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A B S T R A C T   

Large-scale integration of battery energy storage systems (BESS) in distribution networks has the potential to 
enhance the utilization of photovoltaic (PV) power generation and mitigate the negative effects caused by 
electric vehicles (EV) fast charging behavior. This paper presents a novel deep reinforcement learning-based 
power scheduling strategy for BESS which is installed in an active distribution network. The network includes 
fast EV charging demand, PV power generation, and electricity arbitrage from main grid. The aim is to maximize 
the profit of BESS operator whilst maintaining voltage limits. The novel strategy adopts a Twin Delayed Deep 
Deterministic Policy Gradient (TD3) algorithm and requires forecasted PV power generation and EV smart 
charging demand. The proposed strategy is compared with Deep Deterministic Policy Gradient (DDPG), Particle 
Swarm Optimization and Simulated Annealing algorithms to verify its effectiveness. Case studies are conducted 
with smart EV charging dataset from Project Shift (UK Power Networks Innovation) and the UK photovoltaic 
dataset. The Internal Rate of Return results with TD3 and DDPG algorithms are 9.46% and 8.69%, respectively, 
which show that the proposed strategy can enhance power scheduling and outperforms the mainstream methods 
in terms of reduced levelized cost of storage and increased net present value.   

1. Introduction 

Decarbonization in the transport sector largely accelerates the global 
uptake of electric vehicles (EVs). By 2030, EV market is estimated to 
reach 36 million in the UK [1]. The UK government has introduced a 
series of policies to promote EV deployment [2]. Consumers can receive 
a government subsidy of up to £2500 for EV purchased in the UK with a 
range of more than 70 miles on pure electricity and a price of less than 
£35,000. However, there are a limited number of grants available: 250 
grants until March 31, 2022; 1000 grants between April 1, 2022 and 
March 31, 2023 [3]. The rapid transition and high penetration of EV 
significantly changes the travelling behaviors, energy usage pattern and 
consumer engagement and interaction with energy systems; which will 

have a considerable impact on the planning and operation of electricity 
networks at both local and national levels. This emerges an urgent need 
to identify and utilize the advanced energy storage technologies to 
mitigate the potential of wide-scale blackout caused by power supply 
and demand imbalance. 

The evolution of UK electricity network is essential to integrate the 
large-scale influx of fast EV charging demand. Electrified transportation 
sector and electricity network are closely coupled with the development 
of vehicle-to-grid technology and Internet of Things platforms, which 
enables intelligent asset management platforms to promote low carbon 
energy systems. However, with these changes in demand side and supply 
side, it will become increasingly difficult for a congested electricity 
network to balance the widespread of fast charging EV requirements. 
One of the most promising solutions is to use large-scale battery energy 
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storage systems (BESS) to meet fast EV charging demand. The capital 
and operational costs of BESS have been significantly reduced in the last 
decade due to technology advancement and economies of scale. BESS 
enables active distribution networks management which can effectively 
maintain system constraints and assist energy and transport sectors 
decarbonization. 

Unmanaged PV power generation and fast EV charging demand can 
cause serious overvoltage issues in the distribution networks. In Ref. [4], 
a study on Saudi Arabia’s electricity system to charge EVs shows that the 
system is no longer capable of sustaining a 20% EV penetration rate, or 
even a 10% EV penetration rate in the worst-case scenario. Ref. [5] 
considered a micro-grid composed of the power distribution such as 
wind power and PV, EV charging stations and energy storage systems. 
The uncertainties of EVs’ charging demand and distributed renewable 

energy output are studied. Ref. [6] discussed that electricity retailers can 
use energy storage systems or demand response programs to profit from 
the electricity market and to overcome the stochastic nature of renew-
able energy. This facilitates the consumption of renewable energy and 
increases the proportion of clean energy use. Ref. [7] introduced a 
reinforcement learning method for the power scheduling of BESS for 
electricity arbitrage in electricity markets. Ref. [8] proposed a 
model-free deep reinforcement learning algorithm Rainbow Deep 
Q-Network used to control a battery in a microgrid to perform energy 
arbitrage and more efficiently utilize solar and wind energy sources. 
Ref. [9] used reinforcement learning for power scheduling of BESS with 
PV power generation. But the reviewed research papers do not consider 
the impact of fast EV charging using BESS on distribution networks. 
Ref. [10] employed DDPG algorithm for the economic dispatch of 

Nomenclature 

Abbreviations 
BEV Battery Electric Vehicles 
BESS Battery Energy Storage Systems 
DDPG Deep Deterministic Policy Gradient 
ELM Extreme Learning Machine 
EV Electric Vehicles 
IRR Internal Rate of Return 
LCOS Levelized Cost of Storage 
MDP Markov Decision Process 
NPV Net Present Value 
NDC Normalized Discharge Capacity 
O&M Fixed Operation and Maintenance 
PSO Particle Swarm Optimization 
PV Photovoltaic 
PHEV Plug-in Hybrid Electric Vehicles 
RMSE Root Mean Square Error 
RL Reinforcement Learning 
SCD Smart Charging Demand 
SA Simulated Annealing 
TD3 Twin Delayed Deep Deterministic Policy Gradient 
WACC Weighted Average Cost of Capital 

Symbols 
αt Wholesale market price (£/MWh) 
βt Retail electricity price (£/MWh) 
τ Soft update parameter 
ηch Charging efficiency of BESS (%) 
ηdis Discharging efficiency of BESS (%) 
ΔSOCc Deviation of SOC of the BESS in the cth cycle (%) 
γi Loss factor (£/MW) 
φ The parameters of actor network 
φ′ The parameters of target actor network 
θ1,2 The parameters of two critic network 
θ
′

1,2 The parameters of two target critic network 
πφ Actor network 
πφ′ Target actor network 
Qθ1,2 Critic network 
Qθ′1,2 

Target critic network 

at Action of agent at time t 
CBESSReplacement BESS’s degradation cost (£) 
Ci,t Cost of degeneration of battery at time t at ith iteration (£) 
CB

t Cost of degeneration of BESS at time t (£) 
CBESSy Total costs of the BESS at year y (£) 
CBESSRated Capital cost of BESS (£/MWh) 
ECapBESS Rated energy capacity of BESS (MWh) 

EBESSy BESS energy output at year y (MWh) 
Io Initial investment cost (£) 
J(φ) Expected return function 
kPV and kEV PV and EV forecasted uncertainty factors 
kmin and kmax Flag variables of BESS denoting less than the 

minimum and above the maximum SOC 
Lb and Ub Lower and upper boundaries of the network voltage 
N Number of samples 
Nc Cycle number of SOC curve 
n BESS lifetime (year) 
PB

t BESS output power for arbitrage at time t (MW) 
Ptotal

t Total output power of BESS (MW) 
PB

Max BESS maximum output power for arbitrage (MW) 
Pback

t BESS output power for reserve power at time t (MW) 
PPV

t PV system output power at time t (MW) 
PEV

t Fast EV charging power at time t (MW) 
Pnet

t Grid injected power (MW) 
PNet

t,base Grid injected power without BESS (MW) 
PNet

t,TD3 Grid injected power with BESS scheduled by TD3 (MW) 
PNet

t,DDPG Grid injected power with BESS scheduled by DDPG (MW) 
PNet

t,PSO Grid injected power with BESS scheduled by PSO (MW) 
PNet

t,SA Grid injected power with BESS scheduled by SA (MW) 
PRMSE Forecasted root mean square error of PV generation 

divided by the generation capacity of PV 
PPV

t,on− line and PPV
t,off− line PV power in on-line implementation and off- 

line training (MW) 
PEV

t,on− line and PEV
t,off− line EV charging power in on-line implementation 

and off-line training (MW) 
PPV

t,noise and PEV
t,noise Noise power for PV and EV (MW) 

Rt Reward of agent at time t 
Ratedcyclec Equivalent full cycle number in the cth cycle 
Rnoise Range of noise 
RPV

t,stochastic and REV
t,stochastic Random value between − 1 and 1 for PV and 

EV 
SOCt State of charge at time t (%) 
SOCmin Minimum state of charge (%) 
SOCmax Maximum state of charge (%) 
SOCmean, c Average value of SOC in the cth cycle (%) 
Sback Amount of reserve energy used (MWh) 
T Maximum simulation time 
VMin

t Minimum value of all node voltages at time t (p.u.) 
VMax

t Maximum value of all node voltages at time t (p.u.) 
ZBESS Profit of BESS (£)  
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electric bus battery swapping stations. By the utilization of BESS in the 
bus battery swapping stations, the charging and discharging strategy is 
determined according to the real-time electricity price; such approach 
can guarantee the sufficient battery replacement and perform arbitrage 
with the electricity market. However, this reference did not consider the 
impacts of using batteries to absorb renewable power generation and 
fast EV charging behaviors on the distribution network. Ref. [11] pro-
posed a deep reinforcement learning based demand response program 
with real-time pricing signals for EV charging schedule. Authors in 
Ref. [12] proposed an intelligent energy management and charging 
scheduling system for EVs. The system provides convenient energy 
management services by using battery control units and communication 
infrastructure for charging stations. This system facilitates the drivers to 
take the best charging decision. Ref. [13] proposed a location planning 
model of electric bus fast-charging stations for the electric bus transit 
system. The model considers the bus operation integrated with the dis-
tribution networks. Ref. [14] proposed a transactive real-time building 
energy management strategy considering high penetration of renewable 
power generation and EV charging demand. Ref. [15] presented a 
scheduling method for large-scale EV charging in a distribution network, 
considering random renewable power generation and electricity prices. 
However, the method did not consider the scenarios where the EV 
drivers are uncooperative with the demand response planning. Ref. [16] 

proposed a charging scheduling strategy for different EVs with optimi-
zation for the convenience of drivers, performance of transport system 
and distribution network. Ref. [17] proposed a hybrid strategy to 
manage the energy in electric vehicle charging station and distribution 
system. Ref. [18] proposed an optimal EV centralized charging strategy 
and scheduling algorithm for battery swapping station with an improved 
hybrid PSO-GA to reduce the power loss and voltage deviation of power 
networks. Due to the increasing in utilization of intermittent renewable 
energy resources, it will be more complicated to balance power supply 
and demand. Authors in Ref. [19] presented a stochastic unit commit-
ment approach for a power system with BESS to facilitate integration of 
renewable resources, optimize the allocation of system resources, and 
minimize the system cost. This is a viable solution to deal with the 
variability and uncertainty of renewable resources by integrating BESS 
into the distribution network. In Ref. [20], a BESS arbitrage profit 
maximization problem is formulated considering uncertainty in 
day-ahead and real-time market prices. The proposed method can 
effectively help BESS owners to make operational decisions with the aim 
of maximizing arbitrage profit via market bidding. 

Overall, reinforcement learning is a promising approach for profit 
maximization problem for active distribution networks, but currently 
has not been extensively explored for BESS, high penetration of PV 
power, and EV charging demand. Table 1 shows a comparison of recent 

Table 1 
Comparison of recent related works.  

Ref. Reinforcement learning for BESS 
scheduling 

Employed TD3 
algorithm 

Consider EV smart 
charging 

Employed LCOS and IRR to analyze 
BESS 

Consider renewable 
energy 

[5,19] × × × × ✓ 
[6] × × ✓ × ✓ 
[7] ✓ × × × ×

[8,9] ✓ × × × ✓ 
[10] ✓ × × × ×

[11] ✓ × ✓ × ×

[14,15] × × ✓ × ✓ 
This 

work 
✓ ✓ ✓ ✓ ✓  

Fig. 1. Power flow and information flow of the distribution network connected with various assets.  
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related work and this study. It reflects that the present study is very 
much more comprehensive by including BESS as well. 

This paper presents a novel deep reinforcement learning-based 
power scheduling strategy for BESS which is installed in an active dis-
tribution network. The aim is to realize active management of distri-
bution networks and maximize the profit of BESS. Technical constraints 
of the distribution network will be maintained including voltage limits. 
The problem of power scheduling is formulated as MDP with continuous 
action space. The TD3 algorithm, an actor-critic reinforcement learning 
agent, is utilized to search for an optimal policy that maximizes the 
cumulative long-term reward, by updating a neural network with 
gradient ascent method which provides the optimal power scheduling 
policy. The PV power is forecasted with ELM and the fast EV charging 
demand is generated by Monte Carlo method. The key contributions of 
this work are as follows:  

• This work presents a novel methodology using TD3 reinforcement 
learning algorithm to maximize the BESS profit in a distribution 
network, consisting of fast EV charging demand, wholesale market 
electricity arbitrage, and PV power generation.  

• The proposed methodology is compared with the state-of-the-art 
reinforcement learning algorithm (i.e., DDPG) and heuristic opti-
mization algorithm (i.e., PSO and SA) using real-life datasets from 
the UK solar data and EV smart charging demand from Project Shift 
(UK Power Networks Innovation).  

• The techno-economic and financial analysis has been conducted to 
evaluate the economic and financial viability of installing BESS in 
distribution networks. 

The remaining sections of the paper are described as follows: Section 
2 presents a novel deep reinforcement learning-based power scheduling 
strategy for BESS which is installed in an active distribution network. A 
techno-economic and financial analysis was conducted focusing on 
levelized cost of energy, internal rate of return, and net present value. 
Section 3 presents a case study of the charging and discharging strategy 
of BESS after it is connected to the distribution network and compares it 
with a state-of-the-art reinforcement learning algorithm and a heuristic 
optimization technique. Section 4 presents the conclusions and future 
work. Appendix presents and examines the datasets used for the model 
development. 

2. Research context and methodology 

In this section the research problems and methods will be intro-
duced. The collection of needed datasets i.e., electricity price data, 
weather data for forecasting PV, and EV charging data are detailed in 
Appendix A. In this paper, ELM is employed to forecasted PV generation 
curve. The fast EV charging demand is generated by Monte Carlo 
method. For a detailed introduction, please refer to Appendix B. 

2.1. Overall framework description 

In this study, the distribution network operator is considered to have 
access to BESS owned by a third-party company. The owner of the BESS 
assumes the obligation to maintain the safe operation of the distribution 
network and, in return, the owner of the BESS has the right to provide 
charging services to EVs for profit and to arbitrage in the distribution 
network. Fig. 1 presents the main components of a distribution network 
with fast EV charging stations, including PV renewable power genera-
tion, and BESS. 

The objective of the energy management system is to maximize the 
profit of the BESS whilst maintain distribution network voltage con-
straints. The distribution network can charge the BESS during off-peak 
hours, while at peak hours, the stored power can be recovered and 
provide electricity to fast EV charging stations to satisfy the fast EV 
charging demand. The local renewable power generation capacity is 

mainly used to meet the local EV electricity demand, the excessive part 
can be stored in battery energy storage or fed into the grid. 

In this study, the optimal power scheduling of the active distribution 
network with BESS is obtained by using reinforcement learning (RL) 
algorithm. Different from conventional optimization methods, RL has 
excellent decision-making capability and considerable merits. Firstly, RL 
algorithm can achieve the optimal actions by interacting with the 
environment, so it does not require any prior knowledge of initial 
environment state, which is difficult to acquire in a real environment. 
Secondly, RL algorithm can be flexibly applied to application scenarios 
with uncertainty problems, through off-line training and on-line 
implementation. Thirdly, RL is easier to apply to real-time scenarios 
because it can use trained neural networks to determine the best results. 

In reinforcement learning algorithms, an agent is trained to complete 
a task within an uncertain and complex environment. Agents are 
parameterized function approximators for training the policy, which can 
be classified as actor and critic. The aim of the actor neural networks is 
to find the sequence of actions that maximizes the cumulative long-term 
reward of the task, and the critic neural networks is to develop the ex-
pected value of the cumulative long-term reward. The agent receives 
observations and a reward from the environment, and then acts ac-
cording to the environment. The reward is a measure to assess the 
performance of actions in a given environmental state, so that desired 
goals can be achieved by setting reasonable reward function. 

For value-based methods, agents use only critic neural networks to 
determine their actions, which perform better in discrete action spaces 
but are computationally demanding in continuous action spaces. For 
policy-based method, agents use only actor neural networks to deter-
mine their actions, which are normally employed for continuous action 
spaces. For actor-critic methods, agents that use both actor and critic 
neural networks can handle both continuous and discrete action spaces. 
During the training process, the actor neural networks use the feedback 
from the critic neural networks to select the optimal actions. At the same 
time, the critic neural networks learn the value function from rewards to 
evaluate the actor properly. 

The following action can be taken from actor neural networks to 
control the power flow for various assets in the distribution network: 

• Electricity distribution networks transmit electricity from the me-
dium voltage transmission grid to end users, which can charge EV 
and the BESS.  

• Renewable electricity generated from PV systems can be 1) stored in 
BESS; 2) used for fast EV charging; 3) fed into the distribution 
network and sold to the wholesale market.  

• The BESS can be:  
1. Charged by PV power generation system or distribution network.  
2. Discharged by fast EV charging or fed into the distribution 

network and sold to the wholesale market. A profit can be made 
via electricity arbitrage, i.e., storing electricity at off-peak hours 
when the wholesale market price is low and discharging elec-
tricity at peak hours when the wholesale market price is high. 

This work considers the fast EV charging demand as a flexible load 
and smart charging is achieved via dynamic tariffs. To simplify the 
study, it is assumed that the electricity from EV will not be fed into the 
grid. 

2.2. Mathematical formulation of the optimization problem 

To maximize the profit of the BESS with high PV penetration and fast 
EV charging demand, the optimization problem is formulated with the 
objective function given in Equation (1) as follows: 

C.S. Lai et al.                                                                                                                                                                                                                                    
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ZBESS = max
PB

t

∑T

t=1
Rt

Rt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αt
(
PB

t − PEV
t

)
Δt + βtPEV

t Δt − CB
t if : PB

t > 0,PB
t > PEV

t

βtPB
t Δt − CB

t if : PB
t > 0,PB

t ≤ PEV
t

αtPB
t Δt − CB

t if : PB
t < 0

(1) 

To ensure that the distribution network operates within technical 
constraints, the constraints considered in the optimization problem are 
shown in Equations (2)–(4) as follows: 

Lb ≤ Vk,t ≤ Ub , ∀k, ∀t (2)  

SOCmin ≤ SOCt ≤ SOCmax ,∀t (3)  

⎧
⎨

⎩

Pnet
t = Ptotal

t + PPV
t − PEV

t ,∀t
Ptotal

t = Pback
t + PB

t ,∀t
(4) 

In Equation (1), ZBESS is the profit of BESS. αt and βt are wholesale 
market price and retail electricity price, respectively. PB

t , PPV
t , and PEV

t 

are BESS output power for arbitrage, PV system output power (PPV
t ≥ 0) 

and fast EV charging power (PEV
t ≥ 0) at time t, respectively. CB

t is 
degradation cost of BESS at time t. Δt and Rt are the time slot and the 
reward at time t, respectively. In Equation (1), when the BESS dis-
charging power PB

t is less than the power required by fast EV charging 
PEV

t , all the BESS discharging power PB
t will be used for fast EV charging. 

When the BESS discharge power PB
t is greater than the fast EV charging 

demand, the excessive part will be fed into the grid. In other words, the 
BESS prioritizes discharge to support fast EV charging and transmits 
power to the grid when the discharge power is greater than the fast EV 
charging demand. In the study, Ub and Lb are 1.05 and 0.95, respec-
tively. SOCmax and SOCmin are 100% and 10% [21], respectively. 
Equations (2) and (3) ensure that the voltage of the node k and SOC of 
BESS are within the allowable range at time t. Equation (4) is the power 
balancing equation for the considered assets. Pback

t is the portion of the 
BESS allocated for reserve power, and the PB

t is the portion of the BESS 
allocated for participation in the power market arbitrage. Equation (5) 
presents the SOC update process for the BESS. ηch and ηdis are the 
charging and discharging efficiencies of BESS, respectively. And the 
conversion efficiency of BESS is taken as 95% [22]. ECapBESS is the rated 
energy capacity of BESS. 

SOCt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SOCt− 1 −
ηchPB

t Δt
ECapBESS

if : PB
t < 0

SOCt− 1 −
PB

t Δt
ηdisECapBESS

if : PB
t ≥ 0

(5) 

The reinforcement learning model uses forecasted PV power gener-
ation and fast EV charging demand datasets in the training process. It is 
worth mentioning that the PV generation is susceptible to weather and 
fast EV charging load is forecasted by demand response. It is worth 
studying the volatility of PV generation and fast EV charging demand on 
the network. The employment of Equations (6) and (7) produces a 
forecast dataset with forecast errors. The PV forecasted dataset and the 
fast EV charging demand forecasted dataset in this study will be 
generated by this method. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PPV
t,on− line = PPV

t,off − line + PPV
t,noise , ∀t

PPV
t,noise = kPV*RPV

t,stochastic , ∀t

RPV
t,stochastic ∈ [ − 1, 1] , ∀t

(6)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PEV
t,on− line = PEV

t,off − line + PEV
t,noise ,∀t

PEV
t,noise = kEV *REV

t,stochastic ,∀t

REV
t,stochastic ∈ [ − 1, 1] ,∀t

(7) 

In Equation (6) PPV
t,on− line and PPV

t,off − line are the PV power in on-line 
implementation and off-line training, respectively. Here PPV

t,noise is 
assumed to be a noise factor, simulating the error in the forecast (to 
study generalization capability). RPV

t,stochastic is a random number between 
− 1 and 1. Different forecasting accuracies are obtained by adjusting the 
size of kPV . The larger the kPV value is, the larger the PV forecasting error 
will be. kPV is used to measure the PV forecasting error that RL can 
accept. That is, the larger the kPV value that RL can accept, the better the 
generalization capability is. Equation (7) works similarly to Equation 
(6). 

In real-time operation, there is a forecasting error that causes the 
day-ahead scheduling strategy to fail to meet the operational re-
quirements. When the forecasting error is too large and exceeds the 
generalization capability of RL, measures need to be taken to ensure the 
reliable operation of the grid. For the stochastic optimization algorithm 

Fig. 2. The flowchart of real-time optimization method.  

C.S. Lai et al.                                                                                                                                                                                                                                    



Energy 259 (2022) 124852

6

that does not have the ability to output the scheduling policy in real- 
time, it is more important to take measures to ensure the reliable 
operation of the network. The method is shown in Fig. 2 and PB

t repre-
sents the day-ahead discharging power of the BESS for arbitrage, 
calculated by the stochastic optimization algorithms i.e., PSO and SA. 
For RL i.e., TD3 and DDPG PB

t represents the discharge power of the 
BESS for arbitrage calculated by RL in real-time. The ΔP is a very small 
positive real number. The Pback

t is the power provided by reserve power 
supply. Pback

t can be used as a quantitative criterion in the sensitivity 
analysis. Equation (8) defines the amount of reserve power used in a 
cycle T to quantify the sensitivity. The more sensitive the system is, the 
larger the value of Sback in Equation (8) will be. From Equation (8), the 
worst case is when Pback

t ≥ 0,∀t or Pback
t ≤ 0,∀t. In this case, it is neces-

sary to prepare the minimum reserve capacity of twice the Sback and the 
SOC of the reserve energy storage is 50%. 

Sback =
∑T

t=1

⃒
⃒Pback

t

⃒
⃒Δt (8) 

The real-time optimization method in Fig. 2 is divided into three 
stages as follows: 

Stage 1) The charging strategy of BESS, the real-time PV generation 
power and EV charging power are loaded. Then run the power flow 
of the network at time t. 
Stage 2) To ensure that the SOC of the BESS is within the set range, 
the discharge power PB

t of the BESS is properly adjusted. 
Stage 3) To ensure that the voltage of the grid is within the set range, 
adjust the discharge power PB

t of the BESS and the power of the 
reserve power Pback

t without violating Stage 2. 

2.3. Battery degradation model 

A battery degradation model is included to enhance the calculation 
accuracy of the BESS operating cost [23]. Fig. 3 shows the calculation 
methodology of battery capacity loss factor [7]. This model uses the 
rainflow cycle counting algorithm to obtain cycle count, cycle range and 
cycle mean value based on the battery SOC curve as shown in Fig. 3. 
These parameters are then used to calculate the battery capacity loss 
factor. 

Equations 9 and 10 are used to determine the SOC parameters. 
SOCmean, c and ΔSOCc are SOC mean value of BESS and the deviation of 
BESS’s SOC in the cth cycle, respectively. These parameters are calcu-
lated by rainflow cycle counting algorithm. 

SOCmean, c = Cycle mean value (9)  

ΔSOCc = Cycle range (10) 

Equations 11 and 12 are used to calculate Ratedcyclec, the battery 

equivalent full cycle of the cth discharge cycle [24]. Fig. 4 shows the 
equivalent full cycle and normalized discharge capacity (NDC) as 
calculated by Equation (11) [24]. Fig. 4 shows that when the equivalent 
full cycle times of the battery reach about 4000 times, the corresponding 
NDC is 80%. The battery will be replaced when the available capacity 
degrades below the NDC value i.e., 80% [23]. The battery degradation 
model of Equation (11) has been used in Refs. [23,25] to describe the 
BESS degradation. For example, Ref. [23] examined a 2 MW/5 MWh 
BESS and Ref. [25] examined a 0.15 MW/0.6 MWh BESS. 

Ratedcyclec = e
In
(

1000.453*(100− NDC)
aeesc

)

0.453
(11)  

aeesc = 3.25*SOCmean, c*
(
1 + 3.25*ΔSOCc − 2.25*ΔSOCc

2) (12)  

CBESSReplacement =
∑Nc

c=1

ECapBESS *CBESSRate

Ratedcyclec
*ΔSOCc (13) 

In Equation (13), CBESSReplacement is the BESS-degradation cost. Nc is the 
cycle number of SOC curve, which is calculated by rainflow cycle 
counting algorithm. The battery capacity loss factor is calculated with 
Equation (14) [7]. 

γi+1 =
CBESSReplacement ,i
∑T

t=1

⃒
⃒
⃒PB

i,t

⃒
⃒
⃒

,∀i (14) 

CBESSReplacement ,i is the battery degradation cost at ith iteration. PB
i,t is the 

BESS output power in time t. T is equal to 96, which means that a day is 
divided into 96 time intervals of 15 min each. 

Fig. 3. Battery capacity loss calculation methodology.  

Fig. 4. Equivalent full cycle and normalized discharge capacity (NDC).  
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Ci,t = γi*
⃒
⃒
⃒PB

i,t

⃒
⃒
⃒ (15) 

In Equation (15), Ci,t (£) is the battery degradation cost at time t in 
the ith iteration. In Equation (1), CB

t = Ci,t ,∀i. 

2.4. Reinforcement learning algorithm and optimization process 

The agent for the BESS is trained by TD3 algorithm [26], which has 
three inputs i.e., observation, reward, and isdone; and one output which 
is the action. Observation is used to observe the state of the environ-
ment. The state variables in this environment include BESS’s SOC at time 
t SOCt, wholesale market price αt, retail electricity price βt, PV power 
generation PPV

t , EV smart charging demand PEV
t , the voltage value VMax

t 
of the highest voltage node in the whole distribution network, and the 
voltage value VMin

t of the lowest voltage node in the whole distribution 
network. The state space is given in Equation (16). 

st =
(
SOCt, αt, βt,PPV

t ,PEV
t ,VMax

t ,VMin
t

)
(16) 

The reward is specified according to the objective function in 

Equation (1). The reward function Rt is expressed in Equation (17). The 
purpose of the RL agent is to maximize the long-term cumulative 
reward. 

Rt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αt
(
PB

t − PEV
t

)
Δt + βtP

EV
t Δt − CB

t if : PB
t > 0,PB

t > PEV
t

βtP
B
t Δt − CB

t if : PB
t > 0,PB

t ≤ PEV
t

αtPB
t Δt − CB

t if : PB
t ≤ 0

(17) 

Isdone will be triggered when the constraints in Equations (2) and (3) 
are violated. The condition for isdone to be triggered is shown in 
Equation (18). 

isdone =

⎧
⎨

⎩

Yes if : VMax
t > Ub,VMin

t < Lb, SOCt > 1, SOCt < 0.1
No if : VMax

t ≤ Ub,VMin
t ≥ Lb, SOCt ≤ 1, SOCt ≥ 0.1

(18) 

Action at denotes the charging and discharging power of the BESS as 
shown in Equation (19). Here, PB

Max is the maximum charging and dis-
charging power of BESS for arbitrage. 

Fig. 5. Off-line training and on-line implementation flowchart.  
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at ∈
[
− PB

Max,P
B
Max

]
,∀t (19) 

Fig. 5 shows the off-line training and on-line implementation flow-
chart. The main process of off-line training is as follows: Firstly, the ELM 
and Monte Carlo methods are used to generate forecast datasets, 
including PV power generation and the fast EV charging demand. Sec-
ondly, the power flow is calculated using the power generated by the PV 
and fast EV charging demand as well as the charging and discharging 
power of the BESS (strategy for RL agent output). Thirdly, the Boolean 
variable isdone state is determined according to Equation (18). Isdone is 
triggered to terminate the training process due to constraints violation. 
Finally, the reward value and the state at the next moment are calculated 
and output to RL agent, and the battery capacity loss factor γ is updated 
at the last moment of the simulation cycle. The on-line implementation 
is similar to off-line training, except that the forecasted PV power gen-
eration and fast EV charging power data in off-line training are replaced 
with real-time data. The original RL agent is replaced with the trained 
RL agent. In this case, the BESS charging and discharging strategy can be 
output directly through the simulation without the need to train again, 
which greatly improves the speed of optimization. 

A MDP model with discrete time step Δt is established for the BESS 
power scheduling problem. The model ensures the safe operation of 
distribution network with absorption of surplus renewable power gen-
eration, and providing electricity for fast EV charging stations. In this 
work, the discrete time step Δt is 15 min. 

TD3 is a reinforcement learning algorithm based on actor-critic 
methods with the following procedures:  

1) Initialize the network parameters φ, θ1, θ2 for actor network πφ and 
two critic networks Qθ1 , Qθ2 respectively. The initialization param-
eters are then given to the target network θ1→θ

′

1, θ2→ θ′

2, φ→ φ′ .  
2) Select action a ~ πφ (s) + ε, ε ~ N (0,δ), here s is the states, ε is noise. 

The action is applied to the environment to get the reward r and state 
s′ of the next time step. The transition tuple (s, a, r, s’) is saved in B.  

3) When B has stored enough transition tuples (s, a, r, s’), mini-batch 
sampling of N transitions (s, a, r, s’) from B is adopted to update 
critic network and actor network. The goal of updating the critic 
network is given in Equation (20). Rnoise in Equation (20) is the range 
of noise and Rnoise >0. The parameters of the critic network are 
updated with Equation (21). 

{
y = r + λQθ′ (s

′

, πφ′ (s
′

) + ε)

ε ∼ clip(N(0, δ̃), − Rnoise,Rnoise)
(20)  

θi←minθi N
− 1

∑(
y − Qθi (s, a)

)2 (21)    

4) Actor network parameters are updated every d step which can make 
the value estimation of critic network more accurate. Parameters φ of 
the actor network are updated by the deterministic policy gradient. 
J(φ) = Esi∼pπ ,ai∼π [R0] in Equation (22) is the expected return function. 
The aim of updating φ is to maximize the expected return function 
J(φ). Then parameters φ′ of the target actor network and parameters 
θ
′

i of the target critic networks are updated by soft updating Equation 
(23). 

∇φJ(φ) = N − 1
∑

∇aQθi (s, a)|a= πφ(s)∇φ πφ(s) (22)  

{
θ’

i←τθi + (1 − τ)θ’
i

φ’←τφ + (1 − τ)φ’ (23) 

The training of TD3 algorithm as an iterative process is depicted in 
Fig. 6. The TD3 algorithm uses neural networks to store the learned 
strategy for maximizing the cumulative reward in an uncertain and 
complex environment. The algorithm “TD3 with ENV” describes the 
iteration process of training an agent using TD3 algorithm. 

Algorithm.  
Algorithm TD3 with ENV 

1: Initialize critic networks Qθ1 Qθ2 , and actor network πφ with random parameters θ1,

θ2, φ 
2: Initialize target networks θ1→θ

′

1 θ2→θ
′

2, φ→φ′

3: Initialize replay buffer B 
4: Initialize isdone and SOC 
5: for t = 1 to T do 
6: Select action with exploration noise a ~ π(s) + ε, ε ~ N (0,δ) 
7: The environment receives the action a of the agent and calculates the power flow 

of the distribution network 
8: Update Equations 15–18, get isdone, r and new state s′

9: Store transition tuple (s, a, r, s’) in B 
10: Sample mini-batch of N transitions (s, a, r, s’) from B 
11: ã ←πφ′ (s)+ ε, ε ~ clip (N (0, δ̃), -c, c) 
12: y ←r+ λmini=1,2Qθ′i

(s′ , ã)

13: Update critics θi←minθi N− 1 ∑(y − Qθi (s, a))
2 

14: if isdone is yes then 
15: break, end the current episode and move on to the next episode 
16: end if 
17: if t is T then 
18: Solve Equations 9–14, update the battery loss factor γi+1 

(continued on next page) 

Fig. 6. Reinforcement learning agent of TD3 based on actor-critic approach.  
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(continued ) 

Algorithm TD3 with ENV 

19: end if 
20: if t mod d then 
21: Update φ by the deterministic policy gradient: 
22: ∇φJ(φ) = N− 1 ∑∇aQθ1 (s,a)|a= πφ(s)∇φ πφ(s)
23: Update target networks: 
24: θ

′

i←τθi + (1 − τ)θ′

i 

25: φ′ ←τφ+ (1 − τ )φ′

26: end if 
27: end for  

2.5. Economic and financial analysis 

The economic analysis mainly considers the levelized cost of storage 
(LCOS) and net present value (NPV) of BESS [27]. Considered by in-
vestors and decision makers, the BESS costs can be evaluated via LCOS 
which is commonly examined as a reference for energy storage eco-
nomic. The battery lifetime, cost, and electricity price will all affect the 
LCOS. In this analysis, the battery degradation cost is also considered, 
and the LCOS of the battery is calculated according to the service life, 
service cost and the income. The financial analysis of the battery can be 
evaluated via NPV and IRR, which are common financial indicators for 
investors. The investment of BESS requires a large capital expenditure. 

2.5.1. LCOS 
LCOS can realize the economic comparisons between different types 

of energy storage technologies as well as operating scenarios as [22,28]: 

LCOS =

Io +
∑n

y=1

CBESSy

(1 + WACC)
y

∑n

y=1

EBESSy

(1 + WACC)
y

(24) 

In Equation (24), Io is the initial investment cost. WACC, CBESSy and 
EBESSy are the weighted average cost of capital (WACC), the operation 
and maintenance cost of BESS in year y and energy output, respectively. 

2.5.2. NPV and IRR 
NPV can be used to evaluate the financial viability of the project. A 

positive NPV denotes that the project is worthy for investment and profit 
can be made. The NPV is the present value of current and future benefit 
minus the present value of current and future costs. The NPV and IRR are 
calculated by Equations (25) and (26), respectively as follows: Where n 
is the total number of years. Cy is the cash flow for the BESS at the year y. 

NPV =
∑n

y=0

Cy

(1 + WACC)y (25)  

0 =
∑n

y=0

Cy

(1 + IRR)y (26)  

3. Case study: EV smart charging in the UK distribution 
networks 

3.1. Distribution network and node voltage evaluation instructions 

Fig. B2 in Appendix B shows the forecasted and real curves for PV 
and EV smart charging demand. Ideally, any forecasting model can be 
used for training the RL. Of course, a higher accuracy forecasting model 
will provide better actions. In Fig. 7, VMax

t denotes the voltage value of 
the node with the highest voltage among all nodes in the distribution 
network at time t; VMin

t denotes the voltage value of the node with the 
lowest voltage among all nodes in the distribution network at time t. The 
advantage of this definition is that if VMax

t and VMin
t do not exceed the 

voltage limit, then the voltage of all nodes in the distribution network 
will not exceed the voltage limit. Ub and Lb denote the upper voltage 
boundary and lower voltage boundary, respectively. In Fig. 7, without 
BESS in the distribution network, as PV power generation is generally 
active in midday from 10:00 to 14:00, the PV power generation can be 
greater than the fast EV charging demand, so VMax

t will exceed the 
voltage upper boundary Ub during this period. From 20:30 to 02:30 in 
the next day, VMin

t is lower than the voltage lower boundary Lb. This will 
damage the safe and reliable operation of the power grid. 

Fig. 8 presents the single-line diagram of a 10-bus distribution 
network for the case studies. Node 1 is the reference node in power flow 
analysis [29]. The power flow of the network was calculated by MAT-
POWER 5.0 with Newton-Raphson method. The BESS, PV, and SCD are 
connected to node 9. The BESS is installed to reduce the negative im-
pacts on distribution network caused by fast EV charging demand and 
high penetration of renewable energy generation i.e., PV. 

As discussed in Ref. [30], Li-ion batteries have achieved a capital cost 

Fig. 7. The VMax
t and VMin

t curves of the network without the BESS.  

Fig. 8. A 10-bus distribution network.  
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of 150 £/kWh. The energy capacity of BESS is set to 6 MWh and the rated 
power of the BESS is set to 4 MW [31,32]. It is assumed that the PV 
power capacity is at 4 MW. There are already 10 MW PV power plants in 
UK [33], so it is possible to set up 4 MW of PV power generation. 
Considering that the maximum load of the distribution network is 12.37 
MW [29], the maximum power of the charging station at a node is set to 
1.5 MW [29]. Therefore, the environment to test the RL algorithm can be 
described as in Fig. 8 and Equations 16–18. The assumed values of the 
fixed load of the distribution network are shown in Fig. 9. The purpose of 
assuming these parameters of distribution network is to better show the 
impact of PV generation and EV loads on the grid voltage which is a 
minor modification from Ref. [29]. The system assumption parameters 
are shown in Table 2. 

3.2. Experiment with TD3 algorithm 

The agent is trained with forecasted PV power generation and fast EV 

charging demand datasets. Fig. 10 presents the wholesale electricity 
market price and retail electricity price with and without SCD. Subse-
quently, the trained agent can achieve optimal power scheduling in real- 
time. Fig. 11(a) shows that the BESS is charged between 06:00 and 
16:00. In this period, the voltage of the distribution network in Fig. 11 
(b) increases because of abundant PV power generation. However, the 
BESS discharges although the PV power generation exists at 16:00. This 
is because BESS’s SOC at 16:00 as shown in Fig. 11(c) is relatively high 
and the distribution network voltage does not exceed 1.05 per unit. Then 
at 19:00, the wholesale electricity market price decreases and the BESS 
discharging behaviors almost stops. As the EV smart charging demand 
significantly increases at 20:30, the BESS begins to discharge again to 
ensure the voltage stability of the distribution network. The BESS will 
increasingly discharge when the voltage of distribution network is 
relatively low (i.e., 20:00 to 05:00). Comparing Figs. 7 and 11(b), the 
VMax

t and VMin
t curves can be effectively constrained within the upper and 

lower boundaries due to the integration of BESS. Fig. 11(c) shows that 
the BESS’s SOC variation and the BESS’s SOC can effectively operate 
within the constraints of 10% and 100%. Fig. 11(d) presents the power 
curve of Pnet in Fig. 8. Fig. 11(d) shows that the difference between the 
maximum value and the minimum value of Pnet decreases after BESS is 
added to the network. In Fig. 11(d), the PNet

t,base presents the power curve 
of Pnet in Fig. 8 without BESS. In Fig. 11(d), the PNet

t,TD3 presents the power 
curve of Pnet in Fig. 8 with BESS and the BESS is scheduled by TD3. 

During the training process, the agent determines the charging and 
discharging policy of the BESS based on the state st of the environment 
as determined by the forecasted datasets, i.e., PV generation and EV 
charging demand. The reward is an evaluation of the goodness of the 
policy taken by the agent. The agent will eventually learn to take the 
optimal policy to maximize the cumulative long-term reward for the 
task. The best charging and discharging policy in the training process, i. 
e., training action is shown in Fig. 12. Subsequently, the agent is then 
applied to a new environment with real-time datasets, i.e., the real PV 
generation curve and real fast EV charging demand. The agent will take 
a new policy in real-time according to the observation from the new 
environment. Fig. 12 shows the charging and discharging policy in the 
new environment as real-time action. The similar actions between the 
training and real-time scenarios proved that the trained agent can set up 
an effective policy for real-time applications according to the 
observations. 

Fig. 13 shows the convergence curve of TD3 algorithm. The episode 
reward is the total reward for each episode. The average reward is the 
average reward for the last 100 episodes. 

3.3. Comparison with state-of-the-art techniques 

To verify the effectiveness of the proposed method, this section 
presents a comparison of the proposed method with a reinforcement 
learning technique based on the continuous action space and actor-critic 
approach i.e., DDPG and heuristic algorithms i.e., PSO and SA. 

3.3.1. DDPG 
DDPG is a type of reinforcement learning algorithm which is similar 

to TD3. Their main difference is that DDPG only has one pair of critic 
network, but TD3 has two critic networks, i.e., selecting the minimum 
value of two critic approximators for training. Thus, TD3 can reduce the 
overestimation and increase the training stability and speed. The results 
of BESS being scheduled by DDPG are as follows: Fig. 14(a) shows that 
the BESS charges from 9:00 to 15:00 due to surplus PV power genera-
tion. After 20:30, BESS starts to discharge because the EV smart charging 
demand significantly increases. The BESS can manage power flows to 
ensure that the distribution network operates within the voltage con-
straints. The BESS’s SOC in Fig. 14(c) and the voltage of the distribution 
network in Fig. 14(b) are within the set range. Comparing Figs. 14(d) 
and Fig. 11(d), the fluctuation of PNet

t,DDPG is greater than that of PNet
t,TD3. 

Fig. 9. The fixed load demand at different nodes of the distribution network.  

Table 2 
System parameters assumption.  

Parameters Value 

Fixed operation and maintenance (O&M) 2920 [£/MW-yr] [34] 
NDC 80% [23] 
PV system rated capacity 4 MW 
BESS rated energy capacity 6 MWh [31,32] 
BESS rated power capacity 4 MW [31,32] 
Δt 15 min 
Capital cost of BESS CBESSRated 150 £/kWh [30] 
Charging efficiency ηch /Discharging efficiency ηdis 97%/97% [22]  

Fig. 10. Wholesale market price and retail electricity price with and 
without SCD. 
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This should be due to the frequent switching of charging and discharging 
of the BESS. This also leads to voltage fluctuations, and the voltage 
fluctuations in Fig. 14(b) are significantly larger than those in Fig. 11(b). 

3.3.2. PSO 
To verify the effectiveness of reinforcement learning algorithms, PSO 

has been used to solve the same optimization problem. Using the orig-
inal PSO algorithm, it is difficult to get a solution that satisfies the 
constraints. Some particles cannot be updated during iterations and stay 
at the boundaries of the search space. The simulations indicate that it is 
difficult for PSO to avoid constraints violation at each time step. 
Therefore, we have made some modifications to the PSO algorithm to 
improve the optimization performance. When the particles do not up-
date after several iterations and no reasonable strategy can be found, we 
will save the particle with the highest score. Subsequently, all particles 
are then initialized and will move towards the particle with the best 
score. In the process of particle updates, particles with a higher score 

may appear to replace the previously saved particle. Fig. 15 shows that 
the BESS scheduling strategy determined by the modified PSO can 
effectively satisfy the constraint. Although the modified PSO algorithm 
can obtain a BESS scheduling strategy that satisfies the constraints, 
Fig. 15(a) shows that the modified PSO scheduling strategy still has the 
problem of frequent switching between charging and discharging. This 
will cause a problem as the voltage fluctuation and PNet

t,PSO are large as 
shown in Fig. 15(b) and (d), respectively. Fig. 15(c) shows the modified 
PSO which cannot fully utilize the BESS capacity for arbitrage. This is 
because the maximum value of the SOC in Fig. 15(c) only reaches about 
50%. 

Fig. 11. Power flow, voltage level and SOC of distribution network and BESS (TD3).  

Fig. 12. Training action and real-time action in simulation.  

Fig. 13. Reinforcement learning convergence for TD3.  
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3.3.3. SA 
The simulated annealing (SA) method is a mature stochastic opti-

mization method. It is a serial optimization algorithm that searches for 
the global optimum in random, there exists a probability to jump out of 
the local optimum and eventually converge to the global optimum. The 
magnitude of the SA random search decreases with the number of iter-
ations, which is the process of simulated annealing. A point with a lower 
rating than the reference point will be randomly accepted as a new 
reference point based on the probability when it appears in the iteration. 
This is the reason why SA can go beyond the local optimum and 
converge to the global optimum. 

The results obtained using SA are shown in Fig. 16. Fig. 16(b) shows 
that the network voltage can be stabilized within the set range. Fig. 16 
(c) shows that the maximum value of the SOC is less than 60%, so the 
BESS still has a large unused capacity. In Fig. 16 (a), BESS charges at the 
peak of PV generation and discharges at the peak of EV charging. This is 
in accordance with the expected scheduling strategy of BESS. 

Figs. 11(d), 14(d) and 15(d) and Fig. 16(d) show the power flow of 
the considered assets as determined from Equation (4). When the dis-
tribution network excludes BESS, the power flow Pnet

t in Equation (4) is 
expressed as PNet

t,Base. When the distribution network includes BESS, the 
power flow Pnet

t in Equation (4) is expressed as PNet
t,TD3, PNet

t,DDPG, PNet
t,PSO and 

Fig. 14. Power flow, voltage level and SOC of distribution network and BESS (DDPG).  

Fig. 15. Power flow, voltage level and SOC of distribution network and BESS (PSO).  
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PNet
t,SA for the power flow in BESS charging and discharging strategies with 

TD3, DDPG, PSO and SA, respectively. The figures show that all the four 
algorithms can suppress power fluctuations. In contrast, the power flow 
of the BESS charging and discharging strategy with TD3 is more 
consistent while the power flow of PSO and SA has a greater fluctuation. 

3.4. Different PV power generation scenarios 

The results of the four algorithms for Scenario 1 were analyzed in 

detail in Sections 3.2, 3.3.1, 3.3.2 and 3.3.3. The peak PV generation in 
Scenario 1 is greater than that in Scenarios 2 and 3, which considers the 
most extreme cases of grid operation where PV generation may cause 
overvoltage. Scenario 1 is an important experiment to verify that BESS 
can guarantee the safe operation of the system. Scenarios 1, 2 and 3 are 
established according to the amount of PV power generated which can 
more adequately reflect the working conditions of the system under 
different weather conditions. Fig. 17 shows the voltage variations and 
SOC usage of algorithms TD3, DDPG, PSO and SA under Scenarios 1 to 3. 

Fig. 16. Power flow, voltage level and SOC of distribution network and BESS (SA).  

Fig. 17. Comparison of voltage and SOC results of different algorithms in different scenarios.  
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The TD3-H, DDPG-H, PSO–H and SA-H in Fig. 17(a–c) represent the 
variation of the distribution network voltage VMax

t when the BESS is 
scheduled by the TD3, DDPG, PSO and SA algorithms. The TD3-L, DDPG- 
L, PSO-L and SA-L in Fig. 17(a–c) represent the variation of the distri-
bution network voltage VMin

t when the BESS is scheduled by the TD3, 
DDPG, PSO and SA algorithms. Fig. 17(a–c) show that when the BESS is 
scheduled by the TD3 algorithm, the voltage variations of the distribu-
tion network is the smallest. Fig. 17(d–f) show that the TD3 algorithm 
can maximize the use of BESS. 

3.5. Effect on smart charging demand in BESS power scheduling 

This section examines the scheduling strategy of BESS related to the 
two different fast EV charging demands, i.e., with and without demand 

Fig. 18. Load with SCD and without SCD  

Fig. 19. Comparison of voltage and SOC results of different algorithms without SCD in Scenario 1.  

Fig. 20. LCOS for BESS in comparison with and without SCD for DDPG, TD3, PSO and SA.  
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response. Fig. 10 shows the wholesale market price and retail electricity 
price with and without SCD. In Fig. 10 the retail electricity price with 
SCD is the electricity price where EV can participate in demand 
response. The fast EV charging demand considering price incentive i.e., 
SCD and without SCD are shown in Fig. 18. The total daily energy of fast 
EV charging with and without SCD are the same. This is to ensure that 
the BESS scheduling strategies under these two EV loads could be 
compared. 

The results in Fig. 19(a) show that the BESS scheduled by the TD3 
algorithm has the smallest voltage variation of the distribution network. 
Fig. 19(b) shows that the BESS scheduled by TD3 can maximize the 
utilization of BESS. Combining Sections 3.4 and 3.5, it can be concluded 
that the use of TD3 for BESS can minimize voltage variation of distri-
bution networks. TD3 has a high utilization of BESS, so that BESS can be 
used to arbitrage in the power market as much as possible. 

3.6. Economic and financial analysis 

This section presents the economic and financial analysis for BESS in 
a distribution network considering with and without EV demand 
response i.e., smart charging. WACC is a key input for financial models. 
The WACC is considered as an overall combined effect of the cost of 
debt, cost of equity, share of CAPEX, and the corporate tax rate [27]. 
This work examines a range of WACC between 0% and 20%. Due to the 
importance and uncertainty in WACC, Fig. 20 and Fig. 21 show the LCOS 
and NPV for the BESS, respectively. Fig. 20 shows the LCOS and average 
retail electricity price. 

In this study, the fixed operation and maintenance (O&M) cost of 
BESS is set to 2920 £/MW-yr [34] and the average retail electricity price 
is 141.15 £/MWh. Fig. 20 shows that the BESS scheduled by the TD3 
algorithm is slightly better than the BESS scheduled by the DDPG al-
gorithm in the evaluation of LCOS. Fig. 20 also shows that the BESS 
scheduled by TD3 is significantly better than the BESS scheduled by PSO 
or SA in the evaluation of LCOS. To make sense of numbers, the calcu-
lated LCOS values are compared with the work in Ref. [35]. Ref. [36] 
claimed that the LCOS of battery technologies can achieve 175 £/MWh 
in the future. Ref. [22] claimed that the LCOS can be reduced if the 
system operates in “High-PV” (scenario with high penetration of 
photovoltaic power) scenario. “High-PV” contributes to a reduced LCOS 
due to higher lifetime energy output. The WACC required for the LCOS 
to be greater than the retail electricity price is 10% (High-PV) [22]. In 
this study, for RL algorithms the LCOS was below 175 £/MWh except for 
“DDPG without SCD”. For stochastic optimization algorithms, the LCOS 

was above 175 £/MWh. For RL algorithms, the range of WACC required 
for the LCOS to be greater than the retail electricity price is between 10% 
(LCOS of DDPG without SCD) to 12% (LCOS of TD3 with SCD). But for 
PSO and SA, the range of WACC required for the LCOS to be greater than 
the retail electricity price is less than 2%. This is an important indicator 
as the BESS can be economic if the cost of electricity per MWh (LCOS) is 
less than the revenue generated per MWh (average retail electricity 
price). 

Ref. [22] studied the IRR distribution of BESS from 2.13% to 9.55%. 
The BESS in Ref. [22] is applied in systems with a large amount of PV i. 
e., solar PV energy output 1.53 GWh/year and anaerobic digestion 
biogas power generation. Fig. 21 shows the NPV for BESS and there is a 
quadratic relationship between the NPV and WACC. The NPV at the 
current WACC is greater than zero indicating that BESS is profitable. The 
discount rate which provides an NPV equals to zero is known as the IRR. 
The IRRs of the strategies using TD3, DDPG, PSO and SA with SCD are 
7.31%, 5.27%, 0.86% and 5.39%, respectively. The IRRs of the strate-
gies using TD3, DDPG, PSO and SA without SCD are 9.46%, 8.69%, 
2.27% and 4.17%, respectively. The results show that BESS can be more 
profitable when EVs are not involved in demand response and BESS can 
get a better return with TD3. 

The daily costs and profit of BESS with SCD under different scenarios 
and optimization algorithms (as examined in Sections 3.3 and 3.4) are 
given in Table 3. Table 4 presents the daily costs and profit of BESS 
without SCD and different optimization algorithms are examined in 
Section 3.5. Considering Tables 3 and 4 when comparing Scenario 1, the 
economic performance of BESS without SCD is better than that with 
SCD. This is due to SCD will reduce the peak charging demand in the 
evening, which could have been supported by BESS to make additional 

Fig. 21. NPV for BESS in comparison with and without SCD for DDPG, TD3, 
PSO and SA. 

Table 3 
Daily costs and profit of BESS with SCD for the three scenarios.  

Algorithm Scenario Energy 
cost 
(£/day) 

Battery 
degradation cost 
(£/day) 

O&M 
cost 
(£/day) 

Profit 
(£/day) 

TD3 Scenario 
1 

384.49 174.06 42.00 132.91 

Scenario 
2 

369.68 165.85 42.00 132.49 

Scenario 
3 

395.26 172.27 42.00 159.88 

DDPG Scenario 
1 

346.73 148.85 42.00 102.26 

Scenario 
2 

364.68 155.85 42.00 132.49 

Scenario 
3 

419.54 186.21 42.00 65.41 

PSO Scenario 
1 

237.99 100.89 42.00 57.74 

Scenario 
2 

189.36 85.38 42.00 52.52 

Scenario 
3 

74.99 32.41 42.00 6.08 

SA Scenario 
1 

201.85 105.64 42.00 72.64 

Scenario 
2 

255.09 115.55 42.00 103.42 

Scenario 
3 

251.08 114.86 42.00 114.53  

Table 4 
Daily costs and profit of BESS without SCD for Scenario 1.  

Algorithms Energy cost 
(£/day) 

Battery degradation 
cost (£/day) 

O&M cost 
(£/day) 

Profit 
(£/day) 

TD3 378.61 174.49 42.00 183.23 
DDPG 382.60 176.46 42.00 167.83 
PSO 131.75 59.11 42.00 81.41 
SA 160.14 90.36 42.00 84.27  
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profit. 

3.7. Case study of generalization capability and sensitivity analysis 

Equations (6) and (7) are used to generate 50 SCDs and 50 PV gen-
eration curves, respectively. 50 kPV values are generated which are 
evenly distributed between zero and one. Then using Equation 6 and 
(50) PV generation curves are generated and the forecast error param-
eter PRMSE of PV generation curves is distributed between 0% and 10.4%. 
PRMSE is defined as the forecasted root mean square error (RMSE) of PV 
generation divided by the generation capacity of PV. 50 kEV values are 
generated which are evenly distributed between zero and 0.24, to pro-
duce a mean absolute percentage error (MAPE) of up to 20%. Subse-
quently, 50 SCDs are generated using Equation (7) and the MAPE of SCD 
can reach up to 18.55%. The correspondence of kEV and kPV with forecast 
error parameters are shown in Fig. 22. The combinations of 50 SCDs and 
50 PV generation curves produce 2500 scenarios. For the RL algorithms, 
the charging and discharging strategy of BESS is conducted in real-time. 

The power Pback
t (i.e., the reserve power) is calculated by the flowchart of 

real-time optimization method in Fig. 2, and subsequently, Sback is 
calculated by Equation (8) as the reserve power usage for the scenario. 
For PSO and SA, the day-ahead charging and discharging strategy of the 
BESS is used to calculate Pback

t by Fig. 2, and then Sback is obtained by the 
steps of the RL algorithms described above. 

Fig. 23 presents the reserve energy usage for different optimization 
methods. The experimental results show that TD3 has minimal use of 
reserve power. For the TD3 algorithm, no reserve power is required 
when the PV forecast error parameter PRMSE is less than 9% and the SCD 
forecast MAPE is less than 5%. In addition, TD3 algorithm can be used in 
most scenarios without the use of reserve power. The DDPG algorithm 
does not require reserve power when the forecast error is small, while 
the demand for reserve energy increases when the forecast error be-
comes large. For SA and PSO, all scenarios require reserve energy. SA 
and PSO algorithms are more sensitive to the forecast error of SCD. The 
maximum, minimum and average values of the capacity of reserve en-
ergy required by different algorithms for 2500 scenarios are shown in 
Table 5. Compared to the other mentioned algorithms, the TD3 algo-
rithm has a smaller maximum, minimum and average value of Sback. In 
general, the TD3 algorithm has a strong generalization capability and 
requires only a small amount of reserve energy to operate properly even 
when the forecast error is large. In Equation (8), the worst case is when 
Pback

t ≥ 0, ∀t or Pback
t ≤ 0,∀t. In the worst case, it is necessary to prepare 

the minimum reserve capacity of twice the Sback and the SOC of the 
reserve energy storage is 50%. In this case, TD3 requires a minimum 
reserve energy storage capacity of 0.492 MWh. 

4. Conclusions 

This paper presents a novel optimal power scheduling methodology 

Fig. 22. Correspondence of kEV and kPV with forecast error parameter.  

Fig. 23. Reserve energy usage for different optimization methods.  

Table 5 
Capacity of reserve energy required for different algorithms.  

Sback TD3 DDPG PSO SA 

Average (MWh) 0.027 0.124 0.168 0.071 
Maximum (MWh) 0.246 0.775 0.488 0.256 
Minimum (MWh) 0.000 0.000 0.015 0.008  
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for the BESS in a distribution network with the fast EV charging demand 
and high penetration of PV power generation. BESS can support fast 
charging stations and better utilize renewable energy. 

ELM and Monte Carlo algorithms were used to forecast PV power 
generation dataset and to sample the fast EV charging demand dataset 
for RL training. Case studies are conducted with Smart EV charging 
dataset from UK Power Networks, Project Shift. The cost of battery 
degradation is calculated by employing a rainflow cycle counting al-
gorithm and a state-of-the-art battery degradation model. For such a 
complex model, it is a common practice to simplify and then linearize 
the model and use a commercial solver to solve it. Alternatively, the 
problem can be solved using a stochastic optimization algorithm i.e., 
PSO and SA, and a reserve power supply can be introduced in the real- 
time phase to ensure the normal operation of the system. The main 
contribution of this paper is the effective exploitation of the offline 
training and online implementation of reinforcement learning algo-
rithms. Not only it is fast in online implementation, but it also ensures 
that the model is not simplified i.e., linearize, etc. The proposed model is 
solved using the state-of-the-art reinforcement learning algorithm TD3. 
BESS with additional energy reserve is considered to address the un-
certainty of renewable energy and EV charging during real-time 
scheduling. The results show that the IRRs of the strategies using TD3 
and DDPG algorithms with SCD are 7.31% and 5.27%, respectively. The 
IRRs of the strategies using TD3 and DDPG algorithms without SCD are 
9.46% and 8.69%, respectively. The IRRs of the strategies using PSO and 
SA algorithms with SCD are 0.86% and 5.39%, respectively. The IRRs of 
the strategies with PSO and SA algorithms without SCD are 2.27% and 
4.17%, respectively. A sensitivity analysis of the BESS real-time sched-
uling is conducted, and the results show that the TD3 algorithm uses the 
least amount of reserve energy in all scenarios. 
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Appendix A 

In this section, data acquisition and processing of PV data, wholesale electricity market data, retail electricity price data, and EV smart charging 
demand data are discussed. 

PV Data 

A comparison of different irradiance data sources including National Aeronautics and Space Administration (NASA) [37] and historical solar 
insolation data in the UK from 2017 to 2019 [38] is depicted in Fig. A1. As the UK is situated in the northern hemisphere, the solar insolation is the 
highest in June and July, and it is the lowest in January and December. 
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Fig. A.1. Comparison of solar insolation data.  

Wholesale electricity market data 

Electricity is a commodity traded in the wholesale market. The wholesale price increases with the increased electricity demand. Nord Pool AS is a 
European power exchange which is responsible for delivering power traded across Europe [35,39]. The wholesale electricity can be used for charging 
BESS, as well as BESS energy can be sold to the wholesale market. The wholesale electricity can be used to fulfil electricity demand from charging 
stations directly. 

Retail electricity price 

The retail electricity price refers to the price that consumers pay for the fast EV charging as described by the Project Shift project contributed by UK 
Power Networks. The price can be different for each timeslot which incentivizes consumers to charge their EV at low prices. The project has sub-
sequently investigated a tariff, i.e., Octopus Go Faster [40], which provides consumers with inexpensive charging windows at different timeslots of the 
day. Specifically, the consumers can select both a duration of charging timeslots (e.g., 3-h, 4-h and 5-h period) with reduced electricity rate and a start 
time. The start time of 20:30, 21:30, 22:30, 23:30, 00:30, 01:30, 02:30 and 03:30 with a tariff choice of 3-h, 4-h and 5-h period is at a reduced 
electricity rate of 45 £/MWh, 50 £/MWh and 55 £/MWh respectively. All possible options for charging schemes are shown in Table A1 [40]. In the 
other period, the retail electricity price is at the level of 158.89 £/MWh. Considering that the electric vehicle load curve includes the charging loads of 
multiple electric vehicles, the charging schemes they choose are also varied. Assuming that the probability of each charging scheme being selected is 
the same, the charging price of all electric vehicles can be better described by the average retail electricity price which is shown in Fig. A2. The average 
retail electricity price is calculated by taking the average of all the 3-h, 4-h and 5-h period retail electricity price curves in Fig. A2.   

Table A.1 
All possible charging schemes options [40].  

Time Price Time Price Time Price 

20:30–23:30 45 £/MWh 21:30–00:30 45 £/MWh 22:30–01:30 45 £/MWh 
23:30–02:30 45 £/MWh 00:30–03:30 45 £/MWh 01:30–04:30 45 £/MWh 
02:30–05:30 45 £/MWh 03:30–06:30 45 £/MWh 20:30–00:30 50 £/MWh 
21:30–01:30 50 £/MWh 22:30–02:30 50 £/MWh 23:30–03:30 50 £/MWh 
00:30–04:30 50 £/MWh 01:30–05:30 50 £/MWh 02:30–06:30 50 £/MWh 
20:30–01:30 55 £/MWh 21:30–02:30 55 £/MWh 22:30–03:30 55 £/MWh 
23:30–04:30 55 £/MWh 00:30–05:30 55 £/MWh 01:30–06:30 55 £/MWh   
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Fig. A.2. Retail electricity price for smart charging demand.  

Smart charging demand data 

The smart charging demand data is obtained from the Project Shift project contributed by UK Power Networks. Monte Carlo simulations were 
performed to generate synthetic smart charging demand data as presented in Fig. A3 [1].

Fig. A.3. Charging profiles of maximum electricity consumption for 20 customers from the Octopus Energy trial (100 samples) [1].  
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Appendix B 

Solar PV power forecasting model 

Extreme Learning Machine (ELM) has been widely used for solar energy forecasting [41]. Since it is not the focus of this work, the principle of ELM 
is briefly described here. Fig. B1 shows that the ELM is a feed-forward neural network whose input weights ai and biases bi are fixed, and the error 
function is reduced by updating the output weights βi. Because ai and bi are fixed, the output of L hidden neurons is also fixed and can be represented 
by the H matrix. The output weights βi are obtained by calculating min

βεRL×1
Hβ − T2, where T is the expected output of the training set. ELM models can 

achieve extremely fast learning speed and good generalization capability. 
ELM is used to forecast photovoltaic power generation [41]. In the PV power forecasting model, the solar radiation intensity and cloud cover 

conditions are the inputs of ELM, and the output is the PV power generation value. The forecast of PV power generation will be used in the training 
process of reinforcement learning based optimal power scheduling strategy.

Fig. B.1. ELM network model.  

Forecasting data for agent training 

The datasets required to train a RL agent are described in this section. Fig. B2 shows the PV power generation forecast using ELM. Monte Carlo 
method is used to generate the EV smart charging demand data. The mean absolute percentage error (MAPE) of EV smart charging demand forecast 
and PV power generation forecast are 4.30% and 12.69%, respectively [1]. The MAPE of EV smart charging demand forecasted by the method 
proposed in Ref. [42] is 2.62%, 2.90%, 3.25% and 3.78% in spring, summer, autumn, and winter, respectively. In Ref. [43], the MAPE of PV power 
generation forecast is 7.65% and can be as high as 10.00% at noon. Compared with other studies, the MAPE in this work is relatively high. Even with a 
lower forecast accuracy data, the trained agent can achieve a better power scheduling strategy, which also shows that the generalization capability of 
the algorithm can meet the application requirements in a real environment.

Fig. B.2. The forecasted and real PV power generation and EV smart charging demand. 
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