammation (Grosser et al., 2017; Wallace and Devchand, 2005). COX-2-

derived prostaglandin I2 and E2 are involved in the regulation of renal perfusion and blood 

pressure (Qi et al., 2002), and prostaglandin I2 is also involved in the antithrombotic 

mechanisms of the vessel wall (Grosser et al., 2006). These functions mechanistically explain 

the increased risk of cardiovascular adverse effects (Grosser et al., 2006). The review of the 

safety profile of NSAIDs has become the object of regulatory attention and frequent updates 

(for a review see Fanelli et al., 2017). For example, the US Food and Drug Administration 

requested a boxed warning concerning the cardiovascular risk of NSAIDs in 2005; this warning 

was strengthened in 2015 to highlight that all non-aspirin NSAIDs (both COX-2 selective and 

non-selective) can increase the risk of heart attack and stroke (US Food and Drug 

Administration, 2018). 

The lesson learnt from the human safety assessment of NSAIDs suggests that any attempt to 

define clear-cut safe exposure levels of these compounds for fish, with the currently available 

relatively small body of evidence, may be over-ambitious. COX-1 and COX-2 are also 

expressed in the zebrafish, and COX inhibitors suppress the formation of prostaglandins in 

vivo (Grosser et al., 2002; Patel et al., 2016). However, the interpretation of the phenotypic 

relevance of COX inhibition in fish is complicated by the whole-genome duplication that 

occurred in the teleost lineage after its divergence from the tetrapod lineage (Taylor et al., 

2003). Ishikawa et al. (2007) demonstrated that the genome of zebrafish contains two 

functional inducible isoforms of COX-2 genes, and that other fish species also contain 

alternate duplication and retention of COX-1 and COX-2. It is currently unknown if these 

duplication events also influence the species-specific pharmacological profile of NSAIDs. On 

the other hand, it is known that prostaglandins are involved in the regulation of regulatory-

relevant phenotypes in teleost fish species, including development (Cha et al., 2006; Grosser 

et al., 2002) and reproduction (Stacey and Goetz, 1982; Takahashi et al., 2018), but also 

immunity (Gómez-Abellán and Sepulcre, 2016), kidney function, and gill function (Choe et al., 

2006). Overall, this set of comparative pharmacological considerations justified the use of 

COX-1 inhibition as the key mechanistic parameter to interpret NSAIDs-mediated effects in 

our target-centred model. 

From a mixture perspective, all NSAIDs act on COX-1 and COX-2, hence the most obvious 

approach was to consider the cumulative inhibition of the primary targets, especially COX-1, 

as the key event driving the toxicological risk. To do so, we expressed all NSAIDs in units of 
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diclofenac-equivalents, using the diclofenac COX-1 IC50 as the reference value for the 

equivalence calculation. This approach is conceptually similar to the calculation of estrogenic 

equivalents to express mixtures of estrogenic chemicals (i.e. using the potency of 17-beta 

estradiol as the reference value; Safe, 1998). Brian et al. (2005) were the first to demonstrate 

that the estrogenic equivalence model can predict the response of fish to estrogenic 

chemicals. Our work advances this concept one-step forward by explicitly considering the drug 

concentrations in the fish plasma, rather than in the surrounding water. This shift from external 

to internal concentrations is essential to enhance the predictive power of the model, as 

previous studies have demonstrated that pharmaceuticals with comparable in vitro potency 

can lead to very different in vivo risk, based on their specific uptake and pharmacokinetic 

profile (Margiotta-Casaluci et al., 2016). It is important to consider however, that the fish 

plasma model, using LogKow, does not take into account the potential variability of pH in the 

surrounding water. The range of pH in surface waters can be highly variable and, as NSAIDs 

are ionisable compounds, these changes in pH are likely to significantly affect their 

pharmacokinetic profile (Valenti et al., 2009). Thus, future efforts to predict the environmental 

risk of pharmaceuticals to aquatic wildlife, may want to consider the variability of pH within the 

environmental matrix of interest, as this is likely to change the exposure and risk profile of 

these ionisable compounds. Tanoue et al. (2017) suggest that the liposome-water partition 

coefficient (Klipw), may be converted into the pH-dependent liposome-water coefficient (Dlipw), 

in order to more accurately estimate the bioconcentration of ionisable compounds. 

Incorporating this pH-dependent uptake measure into future efforts to predict the 

environmental risk of pharmaceuticals such as NSAIDs may further improve the accuracy of 

the assessment. 

Integrating NSAIDs pharmacokinetic and pharmacodynamic considerations with the concept 

of pharmacological equivalence, we generated a powerful visual tool that summarises all the 

existing in vivo data concerning the chronic toxicity of NSAIDs in fish, as one single graph 

(Figure 3.7). This analysis revealed that 30% of effect data points retrieved from the scientific 

literature were predicted to occur at concentrations lower than the worst-case exposure 

scenario in the UK (highest average measured NSAIDs concentrations in WWTP effluents), 

whereas this percentage dropped to 9% when a more realistic exposure scenario is 

considered (i.e. measured NSAIDs concentrations in surface waters). The latter sub-set of 

data was originated from four out of 26 in vivo studies considered in the present work (Ji et 

al., 2013; Mathias et al., 2018; Morthorst et al., 2018; Stancova et al., 2015). It is important to 

note that the proposed framework is a dynamic model that can be updated as and when 

additional biological data becomes available. Another key feature of the model is the potential 

to adapt the environmental exposure threshold to other exposure scenarios of interest once 
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the concentrations of the individual components of the NSAIDs mixture are known. This 

flexible approach can facilitate the region-specific interpretation of the toxicological risk posed 

to fish by NSAIDs locally, and effectively support regulatory decision-making. 

The robustness of ERA is directly affected by the quality of the underlying data. In recent 

years, a growing number of authors have expressed concern about the degree of quality and 

reproducibility of ecotoxicology studies (Harris and Sumpter, 2015; Martin et al., 2019; Mebane 

et al., 2019). NSAIDs – specifically diclofenac – have been the object of intense debate due 

to discrepancies in toxicological and histopathological findings, observed between academic 

studies (Hoeger et al., 2005; Mehinto et al., 2010; Schwaiger et al., 2004; Triebskorn et al., 

2004) and industry studies (Memmert et al., 2013). The controversy surrounding these 

discrepancies was fuelled by the fact that the outcomes of the four academic studies were 

used to justify the decision concerning diclofenac in Europe (i.e. its inclusion in the Watch List 

of emerging pollutants in 2015). A pathology working group was successively set up to 

independently review the histological sections from three of the studies that investigated the 

effects of diclofenac in trout (Hoeger et al., 2005; Mehinto et al., 2010; Memmert et al., 2013; 

Wolf et al., 2014). The pathology working group revealed that while some of the observed 

inter-study discrepancies were potentially due to the different experimental designs used in 

each study; the majority of inter-study variation was driven by issues of diagnostic 

interpretation (Wolf et al., 2014). Some discrepancies have also been observed for ibuprofen. 

In this case, its impact on fish reproduction has been highlighted as of concern, with a lowest 

observed effect concentrations (LOEC) (i.e. for zebrafish) as low as 1 µg/L (Ji et al. 2013). On 

the other hand, Morthorst et al. (2013) observed no effects on zebrafish egg production up to 

506 µg/L (Morthorst et al., 2013), whereas a recent zebrafish short-term reproduction test set 

the LOEC, for the same endpoint, at 266 µg/L (Constantine et al., 2020). Overall, the 

discrepancies discussed above represent a challenge for regulatory decision making. Our 

model does not contain a quality assessment of each study included in the analysis; however, 

this assessment could be carried out retrospectively by the end-user. This decision was 

justified by several reasons including the difficulty to set a univocal definition of ‘quality’ 

applicable to any context (e.g. academic vs industry, exploratory vs regulatory toxicology, 

etc.), and the risk of introducing undesired bias into the dataset. To demonstrate the positive 

value of retrospective analysis of specific data points in the model, we focused on one of the 

endpoints with the highest regulatory importance - egg production. We evaluated two 

important quantitative parameters: effect magnitude and effect direction. This analysis 

revealed a certain degree of inconsistency in the effects induced by ibuprofen, which 

sometimes caused a decrease in egg production and other times an increase. It is currently 

unknown if the observed discrepancy has a genuine biological explanation, or if it may be due 
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to methodological artefacts. In any case, it suggests that this type of evaluation should be 

taken into consideration during the risk assessment process. 

It is important to consider that the human safety assessment of NSAIDs so far has been based 

on the results of hundreds of studies. For example, the meta-analysis published by the Coxib 

and traditional NSAID Trialists' (CNT) in 2013 identified 754 randomised trials involving more 

than 350,000 patients. Despite these numbers, the interpretation of the risk remains complex, 

and the discussion remains open (Coxib and traditional NSAID Trialists' (CNT) Collaboration, 

2013). As a term of comparison, our COX-1-centred model portrays almost all existing data 

(to our knowledge) concerning the medium-to-long term effects of NSAIDs on fish. The model 

is based on 26 independent studies involving approximately 6,000 fish of several species at 

various life stages (mostly at early life stage). This number of animals already used to 

investigate the risk posed by NSAIDs in the aquatic environment is not negligible and raises 

the question whether additional in vivo ecotoxicity testing is needed. Our approach maximises 

the value of each in vivo study by integrating all data within a coherent predictive toxicology 

framework. For example, a very recent zebrafish short-term reproduction test involving 280 

adult animals was carried out by Constantine et al. (2020). This study was not included in our 

dataset, and it was used to test the degree of concordance with the model displayed in Figure 

3.7. Constantine et al. (2020) showed that 55 and 266 μg/L of ibuprofen caused 38% and 96% 

decrease of cumulative egg production, respectively (note: the effects at 55 μg/L were not 

statistically significant). Those exposure concentrations correspond to a plasma diclofenac-

equivalents concentration of 53 and 258 ng/mL, which fall within the 30th percentile of the 

range of internal effect concentrations identified in our analysis (Figure 3.7). This agreement 

highlights the high predictive value of our model and its potential to support weight-of-evidence 

driven regulatory decision making. 

Our analyses also highlight immunomodulation as a key endpoint of interest since our target-

to-phenotype analysis highlights many specific immune-related predictions (Table 3.2), and 

the ‘immunomodulation’ phenotype represents one of the highest levels of risk in our multi-

scale COX-1-centred model analysis (Figure 3.7). This endpoint also displays some of the 

highest levels of variation in our model since diclofenac-equivalent plasma effect 

concentrations range from around 0.097 to 110481.674 ng/mL (Figure 3.7). The 

immunomodulatory effects of NSAIDs, highlighted by our qualitative target-to-phenotype 

analysis and our quantitative multi-scale model, represent a key area of interest warranting 

further investigation. 
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3.6 Conclusions 

In the present study we provide a pharmacology-informed workflow able to guide the 

incorporation of pharmacokinetics and pharmacodynamic considerations into the 

environmental risk assessment of NSAIDs and aid the implementation of predictive toxicology 

strategies, without the immediate need of performing additional animal testing. Our analyses 

highlighted that 19 out of 25 NSAIDs have been detected in the aquatic environment globally 

and demonstrated that the risk posed to fish by NSAIDs mixtures may not be negligible in 

situations of high population density (corresponding to high levels of drug consumption) and 

low dilution of WWTP effluents. Using the concept of pharmacological equivalence, we 

generated a multi-scale model able to guide the interpretation of the toxicological relevance of 

any given set of environmental concentrations of NSAIDs. We anticipate that this model could 

facilitate the interpretation of complex data and guide the regulatory decision-making process 

to better address the issue of both single NSAID and NSAIDs mixtures in the environment. On 

the other hand, the mechanistic, pharmacological, and biological complexity brought to light 

by the present work suggests that the clinical substitution of one NSAID with another - on the 

basis of the potential environmental risk - is far from simple and could have negative clinical 

implications, for example, by limiting the range of therapeutic options available to patients for 

the treatment of pain and inflammation. 
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Chapter 4 

 

In vivo characterisation of NSAIDs-mediated immune cell trafficking 

in the gastrointestinal system of healthy zebrafish larvae 
 

4.1 Abstract 

Non-steroidal anti-inflammatory drugs (NSAIDs) are used daily by millions of people. Typically 

used to treat conditions involving inflammation and pain, NSAIDs have been linked to several 

adverse drug reactions (ADRs) in the clinic including gastrointestinal, renal, and 

cardiovascular complications. The exact mechanisms by which these drugs elicit adverse 

effects are largely unknown. However, several putative mechanisms have been suggested, 

some of which involve immunomodulatory processes. Here we show that a non-selective 

NSAID (diclofenac) and a COX-2 selective NSAID (meloxicam) have significantly different 

effects on immune cell trafficking within the gastrointestinal mucosa, and both modulate the 

expression of several immunomodulatory genes. Using transgenic zebrafish reporter lines and 

in vivo imaging techniques, we show that diclofenac exposure significantly upregulates the 

infiltration of neutrophils (tg(MPX:EGFP)i114) and macrophages (tg(MPEG1:mCherry-

CAAX)gl26) into the mid/posterior region of the larval intestine (at 10 days post fertilisation). 

Meloxicam induced a significant upregulation of only macrophage infiltration in the lowest 

exposure concentration group. Differential expression analysis of whole larvae RNA-Seq 

revealed that diclofenac exposure significantly modulated the expression of 530 genes, 

whereas exposure to meloxicam yielded 193 differentially expressed genes (DEGs). 

Selectivity for COX-2 is thought to be gastro-protective, as COX-1 inhibition leads to 

dysregulation of the intestinal mucus barrier which protects the epithelium from luminal 

contents. However, our data suggests that several COX-1-independent mechanisms are also 

at play, including the downregulation of key anti-inflammatory/pro-resolving modulators 

(anxa1b, anxa1c, anxa1d, lta4h, and loxl3b), and several cell adhesion, ECM, and muscle 

related genes. Our combined imaging and transcriptomic data show that exposure to 

traditional NSAIDs (diclofenac) in the GI tract results in neutrophilic inflammation. These 

results provide further mechanistic insight into the adverse effects associated with prolonged 

NSAID exposure and demonstrate the importance of taking pharmacokinetic and 

pharmacodynamic properties of distinct NSAIDs into account. 

 

 



Philip Marmon  Chapter 4 

125 
 

4.2 Introduction 

The class of non-steroidal anti-inflammatory drugs (NSAIDs) currently includes at least 25 

distinct compounds which are available for human therapeutic use (Díaz-González and 

Sánchez-Madrid, 2015). Millions of people around the world use NSAIDs each day to treat a 

variety of health conditions involving fever, pain, and inflammation. In England alone, 15 

million NSAIDs prescriptions were dispensed in 2014, in addition to the tens of millions of 

NSAIDs formulations purchased over-the-counter (Davis and Robson, 2016). Long-term 

therapeutic use of NSAIDs is associated with an increased risk of adverse drug reactions 

(ADRs) including gastrointestinal (GI), cardiovascular (CV), and renal complications. It has 

been reported that NSAID consumption is responsible for approximately 30% of ADR-related 

hospital admissions each year in the UK (Pirmohamed et al., 2004). In general, it is well 

established that the risk of GI and CV complications is significantly increased upon ingestion 

of NSAIDs, irrespective of their affinity for the different isoforms of the primary drug target: 

cyclooxygenase 1 (COX-1) or cyclooxygenase 2 (COX-2) (Davis and Robson, 2016). 

However, the isoform selectivity profile of each NSAID is considered a key driver of the organ-

specific relative risk, and this information is used to guide clinical decision making. For 

example, non-selective NSAIDs are more likely to induce GI complications such as ulceration 

or bleeding, compared to COX-2 selective inhibitors, whereas the latter have been associated 

with a higher risk of CV toxicity which has led to the withdrawal of rofecoxib and valdecoxib 

from the market (Davis and Robson, 2016). Although these general considerations may be 

clinically relevant, from a predictive toxicology perspective the comparison of the relative 

toxicity risk among NSAIDs is not simple. For example, although the risk for GI complications 

associated with COX-2 selective inhibitors might be lower, it is by no means negligible. The 

risk of GI bleed is increased by fourfold with non-selective NSAIDs, and threefold with COX-2 

selective inhibitors (Masclee et al., 2014). 

Numerous NSAIDs are available on the market, with a diverse set of pharmacological features, 

which when considered in combination with the importance of patient-specific clinical history, 

suggest that a personalised NSAID selection approach could be the most desirable clinical 

scenario. Advancing the fundamental mechanistic understanding of NSAIDs toxicity is 

critically important to support future personalised medicine approaches. In this Chapter, as 

well as in Chapter 5,  we will focus specifically on NSAIDs-mediated gastrointestinal toxicity, 

which is estimated to cause over 3,500 hospitalisations and 400 deaths per year in the United 

Kingdom (Hawkey and Langman, 2003).  

Currently established modes of action, such as the inhibition of prostanoid synthesis through 

COX, can be causally linked to some of the adverse effects associated with NSAIDs. This 
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inhibition of COX function in the gastric mucosa is known to contribute to the development of 

serious GI complications (Dubois et al., 2004). COX-1, constitutively expressed in most 

tissues, plays a protective role within the gastric mucosa due to its involvement in the synthesis 

of prostaglandin E2. This essential prostaglandin enacts its effects through the four PGE2 

GPCR subtypes (EP1-EP4), including inhibition of GI contraction, stimulation of HCO3 

secretion, inhibition of intestinal motility, stimulation of mucus secretion, and stimulation of 

angiogenesis (Takeuchi and Amagase, 2018). On the other hand, inducible COX-2 acts 

predominantly as the pro-inflammatory mediator. This mechanistic hypothesis led to the 

development of COX-2 selective inhibitors (Fitzgerald and Patrono, 2001). Acting only (or 

mainly) on the inducible COX-2, this sub-class of NSAIDs is indeed associated with a lower 

risk of gastrointestinal toxicity in the majority of studies (Conaghan, 2012; García Rodríguez 

and Barreales Tolosa, 2007). However, the risk of gastrointestinal toxicity is not completely 

abrogated, suggesting the implication of other mechanisms of toxicity beyond COX-1 inhibition 

(Davis and Robson, 2016). One possible explanation for the gastrointestinal toxicity risk 

retained by COX-2 selective inhibitors is the discovery that COX-2 is not only upregulated 

during inflammation but is also involved in the production of prostanoids with homeostatic 

functions under basal conditions (i.e., in absence of inflammation) in various tissues, including 

the gastrointestinal mucosa (Grosser et al., 2017; Wallace and Devchand, 2005). Moreover, 

it has been reported that COX-2 derived prostanoids may contribute to/be responsible for ulcer 

healing in the GI tract (Takeuchi and Amagase, 2018), and so COX-2 selective NSAIDs may 

actually impair this process leading to sustained damage and inflammation.  

It appears likely that other mechanisms of toxicity also exist which, confounded with a 

depletion of endogenous prostanoids, lead to adverse effects within the GI tract. Several 

putative COX-independent mechanisms have been suggested, some of which may provide 

further insight into NSAIDs-induced toxicity. A review of mode of actions (MOAs) for diclofenac 

by Gan (2010) highlights multiple putative MOAs including inhibition of phospholipase A2 

(PLA2), leukotriene synthesis and PPARγ, modulation of free AA, and stimulation of ATP-

sensitive potassium channels via the L-arginine-NO-cGMP pathway. However, these 

mechanisms have been difficult to fully establish, and there remain unanswered questions due 

to contradictory evidence. For example, Gan (2010) suggests an inhibition of both PLA2, and 

leukotriene synthesis, as putative mechanisms based on a combination of data sources, 

however, there appears to be some contradictory evidence. Early reports found that diclofenac 

did not directly inhibit PLA2 (Ku et al., 1986; Kothari et al., 1987), whereas two later studies 

found that diclofenac, indomethacin, and ketoprofen do significantly inhibit PLA2 (Singh et al., 

2006; Mäkelä, Kuusi and Schröder, 1997). Similarly, with regards to leukotriene synthesis, 

Gan concludes that diclofenac plays an inhibitory role based on the complementary findings 
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of two studies (Ku et al., 1986; Kothari et al., 1987). However, in 1993 Hudson and colleagues 

concluded that prolonged NSAIDs exposure induced a significant increase in the synthesis of 

leukotriene B4 (LTB4) within the gastric mucosa of patients with rheumatoid arthritis. Other 

studies have highlighted the importance of immune components such as neutrophils in the 

systemic propagation of gastrointestinal damage, whereby their adhesion/infiltration is 

essential in the development of ulcer formation (Wallace, Keenan, and Granger, 1990). It is 

clear, however, that further work is necessary to fully uncover the complexities of the many 

potential COX-independent mechanisms associated with NSAIDs exposure. 

 

4.3 Hypotheses, aims, and objectives 

Here we hypothesise that innate immune cell trafficking into the intestinal mucosa represents 

an essential key event that, if sustained, anticipates the manifestation of significant tissue 

damage. Moreover, we hypothesise that the immunomodulatory effects of both non-selective 

and COX-2 selective NSAIDs are mediated by several COX-independent mechanisms. The 

biological plausibility of these hypotheses is supported by a large volume of evidence 

(Kucharzik et al., 2001; Kirchner et al., 1997; Wallace, 2008; Wallace, Keenan, and Granger, 

1990), recently synthesised in an inflammation-related adverse outcome pathway (AOP) 

proposed by Villeneuve et al. (2018). 

To test our hypotheses, we first aim to characterise the effects of NSAIDs exposure on the 

trafficking of two cellular innate immunity components, neutrophils, and macrophages, in the 

gastrointestinal tract of healthy zebrafish larvae. Secondly, we aim to advance the mechanistic 

understanding of NSAIDs-mediated effects beyond COX inhibition by determining 

transcriptomic responses in whole larvae.   

To do this, we used two transgenic zebrafish reporter lines (tg(MPX:EGFP)i114 and 

tg(MPEG1:mCherry-CAAX)gl26) that express fluorescent markers in neutrophils and 

macrophages, respectively. Thanks to the optical transparency of the zebrafish larvae, these 

strains can be used to observe and quantify, in real time, cellular trafficking using fluorescence 

microscopy. To determine the role played by COX isoform selectivity, zebrafish larvae were 

exposed for seven days to a non-selective NSAID (diclofenac) and a COX-2 selective NSAID 

(meloxicam). In order to advance our mechanistic understanding of NSAIDs-mediated effects, 

we conducted an RNA-Seq experiment to determine differential gene expression profiles from 

whole larvae. 
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4.4 Methods 

 

Figure 4.1. Methodological overview for Chapter 4 analyses. 

 

4.4.1 Animal husbandry 

Adult wildtype AB (WT AB), tg(MPX:EGFP)i114 and tg(MPEG1:mCherry-CAAX)gl26 zebrafish 

lines were maintained in flow through aquaria under optimal spawning conditions at Brunel 

University London (pH 7.4 ± 0.3; conductivity 300-1500 µS; temperature 27±10C). For each 

experiment, embryos were collected from five-to-eight breeding groups formed by two males 
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and four females. Embryos were subsequently rinsed with Tecniplast system water to remove 

any small debris. Using a Motic stereo microscope, dead, unfertilised, or poor quality embryos 

were removed. The remaining embryos were pooled and randomly allocated in Petri dishes 

with a maximum density of 60 embryos per dish. Embryos were maintained in Tecniplast 

system water at 27±10C. A complete water change was carried out every 24 hours to maintain 

high water quality until hatching (day three), when the larvae were used in the experiments. 

 

4.4.2 Ethics and protocol reproducibility  

Animals were treated in full accordance with the United Kingdom Animals (Scientific 

Procedures) Act regarding the use of animals in scientific procedures. All in vivo experiments 

involving protected zebrafish life stages were discussed at and approved by the Brunel Animal 

Welfare Ethical Review Body (AWERB) and carried out under relevant personal and project 

licences granted by the United Kingdom Home Office. All sections of this chapter adhere to 

the ARRIVE guidelines for reporting animal research (Kilkenny et al., 2010). A completed 

ARRIVE guidelines checklist is included in the Supplementary Material (Appendix 4.1). 

 

4.4.3 Preparation of stock solutions 

All test compounds and reagents used were purchased from Sigma-Aldrich UK Ltd. Powdered 

diclofenac sodium salt (Sigma-Aldrich; D6899; CAS No 15307-79-6) and meloxicam sodium 

salt hydrate (Sigma-Aldrich; M3935; CAS No 71125-39-8) were weighed using a Sartorius 

Cubis microbalance, and dissolved in Tecniplast system water to achieve the desired master 

stock concentration. Once dissolved, the pH of each solution was adjusted to 7.4 ± 0.3. 

Similarly, powdered MS222 (Tricaine (Sigma-Aldrich; E10521; CAS No 886-86-2)) was 

weighed using a standard balance and dissolved in Tecniplast system water to generate a 4 

g/L master stock (pH 7.4 ± 0.3). This master stock was used to generate working solutions of 

MS222 at 100 mg/L (anaesthesia) and 300 mg/L (euthanasia; Schedule 1 method). All master 

stocks were kept at 40C for a maximum of seven days. 

 

4.4.4 Determination of maximum tolerated concentrations (MTC) (3 – 5 dpf) 

To determine the maximum tolerated concentration of diclofenac and meloxicam, 3 dpf 

zebrafish larvae (WT AB) were exposed to a range of six concentrations, including a control 

group (clean system water; note: no solvents were used to dissolve the test compounds). The 

allocation of each treatment group to specific columns of 24-well plates was randomised. Each 

group included 16 larvae, which were loaded individually into single wells containing 1 ml of 
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exposure media. The exposures lasted for 48 hours, until the larvae reached 5 dpf. Diclofenac 

concentrations ranged from 0 to 33.4 mg/L (0, 2.09, 4.18, 8.35, 16.7 and 33.4 mg/L). 

Meloxicam concentrations ranged from 0 to 100 mg/L (0, 20, 40, 60, 80, and 100 mg/L). 

Throughout the experiments, 70% of the exposure media was replaced every 24 hours to 

maintain high water quality standards. The larvae were assessed twice a day for signs of 

toxicity or mortality. After 48 hours, the MTC was defined using a series of qualitative indicators 

of animal health as previously outlined in Winter et al. (2008), including loss of dorso-ventral 

balance, abnormal morphology, larval touch responsiveness using a seeker, and mortality 

indicated by the absence of heartbeat. 

 

4.4.5 Pilot exposure (3 – 10 dpf) 

Once the MTCs of diclofenac and meloxicam were determined in non-protected life stages, 

small-scale pilot studies were carried out to establish appropriate concentration ranges for 

medium exposure durations (seven days: 3 – 10 dpf). We aimed to ensure that the exposure 

concentrations selected for the final large-scale experiments were not associated with general 

toxicity and lethality. Diclofenac concentrations ranged from 0 to 8.4 mg/L (0, 0.525, 1.05, 2.1, 

4.2, 8.4 mg/L), whereas meloxicam concentrations ranged from 0 to 80 mg/L (0, 10, 20, 40, 

60, 80 mg/L). Exposure and control groups (clean systems water) were distributed randomly 

across 24-well plates, with 1 ml of medium and one larva per well. WT AB larvae were used 

for each pilot experiment and the number of larvae per group was 16 for the diclofenac pilot, 

and reduced to 8 replicates for the meloxicam pilot, as a refinement to reduce the number of 

animals used. 70% of the exposure media was replaced every 24 hours, and from 6 dpf larvae 

were fed Sparos Zebrafeed (<100 µM) daily. Larval health was assessed twice a day, and any 

larvae found to be showing signs of toxicity were culled via Schedule 1 (Animals (Scientific 

Procedures) Act 1986) overdose of MS222. The data generated during these pilot studies was 

modelled to establish LC50 and LC20 values. As control zebrafish larvae between 5 and 10 

dpf can also display natural mortality in the range 10-30%, the compound-specific modelled 

LC20 was considered as the maximum tolerated concentration and was used to inform the 

experimental design of the final in vivo experiments. 

 

4.4.6 In vivo exposure experiments for the quantification of immune cell trafficking (3 

– 10 dpf) 

To characterise the effects of diclofenac and meloxicam on intestinal inflammation, two 

transgenic reporter lines were used to quantify the intestinal infiltration of neutrophils - 

tg(MPX:EGFP)i114 - and macrophages - tg(MPEG1:mCherry-CAAX)gl26 - via in vivo imaging 
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and fluorescence microscopy. Transmigration of immune cells into the intestine is a hallmark 

of intestinal inflammation, and a potential precursor to more severe toxicity. Hence, due to the 

gastrointestinal toxicity commonly associated with NSAIDs, we aim to quantify the numbers of 

immune cells within the gut following exposure to both diclofenac and meloxicam. In these 

experiments, diclofenac and meloxicam were tested at three different concentrations 

(diclofenac: 1.33, 2.66, 5.31 mg/L; meloxicam: 6.75, 13.5, 27 mg/L). Individual 

tg(MPX:EGFP)i114 or tg(MPEG1:mCherry-CAAX)gl26 larvae at 3 dpf were randomly allocated 

to individual wells of 24-well plates containing 1 ml of media (n = 18 per treatment group). 

Throughout the experiments, all plates were kept at 27±10C. The exposures lasted for 168 

hours until 10 dpf with daily media replacement to ensure the maintenance of high water 

quality and feeding from 6 to 10 dpf (Zebrafeed <100 µM). Health was monitored twice every 

24 hours, with any fish showing signs of toxicity culled via Schedule 1 overdose of MS222. All 

experiments were run in duplicate, and each compound was tested over two days; on each 

day, 18 larvae per treatment group underwent imaging. This meant that 36 fish per treatment 

group were used in each experiment; power calculations, using pilot data, estimated between 

20 and 31 larvae (80 – 95% power, respectively) would be the required number of replicates 

in order to reach statistical significance. 

 

4.4.7 Analytical quantification of drug concentrations in exposure media  

To evaluate the potential degradation of the test compounds in the exposure set up, 5 mL of 

exposure media was collected from each treatment group at the end of two in vivo 

experiments. Concentrations of diclofenac and meloxicam were quantified with LC/MS-MS 

using standard methods (Boix et al., 2015) (Table 4.1). Diclofenac concentrations were 

quantified in the media collected from three different treatment groups (1.33, 2.66, and 5.31 

mg/L) as well as the control group (Tecniplast system water). Meloxicam concentrations were 

quantified in the media collected from the master stock solution (200 mg/L), due to a 

processing error with the working solution samples initially collected, and from a control 

sample (Tecniplast system water). 
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Table 4.1. Analytical quantification of diclofenac and meloxicam using LC/MS-MS. 

LIQUID CHROMATOGRAPHY 

 

Column – 4.6 x 150 mm 

Column packing – Eclipse XD8-C18 (5 µm) 

Column temperature – 40 °C 

Injection volume – 20 µl 

Effluent flow rate – 500 µl/min 

Eluent A – HPLC grade of water + 0.1 % formic acid 

Eluent B – HPLC grade of methanol 

Mode of ionisation – Positive 

Gradient 

Total time  (min) 
Flow rate 
(µl/min) 

A% B% C% D% 

1 500 85 15 0 0 

2 500 85 15 0 0 

3 500 10 90 0 0 

7 500 10 90 0 0 

7.1 500 85 15 0 0 

10 500 85 15 0 0 

 

4.4.8 Quantification of immune cell trafficking by fluorescence microscopy 

At the end of the exposure period, 10 dpf zebrafish larvae were anaesthetised using 100 mg/L 

of MS222. Once immobile, larvae were transferred to a solution of 10 mg/mL low melting point 

agarose/100 mg/L MS222 and mounted onto microscopy slides fitted with silicone isolating 

rings. Under a stereo microscope, larvae were orientated on their sides. Once successfully 

orientated, each slide was moved onto a dry bath (4oC) for approximately 20 seconds to 

facilitate the agarose semi-solidification, and subsequently transferred onto the stage of a 

Leica DMi8 inverted fluorescent microscope, where individual larvae were imaged at 10x 

magnification. Brightfield (BF), and either GFP (neutrophil reporter) or mCherry (macrophage 

reporter) filters were used to capture overlay and individual filter images of the mid/posterior 

gut region of each larva. Immediately after imaging, larvae were culled via Schedule 1 

overdose of MS222 (300 mg/L). 

 

4.4.9 Image analyses 

Images were processed using the software ‘ImageJ’ (version 1.52a). Overlay images were 

generated for each larva using the raw individual filter images. The ‘Fire’ look-up table was 

used on all images to aid in the visual distinction of individual immune cells. Manual 
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quantification of immune cells within the mid/posterior gut region of each larva was performed, 

and then recorded using the software ‘GraphPad Prism 8’ (version 8.4.3). 

 

4.4.10 Statistical analyses 

Normality tests (D’Agostino & Pearson test) and parametric one-way ANOVA (analysis of 

variance), using GraphPad Prism 8 (version 8.4.3), were used to determine both the Gaussian 

distribution and statistical significance of the in vivo imaging data. Dunnett’s test for multiple 

comparisons was used to assess the difference between the control group and each test group 

per experiment (adjusted P value; α = 0.05). 

 

4.4.11 In vivo exposures for the quantification of transcriptomic responses (3 – 10 dpf) 

A dedicated in vivo exposure experiment was carried out to assess the effects of NSAIDs on 

the transcriptomic responses of zebrafish larvae. Zebrafish larvae were exposed to 1.33 mg/L, 

and 6.75 mg/L, of diclofenac and meloxicam respectively. The experiment also included a 

negative control group, which was exposed to Tecniplast system water. Zebrafish larvae (WT 

AB, 3 dpf) were randomly distributed across 24-well plates, with 1 ml of medium and one larva 

per well (n = 12 per treatment group). The exposure lasted for 168 hours from 3 – 10 dpf, with 

daily media replacement and feeding beginning at 6 dpf (Zebrafeed <100 µM). Health 

monitoring was performed twice a day, with any fish showing signs of toxicity culled via 

Schedule 1 overdose of MS222. At 10 dpf all fish were culled via Schedule 1 and transferred 

to Eppendorf tubes containing RNAlater (Sigma-Aldrich; R0901) in order to stabilise and 

preserve the RNA through immediate RNase inactivation. Samples were stored at 40C 

overnight, before being transferred to a -200C freezer. 

 

4.4.12 RNA extraction, and purification 

Individual zebrafish larvae were pooled to generate three biological replicates per treatment 

group (n=4 per replicate). The total RNA was extracted using the Qiagen RNeasy Mini Kit 

(QIAGEN; 74104). The digestion of potential genomic DNA contamination was carried out 

using the DNase Max Kit (QIAGEN; 15200-50). The concentration of total RNA in each sample 

was quantified by fluorometric assay using the Qubit RNA High Sensitivity Assay Kit 

(ThermoFisher; Q32852). Once the concentration was determined, all the samples were 

stored at -800C.  
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4.4.13 RNA library preparation and sequencing 

RNA library preparation, sequencing, and differential gene expression analysis was carried 

out by Cambridge Genomic Services (CGS). RNA integrity and quality was determined using 

an Agilent 2100 Bioanalyzer prior to cDNA library preparation. cDNA libraries were prepared 

using the SMART-Seq low-input RNA library preparation kit. Libraries were then sequenced 

on an Illumina NextSeq 500 to 75 base pairs (bp). Quality control of raw reads was carried out 

using FastQC v0.11.4 (Andrews et al., 2010), and low-quality bases and read adapters were 

trimmed from the reads using TrimGalore v0.5.0 (Krueger, 2013). Reads shorter than 20 

bases long were discarded from the dataset. Read mapping was carried out using STAR 

v2.7.1 (Dobin et al., 2013) and the Ensembl Danio_rerio GRCz11 (release 103) reference 

genome, using the annotated transcripts from the Ensembl Danio_rerio.GRCz11.103.gtf file. 

Estimates of gene expression were derived from the mapped reads using HTSeq count v0.6.1 

(Anders, Pyl, and Wolfgang, 2015). Sample clustering was assessed using DESeq2 v1.24.1 

(Love, Huber, and Anders, 2014) (R version 3.6.1). Principal Component Analysis (PCA) plots 

and heatmaps obtained from this analysis were based on normalised and rlog transformed 

counts, performed for all samples. Refer to Appendix 4.2 for all relevant figures, and summary 

tables. 

 

4.4.14 Differential gene expression 

Differential gene expression analysis was carried using edgeR v3.26.5 (Robinson, McCarthy, 

and Smyth, 2010) (R version 3.6.1) for the pairwise comparisons. The number of genes 

included in the analysis is selected so that at least half of the genes being tested have read 

counts higher than five counts per million (cpm). EdgeR is used to compute effective library 

sizes using the trimmed mean of M-values (TMM) normalisation, which accounts for 

sequencing depth and RNA composition. The exact test edgeR approach was used to make 

pairwise comparisons between groups, and P-values were adjusted for multiple testing via the 

FDR (Benjamini-Hochberg; cut-off at P = 0.05). Multidimensional scaling (MDS), scatter, 

common dispersion, and MA plots can be found in Appendix 4.2. The raw data can be found 

in Appendix 4.3 (https://figshare.com/s/f77c254ad15da7d64d5d.) 

 

4.4.15 Functional annotation analyses 

The differentially expressed genes (DEGs) from each pairwise comparison, were assessed 

for enrichment of known pathways and biological processes using DAVID (Database for 

Annotation, Visualisation, and Integrated Discovery) (Huang, Lempicki, and Sherman, 2008; 
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Huang, Sherman, and Lempicki, 2009). The total expressed genes from each comparison 

(14,297 – control vs diclofenac; 14,363 – control vs meloxicam) were used as the background 

against which the DEGs from each comparison were compared. Enrichment of all Gene 

Ontology (GO) categories, and Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

pathways, were assessed for each list of DEGs (‘control vs diclofenac’, and ‘control vs 

meloxicam’). The ‘Functional Annotation Chart’ tool was used to identify significantly enriched 

annotations of interest (Benjamini-Hochberg; cut-off at P = 0.05). The ‘Functional Annotation 

Chart’ tool provides an enrichment analysis (modified Fisher Exact Test) to evaluate the most 

overrepresented annotation terms associated with our lists of DEGs, against each 

background. The results of the analyses can be found in Appendix 4.3 

(https://figshare.com/s/f77c254ad15da7d64d5d). 

 

4.5 Results 

4.5.1 Measured water concentrations of diclofenac and meloxicam 

Measured concentrations of diclofenac and meloxicam are displayed in Table 4.2. Diclofenac 

measured concentrations were ± 10% of nominal concentrations. On the other hand, 

meloxicam measured concentrations were approximately 30% higher than the nominal 

concentrations. 

Table 4.2. Measured water concentrations of diclofenac and meloxicam. 

Sample Nominal concentration (mg/L) Measured concentration (mg/L) 

Diclofenac 0 <0.025 

Diclofenac 0 <0.025 

Diclofenac 0 <0.025 

Diclofenac 5.31 4.880 

Diclofenac 5.31 4.760 

Diclofenac 5.31 4.800 

Diclofenac 2.66 2.452 

Diclofenac 2.66 2.488 

Diclofenac 2.66 2.468 

Diclofenac 1.33 1.512 

Diclofenac 1.33 1.428 

Diclofenac 1.33 1.420 

Meloxicam 0 <0.05 

Meloxicam 200 260 

Meloxicam 200 269.6 

 

 

4.5.2 Determination of maximum tolerated concentrations (MTC) (3 – 5 dpf) 
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After 48 hours of exposure to diclofenac all the larvae exposed to 33.4 mg/L and 16.7 mg/L 

were unresponsive with no obvious heartbeat. The larvae in the remaining treatment groups 

did not display any signs of toxicity. The experiment indicated a maximum tolerated 

concentration equal to 8 mg/L. Approximately 40% of larvae exposed to meloxicam at 100 

mg/L for 48 hours were unresponsive with no obvious heartbeat. The larvae exposed to lower 

concentrations of meloxicam did not display any obvious sign of toxicity or mortality. Hence, 

the meloxicam maximum tolerated concentration was set at 80 mg/L. These concentrations 

were used to guide the design of the pilot longer-term exposure studies involving older life 

stages.   

 

4.5.3 Pilot exposure study to determine the longer-term safety of diclofenac MTC (3 – 

10 dpf) 

A Kaplan Meier plot was generated using survival data from the pilot exposure to diclofenac 

(Figure 4.2). Using this data, we modelled the concentrations of diclofenac estimated to 

produce 50% and 20% mortality in 10 dpf larvae after seven days of exposure. These 

concentrations were 7.64 mg/L and 5.31 mg/L, respectively (Figure 4.3). The data revealed 

an important degree of inter-experiment variability as, unlike the pilot study, exposure to 8.4 

mg/L caused no toxicity in previous experiments. Considering that zebrafish stocks kept at 

Brunel University London display a natural mortality of approximately 20% at day 10 dpf, the 

estimated LC20 (5.31 mg/L) was considered non-lethal and was used as the highest exposure 

concentration for the subsequent exposures studies. 
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Figure 4.2. Kaplan Meier survival analysis of diclofenac exposed larvae. 3 – 10 dpf exposure period 

during which any larvae showing signs of toxicity were culled via schedule 1 overdose of MS222. 
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Figure 4.3. Non-linear regression modelling of LC50 and LC20 for diclofenac. The pilot exposure 

data was used to model a best-fit curve to make an estimate of the concentrations required to induce 

20% and 50% lethality. Red dotted lines indicate 20% and 50% response; black dotted lines represent 

the corresponding concentrations predicted to elicit 20% and 50% lethality. 

 

4.5.4 Pilot exposure study to determine the longer-term safety of meloxicam MTC  (3 – 

10 dpf) 

A Kaplan Meier plot was generated using survival data from the pilot exposure to meloxicam 

(Figure 4.4). Using this data, we modelled the concentrations of meloxicam estimated to 

produce 50% and 20% mortality in 10 dpf larvae after seven days of exposure (Figure 4.5). 

These concentrations were 38.2 mg/L and 27.2 mg/L, respectively. In this case, the non-

toxicity of the 5 dpf MTC was confirmed in the pilot experiment. However, larvae exposed to 

80-60 mg/L displayed a time dependent increase of toxicity after the fourth day of exposure. 

Also in this case, the estimated LC20 (27.2 mg/L) was considered non-lethal and was used 

as the highest exposure concentration for the subsequent exposures studies. 
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Figure 4.4. Kaplan Meier survival analysis of meloxicam exposed larvae. 3 – 10 dpf exposure 

period during which any larvae showing signs of toxicity were culled via schedule 1 overdose of MS222. 
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Figure 4.5. Non-linear regression modelling of LC50 and LC20 for diclofenac. The pilot exposure 

data was used to model a best-fit curve to make an estimate of the concentrations required to induce 

20% and 50% lethality. Red dotted lines indicate 20% and 50% response; black dotted lines represent 

the corresponding concentrations predicted to elicit 20% and 50% lethality. 

 

4.5.5 Quantification of NSAIDs-mediated immune cell trafficking in the intestine 

Diclofenac exposure induced a significant infiltration of both neutrophils and macrophages into 

the mid/posterior intestinal region of 10 dpf zebrafish larvae exposed to diclofenac for seven 
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days (Figure 4.6). The mean number of neutrophils (MPX:EGFP reporter cells) infiltrating the 

GI mucosa in larvae exposed to 5.31 mg/L were significantly more than the number of cells 

observed in the control group (Ordinary one-way ANOVA; P < 0.05 adjusted for multiple 

comparisons). The number of replicates in each group for this experiment were 24 larvae (0, 

1.33 mg/L, 2.66 mg/L) and 23 larvae (5.31 mg/L). Similarly, macrophage (MPEG1:mCherry 

reporter cells) intestinal infiltration showed a statistically significant upregulation in larvae 

exposed to 1.33 mg/L, 2.66 mg/L, and 5.31 mg/L, compared with controls (Ordinary one-way 

ANOVA, P < 0.05; P < 0.01, and P < 0.05, respectively; adjusted for multiple comparisons 

using Dunnett’s). The number of replicates in each group for this experiment were 30 larvae 

(0, 1.33 mg/L, 5.31 mg/L) and 29 larvae (2.66 mg/L). 
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Figure 4.6. Quantification of neutrophils (EGFP+ve cells) and macrophages (mCherry+ve cells) 

in the mid/posterior gut of diclofenac exposed larvae at 10 dpf. Red horizontal lines represent the 

mean number of cells per treatment group; the black dashed lines represent the quartiles; the red stars 

represent statistical significance (One-way ANOVA (Dunnett’s multiple comparisons); * = P < 0.05; ** = 

P < 0.01). Neutrophil exposure: N = 24 (0, 1.33, 2.66 mg/L) and N = 23 (5.31 mg/L). Macrophage 

exposure: N = 30 (0, 1.33, 5.31 mg/L) and N = 29 (2.66 mg/L). 

 

Contrastingly, exposure to meloxicam did not induce any significant infiltration of neutrophils 

into the GI mucosa, compared with control fish (Figure 4.7). The number of replicates in each 

group for this experiment were 31, 34, 30 and 32 larvae (0, 6.75, 13.5, 27 mg/L, respectively). 

Exposure to 6.75 mg/L appeared to induce a significant upregulation of macrophage infiltration 

(Ordinary one-way ANOVA; P = 0.0001, adjusted for multiple comparisons using Dunnett’s). 

However, larvae exposed to higher concentrations of meloxicam (13.5 mg/L and 27 mg/L) did 

not display a statistically significant infiltration, indicating a lack of dose-response concordance 
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(Figure 4.8). The number of replicates in each group for this experiment were 33, 26, 31 and 

28 larvae (0, 6.75, 13.5, 27 mg/L, respectively). 
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Figure 4.7. Quantification of neutrophils (EGFP+ve cells) and macrophages (mCherry+ve cells) 

in the mid/posterior gut of meloxicam exposed larvae at 10 dpf. Red horizontal lines represent the 

mean number of cells per treatment group; black dashed lines represent the quartiles; red stars 

represent statistical significance (One-way ANOVA (Dunnett’s multiple comparisons); **** = P < 

0.0001). Neutrophil exposure: N = 31, 34, 30, 32 (0, 6.75, 13.5, 27 mg/L respectively). Macrophage 

exposure: N = 33, 26, 31, 28 (0, 6.75, 13.5, 27 mg/L respectively). 

 

 

Figure 4.8. Overlay image examples of neutrophil (tg(MPX:EGFP)i114) and macrophage 

(tg(MPEG1:mCherry-CAAX)gl26) reporter cell quantification, respectively. Yellow regions represent 

the area of quantification, relating to the mid/posterior gut of each larva. 
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RNA-Seq: Differential gene expression analyses 

Diclofenac and meloxicam exposure resulted in significant differential expression (FDR < 0.05) 

for a large number of genes, which is summarised in Table 4.3, and visualised in Figure 4.9 

and Figure 4.10. After diclofenac treatment, 87% of differentially expressed genes (DEGs) 

were downregulated, and 13% were upregulated. On the other hand, after meloxicam 

treatment 89% of DEGs were downregulated and 11% were upregulated.  

 

Table 4.3. Differential gene expression analyses summary. Significant genes identified by using 

False Discovery Rate (FDR) to account for multiple comparisons. 

 

 

 

Figure 4.9. Volcano plot - control vs diclofenac. Each data point represents a gene. Blue data points 

represent statistically significant DEGs (FDR ≤ 0.05), whereas red data points represent genes which 

are not differentially expressed. 

Group comparison p<0.01 significant genes p<0.05 significant genes Total number of genes 

CTRL__VS__DIC 277 530 14297 

CTRL__VS__MEL 64 193 14363 
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Figure 4.10. Volcano plot - control vs meloxicam. Each data point represents a gene. Blue data 

points represent statistically significant DEGs (FDR ≤ 0.05), whereas red data points represent genes 

which are not differentially expressed. 

 

Diclofenac exposed larvae displayed 530 DEGs, of which 68 were upregulated (positive 

log2FC), and 462 were downregulated (negative log2FC). Larvae exposed to meloxicam 

showed a similar trend as 22 genes were upregulated, and 171 genes were downregulated, 

out of the 193 total DEGs. Interestingly, 155 of the DEGs in our analysis appear to be 

modulated by both diclofenac and meloxicam exposure. 

 

4.5.7 Functional annotation analysis 

Overrepresentation analysis of all GO terms and KEGG pathways using DAVID revealed 57 

and 17 significantly enriched annotations (Benjamini-Hochberg P value ≤ 0.05), for the 

control vs diclofenac and control vs meloxicam pairwise comparisons, respectively (Figure 

4.11 and Figure 4.12). Interestingly, 14 of these annotations are shared between both sets of 

data including: extracellular matrix, extracellular space, extracellular region, extracellular 

matrix organization, extracellular matrix structural constituent, collagen trimer, skeletal 

system development, troponin complex, ECM-receptor interaction, Focal adhesion, Z disc, 

intermediate filament, calcium ion binding, and sarcoplasmic reticulum. 
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Figure 4.11. Functional Annotation Enrichment analysis of all GO terms, and KEGG pathways, 

using DAVID for control vs diclofenac exposed zebrafish larvae. The count represents the 

number of DEGs involved in the enrichment of each functional annotation. The colour represents the 

level of significance; darker = higher level of significance (Benjamini-Hochberg, P ≤ 0.05). 
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Figure 4.12. Functional Annotation Enrichment analysis of all GO terms, and KEGG pathways, 

using DAVID for control vs meloxicam exposed zebrafish larvae. The count represents the 

number of DEGs involved in the enrichment of each functional annotation. The colour represents the 

level of significance; darker = higher level of significance (Benjamini-Hochberg, P ≤ 0.05). 
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4.6 Discussion 

Our data supports the notion that the immunomodulatory effects of NSAIDs extend beyond 

cyclooxygenase inhibition. The data generated in the present study supports the hypothesis 

that prolonged exposure to traditional NSAIDs, such as diclofenac, leads to intestinal epithelial 

damage through the dysfunction of several barrier-related proteins, in addition to the inhibition 

of COX-1 derived prostaglandins. An inflammatory response is induced following the intestinal 

damage, attracting neutrophils to the site of inflammation, via the release of cytokines and 

other inflammatory stimuli from intestinal epithelial cells (IECs). The infiltration of neutrophils 

into the damaged tissue is sustained due to the parallel downregulation of key anti-

inflammatory and pro-resolution pathways. This combination of mechanisms leads to a 

sustained inflammation in the intestine. We propose that over time the non-resolving 

inflammation will lead to some of the adverse effects that we see in the clinical setting including 

ulceration, bleeding, and even perforation of the GI tract. Together our imaging and 

transcriptomic analysis provide robust evidence in support of this hypothesis. Our results 

highlight a significant increase in the infiltration of neutrophils and macrophages into the 

intestine of diclofenac-exposed larvae, combined with the significant modulation of key 

regulatory genes involved in maintaining intestinal barrier integrity (claudin 1, integrin beta 

1b.2, transforming growth factor beta-induced, alpha-tropomyosin, capping protein (actin 

filament) gelsolin-like b) and inflammation (annexin A1b, annexin A1c, annexin A1d, caspase 

b, CX chemokine ligand 34b, duplicate 11, lysyl oxidase-like 3b, leukotriene A4 hydrolase, 

PYD and CARD domain containing, and v-rel avian reticuloendotheliosis viral oncogene 

homolog). The annexin A1 proteins are of particular interest due to their involvement in a 

number of critical biological processes, including the resolution of inflammation. Functional 

annotation analysis of DEGs, resulting from exposure to diclofenac, revealed the significant 

enrichment of GO term ‘Inflammatory response’ (GO:0006954). Interestingly, DEGs relating 

to meloxicam exposure did not result in the significant enrichment of any inflammation-related 

KEGG pathways or GO annotations. 

 

4.6.1 Immune cell dynamics within the gastrointestinal tract of diclofenac and 

meloxicam exposed zebrafish larvae 

It has been documented that COX-2 selective inhibitors, such as meloxicam, do not induce GI 

toxicity to the extent of traditional NSAIDs like diclofenac (Hawkey et al., 1998). Our data 

generally seems to support this notion; however, it is evident that meloxicam is likely to also 

modulate a number of COX-independent pathways, similar to diclofenac. The quantification of 

immune cell trafficking did not indicate a significant upregulation of immune cell infiltration into 

the intestine of meloxicam-exposed larvae. Only the lowest concentration of meloxicam 
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appeared to induce a significant increase in the number of macrophages residing in the gut. 

However, this observation is not supported by dose-response concordance, as no infiltration 

was observed at higher exposure concentrations. Conversely, exposure to diclofenac 

revealed a statistically significant upregulation of neutrophils and macrophages into the 

intestine of zebrafish larvae at 10 dpf. Only the top concentration of 5.31 mg/L diclofenac was 

able to induce a significant infiltration of neutrophils. However, all three exposure 

concentrations (1.33, 2.66, and 5.31 mg/L) of diclofenac were able to induce a significant 

upregulation of macrophages into the intestine at 10 dpf. On the whole, our data indeed 

suggests that the non-selective NSAID diclofenac is able to induce paradoxical inflammation 

within the GI tract, whereas the COX-2 selective NSAID meloxicam is unlikely to produce this 

inflammatory phenotype in the gut. It may be possible to hypothesise that a lack of COX-1 

inhibition within IECs is sufficient for maintaining the integrity of the GI mucosa, preventing the 

infiltration of immune cells, and hence inflammation in the intestine. It is worth noting, however, 

that the protective role of COX-1 derived intestinal PGE2 may not be sufficiently protective in 

the long term if COX-2 inhibition is also occurring. Sigthorsson et al. (2002) compared the 

effects of a traditional NSAID (indomethacin), a COX-1 selective inhibitor (SC-560), and a 

COX-2 selective inhibitor (celecoxib) on the small intestines of wild type, COX-1-, and COX-

2-deficient mice. They concluded that the chronic inhibition of COX-2 is sufficient for significant 

damage of the intestine to occur, regardless of normal COX-1 derived PGE2 levels in the gut. 

These findings suggest that COX-2 also plays a homeostatic role in maintaining the integrity 

of the intestinal epithelium, albeit to a lesser extent that COX-1. In fact, there is substantial 

evidence to support this hypothesis, indicating roles for COX-2 in mediating key components 

of mucosal defence, contributing to the resolution of GI inflammation, and facilitating ulcer 

healing (Wallace and Devchand, 2005). Previous academic research has demonstrated that 

COX-2 is able to not only initiate an acute inflammatory response, but also play a role in the 

resolution of inflammation through the production of PGE2 and PGD2 (Gilroy et al., 1999; 

Serhan et al., 2007). Given that meloxicam is likely to modulate many similar genes and 

processes as diclofenac, it may be possible to hypothesise that both non-selective and COX-

2 selective NSAIDs will lead to gastrointestinal toxicity via similar mechanisms; however, the 

toxicity induced by COX-2 selective NSAIDs becomes observable only with longer exposure 

periods. In fact, clinical research for meloxicam supports this as gastrointestinal adverse 

events are amongst the most frequently reported (Hosie, Distel, and Bluhmki, 1997). It may 

be possible that both diclofenac and meloxicam negatively modulate the resolution of 

inflammation through a number of pathways, leading eventually to toxicity. 
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4.6.1 Diclofenac-induced transcriptomic effects 

Diclofenac exposure (1.33 mg/L) revealed statistically significant changes in the transcriptomic 

expression levels of 530 genes (FDR ≤ 0.05). The vast majority of these differentially 

expressed genes were downregulated (462 genes), with only a small number which were 

upregulated (68 genes). In order to interpret the biological significance of the data, a functional 

annotation enrichment analysis was performed using DAVID. Overrepresentation of all GO 

annotations and KEGG pathways was conducted using this list of 530 DEGs, compared 

against the background of 14,297 genes detected in the differential gene expression analysis. 

The 530 DEGs led to a statistically significant overrepresentation of 57 functional annotations, 

relating to a variety of biological processes. These functional annotations are displayed in 

Figure 4.11 where it is clear that effects on the extracellular matrix, structural constituents of 

the cell membrane, and receptor interactions are likely. Other areas of particular interest 

include functional annotations relating to muscle development, structure, and function for both 

skeletal and cardiac muscle. Additionally, diclofenac appears to have significant effects on the 

ocular system and the immune system. One of the most interesting functional annotations 

significantly enriched by diclofenac is the GO term inflammatory response. Nine differentially 

expressed genes were associated with the enrichment of this functional annotation including 

: annexin A1b (anxa1b), annexin A1c (anxa1c), annexin A1d (anxa1d), caspase b (caspb), CX 

chemokine ligand 34b, duplicate 11 (cxl34b.11), lysyl oxidase-like 3b (loxl3b), leukotriene A4 

hydrolase (lta4h), PYD and CARD domain containing (pycard), and v-rel avian 

reticuloendotheliosis viral oncogene homolog (rel). All nine of these genes were 

downregulated by diclofenac exposure. Investigating the characteristics of these genes, and 

their modulation, is of particular interest since the GI imaging data revealed the potential for 

inflammation-related effects from diclofenac exposure.  

 

Downregulation of lta4h (leukotriene A4 hydrolase) by diclofenac is likely to result in a 

decrease in production of the pro-inflammatory mediator leukotriene B4 (LTB4). This suggests 

that one of the putative mechanisms of diclofenac-induced gastrointestinal toxicity proposed 

by Hudson et al. (1993) (increased production of LTB4 via arachidonic acid substrate shunt) 

is unlikely to be accurate for diclofenac. In fact, it has been reported that the NSAID sulindac 

sulphide significantly downregulated the activity of LTA4H in HT-29 cells (human colon cancer 

cell line), which was exhibited by a decrease in LTB4 production (Guillen-Ahlers et al., 2011). 

Furthermore, neutrophils have actually been implicated in the formation of gastric ulcers 

arising from exposure to indomethacin, with no observable changes in LTB4 synthesis 

(Wallace, Keenan, and Granger, 1990). Human LTA4H, however, has been shown to also 

demonstrate anti-inflammatory activity via its aminopeptidase active site by cleaving the 
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neutrophil chemoattractant Proline-Glycine-Proline (PGP) (Snelgrove et al., 2010; 

Stsiapanava et al., 2014). In addition to its aminopeptidase activity, it has been demonstrated 

that LTA4H is involved in the biosynthesis of the anti-inflammatory/pro-resolution mediator, 

resolvin E1. This positive mediator of resolution has been shown to reduce neutrophilic 

infiltration and proinflammatory cytokines, as well as upregulate macrophage phagocytosis of 

apoptotic neutrophils in mice (Oh et al., 2011). Moreover, resolvin E1 has been shown to 

promote intestinal wound healing, through the migration and proliferation of intestinal epithelial 

cells (Quiros et al., 2020). These data suggest that although downregulating the LTA4H 

enzyme will inhibit the production of the pro-inflammatory leukotriene LTB4, levels of PGP will 

remain high and levels of resolvin E1 will be suppressed, resulting in neutrophilic recruitment 

and ultimately persistent intestinal inflammation. Furthermore, the downregulation of loxl3b 

(lysyl oxidase-like 3b) may further contribute to an inflammatory phenotype since it has been 

implicated in the negative regulation of STAT3 signalling, which know to be a hallmark of 

intestinal inflammation (Ma et al., 2017). In fact, direct inhibition of STAT3 has been shown to 

alleviate symptoms in inflammatory bowel disease models (Kasembeli et al., 2018). 

 

Downregulation of the annexin A1 genes (anxa1b, anxa1c, anxa1d) is also of particular 

interest, given their critical role in mediating the inflammatory response, and specifically the 

resolution of inflammation. Here we propose that the diclofenac-induced downregulation of 

anxa1b, anxa1c, and anxa1d has a very significant biological meaning. The suppression of 

these genes adds further weight to our hypothesis; that diclofenac exposure inhibits the 

resolution of inflammation. The annexin A1 proteins encoded by these genes have been well 

annotated in zebrafish (uniprot.org/uniprot/B8JLZ3) and are predicted to be involved in several 

immunomodulatory processes. Tissue expression analysis of the annexin A1 genes in 

zebrafish revealed that both anxa1b and anxa1c are expressed in numerous tissues, including 

epithelium (Farber et al., 2003). The human ortholog of these genes, annexin A1 (ANXA1), 

has been well documented as a key endogenous anti-inflammatory signalling molecule, which 

is upregulated in response to inflammatory stimuli in order to resolve inflammation (Sugimoto 

et al., 2016). Some of the earliest evidence has demonstrated that the activation and 

externalisation of ANXA1 from neutrophils negatively regulated the transendothelial migration 

of these cells in vivo, leading to clearance and the resolution of inflammation (Perretti et al., 

1996). The resolution of inflammation is an active process, which if left unregulated can lead 

to significant damage, and the annexin A1 proteins are critical components in restoring 

homeostasis to inflamed tissues. The migration and transendothelial infiltration of neutrophils 

may not only indicate the presence of tissue inflammation, but also the first essential phase in 

the resolution of inflammation. Following this, the clearance of neutrophils from the site of 

inflammation via either the induction of apoptosis and monocyte phagocytosis, or systemic 
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recirculation, should occur (Serhan et al., 2007). It has been well documented that the 

generation of endogenous neutrophil-derived ANXA1 microparticles in the circulation is 

sufficient to inhibit cell adhesion of neutrophils and promote the resolution of inflammation 

(Dalli et al., 2008). In fact, it has been demonstrated that an annexin A1 mimetic is able to 

improve experimental and indomethacin induced gastric damage in mice (Martin et al., 2008), 

which increases the biological plausibility of NSAIDs-induced annexin A1 deficiency leading 

to GI toxicity. Persistent inflammation in the intestine, due to a lack of resolution, through the 

inhibition of ANXA1 may well be a realistic mechanism for the gastrointestinal toxicity 

associated with diclofenac, and perhaps even other NSAIDs. In fact, the modulation of annexin 

A1 by diclofenac has been reported in obese human subjects (van Erk et al., 2010) which 

supports this putative mechanism of toxicity. 

 

4.6.2 Meloxicam-induced transcriptomic effects 

Meloxicam exposure (6.75 mg/L) revealed statistically significant changes in the 

transcriptomic expression levels of 193 genes (FDR ≤ 0.05). A similar trend to the DEGs 

induced by diclofenac exposure can be seen, as the vast majority of these genes were 

downregulated (171 genes), with only a small proportion which were upregulated (22 genes). 

Overrepresentation analysis of all GO annotations and KEGG pathways was also conducted 

using this list of 193 DEGs, compared against the background of 14,363 genes detected in 

the differential gene expression analysis. The 193 DEGs produced a statistically significant 

overrepresentation of 17 functional annotations, relating to a variety of biological processes. 

These functional annotations are displayed in Figure 4.12 where it is clear that effects on the 

extracellular matrix, structural constituents of the cell membrane, receptor interactions, and 

muscle development and function are likely. This molecular level analysis, combined with our 

in vivo imaging analyses, suggest that meloxicam may be less promiscuous than diclofenac, 

in terms of COX-independent mechanisms of toxicity. This narrative also seems to fit with the 

data generated in Chapter 2 and Chapter 3, which indicate that meloxicam is likely to interact 

with many fewer targets than diclofenac. Interestingly, the functional enrichment analysis for 

meloxicam DEGs did not reveal a statistically significant overrepresentation of any immune or 

inflammation-related annotations. This is in contrast to the analysis regarding diclofenac-

induced DEGs, and seems to be in relative agreement with our in vivo imaging analyses, 

further suggesting a perhaps increased tolerability of meloxicam compared to diclofenac. 

Furthermore, out of the 17 functional annotations enriched my meloxicam exposure, 14 of 

these are shared with the enriched annotations associated with diclofenac. It may be 

unsurprising that these two compounds share a number of transcriptomic effects, since they 
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belong to the same class of drug. Exploring these similarities may help to identify mechanistic 

commonalities that NSAIDs share as a class. 

 

4.6.3 Comparing transcriptomic effects of both diclofenac and meloxicam 

Our transcriptomic analyses led to the overrepresentation of the following functional 

annotations: extracellular matrix, extracellular space, extracellular region, extracellular matrix 

organization, extracellular matrix structural constituent, collagen trimer, skeletal system 

development, troponin complex, ECM-receptor interaction, Focal adhesion, Z disc, 

intermediate filament, calcium ion binding, and sarcoplasmic reticulum. Some of these shared 

functional annotations stem from the downregulation of genes such as alpha-tropomyosin 

(tpma), integrin beta 1b.2 (itgb1b.2), transforming growth factor beta-induced (tgfbi), gelsolin 

b (gsnb), capping protein (actin filament) gelsolin-like b (capgb), profilin 1 (pfn1), caveolin 3 

(cav3), and numerous collagen proteins. Disrupting the homeostatic regulation of such genes 

may significantly contribute towards a plethora of adverse effects. Although many of these 

genes are not well characterised in zebrafish, their human orthologs may provide some insight 

into their probable function, with regards to adverse effects. TPM1, the human ortholog of 

tpma, is associated with actin filament binding and stabilising the cytoskeleton in non-muscle 

cells for example (uniprot.org/uniprot/P09493#function; Gunning et al., 2005). The other 

orthologs (of itgb1b.2, tgfbi, gsnb, capgb, and pfn1) are associated with, amongst other things, 

integrin signalling which plays a vital role in maintaining the health of intestinal epithelial cells 

(IECs). Integrin signalling in the intestinal epithelium can regulate adhesive junctions, focal 

adhesion, ECM protein interactions, and even pathogen recognition (Beaulieu, 1999; Thinwa 

et al., 2014). It has been found that beta 1 integrins are essential modulators of homeostasis 

in the intestinal epithelium through regulating proliferation via the Hedgehog (Hh) signalling 

pathway (Jones et al., 2006). The downregulation of several other ECM related genes, such 

as collagens and matrix metallopeptidases, may add to further de-stabilise the intestinal 

barrier as these proteins all contribute to the normal functioning of the intestine. 

Downregulation of collagen I biosynthesis in IECs by the NSAID indomethacin, for example, 

has been associated with mucosal injury in rats (Edogawa et al., 2014). Notably, both 

diclofenac and meloxicam also downregulate claudin 1 (cldn1) expression, which may 

significantly contribute to de-stabilisation of the intestinal barrier, since claudins are essential 

foundational components of the TJ complex. In fact, claudins enact this stabilisation of the TJ 

through linkage with the actin cytoskeleton by binding to scaffolding proteins (Umeda et al., 

2006). Thus, it is clear that suppression of any one of the aforementioned genes or processes 

has the capacity to cause significant disruption to the functioning of the mucosal barrier. 

Together, the downregulation of all of these genes, in addition to the inhibition of COX-1 and 
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COX-2 derived prostaglandins suggests a significant increase in the likelihood of intestinal 

barrier compromise, through increased permeability of the intestinal epithelium, and 

subsequent exposure to luminal contents. Furthermore, the vast majority of these genes would 

likely be essential in repairing the damaged epithelium, and so sustained downregulation 

would probably inhibit this complex process. Moreover, if we consider the added inflammatory 

effects which stem from diclofenac exposure, it may be unsurprising that gastrointestinal 

toxicity associated with NSAIDs is so common. 

Interestingly, diclofenac and meloxicam also appear to have probable effects on muscle 

function. The relevant shared functional annotations enriched by both sets of DEGs include 

troponin complex, Z disc, intermediate filament, calcium ion binding, and sarcoplasmic 

reticulum. The significant enrichment of these annotations suggest that both diclofenac and 

meloxicam are highly likely to significantly affect the normal functioning of muscle cells 

including skeletal, cardiac, and smooth muscle. In fact, there is plenty of evidence in the 

literature to support this notion. NSAIDs have been shown to have significant effects on 

skeletal muscle regeneration, by inhibiting muscle protein synthesis rates (Bamman, 2007). 

Baek et al (2010) demonstrated that diclofenac and meloxicam are both able to significantly 

alter the expression levels of various cardiac muscle movement, membrane organisation, and 

stress-related proteins in primary cardiomyocytes. Muñoz and colleagues (2011) found that 

NSAIDs are able to inhibit vascular smooth muscle cell proliferation through the disruption of 

normal calcium (Ca2+) clearance by mitochondria within these cells. This dysregulation of 

normal vascular smooth muscle cell proliferation can significantly contribute towards serious 

cardiovascular pathologies such as atherosclerosis (Brooks et al., 2003). Clearly the 

modulation of these COX-independent mechanisms may lead to significant pathologies 

including, but not limited to, cardiovascular adverse events. This might be somewhat 

unsurprising considering the long-established link between NSAIDs administration and 

cardiovascular toxicity, especially with COX-2-selective NSAIDs (Davis and Robson, 2016). 

Our data here may provide further mechanistic rationale for cardiovascular toxicity associated 

with NSAIDs exposure, beyond theories based solely upon COX inhibition and prostanoid 

signalling pathways. 

 

4.6.4 Exploring the systemic effects of NSAIDs on the GI tract 

Clearly, damage or compromise of the intestinal mucosa from exposure to NSAIDs does not 

only arise from topical mechanisms of action. There is a wealth of evidence which 

demonstrates the systemic effects of NSAIDs administration including ulcer formation from 

injectable ketorolac and intravenous aspirin, and even from enteric-coated drugs and pro-
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drugs (Wallace, 2008). Although the most likely cause of the systemic effects of NSAIDs stem 

initially from the inhibition of COX-derived prostaglandins, there is data to suggest the 

involvement of neutrophils in the propagation of GI inflammation. Damage to the GI epithelium 

is more than likely to induce neutrophil transepithelial migration, due to the release of 

inflammatory stimuli from the damaged IECs, leading to inflammation in the intestine. In fact, 

analysis of the colonic mucosa from patients with active inflammatory bowel disease (IBD) 

revealed that the downregulation of claudin-1 expression in IECs was associated with the 

infiltration neutrophils (Kucharzik et al., 2001). Furthermore, it has been demonstrated that 

exposure to the NSAIDs indomethacin and naproxen leads to an increase in neutrophil 

adhesion to the mesenteric vasculature (Kirchner et al., 1997). Not only this, but data from 

neutropenic rats revealed that indomethacin-induced enteropathy was dependent on the 

presence of neutrophils (Wallace, 2008; Wallace, Keenan, and Granger, 1990). Our 

fluorescent imaging data reveals a statistically significant increase in the number of neutrophils 

in the mid/posterior gut of larval zebrafish exposed to diclofenac, which is in agreement with 

the available data for indomethacin. Larvae exposed to meloxicam, however, did not show 

any increase in neutrophil transendothelial migration into the intestine, compared with control 

fish. The increased numbers of macrophages in the intestine of diclofenac exposed larvae 

(and perhaps also meloxicam, although it appears less likely given the insignificance of the 

top two concentration groups) may well be an added hallmark of intestinal inflammation. The 

biological plausibility of monocytes migrating to sites of intestinal inflammation and 

differentiating into activated macrophages is high. It has been well reported that intestinal 

macrophages perform a variety of functions which include mediating host interaction with the 

microbiota, managing inflammation, modulating T cells, and facilitating wound repair (Wang 

et al., 2019). However, our transgenic reporter line does not differentiate between resident 

intestinal macrophages and migrating monocytes, or between the numerous different types of 

macrophages, and so it is difficult to ascertain the exact biological significance of the data. 

Overall, this data is in agreement with the assumption that COX-2 selective NSAIDs are less 

likely to induce GI toxicity, at least in the short-term, and that neutrophilic infiltration into the 

GI mucosa is a key marker of intestinal inflammation. Our transcriptomic analysis adds further 

weight to the likelihood of this inflammation, as diclofenac significantly altered the expression 

of key inflammation-related genes, which significantly enriched the functional annotation 

inflammatory response. It is important to note, however, that the RNA-Seq analysis is based 

on expression levels from all tissues within the entire organism, whereas the in vivo imaging 

data is focused solely on the gastrointestinal tract. Thus, it is not possible to directly associate 

the statistically significant changes in gene expression, at the organism level, with the 

phenotypic effects observed within a single tissue. 
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4.7 Study limitations and future refinements 

NSAID selection in the present study was a considerably long and arduous process due to 

significant technical difficulties with stock solution preparation. Irreproducible protocols from 

the literature and inaccurate information regarding water and solvent solubilities meant that 

trialling the COX-2 selective inhibitors celecoxib, rofecoxib, valdecoxib and parecoxib was 

unsuccessful. Although time consuming, it became clear that these compounds would not 

dissolve easily without using high concentrations of solvent. However, an important factor 

influencing our NSAIDs selection was that we wanted to avoid using any solvents in the 

dissolution of our compounds wherever possible. It has been well documented that solvents, 

in particular DMSO, are able to significantly alter the transcriptomic and epigenetic landscape 

of exposed tissues, even at low ‘non-toxic’ concentrations (Verheijen et al., 2019). Thus, our 

ideal scenario was to find two compounds, a non-selective and a COX-2 selective NSAID, 

which were highly water soluble. The sodium salt derivatives of diclofenac and meloxicam 

represented ideal test compounds from both a practical, and more importantly, a biological 

perspective. 

One limitation of the in vivo imaging data generated in the present study is that it is not possible 

to establish which of the immune cells in the gut of each larvae were resident prior to exposure, 

and which cells underwent the transendothelial migration into the mucosa as a result of 

exposure. This means that we see a lot of variability between biological replicates, since 

individual larvae possess varying numbers of tissue resident immune cells, which means that 

a large number of replicates are needed to generate sufficient statistical power. A refinement 

to this limitation could come from using an alternate neutrophil reporter line 

(tg(mpx:Gal4/UAS:Kaede)) which contains a photoconvertible Kaede protein. This means that 

neutrophils expressing the Kaede protein can be selectively photoconverted using a specific 

wavelength of light stimulation, resulting in a change of fluorescence from green to red light 

(Ellett et al., 2015). Thus, we could use this reporter to fine our imaging experiments by 

photoconverting transgenic neutrophils in the intestine directly prior to commencing the 

exposure. This would mean that imaging at 10 dpf would reveal a number of red fluorescent 

neutrophils in the intestine, which were present at the start of exposure, and also a number of 

green fluorescent neutrophils which have infiltrated the intestine over the exposure course. 

The RNA-Seq investigation was based on a “3 biological replicates x 3 treatment group 

design”. The use of three biological replicates per treatment is common amongst most 

published RNA-Seq studies involving chemical exposure and zebrafish larvae. However, our 

results indicate that a larger sample size may increase the overall confidence of the procedure. 

Some of the analysis metrics generated, such as sample clustering and correlation heatmaps, 
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highlighted a potential discrepancy with the sample ‘CTRL_1_S1’, as it did not correlate overly 

well with the other control samples and did not cluster well either. Another layer of complexity, 

which affects the interpretation of the biological relevance of the transcriptomic profile 

associated with this sample, is the fact that each biological replicate was formed by 4 larvae. 

This decision was driven by previous experimental observations that four larvae per sample 

would allow the extraction of enough total RNA to allow a standard cDNA library preparation 

and sequencing run (>500 ng RNA). Due to ethical considerations of reduction and refinement 

we chose to proceed with four larvae per sample, as we estimated that we would be able to 

extract more than enough RNA, whilst mitigating excessive use of larvae at 10 dpf. However, 

the total RNA concentration of three out of 12 samples was below this threshold and required 

the use of a more expensive low-input cDNA library preparation step for the whole sample 

batch. The presence of one true biological outlier among the four larvae may, in principle, 

affect the overall analysis. This may suggest that an optimisation of the pool size would be 

required to ensure the dilution of possible biological outlier effects within each sample pool. 

Another factor which is likely to influence the sample clustering and correlation heatmaps, is 

the fact that one week old larvae have been shown to have significantly more complex 

transcriptomic signatures than earlier life stages (Yang et al., 2013). This increased complex 

is likely to result in increased variation between individuals and may be unsurprising since the 

expression profiles of early life stages are likely to be tightly regulated by developmental 

processes. This consideration adds weight to the idea that increasing pool size per sample 

would help to dilute individual biological variation between intra-group samples. 

 

4.8 Conclusions 

Here we show that the deleterious effects of non-selective NSAIDs, such as diclofenac, on the 

gastrointestinal tract may be driven by a neutrophil-dependent process, through the 

downregulation of key anti-inflammatory and pro-resolving mediators. Our in vivo imaging data 

supports this hypothesis, which is further strengthened by our transcriptomic analysis, 

whereby we confirm the upregulation of infiltrating neutrophils in the gut with the concurrent 

downregulation of several key inflammatory mediators. Modulation of these key genes may 

well be sufficient to inhibit the resolution of inflammation in the gut, following both direct (topical 

mechanisms) and systemic (inhibition of COX-1 derived prostaglandins) damage to the 

epithelium by non-selective NSAIDs. The COX-2 selective NSAID meloxicam did not appear 

to induce the same phenotype as diclofenac, as we found no obvious increase in neutrophilic 

infiltration into the GI tract. However, several of the same genes and processes do appear to 

be modulated. It is possible to hypothesise that the initiation of intestinal damage caused by 
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meloxicam could be temporally delayed due to the gastro-protective effects of COX-1 derived 

prostaglandins. This may indicate that longer exposure times would have been required to 

detect intestinal inflammation attributed to COX-2 selective NSAIDs. Furthermore, our 

transcriptomic analyses highlighted a number of other COX-independent mechanisms of 

action for both diclofenac and meloxicam. Further analysis and data-mining may provide 

significant insight into the mechanisms underlying the cardiovascular toxicities associated with 

NSAIDs.  

 

4.9 References 

Anders, S., Pyl, P.T. and Huber, W. (2015) 'HTSeq--a Python framework to work with high-

throughput sequencing data', Bioinformatics (Oxford, England), 31(2), pp. 166-169. doi: 

10.1093/bioinformatics/btu638. 

Andrews, s. (2010) 'FastQC: a quality control tool for high throughput sequence data', doi: 

10.1016/S1048-9843(02)00144-3. 

Ashfaq, H., Soliman, H., Saleh, M. and El-Matbouli, M. (2019) 'CD4: a vital player in the teleost 

fish immune system', Veterinary research (Paris), 50(1), pp. 1. doi: 10.1186/s13567-018-0620-

0. 

Baek, S.M., Ahn, J.S., Noh, H.S., Park, J., Kang, S.S. and Kim, D.R. (2010) 'Proteomic 

analysis in NSAIDs-treated primary cardiomyocytes', Journal of proteomics, 73(4), pp. 721-

732. doi: 10.1016/j.jprot.2009.10.004. 

Bain, C.C. and Schridde, A. (2018) 'Origin, Differentiation, and Function of Intestinal 

Macrophages', Frontiers in immunology, 9, pp. 2733. doi: 10.3389/fimmu.2018.02733. 

Bamman, M.M. (2007) 'Take two NSAIDs and call on your satellite cells in the morning', 

Journal of applied physiology (1985), 103(2), pp. 415-416. doi: 

10.1152/japplphysiol.00536.2007. 

Beaulieu, J.F. (1999) 'Integrins and human intestinal cell functions', Frontiers in bioscience, 

4(4), pp. 310. doi: 10.2741/A429. 

Boix, C., Ibáñez, M., Sancho, J.V., Rambla, J., Aranda, J.L., Ballester, S. and Hernández, F. 

(2015) 'Fast determination of 40 drugs in water using large volume direct injection liquid 

chromatography–tandem mass spectrometry', Talanta (Oxford), 131, pp. 719-727. doi: 

10.1016/j.talanta.2014.08.005. 



Philip Marmon  Chapter 4 

156 
 

Brooks, G., Yu, X., Wang, Y., Crabbe, M.J.C., Shattock, M.J. and Harper, J.V. (2003) 'Non-

steroidal anti-inflammatory drugs (NSAIDs) inhibit vascular smooth muscle cell proliferation 

via differential effects on the cell cycle', Journal of pharmacy and pharmacology, 55(4), pp. 

519-526. doi: 10.1211/002235702775. 

Chen, M., Sinha, M., Luxon, B.A., Bresnick, A.R. and O'Connor, K.L. (2009) 'Integrin α6β4 

Controls the Expression of Genes Associated with Cell Motility, Invasion, and Metastasis, 

Including S100A4/Metastasin', The Journal of biological chemistry, 284(3), pp. 1484-1494. 

doi: 10.1074/jbc.M803997200. 

Cheng, X., Zhang, X., Su, J., Zhang, Y., Zhou, W., Zhou, J., Wang, C., Liang, H., Chen, X., 

Shi, R., Zen, K., Zhang, C. and Zhang, H. (2015) 'miR-19b downregulates intestinal SOCS3 

to reduce intestinal inflammation in Crohn's disease', Scientific reports, 5(1), pp. 10397. doi: 

10.1038/srep10397. 

Conaghan, P. (2012) 'A turbulent decade for NSAIDs: update on current concepts of 

classification, epidemiology, comparative efficacy, and toxicity', Rheumatology international, 

32(6), pp. 1491-1502. doi: 10.1007/s00296-011-2263-6. 

Crooks, S.W. and Stockley, R.A. (1998) 'Leukotriene B4', The international Journal of 

Biochemistry & Cell Biology, 30, pp. 173-178. 

Dalli, J., Norling, L.V., Renshaw, D., Cooper, D., Leung, K. and Perretti, M. (2008) 'Annexin 1 

mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles', Blood, 

112(6), pp. 2512-2519. doi: 10.1182/blood-2008-02-140533. 

Davis, A. and Robson, J. (2016) 'The dangers of NSAIDs: look both ways', British journal of 

general practice, 66(645), pp. 172-173. doi: 10.3399/bjgp16X684433. 

Dee, C.T., Nagaraju, R.T., Athanasiadis, E.I., Gray, C., Fernandez del Ama, L., Johnston, 

S.A., Secombes, C.J., Cvejic, A. and Hurlstone, A.F.L. (2016) 'CD4-transgenic zebrafish 

reveal tissue-resident Th2- and regulatory T cell-like populations and diverse mononuclear 

phagocytes', The Journal of immunology (1950), 197(9), pp. 3520-3530. doi: 

10.4049/jimmunol.1600959. 

Díaz-González, F. and Sánchez-Madrid, F. (2015) 'NSAIDs: Learning new tricks from old 

drugs', European journal of immunology, 45(3), pp. 679-686. doi: 10.1002/eji.201445222. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, 

M. and Gingeras, T.R. (2013) 'STAR: ultrafast universal RNA-seq aligner', Bioinformatics 

(Oxford, England), 29(1), pp. 15-21. doi: 10.1093/bioinformatics/bts635. 



Philip Marmon  Chapter 4 

157 
 

Dubois, R., Melmed, G., Henning, J. and Bernal, M. (2004) 'Risk of Upper Gastrointestinal 

Injury and Events in Patients Treated With Cyclooxygenase (COX)-1/COX-2 Nonsteroidal 

Antiinflammatory Drugs (NSAIDs), COX-2 Selective NSAIDs, and Gastroprotective 

Cotherapy: An Appraisal of the Literature', JCR: Journal of Clinical Rheumatology, 10(4), pp. 

178-189. doi: 10.1097/01.rhu.0000128851.12010.46. 

Edogawa, S., Sakai, A., Inoue, T., Harada, S., Takeuchi, T., Umegaki, E., Hayashi, H. and 

Higuchi, K. (2014) 'Down-regulation of collagen I biosynthesis in intestinal epithelial cells 

exposed to indomethacin: A comparative proteome analysis', Journal of proteomics, 103, pp. 

35-46. doi: 10.1016/j.jprot.2014.03.022. 

Ellett, F., Elks, P.M., Robertson, A.L., Ogryzko, N.V. and Renshaw, S.A. (2015) 'Defining the 

phenotype of neutrophils following reverse migration in zebrafish', Journal of leukocyte 

biology, 98(6), pp. 975-981. doi: 10.1189/jlb.3MA0315-105R. 

FitzGerald, G.A. and Patrono, C. (2001) 'The Coxibs, Selective Inhibitors of Cyclooxygenase-

2', The New England Journal of Medicine, 345(6), pp. 433-442. doi: 

10.1056/NEJM200108093450607. 

Fu, Z., Zhang, S., Wang, B., Huang, W., Zheng, L. and Cheng, A. (2020) 'Annexin A1: A 

double-edged sword as novel cancer biomarker', Clinica chimica acta, 504, pp. 36-42. doi: 

10.1016/j.cca.2020.01.022. 

Gan, T.J. (2010) 'Diclofenac: an update on its mechanism of action and safety profile', Current 

medical research and opinion, 26(7), pp. 1715-1731. doi: 10.1185/03007995.2010.486301. 

García Rodríguez, L.A. and Barreales Tolosa, L. (2007) 'Risk of Upper Gastrointestinal 

Complications Among Users of Traditional NSAIDs and COXIBs in the General Population', 

Gastroenterology (New York, N.Y. 1943), 132(2), pp. 498-506. doi: 

10.1053/j.gastro.2006.12.007. 

Gilroy, D.W., Colville-Nash, P.R., Willis, D., Chivers, J., Paul-Clark, M.J. and Willougby, D.A. 

(1999) 'Inducible cyclooxygenase may have anti-inflammatory properties', Nature medicine, 

5(6), pp. 698-701. doi: 10.1038/9550. 

Goulding, N.J., Flower, R.J., Perretti, M., Wheller, S.K., Croxtall, J.D. and Hannon, R. (1996) 

'Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration', 

Nature medicine, 2(11), pp. 1259-1262. doi: 10.1038/nm1196-1259. 

Grosser, T., Theken, K.N. and FitzGerald, G.A. (2017) 'Cyclooxygenase Inhibition: Pain, 

Inflammation, and the Cardiovascular System', Clinical pharmacology and therapeutics, 

102(4), pp. 611-622. doi: 10.1002/cpt.794. 



Philip Marmon  Chapter 4 

158 
 

Guillen-Ahlers, H., Tan, J., Castellino, F.J. and Ploplis, V.A. (2011) 'Effect of sulindac sulfide 

on metallohydrolases in the human colon cancer cell line HT-29', PloS one, 6(10), pp. e25725. 

doi: 10.1371/journal.pone.0025725. 

Gunning, P.W., Schevzov, G., Kee, A.J. and Hardeman, E.C. (2005) 'Tropomyosin isoforms: 

divining rods for actin cytoskeleton function', Trends in cell biology, 15(6), pp. 333-341. doi: 

10.1016/j.tcb.2005.04.007. 

Hawkey, C.J. and Langman, M.J.S. (2003) 'Non-steroidal anti-inflammatory drugs: overall 

risks and management. Complementary roles for COX-2 inhibitors and proton pump 

inhibitors', Gut, 52(4), pp. 600-608. doi: 10.1136/gut.52.4.600. 

Hawkey, C., Kahan, A., Steinbruck, K., Alegre, C., Baumelou, E., Begaud, B., Dequeker, J., 

Isomaki, H., Littlejohn, G., Mau, J. and Papazoglou, S. (1998) 'Gastrointestinal tolerability of 

meloxicam compared to diclofenac in osteoarthritis patients. International MELISSA Study 

Group. Meloxicam Large-scale International Study Safety Assessment', Rheumatology 

(Oxford, England), 37(9), pp. 937-945. doi: 10.1093/rheumatology/37.9.937. 

Hosie, J., Distel, M. and Bluhmki, E. (1997) 'Efficacy and Tolerability of Meloxicam versus 

Piroxicam in Patients with Osteoarthritis of the Hip or Knee', Clinical drug investigation, 13(4), 

pp. 175-184. doi: 10.2165/00044011-199713040-00001. 

Huang, D.W., Lempicki, R.A. and Sherman, B.T. (2008) 'Systematic and integrative analysis 

of large gene lists using DAVID bioinformatics resources', Nature protocols, 4(1), pp. 44-57. 

doi: 10.1038/nprot.2008.211. 

Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) 'Bioinformatics enrichment tools: 

paths toward the comprehensive functional analysis of large gene lists', Nucleic acids 

research, 37(1), pp. 1-13. doi: 10.1093/nar/gkn923. 

Hudson, N., Balsitis, M., Everitt, S. and Hawkey, C.J. (1993) 'Enhanced gastric mucosal 

leukotriene B4 synthesis in patients taking non-steroidal anti-inflammatory drugs', Gut, 34(6), 

pp. 742-747. doi: 10.1136/gut.34.6.742. 

Jones, R.G., Li, X., Gray, P.D., Kuang, J., Clayton, F., Samowitz, W.S., Madison, B.B., 

Gumucio, D.L. and Kuwada, S.K. (2006) 'Conditional deletion of β1 integrins in the intestinal 

epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal 

lethality', The Journal of cell biology, 175(3), pp. 505-514. 

Kasembeli, M.M., Bharadwaj, U., Robinson, P. and Tweardy, D.J. (2018) 'Contribution of 

STAT3 to inflammatory and fibrotic diseases and prospects for its targeting for treatment', 

International journal of molecular sciences, 19(8), pp. 2299. doi: 10.3390/ijms19082299. 



Philip Marmon  Chapter 4 

159 
 

Kirchner, T., Aparicio, B., Argentieri, D.C., Lau, C.Y. and Ritchie, D.M. (1997) 'Effects of 

tepoxalin, a dual inhibitor of cyclooxygenase/5-lipoxygenase, on events associated with 

NSAID-induced gastrointestinal inflammation', Prostaglandins, leukotrienes and essential fatty 

acids, 56(6), pp. 417-423. doi: 10.1016/S0952-3278(97)90593-7. 

Konig, J., Wells, J., Cani, P.D., Garcia-Rodenas, C.L., MacDonald, T., Mercenier, A., Whyte, 

J., Troost, F. and Brummer, R. (2016) 'Human Intestinal Barrier Function in Health and 

Disease', Clinical and translational gastroenterology, 7(10), pp. e196. doi: 

10.1038/ctg.2016.54. 

Kothari, H.V., Lee, W.H. and Ku, E.C. (1987) 'An alternate mechanism for regulation of 

leukotriene production in leukocytes: studies with an anti-inflammatory drug, sodium 

diclofenac', Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 921(3), pp. 

502-511. doi: 10.1016/0005-2760(87)90078-6. 

Krueger, F. (2013) 'Trim galore. A wrapper tool around Cutadapt and FastQC to consistently 

apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-

digested RRBS-type (Reduced Representation Bisufite- Seq) libraries', . 

Ku, E.C., Lee, W., Kothari, H.V. and Scholer, D.W. (1986) 'Effect of diclofenac sodium on the 

arachidonic acid cascade', The American journal of medicine, 80(4), pp. 18-23. doi: 

10.1016/0002-9343(86)90074-4. 

Kucharzik, T., Walsh, S.V., Chen, J., Parkos, C.A. and Nusrat, A. (2001) 'Neutrophil 

Transmigration in Inflammatory Bowel Disease Is Associated with Differential Expression of 

Epithelial Intercellular Junction Proteins', The American journal of pathology, 159(6), pp. 2001-

2009. doi: 10.1016/S0002-9440(10)63051-9. 

Ley, K., Laudanna, C., Cybulsky, M.I. and Nourshargh, S. (2007) 'Getting to the site of 

inflammation: the leukocyte adhesion cascade updated', Nature reviews. Immunology, 7(9), 

pp. 678-689. doi: 10.1038/nri2156. 

Love, M.I., Huber, W. and Anders, S. (2014) 'Moderated estimation of fold change and 

dispersion for RNA-seq data with DESeq2', Genome Biology (Online Edition), 15(12), pp. 550. 

doi: 10.1186/S13059-014-0550-8. 

Ma, L., Huang, C., Wang, X., Xin, D.E., Wang, L., Zou, Q.C., Zhang, Y.S., Tan, M., Wang, Y., 

Zhao, T.C., Chatterjee, D., Altura, R.A., Wang, C., Xu, Y.S., Yang, J., Fan, Y., Han, B., Si, J., 

Zhang, X., Cheng, J., Chang, Z. and Chin, Y.E. (2017) 'Lysyl Oxidase 3 Is a Dual-Specificity 

Enzyme Involved in STAT3 Deacetylation and Deacetylimination Modulation', Molecular cell, 

65(2), pp. 296-309. doi: 10.1016/j.molcel.2016.12.002. 



Philip Marmon  Chapter 4 

160 
 

Mäkelä, A., Kuusi, T. and Schröder, T. (1997) 'Inhibition of serum phospholipase-A2 in acute 

pancreatitis by pharmacological agents in vitro', Scandinavian Journal of Clinical & Laboratory 

Investigation, 57(5), pp. 401-407. doi: 10.3109/00365519709084587. 

Martin, G.R., Perretti, M., Flower, R.J. and Wallace, J.L. (2008) 'Annexin-1 modulates repair 

of gastric mucosal injury', American Journal of Physiology - Gastrointestinal and Liver 

Physiology, 294(3), pp. 764-769. doi: 10.1152/ajpgi.00531.2007. 

Masclee, G.M.C., Valkhoff, V.E., Coloma, P.M., de Ridder, M., Romio, S., Schuemie, M.J., 

Herings, R., Gini, R., Mazzaglia, G., Picelli, G., Scotti, L., Pedersen, L., Kuipers, E.J., van der 

Lei, J. and Sturkenboom, Miriam C. J. M (2014) 'Risk of Upper Gastrointestinal Bleeding From 

Different Drug Combinations', Gastroenterology, 147(4), pp. 784-792.e9. doi: 

10.1053/j.gastro.2014.06.007. 

Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L., Mushayamaha, T. and Thomas, P.D. 

(2021) 'PANTHER version 16: a revised family classification, tree-based classification tool, 

enhancer regions and extensive API', Nucleic acids research, 49(D1), pp. D394-D403. doi: 

10.1093/nar/gkaa1106. 

Mi, H., Muruganujan, A., Ebert, D., Huang, X. and Thomas, P.D. (2019) 'PANTHER version 

14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis 

tools', Nucleic acids research, 47(D1), pp. D419-D426. doi: 10.1093/nar/gky1038. 

Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X. and Thomas, P.D. (2019) 

'Protocol Update for large-scale genome and gene function analysis with the PANTHER 

classification system (v.14.0)', Nature protocols, 14(3), pp. 703-721. doi: 10.1038/s41596-019-

0128-8. 

Muñoz, E., Valero, R.A., Quintana, A., Hoth, M., Núñez, L. and Villalobos, C. (2011) 

'Nonsteroidal Anti-inflammatory Drugs Inhibit Vascular Smooth Muscle Cell Proliferation by 

Enabling the Ca2+-dependent Inactivation of Calcium Release-activated Calcium/Orai 

Channels Normally Prevented by Mitochondria', The Journal of biological chemistry, 286(18), 

pp. 16186-16196. doi: 10.1074/jbc.M110.198952. 

Oh, S.F., Pillai, P.S., Recchiuti, A., Yang, R. and Serhan, C.N. (2011) 'Pro-resolving actions 

and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine 

inflammation', The Journal of clinical investigation, 121(2), pp. 569-581. doi: 

10.1172/JCI42545. 

Pirmohamed, M., James, S., Meakin, S., Green, C., Scott, A.K., Walley, T.J., Farrar, K., Park, 

B.K. and Breckenridge, A.M. (2004) 'Adverse drug reactions as cause of admission to hospital: 



Philip Marmon  Chapter 4 

161 
 

prospective analysis of 18 820 patients', BMJ, 329(7456), pp. 15-19. doi: 

10.1136/bmj.329.7456.15. 

Quiros, M., Feier, D., Birkl, D., Agarwal, R., Zhou, D.W., García, A.J., Parkos, C.A. and Nusrat, 

A. (2020) 'Resolvin E1 is a pro-repair molecule that promotes intestinal epithelial wound 

healing', Proceedings of the National Academy of Sciences - PNAS, 117(17), pp. 9477-9482. 

doi: 10.1073/pnas.1921335117. 

Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) 'edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data', Bioinformatics, 26(1), pp. 139-

140. doi: 10.1093/bioinformatics/btp616. 

Serhan, C.N., Brain, S.D., Buckley, C.D., Gilroy, D.W., Haslett, C., O'Neill, L.A.J., Perretti, M., 

Rossi, A.G. and Wallace, J.L. (2007) 'Resolution of inflammation: state of the art, definitions 

and terms', The FASEB Journal, 21(2), pp. 325-332. doi: 10.1096/fj.06-7227rev. 

Sigthorsson, G., Simpson, R.J., Walley, M., Anthony, A., Foster, R., Hotz–Behoftsitz, C., 

Palizban, A., Pombo, J., Watts, J., Morham, S.G. and Bjarnason, I. (2002) 'COX-1 and 2, 

intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in 

mice', Gastroenterology (New York, N.Y. 1943), 122(7), pp. 1913-1923. doi: 

10.1053/gast.2002.33647. 

Singh, N., Jabeen, T., Sharma, S., Somvanshi, R.K., Dey, S., Srinivasan, A. and Singh, T.P. 

(2006) 'Specific binding of non-steroidal anti-inflammatory drugs (NSAIDs) to phospholipase 

A2: structure of the complex formed between phospholipase A2 and diclofenac at 2.7A ˚ 

resolution', Acta crystallographica. Section D, Biological crystallography, 62(Pt4), pp. 410-6. 

doi: https://doi.org/10.1107/S0907444906003660. 

Smith, P.D., Smythies, L.E., Shen, R., Greenwell-Wild, T., Gliozzi, M. and Wahl, S.M. (2011) 

'Intestinal macrophages and response to microbial encroachment', Mucosal immunology, 4(1), 

pp. 31-42. doi: 10.1038/mi.2010.66. 

Snelgrove, R.J., Jackson, P.L., Blalock, J.E., Hardison, M.T., Noerager, B.D., Kinloch, A., 

Gaggar, A., Shastry, S., Rowe, S.M., Shim, Y.M. and Hussell, T. (2010) 'A Critical Role for 

LTA4H in Limiting Chronic Pulmonary Neutrophilic Inflammation', Science (American 

Association for the Advancement of Science), 329(6000), pp. 90-94. 

Stsiapanava, A., Olsson, U., Wan, M., Kleinschmidt, T., Rutishauser, D., Zubarev, R.A., 

Samuelsson, B., Rinaldo-Matthis, A. and Haeggström, J.Z. (2014) 'Binding of Pro-Gly-Pro at 

the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide 



Philip Marmon  Chapter 4 

162 
 

hydrolase selective inhibitor', Proceedings of the National Academy of Sciences - PNAS, 

111(11), pp. 4227-4232. doi: 10.1073/pnas.1402136111. 

Sugimoto, M.A., Vago, J.P., Teixeira, M.M. and Sousa, L.P. (2016) 'Annexin A1 and the 

Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance', 

Journal of immunology research, 2016, pp. 8239258-13. doi: 10.1155/2016/8239258. 

Takeuchi, K. and Amagase, K. (2018) 'Roles of Cyclooxygenase, Prostaglandin E2 and EP 

Receptors in Mucosal Protection and Ulcer Healing in the Gastrointestinal Tract', Current 

pharmaceutical design, 24(18), pp. 2002-2011. doi: 10.2174/1381612824666180629111227. 

Thinwa, J., Segovia, J.A., Bose, S. and Dube, P.H. (2014) 'Integrin-mediated first signal for 

inflammasome activation in intestinal epithelial cells', The Journal of immunology (1950), 

193(3), pp. 1373-1382. doi: 10.4049/jimmunol.1400145. 

Umeda, K., Ikenouchi, J., Katahira-Tayama, S., Furuse, K., Sasaki, H., Nakayama, M., Matsui, 

T., Tsukita, S., Furuse, M. and Tsukita, S. (2006) 'ZO-1 and ZO-2 Independently Determine 

Where Claudins Are Polymerized in Tight-Junction Strand Formation', Cell (Cambridge), 

126(4), pp. 741-754. doi: 10.1016/j.cell.2006.06.043. 

van Erk, M.J., Wopereis, S., Rubingh, C., van Vliet, T., Verheij, E., Cnubben, N.H.P., 

Pedersen, T.L., Newman, J.W., Smilde, A.K., van der Greef, J., Heniks, H.F.J. and van 

Ommen, B. (2010) 'Insight in modulation of inflammation in response to diclofenac 

intervention: a human intervention study', BMC medical genomics, 3(1), pp. 5. doi: 

10.1186/1755-8794-3-5. 

Verheijen, M., Lienhard, M., Schrooders, Y., Clayton, O., Nudischer, R., Boerno, S., 

Timmermann, B., Selevsek, N., Schlapbach, R., Gmuender, H., Gotta, S., Geraedts, J., 

Herwig, R., Kleinjans, J. and Caiment, F. (2019) 'DMSO induces drastic changes in human 

cellular processes and epigenetic landscape in vitro', Scientific reports, 9(1), pp. 1-12. doi: 

10.1038/s41598-019-40660-0. 

Walker, J.A. and McKenzie, A.N.J. (2018) 'TH2 cell development and function', Nature 

reviews. Immunology, 18(2), pp. 121-133. doi: 10.1038/nri.2017.118. 

Wallace, J.L., Keenan, C.M. and Granger, D.N. (1990) 'Gastric ulceration induced by 

nonsteroidal anti-inflammatory drugs is a neutrophil-dependent process', The American 

journal of physiology, 259(3 Pt 1), pp. G462-G467. 

Wallace, J.L. (2008) 'Prostaglandins, NSAIDs, and Gastric Mucosal Protection: Why Doesn't 

the Stomach Digest Itself?', Physiological Reviews, 88(4), pp. 1547-1565. doi: 

10.1152/physrev.00004.2008. 



Philip Marmon  Chapter 4 

163 
 

Wallace, J.L. and Devchand, P.R. (2005) 'Emerging roles for cyclooxygenase‐2 in 

gastrointestinal mucosal defense', British journal of pharmacology, 145(3), pp. 275-282. doi: 

10.1038/sj.bjp.0706201. 

Wang, L., Wang, S. and Li, W. (2012) 'RSeQC: quality control of RNA-seq experiments', 

Bioinformatics (Oxford, England), 28(16), pp. 2184-2185. doi: 10.1093/bioinformatics/bts356. 

Wang, S., Ye, Q., Zeng, X. and Qiao, S. (2019) 'Functions of Macrophages in the Maintenance 

of Intestinal Homeostasis', Journal of immunology research, 2019, pp. 1512969-8. doi: 

10.1155/2019/1512969. 

Watanabe, T., Fujiwara, Y. and Chan, F.K.L. (2020) 'Current knowledge on non-steroidal anti-

inflammatory drug-induced small-bowel damage: a comprehensive review', Journal of 

gastroenterology, 55(5), pp. 481-495. doi: 10.1007/s00535-019-01657-8. 

White, G., Cotterill, A., Addley, M., Soilleux, E. and Greaves, D. (2011) 'Suppressor of cytokine 

signalling protein SOCS3 expression is increased at sites of acute and chronic inflammation', 

Journal of molecular histology, 42(2), pp. 137-151. doi: 10.1007/s10735-011-9317-7. 

Wysoker, A., Tibbetts, K. and Fennell, T. (2013) ‘Picard tools [0]’. 

Yang, H., Zhou, Y., Gu, J., Xie, S., Xu, Y., Zhu, G., Wang, L., Huang, J., Ma, H. and Yao, J. 

(2013) 'Deep mRNA Sequencing Analysis to Capture the Transcriptome Landscape of 

Zebrafish Embryos and Larvae', PloS one, 8(5), pp. e64058. doi: 

10.1371/journal.pone.0064058. 

Yazid, S., Norling, L.V. and Flower, R.J. (2012) 'Anti-inflammatory drugs, eicosanoids and the 

annexin A1/FPR2 anti-inflammatory system', Prostaglandins & other lipid mediators, 98(3-4), 

pp. 94-100. doi: 10.1016/j.prostaglandins.2011.11.005. 

Yun, C.C. and Kumar, A. (2015) 'Diverse roles of LPA signaling in the intestinal epithelium', 

Experimental cell research, 333(2), pp. 201-207. doi: 10.1016/j.yexcr.2014.11.013. 



Philip Marmon  Chapter 5 

164 
 

Chapter 5 

 

Modelling the immunomodulatory effects of NSAIDs in inflamed 

zebrafish larvae 

 

5.1 Abstract 

Chronic use of NSAIDs is common in patients requiring relief from inflammation and pain. It is 

evident that long-term therapeutic use of NSAIDs significantly increases the risk of adverse 

events in patients, however, for most people there exists little alternative. Generating a better 

understanding of NSAIDs effects on tissues commonly associated with NSAIDs-induced 

pathologies may aid healthcare professionals in prescribing the most appropriate drugs, with 

a more personalised approach. For example, it is currently unclear whether it is safe to 

prescribe NSAIDs to patients suffering from inflammatory bowel disease (IBD), since 

enteropathy represents one of the most common NSAIDs-induced pathologies. The data 

generated in Chapter 4 demonstrates that exposure to diclofenac induces an inflammatory 

phenotype in the intestine of healthy zebrafish. Here we predict that the immunomodulatory 

effects of NSAIDs in the intestine are dependent upon the inflammation status of the intestinal 

mucosa. We used dextran sodium sulphate (DSS) (0.1 g/L) to reproducibly induce neutrophilic 

inflammation in the mid/posterior gut of transgenic zebrafish larvae (tg(MPX:EGFP)i114) at 10 

days post fertilisation. Using this model of intestinal inflammation, we found that co-exposure 

of DSS with either diclofenac or meloxicam was sufficient to rescue this inflammatory 

phenotype. Therefore, our data suggests that the immunomodulatory effects of NSAIDs in the 

intestine are reliant on the health status of the tissue, suggesting a potentially protective role 

of COX-2 in the GI mucosa.
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5.2 Introduction 

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat a wide variety of medical 

conditions involving inflammation. For example, the database DrugCentral (University of New 

Mexico, US) indicates that the popular NSAID diclofenac is indicated to treat 18 different 

conditions ranging from rheumatoid arthritis to ocular pain. It is possible to argue that the 

“inflammatory” state of patients with different diseases will display a high degree of variability, 

ranging from systemic inflammation to highly localised inflammation. This implies that, once 

administered, an NSAID will act on both healthy and inflamed tissues, and that the topology 

of these tissues will be different in individual patients, and different conditions. By targeting 

inflamed tissues, NSAIDs will elicit their therapeutic effect. On the other hand, in healthy 

tissues NSAIDs may cause a disruption of homeostatic mechanisms and trigger toxicity 

pathways. A typical example of this scenario can be seen in patients with rheumatoid arthritis 

(RA) or osteoarthritis (OA) who are normally co-prescribed NSAIDs in order to relieve pain 

and inflammation in their joints. In addition to the positive therapeutic effect on their joints, 

these patients also experience a significantly higher risk of developing small intestine injury 

because of chronic NSAIDs administration (Tacheci et al., 2016). Moreover, patients with 

inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis (UC), have 

a higher risk of developing RA (Chen et al., 2020). This potential disease co-occurrence leads 

to the observation that some patients with RA will take NSAIDs while having a “healthy” 

gastrointestinal system, whereas in others NSAIDs will act on an “inflamed” gastrointestinal 

system. Predicting the effects of NSAIDs in these scenarios is not as straightforward as one 

would imagine. For example, in the specific instances mentioned above, it is unclear whether 

NSAIDs administration will exacerbate their disease, have a beneficial effect, or have no effect 

at all. Contrary to popular opinion, there is substantial evidence to suggest that NSAIDs may 

not exacerbate IBD phenotypes and may in fact be protective in UC patients (Hensley and 

Beales, 2015). However, there remains uncertainty with some groups reporting that NSAIDs 

are indeed capable of exacerbating IBD phenotypes (Okayama et al., 2007; Singh et al., 

2004). To add further layers of complexity to this clinical challenge, several studies have 

indicated that both aspirin and non-aspirin NSAIDs may decrease the risk of developing 

colorectal cancer (a type of cancer with a strong inflammatory component) (Barry, Fedirko and 

Baron, 2019; Dulai et al., 2016). Overall, these clinical observations indicate that considering 

the disease state of the tissue/organ of interest is essential in order to understand the multi-

scale modes-of-action of NSAIDs, and enhance both safety and efficacy assessment.          

In Chapter 4 we established that NSAIDs, in particular non-selective NSAIDs such as 

diclofenac, are capable of inducing inflammatory phenotypes in the intestine of healthy 

zebrafish. It is unclear, however, whether this paradoxical inflammation (potentially leading to 
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gastrointestinal toxicity) occurs both in healthy and inflamed intestines. The arising questions 

are: would existing inflammation in the gastrointestinal system be further exacerbated by 

NSAIDs administration? And do the effects of NSAIDs differ depending upon the inflammation 

status of the tissue? The GI tract represents the ideal tissue to help explore these questions 

since enteropathy represents one of the most common NSAIDs-induced pathologies, and 

since we are able to effectively model intestinal inflammation in the zebrafish larvae (Brugman, 

2016). Dextran sodium sulphate (DSS) is a chemical which has been used to robustly induce 

intestinal inflammation in both murine and larval zebrafish models (Eichele and Kharbanda, 

2017; Oehlers et al., 2013). This inflammation is characterised by an increased infiltration of 

neutrophils into the intestine of larval zebrafish similar to the inflammatory phenotype observed 

with exposure to diclofenac, as described in Chapter 4.  

Determining the role of NSAIDs in inflamed tissues, such as the intestine which is normally 

associated with NSAIDs-induced pathology, will be critical to informing the safe administration 

of NSAIDs in patients suffering from chronic illnesses. For example, determining NSAIDs 

safety profile in patients suffering with IBD would significantly aid in the prescription of the 

most appropriate anti-inflammatory medication, as it is currently unclear whether NSAIDs will 

exacerbate or ameliorate disease phenotypes in these patients (Moninuola et al., 2018). It is 

evident that NSAIDs are capable of considerably disrupting homeostatic mechanisms in 

healthy tissues, which leads to toxic phenotypes, and that simultaneously NSAIDs are 

effective at relieving inflammation and pain in some inflamed tissues. What remains unclear, 

is determining the role of NSAIDs in inflamed tissues that are typically associated with 

significant NSAIDs-induced pathology. This is vitally important for patients suffering from IBD, 

for example, since alternative anti-inflammatory therapies often come with significant health 

risks. For instance, taking opioids to treat pain or using corticosteroids to treat inflammation 

might well be effective (Mitsuyama et al., 1998), but the side effects of using such drugs often 

significantly outweigh the benefits. Especially if we consider treating mild common conditions, 

such as back pain or headaches, it is not realistic that someone would even consider taking 

opioid or steroidal medication, let alone be prescribed it. However, if it is not clear whether 

taking NSAIDs is safe, or even which NSAIDs might be safer than others, then what options 

exist for IBD patients requiring relief from inflammation and pain? 
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5.3 Hypotheses, aims, and objectives 

Here we hypothesise that the immunomodulatory effects of NSAIDs in the intestine will differ, 

depending upon the inflammation status of the GI tract. We predict that both diclofenac and 

meloxicam will exert anti-inflammatory effects in the intestine of inflamed zebrafish larvae, 

characterised by the abrogation of neutrophilic infiltration within the gut. 

We aim to address this hypothesis through a series of larval exposures to assess the effects 

of NSAIDs on neutrophil and macrophage trafficking within the intestine of inflamed zebrafish. 

We aim to validate the use of dextran sodium sulphate (DSS) for inducing intestinal 

inflammation, in the form of neutrophilic infiltration into the gut. We believe that this data will 

provide us with further insight into the immunomodulatory effects of NSAIDs within the GI tract. 

As in Chapter 4, the two NSAIDs tested here were selected on the basis of the 

pharmacological profile, as diclofenac is a dual COX inhibitor whereas meloxicam is a more 

selective COX-2 inhibitor. 

To address our aims we exposed both neutrophil (tg(MPX:EGFP)i114) and macrophage 

(tg(MPEG1:mCherry-CAAX)gl26) reporter lines to diclofenac, meloxicam, DSS independently, 

and DSS in combination with each NSAID. These exposure conditions allowed us to assess 

the reproducibility of the data generated in Chapter 4 and evaluate whether either diclofenac 

or meloxicam are able to rescue intestinal inflammation in DSS-exposed larvae. 
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5.4 Methods 

 

Figure 5.1. Methodological overview/vision for Chapter 5 experiments. 

 

5.4.1 Animal husbandry 

Adult wildtype AB (WT AB), tg(MPX:EGFP)i114 and tg(MPEG1:mCherry-CAAX)gl26 zebrafish 

lines were maintained in flow through aquaria under optimal spawning conditions at Brunel 

University London (pH 7.4 ± 0.3; conductivity 300-1500 µS; temperature 27±10C). For each 

experiment, embryos were collected from five to eight breeding groups formed by two males 

and four females. Embryos were subsequently rinsed with Tecniplast system water to remove 
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any small debris. Using a Motic stereo microscope, dead, unfertilised, or of poor-quality 

embryos were removed. The remaining embryos were pooled and randomly allocated in Petri 

dishes with a maximum density of 60 embryos per dish. Embryos were maintained in 

Tecniplast system water at 27±10C. A complete water change was carried out every 24 hours 

to maintain high water quality until hatching (3 dpf), when the larvae were used in the 

experiments. 

 

5.4.2 Ethics and protocol reproducibility 

Animals were treated in full accordance with the United Kingdom Animals (Scientific 

Procedures) Act regarding the use of animals in scientific procedures. All in vivo experiments 

involving protected zebrafish life stages were discussed at and approved by the Brunel Animal 

Welfare Ethical Review Body (AWERB) and carried out under relevant personal and project 

licences granted by the United Kingdom Home Office. All sections of this Chapter adhere to 

the ARRIVE Guidelines for reporting animal research (Kilkenny et al., 2010). A completed 

ARRIVE guidelines checklist is included in the Supplementary Material (Appendix 5.1). 

 

5.4.3 Preparation of stock solutions  

Powdered diclofenac sodium salt (Sigma-Aldrich; D6899; CAS No 15307-79-6), meloxicam 

sodium salt  hydrate (Sigma-Aldrich; M3935; CAS No 71125-39-8), and dextran sodium 

sulphate (MP Biomedical; 9011-18-1; colitis grade (36 – 50 kDa)) were weighed using a 

Sartorius Cubis microbalance, and dissolved in Tecniplast system water to achieve the desired 

master stock concentration. Once dissolved, the pH was adjusted to 7.4 ± 0.3. Similarly, 

powdered MS222 (Tricaine (Sigma-Aldrich; E10521; CAS No 886-86-2)) was weighed using 

a standard balance and dissolved in Tecniplast system water to generate a 4 g/L master stock 

(pH 7.4 ± 0.3). This master stock was used to generate working solutions of MS222 at 100 

mg/L (anaesthesia) and 300 mg/L (euthanasia; Schedule 1 method). All master stocks were 

kept at 40C for a maximum of seven days. 

 

5.4.4 Determination of maximum tolerated concentration of DSS (MTC) (3 – 5 dpf) 

MTC experiments for diclofenac and meloxicam were carried out prior to working with DSS 

and are detailed in Chapter 4. To determine the maximum tolerated concentration of DSS, 3 

dpf zebrafish larvae (WT AB) were exposed to a range of four concentrations, including a 

control group (Tecniplast system water). The allocation of each treatment group to specific 

columns of 24-well plates was randomised. Each group included 21 larvae, which were loaded 
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individually into single wells containing 1 ml of exposure media. The exposures lasted for 48 

hours, until larvae reached 5 dpf. DSS concentrations included 0, 2.5, 4.5, and 9 g/L. 

Throughout the experiments, 70% of the exposure media was replaced every 24 hours to 

maintain high water quality standards. The larvae were assessed twice daily for signs of 

toxicity or mortality. After 48 hours, the MTC was defined using a series of qualitative indicators 

of animal health as previously outlined in Winter et al. (2008), including loss of dorso-ventral 

balance, abnormal morphology, larval touch responsiveness using a seeker, and mortality 

indicated by the absence of heartbeat. 

 

5.4.5 DSS model validation by fluorescent microscopy of neutrophil trafficking at 5 

dpf 

Following the MTC, a model validation experiment was run for 48 hours of exposure with a 

concentration range of 0 – 2.5 g/L DSS (0, 0.65, 1.25, 2.25 g/L), using the transgenic neutrophil 

reporter line tg(MPX:EGFP)i114, in order to assess intestinal inflammation at 5 dpf. The 

allocation of each treatment group to specific columns of 24-well plates was randomised. Each 

group included 21 larvae, which were loaded individually into single wells containing 1 ml of 

exposure media. The exposures lasted for 48 hours, until larvae reached 5 dpf. Throughout 

the experiments, 70% of the exposure media was replaced every 24 hours to maintain high 

water quality standards. The larvae were assessed twice daily for signs of toxicity or mortality. 

At 5 dpf fluorescent in vivo imaging was carried out using a Leica DMi8 inverted fluorescent 

microscope on the mid/posterior intestine of each larvae (described below under 

‘Quantification of immune cell trafficking by fluorescence microscopy’). Image processing and 

statistical analysis was performed as described below under ‘Image analysis’ and ‘Statistical 

analyses’. 

 

5.4.6 Longer-term pilot exposure to assess safety of DSS (3 – 10 dpf) 

Pilot exposures for diclofenac and meloxicam were carried out prior to working with DSS and 

are detailed in Chapter 4. Once a maximum tolerated concentration of DSS was determined 

in non-protected life stages, a small-scale pilot study was carried out to establish an 

appropriate concentration for 168 hours of exposure. We aimed to find a concentration which 

induces neutrophilic inflammation in the gut and is not associated with general toxicity or 

lethality. Initially, DSS concentrations ranged from 0 to 1.3 g/L (0, 0.325, 0.65, and 1.3 g/L), 

which were randomly distributed across 24-well plates, with 1 ml of medium and one larva per 

well. WT AB larvae were used, and the number of larvae per group was 12. However, by 48 

hours it became apparent that each exposure concentration was inducing noticeable levels of 



Philip Marmon  Chapter 5 

171 
 

toxicity, which would likely lead to mortality, and so the experiment was terminated via 

Schedule 1 overdose of MS222 (300 mg/L) (Animals (Scientific Procedures) Act 1986). The 

pilot exposure was repeated with an adjusted concentration range of 0 to 0.1 g/L (0, 0.001, 

0.0033, 0.01, 0.033, and 0.1 g/L). Exposure medium and WT AB larvae at 3 dpf were 

distributed randomly across 24-well plates, with 1 ml of medium and one larva per well. The 

number of larvae per group was 21. 70% of the exposure media was replaced every 24 hours, 

and from 6 dpf larvae were fed Sparos Zebrafeed (<100 µM) daily. Larval health was assessed 

twice a day, and any larvae found to be showing signs of toxicity were culled via Schedule 1 

overdose of MS222. At 10 dpf, the pilot experiment was terminated via Schedule 1 overdose 

of MS222, and the top concentration demonstrating no signs of general toxicity or lethality was 

used to inform the design of the final in vivo experiments. 

 

5.4.7 DSS model validation by fluorescent microscopy of neutrophil trafficking at 13 

dpf 

Longer-term exposure experiments were carried out to validate the DSS-induced model of 

intestinal inflammation, characterised by increased neutrophilic infiltration into the 

mid/posterior intestine. We used tg(MPX:EGFP)i114 larvae at 3 dpf and a concentration range 

of 0 to 0.1 g/L (0, 0.001, 0.0033, 0.01, 0.033, and 0.1 g/L). 1 ml of medium and one larva were 

distributed randomly across 24-well plates. Each group consisted of 28 larvae. 70% of the 

exposure media was replaced every 24 hours, and from 6 dpf larvae were fed Sparos 

Zebrafeed (<100 µM) daily. Larval health was assessed twice a day, and any larvae found to 

be showing signs of toxicity were culled via Schedule 1 overdose of MS222. At 13 dpf, larvae 

were imaged using the Leica DMi8 inverted fluorescent microscope, in order to quantify 

neutrophils within the intestine, as described below under ‘Quantification of immune cell 

trafficking by fluorescence microscopy’. Image processing and data analysis was carried out 

as described below under ‘Image analysis’. The top concentration of DSS which demonstrated 

a statistically significant upregulation of neutrophilic infiltration within the mid/posterior 

intestine was selected for use in the final in vivo experiments. 

 

5.4.8 In vivo exposure experiments for the quantification of immune cell trafficking (3 

– 10 dpf) 

To characterise the effects of diclofenac and meloxicam on the inflamed intestine of zebrafish 

larvae, two transgenic reporter lines were used to quantify the intestinal infiltration of 

neutrophils – tg(MPX:EGPF)i114 – and macrophages – tg(MPEG1:mCherry-CAAX)gl26 – via 

fluorescent microscopy and in vivo imaging. Diclofenac and meloxicam were tested at six 
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concentrations, including a control group (clean Tecniplast system water). Diclofenac test 

groups included: 1.) control (Tecniplast system water); 2.) DSS (0.1 g/L); 3.) diclofenac (1.33 

mg/L); 4.) diclofenac (0.67 mg/L) + DSS (0.1 g/L); 5.) diclofenac (1.33 mg/L) + DSS (0.1 g/L); 

and 6.) diclofenac (2.66 mg/L) + DSS (0.1 g/L). Meloxicam test groups included: 1.) control 

(Tecniplast system water); 2.) DSS (0.1 g/L); 3.) meloxicam (6.75 mg/L); 4.) meloxicam (3.38 

mg/L) + DSS (0.1 g/L); 5.) meloxicam (6.75 mg/L) + DSS (0.1 g/L); and 6.) meloxicam (13.5 

mg/L) + DSS (0.1 g/L). Individual tg(MPX:EGFP)i114 or tg(MPEG1:mCherry-CAAX)gl26 larvae 

at 3 dpf were randomly allocated to individual wells of 24-well plates containing 1 ml of media 

(n = 18 per treatment group). Throughout the experiments, all plates were kept at 27±10C. The 

exposures lasted for 168 hours until 10 dpf with daily media replacement (70%) to ensure the 

maintenance of high water quality and feeding from 6 to 10 dpf (Zebrafeed <100 µM). Health 

was monitored twice every 24 hours, with any fish showing signs of toxicity culled via Schedule 

1 overdose of MS222. All experiments were run in duplicate, and each compound was tested 

over two days; on each day, 18 larvae per treatment group underwent imaging. This meant 

that 36 larvae per treatment group were used in total for each experiment; power calculations, 

using pilot data, estimated between 20 and 31 larvae (80 – 95% power, respectively) would 

be the required number of replicates in order to reach statistical significance. 

 

5.4.9 Quantification of immune cell trafficking by fluorescence microscopy 

At the end of the exposure period, 10 dpf zebrafish larvae were anaesthetised using 100 mg/L 

of MS222. Once immobile, larvae were transferred to a solution of 10 mg/mL low melting point 

agarose/100 mg/L MS222 and mounted onto microscopy slides fitted with silicone isolating 

rings. Under a stereo microscope, larvae were orientated on their sides. Once successfully 

orientated, each slide was moved onto a dry bath (40C) for approximately 20 seconds to 

facilitate the agarose semi-solidification, and subsequently transferred onto the stage of a 

Leica DMi8 inverted fluorescent microscope, where individual larvae were imaged at 10x 

magnification. Brightfield (BF), and either GFP (neutrophil reporter) or mCherry (macrophage 

reporter) filters were used to capture overlay and individual filter images of the mid/posterior 

gut region of each larva. Immediately after imaging, larvae were culled via Schedule 1 

overdose of MS222 (300 mg/L). 

 

5.4.10 Image analysis 

Images were processed using the software ‘ImageJ’ (version 1.52a). Overlay images were 

generated for each larva using the raw individual filter images. The ‘Fire’ look-up table was 

used on all images to aid in the visual distinction of individual immune cells. Manual 
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quantification of immune cells within the mid/posterior gut region of each larva was performed, 

and then recorded using the software ‘GraphPad Prism 8’ (version 8.4.3). 

 

5.4.11 Statistical analyses 

Normality tests (D’Agostino & Pearson test) and parametric one-way ANOVA (analysis of 

variance), using ‘GraphPad Prism 8‘ (version 8.4.3), were used to determine both the 

Gaussian distribution and statistical significance of the in vivo imaging data. Dunnett’s test for 

multiple comparisons was used to assess the difference between the control group and each 

test group per experiment (adjusted P value; α = 0.05). 

 

5.4.12 In vivo imaging control group analyses 

Water control groups from Chapter 4 and Chapter 5 in vivo imaging experiments were 

compared using parametric one-way ANOVA (Tukey’s multiple comparisons) to assess the 

variability between controls over time. DSS control groups were similarly compared using non-

parametric T-test’s (Mann-Whitney) in order to better understand the variability between these 

groups over time, and between experiments. Non-parametric T-tests were used as each 

comparison was between only two groups. Non-parametric tests were used if the data was 

deemed non-normal using D’Agostino & Pearson’s normality test.  

 

5.5 Results 

5.5.1 Determination of DSS maximum tolerated concentration (MTC) (3 – 5 dpf) 

After 48 hours of exposure to 9, 4.5, and 2.5 g/L of DSS, 95.5%, 59.1% and 31.3% of the 

larvae in these test groups were unresponsive with no obvious heartbeat, respectively. The 

remaining larvae in these test groups appeared normal and were responsive to seeker. No 

toxicity or mortality was detected in the control group, and larvae were freely responsive to 

seeker stimulus. These data were surprising since typical concentrations in larval models of 

DSS-induced colitis from the literature range from 2.5 to 5 g/L (Oehlers et al., 2013).  

 

5.5.2 DSS model validation (3 – 5 dpf) 

Due to the surprisingly high levels of toxicity induced by the concentrations of DSS in the 

previous experiment, we adjusted the concentration range in order to successfully establish a 

maximum tolerated concentration of DSS for 48 hours exposure (Figure 5.2). In the test group 
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exposed to 2.25 g/L DSS, 22.7% of larvae were found to be unresponsive with no obvious 

heartbeat after 48 hours. All of the larvae in the remaining test groups (0, 0.65, and 1.25 g/L 

DSS) were healthy with no obvious signs of toxicity. Therefore, the maximum tolerated 

concentration of DSS was set at 1.25 g/L. After 48 hours of exposure larvae were imaged 

using fluorescent microscopy, in order to establish whether increased infiltration of neutrophils 

in the intestine had occurred. Test groups 1.25 g/L and 2.25 g/L produced a statistically 

significant upregulation of neutrophil infiltration into the mid/posterior intestine of transgenic 

larvae (tg(MPX:EGFP)i114) at 5 dpf (One-way ANOVA; P<0.05 and P<0.001, respectively 

(Dunnett’s multiple comparisons). Although test group 0.65 g/L was not found to be statistically 

significant using ANOVA, a multiple comparisons test for linear trend was found to be 

significant from left to right (P<0.05). 
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Figure 5.2. DSS model validation from 3 – 5 dpf. Red horizontal lines represent the mean number of 

immune cells per group; black dashed lines represent the quartiles; red stars indicate the level of 

statistical significance of the treatment groups compared with control group (* = P < 0.05; ** = P < 0.001 

(one-way ANOVA; Dunnett’s multiple comparisons)). N = 17, 20, 19, 15 (0 – 2.25 g/L, respectively). 
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5.5.3 Pilot exposure to determine the longer-term safety of DSS (3 – 10 dpf) 

A Kaplan Meier plot was generated using survival data from the pilot exposure to diclofenac 

(Figure 5.3). After 96 hours of exposure two larvae in the control group showed signs of 

sickness, and after 120 hours one larva in the 0.001 g/L DSS group also showed signs of 

toxicity, and so these larvae were immediately culled via Schedule 1 overdose of MS222. The 

remaining larvae in all test groups appeared healthy and responsive to stimulus, showing no 

signs of toxicity up to 168 hours of exposure (3 – 10 dpf). These data suggested that 0.1 g/L 

DSS was an appropriate concentration for the final in vivo exposure experiments, since there 

were no obvious signs of toxicity in this test group at 10 dpf. 
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Figure 5.3. Kaplan Meier survival analysis for DSS exposed larvae. 3 – 10 dpf exposure period 

during which any larvae showing signs of toxicity were culled via schedule 1 overdose of MS222. 
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5.5.4 Validation of DSS-induced intestinal inflammation (3 – 13 dpf) 

Fluorescent microscopy and image analysis revealed that 0.01, 0.033, and 0.1 g/L 

concentrations of DSS induced a statistically significant increase of neutrophilic infiltration into 

the mid and posterior gut of transgenic larvae (tg(MPX:EGFP)i114) at 13 dpf (Figure 5.4). These 

data confirm that 0.1 g/L of DSS represents an appropriate concentration for the induction of 

intestinal inflammation. Hence, we selected 0.1 g/L of DSS for use in the following large-scale 

in vivo exposure experiments. 
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Figure 5.4. Validation of DSS-induced intestinal inflammation at 13 dpf. Red horizontal lines 

represent the mean number of immune cells per group; black dashed lines represent the quartiles; red 

stars indicate the level of statistical significance of the treatment groups compared with control group 

(one-way ANOVA (Dunnett’s multiple comparisons) * = P < 0.05; ** = P < 0.01; *** = P < 0.001). N = 

27, 22, 21, 18, 25, 26 (0 – 0.1 g/L, respectively). 
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5.5.5 Quantification of NSAIDs-mediated immune cell trafficking in the intestine of 

inflamed larvae 

Larvae exposed to DSS (0.1 g/L) demonstrated a statistically significant upregulation of 

neutrophils (MPX:EGFP reporter cells) into the mid/posterior intestine at 10 dpf, compared 

with control fish (one-way ANOVA (Dunnett’s multiple comparisons; P < 0.05) (Figure 5.6). In 

the first experiment in Figure 5.5, DSS did not produce a statistically significant up-regulation 

of neutrophils into the intestine, although a similar trend of increase was seen. This was 

surprising considering the pilot data results suggesting statistically significant effects from 

concentrations of DSS as low as 0.01 g/L (Figure 5.4). DSS also appeared to have no 

statistically significant effect on the numbers of macrophages (mCherry +ve reporter cells) 

infiltrating the intestine (Figure 5.7, and Figure 5.8). The mean number of neutrophils 

infiltrating the GI mucosa in larvae exposed to 1.33 mg/L diclofenac was not significantly 

higher than in the control group (one-way ANOVA (Dunnett’s multiple comparisons)) (Figure 

5.5), which supports the data generated in Chapter 4. Diclofenac at 1.33 mg/L was selected 

for the Chapter 5 experiments based on the originally analysed Chapter 4 data, which 

suggested that 1.33 mg/L would be sufficient for inducing intestinal inflammation. However, 

re-analysis of the Chapter 4 data suggested that 5.31 mg/L would have been a more 

appropriate concentration to use. There was no statistically significant effect on the numbers 

of macrophages residing within the intestine of our larvae exposed to diclofenac (1.33 mg/L) 

(Figure 5.7), which is in conflict with the data produced in Chapter 4. Equally, exposure to 

meloxicam (6.75 mg/L) did not produce any statistically significant effects on immune cell 

trafficking into the mid/posterior intestine, compared with control larvae (Figure 5.6, and Figure 

5.8). Larvae exposed to diclofenac (0.67, 1.33, and 2.66 mg/L) combined with 0.1 g/L DSS, 

showed no statistically significant effects on neutrophil trafficking within the intestine, when 

compared with DSS (0.1 g/L), or diclofenac (1.33 mg/L) alone (Figure 5.5). Similarly, a co-

exposure of meloxicam (3.38, and 6.75 mg/L) and DSS (0.1 g/L) did not result in any significant 

increase or decrease in neutrophilic infiltration, compared with either DSS (0.1 g/L) or 

meloxicam (6.75 mg/L) alone (Figure 5.6). The irreproducibility of diclofenac and meloxicam 

to induce effects on macrophage migration into the intestine, and the lack of DSS-induced 

effects on macrophage numbers, indicates that macrophages may not be reliable indicators 

of intestinal inflammation (Figure 5.7, and Figure 5.8). 

It is important to note that several larvae exposed to ‘meloxicam (13.5 mg/L) + DSS (0.1 g/L)’ 

showed unexpected signs of toxicity prior to imaging at 10 dpf during the first experiment with 

meloxicam. Therefore, the larvae in this test group were not used for imaging and they were 

immediately culled via schedule 1 overdose of MS222. This test group was not used for any 

further experiments. 
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Figure 5.5. Quantification of diclofenac-mediated neutrophil trafficking in the intestine of 

inflamed larvae. Red horizontal lines represent the mean number of immune cells per treatment group; 

black dashed lines represent the quartiles. One-way ANOVA was used to assess for statistical 

significance of the data. N = 29, 32, 28, 30, 30, 31 (treatment groups, left to right). 
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Figure 5.6. Quantification of meloxicam-mediated neutrophil trafficking in the intestine of 

inflamed larvae. Red horizontal lines represent the mean number of immune cells per treatment group; 

black dashed lines represent the quartiles; red stars indicate the level of statistical significance of the 

treatment groups compared with the control group (One-way ANOVA (Dunnett’s multiple comparisons); 

* = P < 0.05). N = 33, 35, 31, 32, 32 (treatment groups, left to right). 
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Figure 5.7. Quantification of diclofenac-mediated macrophage trafficking in the intestine of 

inflamed larvae. Red horizontal lines represent the mean number of immune cells per treatment group; 

black dashed lines represent the quartiles. Non-parametric one-way ANOVA performed, as majority of 

treatment groups not normally distributed (only ‘Control’ and ‘Diclofenac (2.66mg/L)+DSS’ normally 

distributed). N = 32, 30, 30, 29, 31, 31 (Treatment groups, left to right). 
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Figure 5.8. Quantification of meloxicam-mediated macrophage trafficking in the intestine of 

inflamed larvae. Red horizontal lines represent the mean number of immune cells per treatment group; 

black dashed lines represent the quartiles. Ordinary one-way ANOVA used to assess the data for 

statistical significance.  N = 34, 30, 33, 32, 33 (Treatment groups, left to right).
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5.5.6 In vivo imaging control group analyses 

The water control groups from each of the imaging experiments (Chapter 4 and 5) were 

compared using one-way ANOVA, in order to understand the variability between controls 

over time and between experiments. Figure 5.9 (A) represents the four control groups from 

the imaging experiments using the neutrophil reporter line (tg(MPX:EGFP)i114) in order of 

time, from earliest to latest experiment. It is clear to see a trend of increasing median 

numbers of neutrophils within the gut of the control fish over time. The normally distributed 

data revealed a statistically significant difference between the control groups (one-way 

ANOVA; P<0.0001), with Tukey’s multiple comparison test revealing a significant difference 

between control groups one, two, and three, with control group 4 (Adjusted P value <0.0001, 

P<0.0001, P<0.0002, respectively). Figure 5.9 (B) represents the four control groups from 

the imaging experiments using macrophage reporter line (tg(MPEG1:mCherry-CAAX)gl26) in 

order of time, from earliest to latest experiment. It is clear to see a trend of increasing 

median numbers of neutrophils within the gut of the control fish over time. The normally 

distributed data revealed a statistically significant difference between the control groups 

(one-way ANOVA; P<0.0001), with Tukey’s multiple comparison test revealing a significant 

difference between control groups one and three, one and four, and two and four (adjusted 

P value < 0.0001). 
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Figure 5.9. In vivo imaging water control group analyses of (A) neutrophil (tg(MPX:EGFP)i114) 

and (B) macrophage (tg(MPEG1:mCherry-CAAX)gl26) reporter lines. Red horizontal lines represent 

the mean number of cells per treatment group; the black dashed lines represent the quartiles; the red 

stars represent statistical significance (One-way ANOVA (Tukey’s multiple comparisons); *** = P < 

0.0002; **** = P < 0.0001). (A) N = 24, 31, 29, 33; (B) N = 29, 32, 32, 34. 

 



Philip Marmon  Chapter 5 

181 
 

The DSS control groups from the in vivo imaging experiments in Chapter 5 were compared, 

in order to better understand the variability between experiments (Figure 5.10). It is clear that 

between the experiments there is a statistically significant difference in the numbers of 

immune cells infiltrating the mid/posterior intestine between experiments, indicating a high 

level of variability in the control groups. 
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Figure 5.10. In vivo imaging DSS control group analyses of (A) neutrophil (tg(MPX:EGFP)i114) 

and (B) macrophage (tg(MPEG1:mCherry-CAAX)gl26) reporter lines. Red horizontal lines 

represent the mean number of cells per treatment group; the black dashed lines represent the 

quartiles; the red stars represent statistical significance (Non-parametric T-test (Mann-Whitney); * = P 

< 0.05; *** = P < 0.0001). (A)  N = 32 & 35; (B) N = 30. 

 

5.6 Discussion 

The aim of our study was to try and characterise the immunomodulatory effects of NSAIDs in 

inflamed tissues. It is well known that NSAIDs are capable of inducing significant adverse 

effects in the GI tract, kidney, liver, and cardiovascular system. However, they are also 

effective at alleviating pain and inflammation at specific damage sites. We believe that 

problems arise due to the systemic exposure associated with NSAIDs administration, whereby 

homeostasis in ‘healthy’ tissues is disrupted through the inhibition of constitutive prostaglandin 

synthesis, and the additional downregulation of important pro-resolution and anti-inflammatory 

proteins. Perhaps unsurprisingly, considering their purpose, NSAIDs seem to afford protection 

to tissues in a state of inflammation, including the intestine. Although this may seem obvious, 

NSAIDs are known to induce severe GI complications in the clinic and we have previously 

demonstrated that diclofenac exposure leads to neutrophilic inflammation in the intestine, in 

addition to modulation of several key mediators of inflammation (refer to Chapter 4 results for 

details). In this Chapter we show that the colitis-inducing chemical DSS is able to induce 

neutrophilic inflammation in the mid/posterior intestine of zebrafish larvae at 10 dpf (Figure 
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5.4). However, our original experimental design for this Chapter was based on previously 

analysed data in Chapter 4 which suggested that 1.33 mg/L of diclofenac would be sufficient 

to induce intestinal inflammation. After re-analysis of the data it appears that 1.33 mg/L 

diclofenac does not significantly upregulate the infiltration of neutrophils into the intestine, and 

5.31 mg/L would have been the appropriate concentration to use. The current experimental 

design for Chapter 5 using increased concentrations of diclofenac may have led to some 

statistically significant data being produced. There is a trend of increased neutrophilic 

infiltration into the intestine of zebrafish exposed to 1.33 mg/L diclofenac, however, the 

threshold for statistical significance was not met. Nevertheless, it is worth discussing the 

effects of NSAIDs on inflamed tissues from sources in the literature, in order to gain a better 

understanding of what those effects might have looked like. 

Since NSAIDs are prescribed, or bought over the counter, to treat a multitude of inflammatory 

conditions it is inevitable that exposure to both healthy and inflamed tissues will occur in these 

patients. For example, rheumatoid arthritis (RA) and osteoarthritis (OA) patients are often 

prescribed NSAIDs to relieve pain and inflammation in their diseased tissues. However, 

NSAIDs formulations and delivery methods are not currently targeted to specific tissues 

(Crofford, 2013), although topical NSAIDs are the least systemic application, and thus 

probably the least toxic (Derry, Moore, and Rabbie, 2012). Nonetheless, there remains a level 

of systemic exposure in non-inflamed tissues which may result in adversity in cases of patients 

with increased risk factors and chronic exposure. It is evident that patients taking NSAIDs 

chronically, such as in cases of RA and OA, often present with a significant risk of serious 

gastrointestinal adverse events (Tacheci et al., 2016). Moreover, there is also evidence to 

suggest that NSAIDs may actually increase TNF-α production in the synovial joints of RA 

patients, exacerbating inflammation in their diseased tissue (Page et al., 2010). Clearly there 

exists uncertainty as to whether NSAIDs are in fact beneficial to RA patients, or whether they 

are likely to exacerbate their disease. Drawing parallels with the uncertainty surrounded 

NSAIDs effects in RA patients, questions surrounding NSAIDs use and the implications for 

IBD patients have been under debate in the literature for many years. There are many 

examples of experimental data which suggest that NSAIDs exacerbate IBD phenotypes in 

various animal models, and also plenty of other evidence to the contrary. For example, one 

study demonstrated that DSS-induced colonic lesions in rats were exacerbated through the 

administration of either non-selective, COX-1 selective, or COX-2 selective NSAIDs 

(Okayama et al., 2007). However, one review determined that it is unclear whether the use of 

NSAIDs by patients with IBD increases the risk of inducing flare ups, or indeed whether COX-

2 selective drugs provide a safer alternative (Klein and Eliakim, 2010). Following this, a case-

controlled study examining the association between the use of NSAIDs and flare up of IBD 
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concluded that NSAIDs were not associated with any increased risk of IBD relapse and may 

actually be protective in patients with ulcerative colitis (UC) (Hensley and Beales, 2015). 

Furthermore, three years later a systematic meta-analysis concluded that no reliable 

association between NSAIDs use and the risk of exacerbating IBD could be found in the 

literature (Moninuola et al., 2018). It is clear that more work is needed to identify the 

mechanisms at play to inform safety decisions about appropriate NSAIDs selection. 

The mechanism by which DSS induces intestinal inflammation is generally thought to arise 

from disruption of the intestinal epithelial cell (IEC) lining, which leads to luminal contents 

entering the mucosa and initiating an inflammatory response. Hence, DSS does not directly 

induce intestinal inflammation but rather directly injures IECs, and destabilises the mucus 

layer, which inevitably leads to disruption of intestinal barrier function (Eichele and Kharbanda, 

2017). In zebrafish larval models of colitis a concentration of 0.5% (5 g/L) is typically used for 

an exposure period of 3 – 6 dpf yielding a mortality rate of around 10% (Oehlers et al., 2013). 

Our long-term exposure period of 3 – 10 dpf meant we were able to use a significantly lower 

concentration of DSS (0.01%; 0.1 g/L), which allowed us to steer clear of mortality whilst 

maintaining a reproducible level of intestinal inflammation. Moreover, since our aim was not 

to specifically model colitis or generate intestinal ulceration, but simply to induce tissue-

specific inflammation, we were able to use much lower concentrations of DSS than typical 

models of colitis. Interestingly, murine models of DSS-induced colitis use doses between 2 – 

5% in their drinking water, although comparative doses in zebrafish larvae are incredibly toxic 

and lead to significant levels of mortality (Oehlers et al., 2013). This discrepancy could be due 

to the exposure route of each model since whole larval immersion means that multiple tissues 

are exposed, whereas the murine models provide direct exposure to the GI tract through the 

drinking water. However, it is certainly worth considering what concentrations between ten- or 

even hundred-fold higher than larval models may have on murine models at the systemic level. 

Do such high concentrations of DSS lead to undetected toxicity in tissues beyond the 

gastrointestinal tract in these murine models? Due to the acute nature of several studies, 

incredibly high concentrations of DSS are used to rapidly induce significant lesions/ulcerations 

and bleeding. However, the downside of using such high concentrations is that mortality rates 

also increase. Animals with such severe symptoms, on the brink of mortality, are surely not 

representative of the human disease state. Hence, attempting to model the effects of drugs 

like NSAIDs in animals so close to death, with symptoms so severe they are past the point of 

return, seems like a fruitless exercise. This could perhaps explain the discrepancy between 

some of the data in the literature mentioned previously. For example, Okayama et al. (2007) 

carried out exposures using 2.5% DSS in rats over a period of six days, resulting in severe 

lesions which were exacerbated by NSAIDs administration. Whereas the human case-
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controlled study carried out by Hensley and Beales (2015) found that NSAIDs did not 

exacerbate IBD and may in fact be protective to UC patients. If we consider that the DSS-

exposed rats could be significantly unwell, beyond the IBD-like phenotypes, it may be 

unsurprising that the colitis phenotypes are exacerbated by further chemical assault in the 

form of NSAIDs administration. This rationale helped inform our DSS concentration selection, 

since our aim was to simply model neutrophilic inflammation in the intestine in order to assess 

the immunomodulatory effects of NSAIDs in inflamed tissue and stay well clear of mortality. 

It is unclear how NSAIDs may help to rescue inflammation in inflamed tissues at the 

mechanistic level. However, it stands to reason that if the inducible COX-2 isoform is 

upregulated in response to inflammatory stimuli, it may provide a level of tissue protection 

attributed to the homeostatic and pro-resolving functions associated with COX-2 (Wallace and 

Devchand, 2005). There is some evidence in the literature to support this theory, whereby 

aspirin administered to a rat model of gastritis actually reduced gastric damage and decreased 

the adherence of leukocytes within mesenteric venules (Souza et al., 2003). Perhaps if a 

higher concentration of diclofenac was used in our exposure experiments, we may have been 

able to see a similar statistically significant trend. Although it is worth noting that the COX-2 

selective NSAID rofecoxib actually exacerbated gastritis in that study, however, direct 

comparison between NSAIDs effects within the stomach and within the intestine should be 

made with caution. Nonetheless, this data may have important implications for patients 

suffering from chronic inflammatory conditions, such as RA or IBD, who require long-term 

therapeutic relief from inflammation and pain. Together the evidence suggests that, at least 

for IBD patients, administration of NSAIDs may produce less GI toxicity than in healthy 

patients. Perhaps paradoxically the upregulation of COX-2 in the GI mucosa provides a 

sufficient level of protection from NSAIDs-induced damage in the gut. 

 

5.6.1 Control group analyses  

In order the better understand some of the variability between the water and DSS control 

groups between experiments, we compared the numbers of infiltrating neutrophils and 

macrophages from each in vivo imaging experiment over time (Figure 5.9 and Figure 5.10). 

Interestingly, both the water controls and DSS controls demonstrated a statistically significant 

increase in the numbers of immune cells residing within the mid/posterior intestine of zebrafish 

larvae at 10 dpf over time. These increases appear to complement each other, and it appears 

likely from these analyses that what might be a considered a baseline value in one experiment, 

may not be an accurate baseline from which to assess subsequent experiments from. These 

results highlight the importance of the control groups, as it is clear that it may not be possible 
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to identify a threshold value for the number of immune cells considered to induce inflammation 

within the intestine. This baseline value is likely to change significantly from exposure to 

exposure. It is not clear what factors might affect these changes in baseline, perhaps the age 

of the breeding stock has an impact, or perhaps the different breeding pairs lead to offspring 

with varied levels of GFP expression. 

 

5.6.2 Study limitations and future refinements 

One limitation could be that we ran co-exposures of DSS with each NSAID, rather than 

sequential exposures (i.e. exposure to DSS followed by exposure to NSAID). Although this is 

common practice, it means we cannot be fully certain that either NSAID would have reversed 

DSS-induced inflammation in the intestine, or whether they actually prevented the initiation of 

neutrophilic inflammation in the first place. It may be plausible that NSAIDs are able to prevent 

the initial damage to the mucosal barrier, which is normally induced by DSS, however it is 

unclear how this might work. Perhaps the combination of chemicals interact with each other 

in a specific way rendering them unable to exert their toxic effects on IECs, or perhaps DSS 

behaves as expected and NSAIDs subsequently rescue this phenotype. Interestingly, the top 

co-exposure group concentration in the meloxicam experiments (13.5 mg/L + DSS 0.1 g/L) 

was not used due to toxicity at 10 dpf. Although we were unable to image these fish, it suggests 

that perhaps mixture effects beyond the GI tract increased the level of toxicity in these larvae. 

Due to the increased cardiovascular risk factors associated with COX-2 selective NSAIDs, it 

may be possible to hypothesise that the additional DSS insult exacerbated these effects, 

leading to toxicity. However, this is only speculation since no analysis was possible on these 

samples. Nevertheless, further work would be needed to fully establish the processes 

involved.  

Another limitation revealed by our imaging data concerns the use of the transgenic 

macrophage reporter strain in assessing the effects of NSAIDs in the intestine. We found that 

the data generated in Chapter 4 using the tg(MPEG1:mCherry-CAAX)gl26 reporter line was not 

reproducible in the subsequent experiments carried out in this chapter. The macrophage 

reporter experiments did not reproduce any levels of significance in the repeat test groups 

(diclofenac 1.33 mg/L, and meloxicam 6.75 mg/L). These data suggest that 

monocyte/macrophage trafficking may not be a reliable hallmark of NSAIDS-induced GI 

inflammation, or in fact DSS-induced GI inflammation. Additionally, it seems that in order to 

assess the effects of diclofenac on an inflamed intestine, using our current experimental 

design, an increase in the concentration is required. In Chapter 4, our re-analysed data 

revealed that 5.31 mg/L would have been a sufficient concentration of diclofenac to induce a 
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statistically significant upregulation of neutrophils into the intestine. However, when designing 

the experiments for Chapter 5, the decision to use 1.33 mg/L diclofenac was based upon the 

principle of using the lowest observable effect concentration, in order to reduce the severity of 

the exposures where possible. Unfortunately, due to the initial inappropriately analysed 

Chapter 4 data, 1.33 mg/L was deemed to show a statistically significant effect and so this 

concentration was selected for use in the Chapter 5 experiments. 

Similar to Chapter 4, one future refinement for these types of exposures could be to use an 

alternate neutrophil reporter line (tg(mpx:Gal4/UAS:Kaede)) which contains a 

photoconvertible Kaede protein. The use of this transgenic line would drastically reduce the 

variability within each exposure group, and may also reduce the variability between control 

‘baseline’ values over time also. This refinement would increase the granularity of our in vivo 

imaging experiments, and may also result in a reductions of the number of replicates required 

to achieve a statistically significant result. 

 

5.7 Conclusions 

Our data was not about to definitively assess the effects of diclofenac on an inflamed intestine 

as the concentration selected for these exposure experiments was inappropriate. In order to 

refine the results of this Chapter and provide a more appropriate assessment of diclofenac’s 

effects within an inflamed GI tract, a concentration of at least 5.31 mg/L should be used. 

Nevertheless, our data demonstrates a trend of increasing numbers of neutrophils within the 

intestine of larvae exposed to 1.33 mg/L diclofenac, and we are able to show that 0.1 g/L of 

DSS is likely to be a viable method of robustly inducing neutrophilic inflammation in the GI 

tract of zebrafish larvae at 10 dpf. 
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Chapter 6 

 

Final discussion 

 

6.1 Project summary and overview 

The aim of this research project was to advance the understanding of the biological 

mechanisms underlying the multi-scale effects of non-steroidal anti-inflammatory drugs 

(NSAIDs), with a particular focus on immune- and inflammation-mediated effects in the 

gastrointestinal (GI) tract. The two cornerstones of drug development are efficacy and safety 

assessment. Whereas efficacy is assessed by quantifying a small set of therapeutically 

relevant endpoints, the aim of safety assessment is to exclude every other effect across all 

the major organs and systems. The complexity of this biological challenge explains why 

despite the financial investment of hundreds of millions of pounds, and the development of 

sophisticated technologies, drug-mediated toxicity remains a major source of attrition during 

the drug development process; leading to failure of a high percentage of development projects 

at both pre-clinical and clinical stages (Cook et al., 2014; Morgan et al., 2018; Weaver and 

Valentin, 2019). Traditionally, regulatory-relevant in vivo toxicity testing is largely focused on 

apical endpoints and does not offer the flexibility to adapt study design by implementing mode-

of-action predictions and considerations. With the development of highly precise mechanistic 

profiling methods and human-relevant in vitro assays, the modern drug development process 

is rapidly overcoming this limitation by increasing Its reliance on predictive, mechanistic, and 

systems toxicology (ICH M3(R2), S1A,S2(R1),S5(R2), S7A, S7B, S8; Gintant, Sager, and 

Stockbridge, 2016). For example, between 2005 and 2010, 82% of drug development projects 

at AstraZeneca were closed at pre-clinical stages due to unpredicted toxicity. Safety issues 

were not limited to pre-clinical testing as they were also responsible for the closure of 62% of 

Phase 1, 35% Phase 2a, and 12% Phase 2b clinical projects (Cook et al., 2014). At that stage, 

AstraZeneca started the implementation of the so-called 5R’s framework (Right Target, Right 

Tissue, Right Safety, Right Patient, and Right Commercial Potential) (Morgan et al., 2018). 

The 5R’s framework is based on an explicit integration of mechanistic considerations at 

multiple levels throughout the overall process, paying particular attention to the physiological 

role of both primary and secondary drug targets in both health and disease (Morgan et al., 

2018). Following such implementation, between 2012 and 2016, safety issues represented 

the reason for closure of 50%, 38.5%, and 8% of189rojectcts at pre-clinical, clinical Phase 1, 

and clinical Phase 2 stages, respectively (versus 82%, 62% and 35% of the previous five 

years). This success highlights the importance of integrating mechanistic considerations, not 
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just for toxicological studies in general, but also for regulatory toxicity testing. Although this 

trend is rapidly becoming a mainstream approach in the field of drug/chemical safety 

assessment for humans (Aronson et al., 2018; Legler et al., 2020), this is not the case in the 

field of environmental safety assessment, which remains solidly centred on a small set of 

regulatory in vivo tests based on apical endpoints (development, growth, reproduction, and 

mortality). This limited scope leaves very little room for the implementation of mode-of-action 

driven approaches into the process pipeline. This PhD project embraces the modern predictive 

vision based on mechanistic and mode-of-action considerations of NSAIDs. Overall, this 

project has generated a novel workflow of integrated in silico and in vivo approaches for 

assessing NSAIDs safety, and for exploring their adverse effects from both a phenotypic and 

a mechanistic perspective.  

In Chapter 2 and Chapter 3, we demonstrated the value of using existing mechanistic data in 

order to generate in silico predictions of the hazards and risks associated with exposure to 

both individual NSAIDs and their mixtures, relevant for both humans and wildlife. Mechanistic 

profiling of existing experimental data in Chapter 2, at multiple levels of biological and 

functional organisation, aided us in generating data-driven hypotheses and designing the 

experimental in vivo phases of the project. Novel data mining and integration of mechanistic 

data from several biological databases also allowed us to generate qualitative and quantitative 

predictions of NSAIDs effects. For example, curated gene expression data from the 

Comparative Toxicogenomics Database (CTD) was extracted for over 20 NSAIDs, which gave 

us a qualitative understanding of the molecular footprint of each NSAID. These NSAID-gene 

interactions were then used to identify potential pathway enrichments and disease 

associations that are likely to occur from significant perturbation of each set of NSAID-gene 

interactions. These analyses enabled us to qualitatively assess the potential effects of each 

NSAID from a molecular level, up to the phenotypic level of interaction. Immunomodulation 

was apparent at each level of biological organisation amongst the majority of the NSAIDs 

within the CTD, highlighting a key avenue of research warranting further investigation. In order 

to assess the risks of drug-target interactions occurring at therapeutically relevant 

concentrations of NSAIDs, we modelled the quantitative bioactivity data extracted from the 

ToxCast and ChEMBL databases, against the available human Cmax data from the literature. 

These analyses highlighted the risk of each NSAID modulating targets at the protein level, at 

therapeutic exposure concentrations. Many of these targets also happen to be key 

immunomodulatory proteins including NSAIDs primary targets PTGS1 (COX-1; 

cyclooxygenase 1) and PTGS2 (COX-2; cyclooxygenase 2), and many secondary targets 

such as cytokines, interleukins, chemokines, and other important immune system 

components. This consistent emphasis on immunomodulation from there aforementioned 
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analyses, at different levels of biological organisation, led us to explore the potential immune-

mediated effects of NSAIDs further. Experimental data was mined from a publication by Kidd 

et al. (2016), in order to perform a comparative analysis of the predicted immunomodulatory 

activity of NSAIDs. Our analysis of the data revealed that distinct NSAIDs may vary 

significantly in their ability to modulate components of the immune system, providing a 

qualitative overview of the immunomodulatory potential of each drug. Quantitative information 

was associated with each NSAIDs’ immune cell interactions in the form of an ‘immunomod 

score’. We utilised this quantitative data to carry out a hierarchical clustering analysis in order 

to identify similarities and differences amongst NSAIDs’ effects on immune cell state 

transitions. This clustering exercise led to the identification of six main clusters ranging from 

highly active drugs to low activity drugs. This analysis gave us a good idea of which NSAIDs 

are likely to interact with the immune system, and thus provided us with a strong rationale for 

NSAIDs selection in our in vivo study design. Perhaps unsurprisingly there seems to be a high 

correlation between the level of immunomodulatory activity and the level of known toxicity 

associated with each NSAID, since a number of the drugs within the highly active drugs 

clusters have been withdrawn from the market due to severe adverse drug reactions. 

It became clear from our Chapter 2 analyses that, among other endpoints, immunomodulation 

represents a key mode-of-action warranting further investigation. In Chapter 3 we described 

the application and expansion of the data-driven approach used in the previous chapter to 

evaluate NSAIDs-mediated effects specifically in fish species, and to assess the toxicological 

risk associated with NSAIDs mixtures in the environment. Firstly, we demonstrated the utility 

of the combined mechanistic dataset generated from ToxCast and ChEMBL. We developed 

an interaction network for a mixture of 25 NSAIDs, highlighting the promiscuity of these drugs 

to modulate targets independent of COX-1 or COX-2. The complexity of this hazard network 

was then refined by applying a realistic internal exposure scenario, generating a risk-based 

bioactivity network. By using the concentrations of NSAIDs predicted to be present in the blood 

of wild fish in the UK (highest average measured concentrations in UK wastewater treatment 

plant (WWTP) treated effluents) – predicted by applying the Fish Plasma Model (FPM) – we 

filtered each drug-target interaction by AC50 value. The resulting risk-based network 

displayed only those drug-target interactions which are predicted to occur at this defined 

exposure scenario. This mechanistic risk-based network gave us an indication of the targets 

most likely to be modulated under realistic exposure conditions and included COX-1 and COX-

2, as well as CXCL8 (C-X-C motif chemokine ligand 8), CXCR1 (C-X-C motif chemokine 

receptor 1), CCL2 (C-C motif chemokine ligand 2), MMP1 (matrix metallopeptidase 1), ESR1 

(oestrogen receptor 1), and PGR (progesterone receptor). Each interaction was also coupled 

with a risk ratio which enabled us to demonstrate which NSAIDs are driving the risk of each 
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target modulation (when multiple drugs interact with the same target), and also gave us an 

idea of the level of risk. For example, the two steroid receptors PGR and ESR1 represent the 

targets with the highest risk, as blood concentrations of naproxen and diclofenac were 

predicted to be 15,375-fold and 321-fold higher than their associated AC50 values, 

respectively. Using this risk-based bioactivity network we performed a gene-to-phenotype 

association analysis by data mining available databases. Perturbation of the eight targets in 

our network resulted in a long list of highly specific zebrafish phenotypes. This indicated that 

significant modulation of these targets could result in profound effects on the cardiovascular 

system, immune system, liver, pancreas, kidneys, general development, growth, and 

reproduction. Although this phenotypic anchoring analysis could not provide quantitative 

indications of the likelihood of each phenotype occurring, it provides very specific predictions 

that were useful for hypothesis generation in the subsequent in vivo phases of the project.  

In order to provide a quantitative estimation of the toxicological risk posed by NSAIDs to fish, 

in the second part of Chapter 3 we described the development and generation of a multi-scale 

COX-1-centred model, based on 151 data points generated in 26 in vivo studies, carried out 

using 10 different fish species. This model displayed the range of blood concentrations of 

NSAIDs (expressed as diclofenac-equivalents, using diclofenac human COX-1 IC50 as the 

reference value) associated with statistically significant adverse phenotypes retrieved from the 

literature (151 data points), which were categorised into nine types of effect at three different 

levels of biological organisation. We were then able to overlay the predicted levels of NSAIDs 

concentrations in the blood of wild fish in the UK, which enables an immediate estimation of 

the risk associated with exposure to this specific mixture of NSAIDs. Using this concept of 

pharmacological equivalence enabled us to guide the interpretation of the toxicological 

relevance of environmental concentrations of NSAIDs, through a visual dynamic model. We 

anticipate that this model could facilitate in the interpretation of complex data and aid the 

regulatory decision making process for both single NSAIDS, and mixtures of NSAIDs, in the 

environment. Interestingly, one of the nine phenotypic endpoints in the model displaying the 

highest level of risk was ‘immunomodulation’. This also appeared to be the endpoint with 

highest level of variability, with data points ranging from around 0.097 to 110481.674 ng/mL 

diclofenac-equivalent predicted blood concentrations. Our Chapter 3 analyses provided 

quantitative estimations of the risks associated with environmental concentrations of NSAIDs 

at the mechanistic and phenotypic levels, using both existing mechanistic data and phenotypic 

effect data. The value of these pharmacology-informed workflows is such that they remove 

the immediate requirement for additional animal testing to assess the risks associated with 

environmentally-relevant concentrations of NSAIDs. Ultimately, we were able to determine 

that the risk posed to fish by environmental mixtures of NSAIDs may not be negligible, in cases 
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of high drug consumption and low dilution of WWTP effluents. Overall, these Chapter 3 

analyses supported the hypothesis generated in Chapter 2 by highlighting immunomodulation 

as one of the most sensitive endpoints, indicating the highest level of risk, warranting further 

investigation. 

In Chapter 4 we described a novel experimental approach based on the use of transgenic 

zebrafish larvae to validate our data-driven hypothesis generated in Chapter 2 and Chapter 3. 

In order to further our knowledge of NSAIDs-mediated effects, and unravel the role played by 

immunomodulation in the manifestation of GI toxicity, we exposed healthy transgenic 

zebrafish larvae to a non-selective NSAID (diclofenac) and a COX-2 selective NSAID 

(meloxicam). Neutrophil and macrophage reporter strains enabled us to visualise these innate 

immune cell dynamics within the GI tract in real time, via fluorescent microscopy and imaging 

techniques. These novel analyses confirmed a statistically significant role for neutrophils and 

macrophages in the pathogenesis of diclofenac-induced GI toxicity (5.31 mg/L). The data 

concerning meloxicam was somewhat ambiguous, with only the lowest tested concentration 

of meloxicam showing a statistically significant upregulation of macrophages into the intestine 

of exposed larvae. However, this result was not supported by dose-response concordance 

and should be considered with caution. In order to explore the mechanistic effects of each 

NSAID we performed whole larvae RNA-Seq and differential gene expression analysis. 

Diclofenac exposure resulted in a total of 530 statistically significant differentially expressed 

genes (DEGs), whereas meloxicam exposure yielded 193 DEGs. Functional enrichment 

analyses of all Gene Ontology and KEGG annotations revealed several shared potential 

effects of both diclofenac and meloxicam. However, these analyses also highlighted some key 

differences in mechanistic effects between these two NSAIDs. For example diclofenac, and 

not meloxicam, led to the significant overrepresentation of the GO term inflammatory 

response, highlighting the potential for this NSAID to disrupt normal inflammatory responses. 

Some of the most interesting genes enriching this annotation include anti-inflammatory 

annexin A1 genes (anxa1b, anxa1c, and anxa1d), as well as lta4h and loxl3b. Several other 

mediators of cell adhesion, ECM organisation, and muscle function were also modulated by 

each NSAID, however, the downregulation of the annexin A1 genes in particular represents a 

potentially significant novel key event in the pathogenesis of NSAIDs in the GI tract. We predict 

that the downregulation of key anti-inflammatory and pro-resolving genes (anxa1b, anxa1c, 

anxa1d, and lta4h) by NSAIDs contributes significantly to their toxicity through inhibiting the 

resolution of inflammation, leading to persistent neutrophil infiltration in the damaged GI tract. 

Non-selective NSAIDs such as diclofenac are more likely to induce GI damage through both 

topical and systemic effects, leading to the initial neutrophilic response in the GI mucosa, 

which subsequently remains persistent through the inhibition of COX-2, and downregulation 
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of the annexin A1 genes. Although we did not see an inflammatory phenotype in the intestine 

of meloxicam exposed larvae, we did see that many of the same genes were modulated as 

with diclofenac exposure. We predict that a more chronic exposure period would probably lead 

to many of the same phenotypes seen in diclofenac exposed larvae. It is clear that the 

selective inhibition of COX-2 provides some level of protection, in terms of NSAIDs-induced 

GI inflammation. Overall our data from Chapter 4 supports the notion that the 

immunomodulatory effects of NSAIDs extend beyond COX inhibition. Although the focus of 

this research project was to explore the immunomodulatory effects of NSAIDs, our 

transcriptomic data suggests that the mechanisms underlying the cardiovascular toxicity 

associated with NSAIDs may stem from significant effects on cardiac and/or vascular smooth 

muscle cell function. This data and theory is supported by evidence from the literature, which 

shows the NSAIDs are able to significantly alter the normal functioning of skeletal, cardiac, 

and smooth muscle cell types. 

In a realistic clinical scenario a patient would only consume, or be prescribed, NSAIDs to treat 

conditions of inflammation and/or pain. This raises questions about the relevance of using 

‘healthy’ models to assess the toxicological effects of drugs like NSAIDs. On the other hand, 

if a patient suffering with an inflammatory condition is administered NSAIDs, this will inevitably 

result in the exposure of both healthy and inflamed tissues. Thus, it is clear that determining 

the role that NSAIDs play in specific tissues, under conditions of both health and disease, is 

vital to better understanding their toxicological effects. In Chapter 5 we addressed this issue 

by validating the use of a chemically-induced model of GI inflammation, which is commonly 

used to model colitis-like phenotypes in zebrafish. Larval immersion in 0.1 g/L dextran sodium 

sulphate (DSS) proved to be a robust method of inducing intestinal inflammation up to 13 dpf. 

This inflammation was characterised by a statistically significant upregulation of neutrophil 

infiltration into the GI mucosa. The initial design of the experiments in Chapter 5 was based 

upon data initially analysed inappropriately in Chapter 4, from which we selected 1.33 mg/L 

diclofenac as the concentration able to induce intestinal inflammation. However, re-analysis 

of the data with correct statistics revealed that 5.31 mg/L would have been the appropriate 

concentration to use in these Chapter 5 experiments. This would explain the lack of statistically 

significant results obtained in this chapter, as concentrations too low to detect an effect were 

used; even though positive trends of increase were still observed. This suggests that had a 

sufficient concentration of 5.31 mg/L diclofenac been used, the positive trend may have 

increased such that the threshold for statistical significance might have been reached. 
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6.2 Clinical considerations 

It is well understood that GI toxicity still represents a major safety liability associated with 

NSAIDs use (Wallace, 1997; Bindu, Mazumder, and Bandyopadhyay, 2020). Considering the 

global clinical importance of NSAIDs for the treatment of inflammation and pain, it is important 

to try and better our understanding of the toxicological effects of NSAIDs in the GI tract. 

Although progress towards uncovering the exact mechanisms of NSAIDs-induced GI toxicity 

has been made, their pathogenesis is still not completely understood (Wallace, 2008). In 

Chapter 2 it became clear that NSAIDs effects may significantly extend beyond COX inhibition, 

as our in silico analyses highlighted the wealth of available mechanistic data for NSAIDs at 

multiple levels of biological and functional organisation. In terms of clinically-relevant 

information, our qualitative analysis of the CTD data highlighted the types of genes, pathways, 

and diseases likely to be perturbed by each NSAID. This information may be useful as an 

initial screen to assess the differences in safety profile between NSAIDs, as the data infers 

each drugs’ level of promiscuity and the types of effects which may come as a result of long-

term therapeutic use. Moving from hazard to risk assessment, in terms of safety, requires the 

incorporation of quantitative information into the analysis to determine the likelihood of each 

event occurring. The ToxCast/ChEMBL data analysis provided us with mechanistic 

information about NSAIDs effects at the functional protein level, with AC50 values associated 

with each drug-target interaction. By overlaying the relevant human Cmax of each NSAID, we 

were able to quantitatively assess the risk of each drug-target interaction occurring at 

therapeutically-relevant concentrations. These analysis highlight the value of using 

mechanistic data to assess risk, as we are able to rapidly assess which NSAIDs are most 

likely to have off-target effects, and hence which NSAIDs represent the highest level of risk at 

therapeutic concentrations. Another benefit of our novel computational workflow stems from 

the potential to guide more informed decision making for prescribing NSAIDs, leaning towards 

a personalised medicine approach. For example, there is currently no mechanistic rationale 

for healthcare professionals to follow when prescribing non-selective NSAIDs for 

pain/inflammation management. Therefore, deciding between either ibuprofen or diclofenac, 

for example, is based often on anecdotal clinical experience. Although clinical guidelines exist 

including recommendations on NSAIDs administration for general practitioners (GPs), these 

include only vague guidance based largely on empirical evidence. However, our in silico data 

analysis suggests that a therapeutic concentration of ibuprofen is likely to interact with 23 

targets including the COX proteins (out of 26 total; 88%), whereas diclofenac is likely to 

interact with only 12 targets including COXs (out of 38 total; 32%). In this scenario, prescribing 

ibuprofen instead of diclofenac may increase the level of risk to the patient, as a significantly 

higher number of secondary targets are modulated by ibuprofen. Another example of 
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benefitting NSAIDs selection could be when prescribing NSAIDs to patients suffering with 

rheumatoid arthritis; it would be beneficial to choose an NSAID which is not likely to interact 

with TNF-α, as this pro-inflammatory cytokine is known to be upregulated in their diseased 

joints (Page et al., 2010). Hence, predictive in silico analyses may provide a mechanistic 

rationale for the selection of a particular NSAID over another in this treatment scenario. The 

methodology used by Kidd et al. (2016) is an excellent example of the huge potential for this 

type of approach. Our data mining of this predictive in vitro immunomodulatory data further 

indicated the potential for distinct NSAIDs to directly modulate cells of the immune system. It 

is clear that developing these types of predictive in silico approaches further and integrating 

them into the safety testing process may allow for the characterisation of drug 

immunomodulatory potential prior to in vivo testing, improving the overall process.  

Our novel in vivo data has contributed to furthering our mechanistic knowledge of NSAIDs 

immunomodulatory activity in the intestine, highlighting the differences between non-selective 

and COX-2 selective NSAIDs, and demonstrating the significance of tissue inflammation 

status in modulating NSAIDs effects. On the whole, our data confirms that neutrophilic 

inflammation in the GI mucosa represents a key event in the pathogenesis of non-selective 

NSAIDs-induced enteropathy. We also shed light on a novel putative mechanism for NSAIDs 

toxicity in the GI tract. The non-selective NSAID diclofenac downregulates annexin A1 genes 

(anxa1b, anxa1c, and anxa1d), as well as other mediators of inflammation/resolution (lta4h, 

and loxl3b). Modulation of these key genes may well be sufficient to inhibit the resolution of 

inflammation in the gut, following both direct (topical mechanisms) and systemic (inhibition of 

COX-1 derived prostaglandins) damage to the epithelium by non-selective NSAIDs. Of 

particular interest are the annexin A1 genes, as human annexin A1 is known to be a potent 

anti-inflammatory mediator responsible for the clearance of neutrophils, through inhibiting 

focal adhesion (and thus transendothelial migration) and inducing apoptosis (Sugimoto et al., 

2016). Thus, modulating the expression of these genes may well explain the persistent 

inflammatory phenotype associated with diclofenac exposure in the intestine of healthy 

zebrafish larvae. Although we know that COX-2 selective drugs present a lower level of risk, 

in terms of GI toxicity, the risk is by no means negligible (Masclee et al., 2014). In fact, 

Sigthorsson et al. (2002) found that chronic inhibition of COX-2 by celecoxib was sufficient for 

significant damage of the intestine to occur, regardless of normal levels of COX-1 derived 

PGE2 present in the gut. Even though meloxicam exposed larvae did not display the same 

inflammatory phenotype as diclofenac exposed fish, it is evident that meloxicam is likely to 

also modulate a number of COX-independent pathways, similar to diclofenac. Hence, we 

predict that a more chronic exposure period would ultimately result in similar GI inflammation. 

Adding weight to this prediction and increasing the likelihood that NSAIDs do inhibit the 
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resolution of inflammation in the intestine, comes from the further characterisation of COX-2 

in the gut. As well as acting as an inducible pro-inflammatory mediator, COX-2 has been 

recognised as a key component of mucosal defence, which contributes to the resolution of GI 

inflammation, and regulates ulcer healing (Wallace and Devchand, 2005). Thus, it is 

biologically plausible that the inhibition of COX-2 with concurrent downregulation of annexin 

A1 expression, and the modulation of several other inflammatory/pro-resolving genes, will lead 

to persistent GI inflammation. Our data suggests that perhaps targeting the resolution of 

inflammation as a strategy to mitigate NSAIDs-induced enteropathy could provide an avenue 

for novel therapies to combat GI toxicity. For example, developing an agonist of the annexin 

A1 receptor (FPR2) to take in combination with non-selective NSAIDs may successfully 

mitigate the immunomodulatory effects of NSAIDs in the GI tract. In fact, strategies to develop 

small molecule agonists targeting the FPR2 receptor, in order to promote the resolution of 

inflammation, are already ongoing with treatment areas including rheumatoid arthritis and 

inflammatory bowel disease (IBD) (Corminboeuf and Leroy, 2015). Glucocorticoids, which are 

often prescribed to rheumatoid arthritis patients, are known to mediate their effects through 

the annexin A1 pathway. However, it is well established that they interfere with gastric ulcer 

healing and increase the risk of GI perforation (Martin et al., 2008). Since annexin A1 has 

been shown to promote ulcer healing and mucosal defence in experimental and indomethacin 

induced models of gastric damage, it is likely that glucocorticoids enact these detrimental 

effects through annexin A1-indpendent mechanisms (Martin et al., 2008). Thus, using an 

alternative to glucocorticoids would be necessary to alleviate NSAIDs-induced enteropathy 

through the annexin A1 pathway. Since it has been previously documented that indomethacin-

induced gastric ulceration is a neutrophil-dependent process (Wallace, Keenan, and Granger, 

1990) it is reasonable that targeting pro-resolution pathways, such as the annexin A1/FPR2 

pathway, represents a viable route for development of novel therapeutics. For patients who 

rely on the long-term therapeutic use of NSAIDs for inflammation and pain management, it is 

clear that current formulations and combinatory drug treatments to mitigate NSAIDs-induced 

GI toxicity are not sufficiently protective. For example, gastric bleeding and ulceration are not 

significantly reduced when NSAIDs are enteric-coated to prevent topical contact toxicity, or 

even when administered as pro-drugs which are inactive until metabolised (Wallace, 2008). 

Co-administration of NSAIDs with proton pump inhibitors (PPIs) has demonstrated a 

significant reduction in gastric toxicity (Abraham et al., 2008), however, this protection does 

not extend to the intestine which remains vulnerable to NSAIDs’ effects. It is clear that for 

patients who depend on NSAIDs there is a significant need for alternative methods to mitigate 

NSAIDs-induced GI toxicity, and our data suggests that a novel avenue for targeted therapies 

may include the resolution of inflammation through the annexin A1/FPR2 pathway.  
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An advantage to using zebrafish larvae to study immune cell dynamics in the intestine, over 

murine models, is that we are able to rapidly image the gut in real time whilst the organism is 

still alive. Using the rat model, researchers are required to sacrifice the animals, then surgically 

remove, and homogenise the intestinal tissue; protein content is then estimated in the 

supernatant using spectrophotometric assay, before calculating an estimate of MPO 

(myeloperoxidase) activity from the data (Okayama et al., 2007). Clearly the advantage of the 

zebrafish model here is the ability to directly quantify the number of immune cells in the 

intestine, without having to make an estimate of neutrophilic activity from an indirect back-

calculation. Another advantage to using zebrafish in this comparison, is the fact that we were 

able to use a much larger sample size (N = ~ 36 larvae per group in total) compared with 

murine studies where typically N = four to six animals per group is acceptable (Okayama et 

al., 2007). Another important factor to consider is the concentration of DSS used to induce 

colitis in murine models. Typically between 2 and 5% is administered, however, Oehlers et al. 

(2013) state that comparative doses of DSS in zebrafish larval models are incredibly toxic and 

significantly lethal. It may well be plausible that using such concentrations of DSS in murine 

models leads to severe irreversible damage in the gut, which is not likely to be improved by 

subsequent assault with NSAIDs. However, the aim of our study was not to specifically model 

colitis, but to simply induce tissue-specific inflammation which meant we could use much lower 

(non-lethal) concentrations of DSS. 

 

6.3 Environmental considerations 

The current environmental risk assessment (ERA) process is mechanistically agnostic and 

focuses solely on traditional fate and exposure predictions, with individual compounds level of 

toxicity experimentally determined using simple tests focusing on apical endpoints (Lee and 

Choi, 2019). The implementation of pharmacological and mechanistic considerations into the 

ERA of pharmaceuticals can aid in the understanding of the risk and allow the integration of 

modern predictive toxicology approaches. Although numerous studies have experimentally 

demonstrated the positive impact of this type of approach (Margiotta-Casaluci et al., 2014; 

Margiotta-Casaluci et al., 2016; Valenti et al., 2012) the ERA process remains unchanged. 

Furthermore, the lack of a mechanistic rationale behind the ERA of individual compounds 

prevents the application of predictive approaches for the assessment of potential 

environmental mixtures. The current ERA process has no capacity to assess the effects of 

mixtures of compounds, which represents a very real and significant limitation of the process. 

Since the number of exposure scenarios that may occur globally are virtually endless, this 

suggests that simplistic experimental determination of the risk is impossible to achieve. Thus, 
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the future implementation of predictive toxicology approaches will be vital to reach 

environmental protection goals (Marmon, Owen and Margiotta-Casaluci, 2021). 

Chapter 3 describes the development of an innovative pharmacology-informed framework, 

that integrates both drug pharmacokinetic and pharmacodynamic features, in order to inform 

the ERA of NSAIDs mixtures in the environment. Two distinct predictive in silico approaches 

were described which use both existing mechanistic and phenotypic effect data to assess the 

risk posed to fish by an environmentally-relevant mixture of NSAIDs. It is important to note 

that both of our predictive approaches consider predicted internal concentrations based on 

the FPM, which significantly enhances the predictive power of the model. Previous studies 

have demonstrated drugs with comparable in vitro potency can have very different levels of 

risk, based on their specific uptake and pharmacokinetic profile (Margiotta-Casaluci et al., 

2016). The first approach is based on the combined ToxCast/ChEMBL dataset generated in 

Chapter 2. Utilising this mechanistic data, we were able to generate a bioactivity network for 

25 NSAIDs, highlighting protein targets which are shared amongst each NSAID as well as 

targets modulated by individual drugs. This hazard-based assessment formed a complex 

network, highlighting the modulatory potential of each NSAID and for the mixture as a whole. 

This mechanistic analysis revealed that the 25 NSAIDs have a wide range of mechanisms of 

action beyond COX inhibition. In order to make an assessment of the risk to wild fish in the 

aquatic environment we applied a realistic exposure scenario to the network. Each drug-target 

interaction AC50 value was filtered based on the concentrations of NSAIDs predicted to be 

present in the blood of wild fish in UK rivers. The exposure scenario used was the highest 

average measured concentrations of NSAIDs in UK WWTP treated effluents, which were 

transformed into predicted internal blood concentrations using the fish plasma model (FPM). 

The original hazard-based bioactivity network could then be filtered by AC50, resulting in a 

drastic reduction in the complexity of the network. The 25 NSAID mixture with 507 total 

interactions was reduced to a risk-based network of four NSAIDs (diclofenac, naproxen, 

ibuprofen, and mefenamic acid) with 12 interactions. This mechanistic assessment of the risk 

to wild fish in the UK highlights the targets most likely to be modulated by environmental 

concentrations of NSAIDs, and also highlights the risk ratio of each NSAID modulating each 

interaction. It is clear that naproxen and diclofenac represent the most significant drivers of 

risk, since their predicted blood concentrations are 15,375-fold and 321-fold higher than the 

AC50 values of PGR and ESR1, respectively. These high values were driven by the low 

ToxCast AC50s reported for naproxen-PGR and diclofenac-ESR1, which were 0.007 nM and 

0.5 nM, respectively. In order to move from functional protein level of interaction to apical level 

phenotype prediction, we used a variety of biological databases to perform target-to-

phenotype association analysis. Unfortunately, this meant moving away from risk assessment, 
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as it was not possible to quantitatively assess the likelihood of each phenotype occurring, or 

in fact the effect magnitude. Nonetheless, we were able to generate a long list of zebrafish-

specific phenotypes associated with modulation of each target from the risk-based bioactivity 

network. These highly granular qualitative predictions were used to guide the development of 

the tailored in vivo experiments carried out in Chapter 4 of this project. For example, some of 

the phenotype associations generated include ‘abnormal leukocyte migration’, ‘abnormal 

macrophage chemotaxis’, and ‘decreased neutrophil number’. 

In order to make a quantitative estimation of the risk posed by NSAIDs mixtures in the UK, at 

multiple levels of biological organisation, our second approach generated a multi-scale model 

centred on COX-1 rather than on the entire mechanistic bioactivity network of NSAIDs. As all 

NSAIDs act on COX-1 and/or COX-2, we considered the cumulative effects of the 

environmental mixture of NSAIDs in the UK on COX-1 as the key event driving the 

toxicological risk, using diclofenac as the reference compound. This powerful visual tool 

summarises all of the existing in vivo data concerning the chronic toxicity of NSAIDs in fish, 

as a single plot. Our model revealed that 30% of effect data points were predicted to occur at 

internal concentrations lower than the worst-case exposure scenario in the UK, which drops 

to 9% when a more realistic exposure threshold is applied. Interestingly, immunomodulation 

was once again highlighted as potentially significant endpoint, as it presented with the highest 

level of risk. Overall this model enables a dynamic prediction of the risk to fish species in the 

UK associated with exposure to a mixture of NSAIDs. The utility of this predictive model is 

such that any exposure scenario concerning NSAIDs, or any other class of compound with a 

shared mode of action, can be assessed to determine the situation-specific risk. The threshold 

of predicted internal environmental mixture concentration would simply move along the axis 

accordingly, to match a new exposure scenario. 

We predict that the implementation of predictive toxicology approaches, such as the one we 

described in Chapter 3, will be essential to better inform regulatory decision making for 

NSAIDs and other pharmaceutical contaminants. We demonstrated the potential for this type 

of approach by providing a pharmacology-informed workflow able to guide the incorporation 

of pharmacokinetic and pharmacodynamic features into the ERA of NSAIDs, removing the 

immediate need for performing additional animal testing. 

 

 

 

 

 



 

201 
 

6.4 Project limitations and future research priorities 

6.4.1 Chapter 2 

One challenge that comes from using biological databases such as the CTD that use 

automated, or semi-automated, approaches to extract data from various sources is 

quantification of confidence and uncertainty in the datasets. For example, we considered the 

‘interaction count’ as an indirect marker of reproducibility, to estimate confidence in each drug-

gene interaction from the CTD, as this value indicates the number of times this interaction has 

been observed in the literature. Using this logic, drugs like indomethacin, which have some of 

the highest interaction counts per interaction, give us high levels of confidence in the data. 

However, NSAIDs like carprofen and tenoxicam which only display one drug-gene interaction, 

and an interaction count of one, suggest a low level of confidence in the data. Although low 

interaction counts and numbers of drug-gene interactions do not infer high levels of 

confidence, it is important to note that this does not necessarily mean a drug is less 

mechanistically active or promiscuous. The CTD is a database curated from the literature, 

meaning it is entirely dependent upon the quantity and quality of available research describing 

the mechanistic effects of these drugs. Moreover, not all drugs have been fully curated in the 

database which may also contribute to the lack of interaction data available for some of the 

seemingly ‘least active’ drugs. Thus, for drugs with a low number of interactions and interaction 

counts it is plausible that an absence of evidence is not evidence of absence. It may well be 

that some NSAIDs simply have a higher volume of research associated with them, which can 

have an impact on the reliability of the CTD. For example, comparing the amount of available 

data for the NSAIDs ibuprofen and tenoxicam in PubMed revealed that 11,279 papers have 

been published studying ibuprofen in the last 20 years, whereas only 294 exist for tenoxicam. 

This example alone highlights the enormous discrepancy in the amount of available data 

between different drugs. Another important factor to consider when interpreting the data from 

the CTD is that the drug-gene interactions are not associated with any quantitative data, which 

means it is not possible to predict at what concentrations of drug these interactions are likely 

to take place. It is also unclear whether the drug-gene interaction represents an up- or 

downregulation of expression. 

Similar considerations are relevant for the functional in vitro bioactivity data generated 

retrieved from ToxCast and ChEMBL. Quite simply, if the chemical has not been tested, then 

the data will not be available in the database. With regards to ToxCast, one NSAID may display 

activity for a particular target, and another NSAID may not. However, this does not necessarily 

mean that the latter lacks the ability to modulate the same target. It may mean that this 

particular NSAID has not been tested in one of the specific in vitro assays required to assess 
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this interaction. For example, the data from ToxCast states that naproxen interacts with PGR 

(progesterone receptor) and that meloxicam does not. However, it is not clear whether 

meloxicam has been tested in one of the 18 assays designed to detect PGR activity, or 

whether it was simply ‘inactive’ in one of these assays. Aside from issues surrounding the 

quantity of data, inter-assay variability may represent a major confounding factor. ToxCast 

contains 31 assays which detect the modulation of ESR1 (estrogen receptor 1), and diclofenac 

was tested in 17 of those assays of which only three returned a positive result, meaning it was 

‘inactive’ in 14 of those assays. Yet, all that is apparent in the bioactivity dataset retrieved from 

ToxCast is that diclofenac is able to modulate ESR1, even with the weight of evidence leaning 

in favour of inactivity. Clearly a certain level of uncertainty may be associated with each drug-

target interaction, which has previous come under scrutiny in the literature. For example, 

Janesick et al. (2016) identified a high percentage of false positives among the chemicals 

identified as PPARγ agonists in ToxCast. Overall, these considerations suggest that data 

generated from large-scale mechanistic profiling initiatives are extremely valuable for 

generating testable hypotheses. However, using this type of data to drive risk assessment 

directly may require more caution due to uncertainties surround the high levels of inter assay 

variability. 

 

6.4.2 Chapter 3 

The same considerations outlined for the use of the combined ToxCast/ChEMBL dataset in 

Chapter 2 are relevant for this same dataset used in Chapter 3. We applied mixture toxicology 

network concepts to this mechanistic data, and successively incorporated NSAIDs 

pharmacokinetic and pharmacodynamic features, in order to assess the risks to wild fish 

species in the UK. Despite the successful application of this network pharmacology approach, 

there are some considerations worth taking into account. Firstly, the data generated from 

ToxCast and ChEMBL are mammalian data, most of which is human. It is possible that drug 

targets display different levels of sensitivity between fish and humans, when exposed to the 

same compound. However, this may only be an issue in terms of our analyses if the AC50s 

for fish targets are significantly lower than their respective human AC50 value. To our 

knowledge there does not seem to be any evidence to support this hypothesis, but 

nonetheless it is worth taking into account. Secondly, the phenotypic anchoring analysis, 

which linked the eight targets in the risk-based bioactivity network to zebrafish-specific 

adverse phenotypes, generates only qualitative predictions. This means that we are unable to 

infer the effect size of each prediction, which limits the ability of this analysis to directly inform 

the ERA process. 
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Some important factors to consider relating to the multi-scale COX-1-centered pharmacology-

informed model in Chapter 3, and to the robustness of the ERA process in general, stem from 

quality of the underlying data. These risk assessment approaches are directly affected by the 

data used, and in recent years concerns have been raised over the degree of quality and 

reproducibility of ecotoxicological studies (Harris and Sumpter, 2015; Martin et al., 2019; 

Mebane et al., 2019). For example, among NSAIDs diclofenac in particular has been the object 

of intense scientific debate due to discrepancies in toxicological and histopathological findings 

between various academic studies, and one industry study (Hoeger et al., 2005; Mehinto et 

al., 2010; Schwaiger et al., 2004; Triebskorn et al., 2004; Memmert et al., 2013). Controversy 

was sparked regarding these discrepancies as the outcomes of the four academic studies 

were used to justify the decision to add diclofenac to the European Union Watch List of 

emerging pollutants in 2015. Subsequently, an independent histological review of the samples 

from three of these academic studies revealed that some of the discrepancies were due to 

experimental design, however the majority of inter-study variation was driven by issues of 

diagnostic interpretation (Wolf et al., 2014). This example of diclofenac alone highlights the 

current difficulties with the ERA process, whereby regulators have to make decisions based 

on a limited amount of experimental data which may be low quality, unreliable, or 

irreproducible. Clearly inter-study discrepancies represent a real challenge for regulatory 

decision-making. Our model does not contain a quality assessment of each study included in 

the analysis, as it is difficult to set an unequivocal definition of ‘quality’ applicable to any 

context, and there is a risk of introducing bias into the model. The major advantage of our 

model, however, is the ability to assess inter-study variability in a clear visual model which 

allows direct inter-study comparison. In order to demonstrate some of the variability between 

data points in the model, we focused on one of the endpoints with the highest regulatory 

relevance – egg production (which falls under the umbrella of ‘reproduction’ in our model). By 

assessing effect magnitude and effect direction our analysis revealed some inconsistencies 

in the effects between studies using ibuprofen, which caused a decrease in egg production in 

some studies and an increase in others. These types of discrepancies suggest that this type 

of retrospective analysis should be taken into consideration during the risk assessment 

process. 

The utility of our pharmacology-informed multi-scale model centred on COX-1 is such that we 

plan to hopefully develop this dynamic model into a commercial software app. Our workflow 

can be readily adapted to fit any environmental exposure scenario concerning NSAIDs 

mixtures, or in fact modified to assess any other class of compounds with a shared mode-of-

action. Hence, we see a huge potential for the use of this model by industry and regulators 
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alike, in order to help rapidly interpret complex sets of biological data within a regulatory-

relevant context.  

 

6.4.3 Chapter 4 

The first significant obstacle which became apparent during the work in Chapter 4 was NSAID 

selection, which was a considerably lengthy and laborious task due to technical difficulties with 

stock solution preparation for a number of NSAIDs. Inaccurate water and solvent solubility 

information, combined with irreproducible protocols from the literature, meant that trialling 

celecoxib, rofecoxib, valdecoxib, and parecoxib was unsuccessful. It became abundantly clear 

that these compounds would not dissolve without using high concentrations of solvent, which 

are likely to be toxic to zebrafish larvae. This was an important consideration which influenced 

our NSAIDs selection process, as we decided to avoid using solvents where possible. 

Although solvent use is common practice when dissolving some compounds, there is a wealth 

of data which suggests that solvents like DMSO are able to significantly alter the transcriptomic 

and epigenetic landscape of biological tissues, even at low ‘non-toxic’ concentrations 

(Verheijen et al., 2019). After much trial and error, we were able to identify diclofenac sodium 

salt and meloxicam sodium salt hydrate as our test compounds, as these represented ideal 

candidates from both a practical and a biological perspective. 

In terms of the in vivo imaging experiments, one limitation of our model is that we are not able 

to determine which of the immune cells within the gut tissue at 10 dpf migrated into the GI 

mucosa as a result of exposure, and which cells were resident in the gut prior to exposure. 

This limitation means that we see a lot of variability between biological replicates, since 

individual larvae possess varying levels of tissue-resident immune cells. This means that a 

large number of replicates are required to generate enough statistical power. Refinement of 

this limitation for future studies could come in the form of using an alternate neutrophil reporter 

line, for example. The tg(mpx:Gal4/UAS:Kaede) reporter line contains a photoconvertible 

Kaede protein which can be selectively converted prior to exposure. This conversion, for 

example in the GI tract specifically, would convert the resident cells to red, whilst any migrating 

neutrophils from outside the gut would still fluoresce green (Ellett et al., 2015). This solution 

would make it inherently clear which cells have infiltrated the GI mucosa as a result of 

exposure at 10 dpf. 

Our RNA-Seq experiment was based on a common design amongst most published RNA-

Seq  studies involving chemical exposure and zebrafish larvae, whereby we compared three 

treatment groups with three biological replicates. Our results suggest that perhaps a larger 

sample size would increase the overall confidence in the data analysis. For example, sample 
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clustering using PCA and the correlation heatmaps highlighted a potential discrepancy with 

sample ‘CTRL_1_S1’, as it did not appear to cluster or correlate well with the other control 

samples. Another factor to consider is the number of pooled larvae which formed each 

biological replicate. Our experiment included four larvae per replicate, which was driven by 

pilot data suggesting that this would give us a sufficient quantity of RNA for a standard input 

cDNA preparation and sequencing run. We chose not to exceed this number of larvae due to 

ethical considerations, as 10 dpf larvae are protected animals, and we believed we would 

extract sufficient RNA. However, the amount of total RNA for three of our 12 samples was 

below the required threshold for standard input sequencing, and so we proceeded with the 

ultra-low input alternative. It is plausible that if one of the four larvae in sample ‘CTRL_1_S1’ 

was a true biological outlier, then this could skew the overall analysis. These considerations 

suggest that optimisation of pool size for each sample may be significantly beneficial, in order 

to dilute intra-group variability. Another consideration which may explain this variability 

between samples of the same treatment group, is that the transcriptomic signatures of one 

week old larvae become significantly more complex than earlier life stages (Yang et al., 2013). 

This may not be surprising considering that embryonic and early life stages have tightly 

regulated transcriptomic expression patterns due to the essential developmental processes 

involved. This significant complexity at 10 dpf, combined with our relatively small sample size, 

may explain why the PCA sample clustering and correlation heatmaps demonstrated poor 

clustering and correlation between control samples. Hence, using a bigger pool size per 

sample may also help to dilute the variation in between samples of the same treatment group 

in the future. Alternatively, RNA extracted from specific organs/tissues (rather than from the 

whole larvae) may provide a clearer discrimination between treated animals and controls.  

Lastly, a key limitation to note is that the transcriptomics analyses utilised whole larvae, 

whereas the imaging data focused solely on the gastrointestinal tract. This means that 

although comparisons may be made, and links hypothesised, we are unable to definitively 

make association between the in vivo imaging and transcriptomic analyses.  

 

6.4.4 Chapter 5 

Our imaging data in this chapter revealed an important limitation concerning the use of the 

transgenic macrophage reporter line (tg(MPEG1:mCherry-CAAX)gl26). Unfortunately, the 

Chapter 4 data using this strain was not reproducible in our Chapter 5 experiments. For 

example, diclofenac exposure led to a significant upregulation of macrophage infiltration into 

the intestine of zebrafish larvae at 10 dpf in all three treatment groups (1.33, 2.66, and 5.31 

mg/L), in our Chapter 4 study. However, the 1.33 mg/L diclofenac treatment group in Chapter 
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5 was not reproducible and did not demonstrate significant upregulation of monocyte 

infiltration into the intestine compared with control fish. A similar story is apparent with 

meloxicam whereby the highly significant increase in infiltration of monocytes in the lowest 

exposure group in Chapter 4 was irreproducible in the repeat test group in Chapter 5 (6.75 

mg/L meloxicam). The inter-study irreproducibility of the macrophage reporter line suggests 

that perhaps monocyte/macrophage trafficking may not be a reliable biomarker of NSAIDs-

induced GI inflammation, or indeed DSS-induced GI inflammation.   

Another potential limitation relates to our study design, as we decided to run co-exposures of 

DSS with each NSAID, rather than a sequential exposure (i.e. exposure to DSS followed by 

exposure to NSAID). This means that we would be unable to fully ascertain whether either 

NSAID rescued DSS-induced intestinal inflammation, or whether they prevented the initial 

neutrophilic response to DSS in the first place. It is possible that NSAIDs prevent DSS-induced 

damage to the GI mucosa, however, it is not exactly clear how this might work. It could be that 

the mixture of chemicals react with one another, rendering them unable to exert their toxic 

effects of IECs, or it could just be that NSAIDs do in fact recuse the DSS-induced neutrophilic 

inflammation in the intestine. The concept of mixture effects may not be unrealistic as the top 

co-exposure concentration group of meloxicam + DSS (13.5 mg/L + 0.1 g/L, respectively) 

demonstrated toxicity at 10 dpf. In Chapter 4 up to 27 mg/L meloxicam showed no signs of 

obvious toxicity and represented our top concentration group. However, a combination of 

meloxicam and DSS appeared to increase toxicity in these fish beyond the GI tract. Although 

we terminated the exposure and did not image these fish for ethical reasons, it suggests that 

mixture effects led to significant toxicity, the mechanisms of which are unclear. Perhaps due 

to the increased cardiovascular risk associated with COX-2 selective inhibitors, it may be 

plausible that further chemical insult with DSS exacerbated these affects, leading to toxicity. 

However, this is only speculation since no analysis was possible on these samples. 

Nonetheless, it is clear that further work would be necessary to fully establish the mechanisms 

at play.  

Finally, the biggest limitation of the work in this Chapter was the decision to use 1.33 mg/L 

diclofenac in our experiments, and not 5.31 mg/L. Initially, this decision was based upon 

incorrectly analysed Chapter 4 data suggesting that 1.33 mg/L diclofenac was able to produce 

statistically significant effects of neutrophilic infiltration into the mid/posterior intestine. 

However, re-analysis of the Chapter 4 data with appropriate statistics revealed that this 

concentration is too low to produce a significant effect, and 5.31 mg/L diclofenac would have 

been the appropriate selection for the Chapter 5 experiments. 
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6.4.5 Future research priorities 

Future research should focus initially on reassessing the effects of diclofenac on an inflamed 

GI tract, using a more appropriate concentration of at least 5.31 mg/L. Following this, I feel 

that the focus should shift towards the potential link between non-selective NSAIDs, such as 

diclofenac, and their likely effects on the Annexin A1 pathway in particular. Confirmation of 

this link through qPCR would be a great first step towards verifying significant modulation of 

this gene at the level of transcription. Ideally, this would be a tissue-specific analysis which 

would add to the weight-of-evidence implicating this mechanism of action in the pathogenesis 

of NSAID-induced GI toxicity. In parallel, I believe that refining the in vivo imaging experiments 

through the use of a Kaede transgenic neutrophil reporter would add significant value to this 

type of analysis, and significantly reducing the variability seen between samples.  

 

6.5 Concluding remarks 

The overall aim of this research project was to further our mechanistic understanding of 

NSAIDs effects. The evidence presented in this thesis demonstrates the successful 

development and application of novel in silico workflows, and novel in vivo experiments, which 

further our mechanistic knowledge of NSAIDs effects. We explored the key clinical and 

environmental health implications of NSAIDs use through a number of approaches. Firstly we 

mined existing experimental data to model multi-level effects, which highlighted the 

significance of immunomodulation in mediating NSAIDs effects. Subsequently, we developed 

a pharmacology-informed framework for the environmental risk assessment (ERA) of 

mixtures, which may pave the way for the future implementation of predictive toxicology 

approaches into the regulatory decision making process. Successively, we identified a novel 

putative mechanism of toxicity within the gastrointestinal (GI) tract for the non-selective NSAID 

diclofenac, implicating the resolution of inflammation in the propagation of NSAIDs effects. We 

also managed to validate the transendothelial migration of neutrophils into the intestine as a 

key event driving the pathogenesis of NSAIDs-induced enteropathy. Moreover, we revealed 

significant differences between traditional non-selective NSAIDs and COX-2 selective 

inhibitors’ phenotypic effects within the GI tract at the cellular and transcriptomic level. Our 

work supports the notion that NSAIDs effects extend well beyond COX inhibition on a system-

wide level, and demonstrates the significance of immunomodulatory processes in mediating 

these effects within the GI tract. 

 

 



 

208 
 

6.6 References 

‘ICH guideline M3(R2) on non-clinical safety studies for the conduct of human clinical trials 

and marketing authorisation for pharmaceuticals.’ (2009) Available at: 

https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m3r2-non-

clinical-safety-studies-conduct-human-clinical-trials-marketing-authorisation_en.pdf 

(Accessed: 17 June 2021). 

Abraham, N.S., Hartman, C., Castillo, D., Richardson, P. and Smalley, W. (2008) 

'Effectiveness of National Provider Prescription of PPI Gastroprotection Among Elderly NSAID 

Users', The American journal of gastroenterology, 103(2), pp. 323-332. doi: 10.1111/j.1572-

0241.2007.01595.x. 

Aronson, J.K., La Caze, A., Kelly, M.P., Parkkinen, V. and Williamson, J. (2018) 'The use of 

mechanistic evidence in drug approval', Journal of evaluation in clinical practice, 24(5), pp. 

1166-1176. doi: 10.1111/jep.12960. 

Bindu, S., Mazumder, S. and Bandyopadhyay, U. (2020) 'Non-steroidal anti-inflammatory 

drugs (NSAIDs) and organ damage: A current perspective', Biochemical pharmacology, 180, 

pp. 114147. doi: 10.1016/j.bcp.2020.114147. 

Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G. and Pangalos, 

M.N. (2014) 'Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional 

framework', Nature reviews. Drug discovery, 13(6), pp. 419-431. doi: 10.1038/nrd4309. 

Corminboeuf, O. and Leroy, X. (2015) 'FPR2/ALXR Agonists and the Resolution of 

Inflammation', Journal of medicinal chemistry, 58(2), pp. 537-559. doi: 10.1021/jm501051x. 

Ellett, F., Elks, P.M., Robertson, A.L., Ogryzko, N.V. and Renshaw, S.A. (2015) 'Defining the 

phenotype of neutrophils following reverse migration in zebrafish', Journal of leukocyte 

biology, 98(6), pp. 975-981. doi: 10.1189/jlb.3MA0315-105R. 

Gintant, G., Sager, P.T. and Stockbridge, N. (2016) 'Evolution of strategies to improve 

preclinical cardiac safety testing', Nature reviews. Drug discovery, 15(7), pp. 457-471. doi: 

10.1038/nrd.2015.34. 

Harris, C.A. and Sumpter, J.P. (2015) 'Could the Quality of Published Ecotoxicological 

Research Be Better?', Environmental science & technology, 49(16), pp. 9495-9496. doi: 

10.1021/acs.est.5b01465. 



 

209 
 

Hensley, A. and Beales, I.L.P. (2015) 'Use of Cyclo-Oxygenase Inhibitors Is Not Associated 

with Clinical Relapse in Inflammatory Bowel Disease: A Case-Control Study', Pharmaceuticals 

(Basel, Switzerland), 8(3), pp. 512-524. doi: 10.3390/ph8030512. 

Hoeger, B., Köllner, B., Dietrich, D.R. and Hitzfeld, B. (2005) 'Water-borne diclofenac affects 

kidney and gill integrity and selected immune parameters in brown trout ( Salmo trutta f. fario)', 

Aquatic toxicology, 75(1), pp. 53-64. doi: 10.1016/j.aquatox.2005.07.006. 

Janesick, A.S., Dimastrogiovanni, G., Vanek, L., Boulos, C., Chamorro-García, R., Tang, W. 

and Blumberg, B. (2016) 'On the utility of ToxCast™ and ToxPi as methods for identifying new 

obesogens', Environmental health perspectives, 124(8), pp. 1214-1226. doi: 

10.1289/ehp.1510352. 

Kidd, B.A., Wroblewska, A., Boland, M.R., Agudo, J., Merad, M., Tatonetti, N.P., Brown, B.D. 

and Dudley, J.T. (2016) 'Mapping the effects of drugs on the immune system', Nature 

biotechnology, 34(1), pp. 47-54. doi: 10.1038/nbt.3367. 

Klein, A. and Eliakim, R. (2010) 'Non-Steroidal Anti-Inflammatory Drugs and Inflammatory 

Bowel Disease', Pharmaceuticals (Basel, Switzerland), 3(4), pp. 1084-1092. doi: 

10.3390/ph3041084. 

Lee, D. and Choi, K. (2019) 'Comparison of regulatory frameworks of environmental risk 

assessments for human pharmaceuticals in EU, USA, and Canada', The Science of the total 

environment, 671, pp. 1026-1035. doi: 10.1016/j.scitotenv.2019.03.372. 

Legler, J., Zalko, D., Jourdan, F., Jacobs, M., Fromenty, B., Balaguer, P., Bourguet, W., Munic 

Kos, V., Nadal, A., Beausoleil, C., Cristobal, S., Remy, S., Ermler, S., Margiotta-Casaluci, L., 

Griffin, J.L., Blumberg, B., Chesné, C., Hoffmann, S., Andersson, P.L. and Kamstra, J.H. 

(2020) 'The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing 

Metabolism Disrupting Compounds', International journal of molecular sciences, 21(10), pp. 

3480. doi: 10.3390/ijms21103480. 

Margiotta-Casaluci, L., Owen, S.F., Cumming, R.I., de Polo, A., Winter, M.J., Panter, G.H., 

Rand-Weaver, M. and Sumpter, J.P. (2014) 'Quantitative Cross-Species Extrapolation 

between Humans and Fish: The Case of the Anti-Depressant Fluoxetine', PloS one, 9(10), pp. 

e110467. doi: 10.1371/journal.pone.0110467. 

Margiotta-Casaluci, L., Owen, S.F., Huerta, B., Rodríguez-Mozaz, S., Kugathas, S., Barceló, 

D., Rand-Weaver, M. and Sumpter, J.P. (2016) 'Internal exposure dynamics drive the Adverse 

Outcome Pathways of synthetic glucocorticoids in fish', Scientific reports, 6(1), pp. 21978. doi: 

10.1038/srep21978. 



 

210 
 

Marmon, P., Owen, S.F. and Margiotta-Casaluci, L. (2021) 'Pharmacology-informed prediction 

of the risk posed to fish by mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the 

environment', Environment international, 146, pp. 106222. doi: 10.1016/j.envint.2020.106222. 

Martin, G.R., Perretti, M., Flower, R.J. and Wallace, J.L. (2008) 'Annexin-1 modulates repair 

of gastric mucosal injury', American Journal of Physiology - Gastrointestinal and Liver 

Physiology, 294(3), pp. 764-769. doi: 10.1152/ajpgi.00531.2007. 

Martin, O.V., Adams, J., Beasley, A., Belanger, S., Breton, R.L., Brock, T.C.M., Buonsante, 

V.A., Galay Burgos, M., Green, J., Guiney, P.D., Hall, T., Hanson, M., Harris, M.J., Henry, 

T.R., Huggett, D., Junghans, M., Laskowski, R., Maack, G., Moermond, C.T.A., Panter, G., 

Pease, A., Poulsen, V., Roberts, M., Rudén, C., Schlekat, C.E., Schoeters, I., Solomon, K.R., 

Staveley, J., Stubblefield, B., Sumpter, J.P., Warne, M.S.J., Wentsel, R., Wheeler, J.R., Wolff, 

B.A., Yamazaki, K., Zahner, H. and Ågerstrand, M. (2019) 'Improving environmental risk 

assessments of chemicals: Steps towards evidence-based ecotoxicology', Environment 

international, 128, pp. 210-217. doi: 10.1016/j.envint.2019.04.053. 

Masclee, G.M.C., Valkhoff, V.E., Coloma, P.M., de Ridder, M., Romio, S., Schuemie, M.J., 

Herings, R., Gini, R., Mazzaglia, G., Picelli, G., Scotti, L., Pedersen, L., Kuipers, E.J., van der 

Lei, J. and Sturkenboom, Miriam C. J. M (2014) 'Risk of Upper Gastrointestinal Bleeding From 

Different Drug Combinations', Gastroenterology, 147(4), pp. 784-792.e9. doi: 

10.1053/j.gastro.2014.06.007. 

Mebane, C.A., Sumpter, J.P., Fairbrother, A., Augspurger, T.P., Canfield, T.J., Goodfellow, 

W.L., Guiney, P.D., LeHuray, A., Maltby, L., Mayfield, D.B., McLaughlin, M.J., Ortego, L.S., 

Schlekat, T., Scroggins, R.P. and Verslycke, T.A. (2019) 'Scientific integrity issues in 

Environmental Toxicology and Chemistry: Improving research reproducibility, credibility, and 

transparency', Integrated environmental assessment and management, 15(3), pp. 320-344. 

doi: 10.1002/ieam.4119. 

Mehinto, A.C., Hill, E.M. and Tyler, C.R. (2010) 'Uptake and Biological Effects of 

Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory 

Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss)', Environmental science 

& technology, 44(6), pp. 2176-2182. doi: 10.1021/es903702m. 

Memmert, U., Peither, A., Burri, R., Weber, K., Schmidt, T., Sumpter, J.P. and Hartmann, A. 

(2013) 'Diclofenac: New data on chronic toxicity and bioconcentration in fish', Environmental 

Toxicology and Chemistry, 32(2), pp. 442-452. doi: 10.1002/etc.2085. 

Moninuola, O.O., Milligan, W., Lochhead, P. and Khalili, H. (2018) 'Systematic review with 

meta‐analysis: association between acetaminophen and nonsteroidal anti‐inflammatory drugs 



 

211 
 

(NSAIDs) and risk of Crohn's disease and ulcerative colitis exacerbation', Alimentary 

pharmacology & therapeutics, 47(11), pp. 1428-1439. doi: 10.1111/apt.14606. 

Morgan, P., Brown, D.G., Lennard, S., Anderton, M.J., Barrett, J.C., Eriksson, U., Fidock, M., 

Hamrén, B., Johnson, A., March, R.E., Matcham, J., Mettetal, J., Nicholls, D.J., Platz, S., 

Rees, S., Snowden, M.A. and Pangalos, M.N. (2018) 'Impact of a five-dimensional framework 

on R&D productivity at AstraZeneca', Nature reviews. Drug discovery, 17(3), pp. 167-181. doi: 

10.1038/nrd.2017.244. 

Oehlers, S.H., Flores, M.V., Hall, C.J., Okuda, K.S., Sison, J.O., Crosier, K.E. and Crosier, 

P.S. (2013) 'Chemically Induced Intestinal Damage Models in Zebrafish Larvae', Zebrafish, 

10(2), pp. 184-193. doi: 10.1089/zeb.2012.0824. 

Okayama, M., Hayashi, S., Aoi, Y., Nishio, H., Kato, S. and Takeuchi, K. (2007) 'Aggravation 

by Selective COX-1 and COX-2 Inhibitors of Dextran Sulfate Sodium (DSS)-Induced Colon 

Lesions in Rats', Digestive diseases and sciences, 52(9), pp. 2095-2103. doi: 

10.1007/s10620-006-9597-z. 

Page, T.H., Turner, J.J.O., Brown, A.C., Timms, E.M., Inglis, J.J., Brennan, F.M., Foxwell, 

B.M.J., Ray, K.P. and Feldmann, M. (2010) 'Nonsteroidal Anti-Inflammatory Drugs Increase 

TNF Production in Rheumatoid Synovial Membrane Cultures and Whole Blood', The Journal 

of Immunology, 185(6), pp. 3694-3701. doi: //doi.org/10.4049/jimmunol.1000906. 

Schwaiger, J., Ferling, H., Mallow, U., Wintermayr, H. and Negele, R.D. (2004) 'Toxic effects 

of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and 

bioaccumulation in rainbow trout', Aquatic toxicology, 68(2), pp. 141-150. doi: 

10.1016/j.aquatox.2004.03.014. 

Sigthorsson, G., Simpson, R.J., Walley, M., Anthony, A., Foster, R., Hotz–Behoftsitz, C., 

Palizban, A., Pombo, J., Watts, J., Morham, S.G. and Bjarnason, I. (2002) 'COX-1 and 2, 

intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in 

mice', Gastroenterology (New York, N.Y. 1943), 122(7), pp. 1913-1923. doi: 

10.1053/gast.2002.33647. 

Singh, V.P., Patil, C.S., Jain, N.K. and Kulkarni, S.K. (2004) 'Aggravation of Inflammatory 

Bowel Disease by Cyclooxygenase-2 Inhibitors in Rats', Pharmacology, 72(2), pp. 77-84. doi: 

10.1159/000079135. 

Souza, M.H.L.P, Menezes De Lima Jr, O., Zamuner, S.R., Fiorucci, S. and WALLACE, J.L. 

(2003) 'Gastritis increases resistance to aspirin-induced mucosal injury via COX-2-mediated 



 

212 
 

lipoxin synthesis', American journal of physiology: Gastrointestinal and liver physiology, 48(1), 

pp. G54-G61. 

Sugimoto, M.A., Vago, J.P., Teixeira, M.M. and Sousa, L.P. (2016) 'Annexin A1 and the 

Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance', 

Journal of immunology research, 2016, pp. 8239258-13. doi: 10.1155/2016/8239258. 

Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Köhler, H.-. and Schwaiger, J. (2004) 

'Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects 

in liver, kidney, gills and intestine of rainbow trout ( Oncorhynchus mykiss)', Aquatic toxicology, 

68(2), pp. 151-166. doi: 10.1016/j.aquatox.2004.03.015. 

Tsubouchi, R., Hayashi, S., Aoi, Y., Nishio, H., Terashima, S., Kato, S. and Takeuchi, K. 

(2007) 'Healing Impairment Effect of Cyclooxygenase Inhibitors on Dextran Sulfate Sodium-

Induced Colitis in Rats', Digestion, 74(2), pp. 91-100. doi: 10.1159/000097657. 

Valenti, T.W., Gould, G.G., Berninger, J.P., Connors, K.A., Keele, N.B., Prosser, K.N. and 

Brooks, B.W. (2012) 'Human Therapeutic Plasma Levels of the Selective Serotonin Reuptake 

Inhibitor (SSRI) Sertraline Decrease Serotonin Reuptake Transporter Binding and Shelter-

Seeking Behavior in Adult Male Fathead Minnows', Environmental science & technology, 

46(4), pp. 2427-2435. doi: 10.1021/es204164b. 

Verheijen, M., Lienhard, M., Schrooders, Y., Clayton, O., Nudischer, R., Boerno, S., 

Timmermann, B., Selevsek, N., Schlapbach, R., Gmuender, H., Gotta, S., Geraedts, J., 

Herwig, R., Kleinjans, J. and Caiment, F. (2019) 'DMSO induces drastic changes in human 

cellular processes and epigenetic landscape in vitro', Scientific reports, 9(1), pp. 1-12. doi: 

10.1038/s41598-019-40660-0. 

Wallace, J.L., Keenan, C.M. and Granger, D.N. (1990) 'Gastric ulceration induced by 

nonsteroidal anti-inflammatory drugs is a neutrophil-dependent process', The American 

journal of physiology, 259(3 Pt 1), pp. G462-G467. 

Wallace, J. (1997) 'Nonsteroidal anti-inflammatory drugs and gastroenteropathy: The second 

hundred years', Gastroenterology (New York, N.Y. 1943), 112(3), pp. 1000-1016. doi: 

10.1053/gast.1997.v112.pm9041264. 

Wallace, J.L. (2008) 'Prostaglandins, NSAIDs, and Gastric Mucosal Protection: Why Doesn't 

the Stomach Digest Itself?', Physiological Reviews, 88(4), pp. 1547-1565. doi: 

10.1152/physrev.00004.2008. 



 

213 
 

Wallace, J.L. and Devchand, P.R. (2005) 'Emerging roles for cyclooxygenase‐2 in 

gastrointestinal mucosal defense', British journal of pharmacology, 145(3), pp. 275-282. doi: 

10.1038/sj.bjp.0706201. 

Weaver, R.J. and Valentin, J. (2019) 'Today’s Challenges to De-Risk and Predict Drug Safety 

in Human “Mind-the-Gap”', Toxicological sciences, 167(2), pp. 307-321. doi: 

10.1093/toxsci/kfy270. 

Yang, H., Zhou, Y., Gu, J., Xie, S., Xu, Y., Zhu, G., Wang, L., Huang, J., Ma, H. and Yao, J. 

(2013) 'Deep mRNA Sequencing Analysis to Capture the Transcriptome Landscape of 

Zebrafish Embryos and Larvae', PloS one, 8(5), pp. e64058. doi: 

10.1371/journal.pone.0064058. 



 

214 
 

  

Appendix 4.1 



 

215 
 

Appendix 4.2 

 
RNA-Seq: Quality control (QC), trimming, mapping, counting, and clustering 

After successful library preparation and sequencing run, the number of reads generated for 

each sample exceeded 23 million (Table S4.1) and was very consistent between samples, 

suggesting a balanced library pool. The QC process revealed that ‘per base sequence quality’ 

for all samples had high quality scores (>30) along the whole length of the reads (Figure S4.1). 

  

  

  

  

  

Figure S4.1. Per base sequence quality along the read lengths for each sample. The green shaded 

area represents a high quality score (>30), which is achieved by every sample. 
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Similarly, ‘per sequence quality scores’ confirmed that the overall quality score of the reads 

for each sample was very high (mean scores >30) (Figure S4.2). 

 

Figure S4.2. Overall per sequence quality scores of the reads for each sample. Mean quality 

scores exceeded 30 for all samples, indicating high levels of quality. 

 

Equally, ‘per base sequence content’ showed little to no difference between the proportions of 

the four nucleotides across the read’s length. The library preparation caused an anticipated 

bias at the beginning of the reads, which are represented by the fluctuations seen in Figure 

S4.3 below. 

 

Figure S4.3. Per base sequence content analysis for each sample. 
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‘Per sequence GC content’ was assessed in order to identify potential contamination or a 

biased subset in the library. Figure S4.4 shows a normal distribution of GC content across our 

reads, centred at the overall GC content of the underlying genome. The analysis showed no 

evidence of contamination, and the peaks are well aligned with each other. 

 

Figure S4.4. Per sequence GC content analysis to identify contamination or biased subset in 

library. Normal distribution among all samples, no evidence of contamination or bias. 

 

‘Sequence length distribution’ of the reads in our libraries was assessed to ensure they match 

the sequence length used in the protocol, prior to trimming. The sequence length of our reads 

matched the expected length (~75 bp), which is confirmed by the data visualisation displayed 

in Figure S4.5. 

 

Figure S4.5. Sequence length distribution analysis to assess sequence length of reads in each 

sample. All samples contain reads of the expected length (~75 base pairs). 
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Sequence duplication levels, displayed in Figure S4.6, were assessed to identify potential read 

duplications. High levels of duplication may indicate an enrichment bias (e.g., PCR over-

amplification) or contamination. However, RNA-Seq libraries will normally show sets of reads 

at higher duplication levels, which could potentially correspond to highly expressed transcripts. 

Duplicate reads are not removed from the data, and any peaks after ~>1K copies per read 

may indicate high polyA content, mitochondrial RNA and/or ribosomal RNA. The profile 

generated for our data is as expected for this type of experiment. 

 

Figure S4.6. Sequence duplication analysis. Each sample profile is as expected for this type of 

experiment. 

 

The number of reads remaining after trimming of low-quality bases and adapter sequences 

from the 3’ end of reads, and the % of reads removed, are displayed in Table S4.1. The 

number of reads removed due to the trimming process was very low, as expected from good 

quality reads. 

Table S4.1. Number of reads before and after trimming. 

 

 

 

Sample Number of raw reads Number of reads after trimming % removed 

CTRL_1_S1_R1 24,577,096 24,575,984 0.0045 

CTRL_2_S2_R1 24,703,934 24,702,696 0.005 

CTRL_3_S3_R1 25,516,305 25,515,169 0.0045 

DIC_1_S10_R1 24,172,347 24,171,244 0.0046 

DIC_2_S11_R1 24,632,880 24,631,763 0.0045 

DIC_3_S12_R1 23,058,241 23,057,198 0.0045 

MEL_1_S4_R1 24,164,306 24,163,258 0.0043 

MEL_2_S5_R1 23,641,507 23,640,450 0.0045 

MEL_3_S6_R1 23,600,565 23,599,469 0.0046 



 

219 
 

‘Per base sequence content’ was re-assessed to ensure that even proportions of bases 

across the reads was maintained after the trimming process. Figure S4.7 indicates that the 

proportions of bases remained uniform after trimming, with an expected drop in the 

proportion of A nucleotides at the end of the reads due to removal of adapters. Adapters 

were trimmed due to their interference with downstream analyses, such as mapping of reads 

to the reference genome. 

 

Figure S4.7. Per base sequence content analysis after trimming. Uniform proportion of bases 

maintained for each sample, with an expected drop in the proportion of A nucleotides due to trimming 

of adaptor sequences of reads. 
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Table S4.2 summarises the results of the mapping, describing the percentage of uniquely 

mapped reads, the percentage of reads that mapped to multiple loci, and the percentage of 

unmapped reads. It is expected that >75% of reads from each sample will uniquely map to the 

genome. This expectation was confirmed for all the samples analysed in this study as they 

displayed >90% unique mapping efficiency. Reads which mapped to multiple loci, to 

overlapping gene regions, or with a mapping quality score <10, were discarded to avoid 

ambiguity and false positives in the differential expression analysis.  

Table S4.2. Summary of the read mapping process. 

 

Sample 
% Uniquely 

mapped 
% Multiple loci % Unmapped 

Number of input 
reads 

Number of 
uniquely 

mapped reads 

CTRL_1_S1 91.34 6.27 2.39 24575984 22448039 

CTRL_2_S2 91.15 6.08 2.77 24702696 22517390 

CTRL_3_S3 91.04 6.4 2.57 25515169 23228679 

DIC_1_S10 90.92 6.51 2.57 24171244 21976817 

DIC_2_S11 90.77 6.65 2.58 24631763 22359082 

DIC_3_S12 91.19 6.16 2.64 23057198 21026654 

MEL_1_S4 91.16 6.06 2.78 24163258 22026624 

MEL_2_S5 91.19 6.15 2.65 23640450 21557964 

MEL_3_S6 91.24 6.24 2.52 23599469 21532909 

 

 

Read mapping distribution between different genomic regions is summarised in Figure S4.8, 

indicating that the largest percentage of reads in each sample is mapped to coding regions 

(>50%), as expected. 

 

Figure S4.8. Summary of read mapping distribution between genomic regions. As expected, the 

majority of reads mapped to coding regions. 
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The read coverage (y-axis) along the gene body (x-axis) from 5’ to 3’ was compiled for all the 

genes and summarised in Figure S4.9. The expected distribution would be a smooth curve 

with consistently high coverage across the gene body for all samples. The analysis of our data 

revealed a modest skew in the curve with lower coverage on the 5’ end, which may suggest a 

small degree of sample degradation. However, the distribution is very consistent for all 

samples, indicating that sample degradation, if any, was consistent throughout the sample 

batch, without a negative impact on the data analysis procedure. In addition, this observation 

is in contrast with the high quality of the samples quantified using both spectrophotometric 

measurements (Qubit, Nanodrop) and the Agilent 2100 Bioanalyzer system. Hence, the 

biological and technical relevance of such distribution remains unclear and should be 

interpreted with caution. 

 

Figure S4.9. Read coverage along the gene body from 5’ – 3’. Lower coverage on the 5’ end may 

indicate some small degree of degradation; however, this is consistent between all samples, and other 

sample quality metrics did not indicate any sample degradation. 
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The proportion of reads that map to genomic features, other genomic regions, and to 

ambiguous locations is summarised in Table S4.3. These proportions are presented for each 

sample in Figure S4.10 and show that the vast majority of reads map within features, with a 

similar distribution for each sample.  

 

Table S4.3. Summary of the proportion of reads mapping to features, other genomic regions 

and to ambiguous loci. 

 

Sample Uniquely mapped In features Not in features Ambiguous 

CTRL_1_S1 22448039 19886205 2065708 496126 

CTRL_2_S2 22517390 19290425 2599827 627138 

CTRL_3_S3 23228679 20129277 2532333 567069 

DIC_1_S10 21976817 18672801 2714041 589975 

DIC_2_S11 22359082 19091012 2653789 614281 

DIC_3_S12 21026654 17756965 2679253 590436 

MEL_1_S4 22026624 18511499 2881556 633569 

MEL_2_S5 21557964 18170049 2786481 601434 

MEL_3_S6 21532909 18462600 2530444 539865 

 

 

Figure S4.10. Proportions of the reads within each sample mapping to genomic features, other 

genomic regions (not in features), and ambiguous locations. Green bars represent the proportion 

of reads mapping to genomic features; Purple bars represent the proportion of reads mapping to other 

genomic regions (not in features); pink bars represent the proportion of reads mapping to ambiguous 

locations. 
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The distribution of counts is summarised in Figure S4.11, where the percentage of genes (y-

axis) per raw count value (x-axis) is plotted for each sample. All the of samples analysed in 

this study share a very similar distribution, with the majority of genes showing a raw count 

value between 1 and 100. The number of genes detected (count ≥ 1) in each sample is 

expected to be approximately similar between samples, which is confirmed by the data 

displayed in Table 4.5, resulting in around 25,000 genes per sample. 

 

Figure S4.11. Summary of distribution of counts for each sample. The percentage of genes per 

count value shows a similar distributions for all samples, with the majority of genes showing a count 

value between 1 and 100. 

 

Table S4.4. Number of genes detected per sample. Each sample should have a similar number of 

genes. 

 

  

 

 

 

 

 

 

 

Sample Number of genes detected 

CTRL_1_S1 25,220 

CTRL_2_S2 25,409 

CTRL_3_S3 25,445 

DIC_1_S10 25,141 

DIC_2_S11 25,226 

DIC_3_S12 25,217 

MEL_1_S4 25,366 

MEL_2_S5 25,183 

MEL_3_S6 25,320 
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The library composition was assessed to confirm that protein coding genes represent the main 

RNA type in all samples (Figure S4.12). 

 

Figure S4.12. Summary of library composition analysis. Protein coding genes should represent the 

main type of RNA in all samples. 

 

Sample clustering was assessed using principal component analysis (PCA) plots and 

heatmaps, which were derived from normalised and rlog transformed counts, for all groups as 

a whole and the individual comparisons (control vs diclofenac vs meloxicam; control vs 

diclofenac; control vs meloxicam). Group analyses are presented in Figure S4.13, and the 

individual analyses are presented in Figure S4.14, and Figure S4.15. The PCA plots revealed 

a non-optimal clustering of the control samples. This variability can be explained by the 

observation of the gene expression heatmap, which identified one control sample 

(CTRL_1_S1) as a potential outlier. However, the biological relevance of this observation 

remains unclear, as the exclusion of this sample did not improve the overall clustering, 

indicating that the definition of “outlier” may not be correct. However, it is important to highlight 

that each sample was formed by four individual larvae. Although our experimental procedure 

was designed to minimise any potential source of variability, it is possible that the observed 

inter-sample variability was just a result of biological variability. The heatmaps comparing each 

sample are presented in Figure S4.16 below. 
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Figure S4.13. Whole group PCA plots assessing sample clustering. Pink dots represent control 

samples; green dots represent diclofenac samples; purple dots represent meloxicam samples. 

 

 

Figure S4.14. PCA plots assessing sample clustering between control and diclofenac samples. 

Pink dots represent the control samples; blue dots represent the diclofenac samples. 
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Figure S4.15. PCA plots assessing sample clustering between control and meloxicam samples. 

Pink dots represent the control samples; blue dots represent the meloxicam samples. 

    

 

 

 

                      

Figure S4.16. Correlation heatmaps displaying the relative similarity between samples. The 

heatmaps suggest that sample ‘CTRL_1_S1’ may be different from the other control samples. 
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Multidimensional scaling (MDS) and scatter plots were generated to assess the relationships 

between the different samples. The MDS and scatter plots for diclofenac (Figure S4.17 and 

Figure S4.18, respectively) highlight the similarity between the three diclofenac samples and 

the three control samples. There seems to be a relatively high level of similarity between the 

treated samples. 

 

 

Figure S4.17. MDS plot control and diclofenac samples. Smaller distance between groups indicates 

a higher degree of similarity between samples. (i.e. diclofenac samples have a small BCV distance 

between them, whereas the controls are slightly further apart). 
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Figure S4.18. Scatter plot comparing control versus diclofenac treated samples. Black dots closer 

to the mid-line represent a high level of similarity between samples, whereas data points further from 

the mid-line represent a higher level of dissimilarity. The scatter plots comparing samples of the same 

treatment group tend to display a high level of similarity, with the majority of data points lying around 

the midline. The plots comparing control samples with diclofenac samples tend to have a higher degree 

of variability, with the data points more distributed either side of the midline. 
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The meloxicam MDS and scatter plots (Figure S4.19 and Figure S4.20, respectively) also 

indicate a relatively close relationship between the treated samples.  

 

Figure S4.19. MDS plot control and meloxicam samples. Smaller distance between groups indicates 

a higher degree of similarity between samples. (i.e. meloxicam samples have a small BCV distance 

between them, whereas the controls are slightly further apart). 
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Figure S4.20. Scatter plot comparing control versus meloxicam treated samples. Black dots 

closer to the mid-line represent a high level of similarity between samples, whereas data points further 

from the mid-line represent a higher level of dissimilarity. The scatter plots comparing samples of the 

same treatment group tend to display a high level of similarity, with the majority of data points lying 

around the midline. The plots comparing control samples with meloxicam samples tend to have a higher 

degree of variability, with the data points more distributed either side of the midline. 

 

On the whole, the scatter plots comparing the variability between the samples of the same 

treatment group look to have a tight distribution (dots closer to the angled line), which suggests 

that replicate samples produced similar gene expression profiles (i.e. the three diclofenac 

samples showed a similar distribution of gene expression). 
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RNA-Seq: Differential gene expression analyses 

A dispersion plot was generated for each comparison displaying the average count per million 

(CPM) for each gene, and the common dispersion (red line) for the whole dataset (Figure 

S4.21). The data appeared to be in line with the expectation for both comparisons, as with the 

increasing average log CPM the dispersions generally decrease in BCV. 

    

Figure S4.21. Dispersion plots for ‘control vs diclofenac’ and ‘control vs meloxicam’, 

respectively. The plot on the left-hand side represents the dispersion analysis for the control versus 

diclofenac comparison, whereas the dispersion plot on the right-hand side represents the control versus 

meloxicam comparison. Black data points represent genes; the red line represents the common 

dispersion. 
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The detailed results of the differential gene expression analysis are provided in a data file 

uploaded onto the Brunel Data Repository System (FigShare), which can be retrieved from 

the following address: https://figshare.com/s/822b6ffcacec179b6e3a. The MA (ratio intensity) 

plots for each comparison (diclofenac vs control, meloxicam vs control) display a two-

dimensional visualisation of the significant DEGs (FDR ≤ 0.05) as a distribution between 

log2FC and average log CPM (Figure S4.22). It is clear that there are a larger proportion of 

DEGs in the left-hand plot comparing ‘control versus diclofenac’ samples. 

 

    

Figure S4.22. MA plots for ‘control vs diclofenac’ and ‘control vs meloxicam’, respectively. Ratio 

intensity is graphed for each comparison in the MA plots. Each data point represents a gene; red data 

points indicate statistically significant differentially expressed genes (FDR ≤ 0.05), whereas black data 

points represent genes which are not differentially expressed. Blue lines represent fold change limits of 

1 and -1. 
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