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Abstract—Network embedding (NE) is a method that maps 
nodes in a network into a low-dimensional and continuous 
vector space while maintains inherent features of the network. 
Most existing algorithms for NE focus on one or two of the 
aspects of topological structure, node attributes or community 
structure information, but without integrating the three in a 
unified framework. In this study, we develop a deep neural net-
work-based framework for Attributed Network Embedding 
with Community Preservation (ANECP), which simultaneously 
incorporates the topological structure, node attributes as well 
as community structure together to obtain the low-dimensional 
distributed representations of nodes in the network. The use of 
deep neural networks captures the underlying high non-
linearity in both topology and attribute information, while the 
incorporation of the community structure resolves the issues of 
data sparsity from microscopic perspective. Consequently, the 
obtained node representations can preserve proximity and 
discriminative. We conducted experimental studies using six 
real-world datasets. The experimental results show that 
proposed ANECP has superior performance over the existing 
methods. 

Keywords—Network embedding, topological structure, node 
attribute, community structure, conditional variational 
autoencoder 

I. INTRODUCTION

Network embedding (NE), i.e., mapping nodes in a 
network into a low-dimensional and continuous vector space 
while maintaining inherent features of the network, is a 
fundamental procedure of networks analysis, because a 
variety of downstream tasks, such as node clustering [1], 
node classification [2], [3], link prediction [4], and network 
visualization [5], can be directly carried out through the 
ready-made machine learning algorithms in the latent feature 
space. Network analysis heavily relies on the low-
dimensional vector representations of nodes. Therefore, How 
to represent network node characteristics is a key issue in 
network analysis tasks, an effective strategy to obtain it in 
traditional methods is to use adjacency matrices (i.e., first-
order proximity), which can preserve the correlation between 
nodes in the network and visually display the network 
structure. However, the adjacency matrices are usually very 
sparse and insufficiently described relationship between 
vertices. In recent years, with the rapid growth of various 
networks, such as communication networks, protein-protein 
interaction networks, and academic citation networks, NE 
has attracted a large amount of research interests in the 
community of network analysis. 

However, NE is not a trivial task. Essentially, the highly 
non-linear structure, the proximity preservation, and the 
consistency and complementarity of heterogeneous 
information are three challenges faced by NE to obtain 
satisfactory embedding results [6]. To answer these three 

challenges, various approaches have been proposed. These 
existing approaches can be divided into three categories: 
Structure-only approaches, Structure+Attribute approaches, 
and Structure+Community approaches. Structure-only 
approaches (network embedding), such as DeepWalk [7], 
Node2Vec [8], and SDNE [9], utilize only the topological 
structure (connections amongst nodes), but ignore the rich 
attributed information associated with nodes, such as profiles 
or preferences of users in social networks and text 
information of the article’s topic in academic citation 
networks for example. In fact, these informative attributes 
can benefit network analysis, because they can reflect and 
affect community structures of networks [10], [11]. 
Structure+Attribute approaches (attributed network 
embedding), such as SANE [12], PRRE [13] and NetVAE 
[14], incorporate node attributes with topological structure, 
simultaneously capturing the potential high non-linearity in 
both types of information. Structure-only and 
Structure+Attribute approaches in general, mainly 
concentrate on the microscopic structures of the networks, 
i.e., the local pairwise relationships or similarities of nodes,
but neglect the important mesoscopic description of the
topological structure, i.e., community structure. Community
structure is a collection of node groups, in which nodes
within a group are densely connected but sparsely between
groups [15], indicating that nodes are more similar to each
other within the same community than those belonging to
different communities. As one of the most important
characteristics of networks, community structure discloses
the organizational structure and functional composition of a
network [16]. Structure+Community approaches (community
preserving network embedding), such as M-NMF [16],
CNRL [17] and NECS [18], incorporate community
structures into NE and which the representations of nodes are
more similar to each other within the same community than
those from different communities, such that the similarities
amongst nodes within the same community can be
strengthened, even though there are only weak relationships
amongst nodes due to the data sparsity from microscopic
perspective. This can be explained by an example shown in
Fig. 1, where different colors of nodes represent different
preferences of nodes, while dotted circles of different colors
represent different communities, node 1v  is connected to its
neighbor nodes 2 3 4 5, , ,v v v v , so according to the network 
structure, the distances between 1v  and 2 3 4 5, , ,v v v v  are equal 
in low-dimensional space, but 1v  should be closer to 4v  and 

5v  than to 2v  and 3v , because 1v  has the same preference 
with 4v  and 5v ; in addition, there is no edge connecting the 
node 1v  and 6v , and 1v  has different preference with 6v , 
thus 6v  is pushed away from 1v  in low-dimensional space 
according to the network structure and the node attribute, but 
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Fig. 1. An example 

6v  may close to 1v  under the consideration of community 
recognition. This example demonstrates that topological 
structure, node attributes and community structure are 
important information for NE. 

Although both existing Structure+Attribute and 
Structure+Community approaches integrate  two aspects in 
embedding, Structure+Attribute approaches do not consider 
community structure, while Structure+Community 
approaches do not take node attributes into consideration. 
Thus, it is more logical to examine topological structure, 
node attributes and community structure simultaneously to 
study different but complementary information. 

In addition, most of existing methods, such as TADW 
[19] and AANE [20], only make use of the shallow
structures, which are insufficient to disclose the highly non-
linear property for attributed network embedding, because of
the topological structure and attributes of nodes are highly
non-linear [6]. Furthermore, topological structure, node
attributes, and community structure describe nodes and their
relationships from different views, but these three kinds of
information are heterogeneous. How to preserve the
consistent and complementary information in these three
aspects is very important in NE.

This study aims to investigate how to simultaneously 
combine and incorporate the three different characteristics of 
networks (topological structure, node attributes and 
community structure) together in NE for network analysis. 
For this purpose, we propose ANECP framework, which 
combines micro-information (first- and high-order proximity) 
of topological structure, node attributes and meso-
information (community information) to jointly learn the 
latent representations of nodes. In particularly, we employ a 
autoencoder (AE) with deep structure to maintain the first-
order and high-order proximity of node attributes, use a full 
connected network (FCN) to extract meso-information 
contained in community structures, and utilize a conditional 
variational autoencoders (CVAE) with deep structure to 
protect the first-order and high-order proximity of network 
topology and to integrate the influence of the meso-
information of community structure. The use of deep neural 
networks can capture the potentially high non-linearity in the 
topology and attribute information such that the proximity 
would be preserved, while the incorporation of the 
community structure would resolve the issues of data 
sparsity from microscopic perspective. Thus, the obtained 
node representations can encode the consistent and 
complementary information in the topology, attributes and 
community structure and preserve proximity and 
discriminative. 

We conduct experiments using six real-world datasets 
and compare the results of our ANECP with that of other 
existing NE approaches to validate the effectiveness of 
ANECP via tasks of node classification, node clustering and 
visualization of latent representation of nodes. 

The contributions included in this study are summarized 
as follows: 

• A novel deep neural networks based approach for NE
is proposed, which simultaneously incorporates the
topological structure, node attributes and community
structure in NE to explore three different but
complementary information.

• The ANECP has been implemented, where we
compute similarities amongst attributes as the input of
the AE, rather than use attributes themselves as input
directly, to capture the attribute global proximity. The
similarities reveal correlation amongst nodes and
indicate the possibility of connection of them.

• The ANECP has been evaluated via tasks of node
classification, node clustering and visualization by
using six real-world datasets. Experimental results
indicate that the ANECP outperforms existing
representative embedding methods.

The rest of the paper is arranged as follows. Section II 
introduces the related work briefly. The details of our 
approach are presented in Section III. Section IV provides 
experiments, results and discussion, and conclusion is 
presented in Section V. 

II. RELATED WORK

In this section, we review the related literature in three 
categories: Structure-only approaches, Structure+Attribute 
approaches, and Structure+Community approaches. 

A. Structure-only approaches
Some earlier works such as Laplacian Eigenmaps [21]

and Local Linear Embedding (LLE) [22] utilized manifold 
learning to capture local geometry structure. These methods 
are part of the dimension reduction technology and are 
regarded as pioneers in graph embedding technology. 
However, these methods cannot be extended to large 
networks embedding due to the high computational 
complexity of eigendecomposition operation. Recently, 
DeepWalk [7] employed truncated random walks to obtain 
the node sequences as local information, which treated walks 
as the equivalent of sentences in language models and feed 
the local information into the skip-gram model to get the 
feature representation of nodes. Node2Vec [8] further 
developed the weighted random walk based embedding 
algorithm by controlling two hyperparameter p  and q  to 
explore diverse neighborhoods. [23] proposed LINE for large 
scale networks, which focused on exploring first-order and 
second-order proximity during node representation learning 
process. Thereafter, GraRep [24] further extended k-order 
relationships to enhance network representation. However, 
these methods only employed the shallow model, failing to 
disclose the highly non-linear characteristics. SDNE [9] 
utilized a semi-supervised deep encoder model architecture 
that simultaneously preserved the first-order and second-
order similarity of a network to obtain node representations. 
In addition, [36] proposed NetMF that to unify the negative 
sampling models of DeepWalk, LINE, PTE and node2vec 
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into a closed-from matrix factorization framework, and also 
provide the theoretical connections between NE algorithms 
based on the skip-gram and the theory of graph Laplacian. 
VERSE [37] is proposed that to derive graph embeddings 
explicitly learns the distribution of a selected vertex-to-
vertex similarity measure. 

All these methods only utilized the topological structure 
information. 

B. Structure+Attribute approaches
Several researchers have attempted to integrate the

topology structure of a network with attributes of nodes to 
enhance the latent vector representations of nodes. [39] 
proposed a semi-supervised learning algorithm (GCN) that 
extending convolution neural networks into graph-structured 
data. [25] proposed a united framework SANE to joint 
optimize the topology structure and sparse attribute 
information. SANE utilized the attention mechanism and 
Continuous Bag-of-Words model (CBOW) [26] to weight 
the strength of interactions between nodes while learning the 
similarities of the topology and attribute information. [13] 
considered the partial correlation between topology and 
attributes characteristics of the same network and proposed 
PRRE, which learnt two thresholds through utilizing the 
Expectation-Maximization (EM) algorithm so that to define 
the difference of node relation. In order to disclose the highly 
non-linear property, [27] proposed a neighbor-enhanced 
autoencoder and attribute-aware skip-gram model (ANRL) 
as a unified framework for learning topological structure and 
node attribute information. [6] proposed DANE model that 
used two deep models to catch and preserve the high non-
linear property and various similarities of the topology and 
attributes, and to guarantee the consistency and 
complementarity of the two heterogeneous information. [38] 
proposed a novel approach (GAT) that leveraging masked 
self-attentional layers to assign different weights to different 
nodes based on the features of its neighborhoods. [14] 
proposes a network-specific VAE method (NetVAE) for 
learning the embedding of topological and attribute 
information of a network, which considered different effects 
for information of topological structure and semantic 
information of nodes. 

C. Structure+Community approaches
Structure-only and Structure+Attribute approaches

consider micro-information, but the mesoscopic structure 
(community), one of the most distinguish characteristics of 
networks, has been neglected. Some researchers have studied 
the possibility of jointly embedding that combined the 
microscopic structure and mesoscopic structure into a 
common feature space to enhance the performance of NE. 
For instance, [16] proposed M-NMF based on nonnegative 
matrix factorization and module-based community detection 
to preserve the microscopic proximity information (first- and 
second-order proximity) and to incorporate the effect of 
community structures into NE. [18] proposed NECS which 
incorporated the community structure in node representation 
learning to further maintain the high-order proximity. [28] 
proposed a community-based variational autoencoder model, 
ComVAE, to combine both community information and 
deep learning techniques to obtain feature representations of 
nodes. In addition, [17] proposed a Community-enhanced 
Network Representation Learning (CNRL), which can 
simultaneously detected the community distribution of each 

node as well as the embeddings of both nodes and 
communities.  

D. Community Detection approaches
In real-world networks, the nodes within same

community often share common characteristics or play 
similar roles. Therefore, effectively identifying communities 
in the network and combining them with the node 
representation learning and jointly optimizing them can 
guide learning in order to obtain more discriminative node 
representations, and so as to be able to more effective 
facilitate network analysis tasks. In recent years, many 
community detection algorithms have been proposed to 
identify the communities contained in the network. For 
example, Infomap [30] employed information theory for 
encoding random walk sequence with shortest length, and 
through greedy search algorithm to detection community 
structure. [40] ranks popularity of nodes within community, 
and optimize a based stochastic generative model objective 
function through using a Bayesian approach. LEMON [41] is 
proposed that though performing a local spectral diffusion to 
find the community structure.  

III. PROPOSED APPROACH

A. Notations and Problem Formulation
Let V  be a set of m  nodes, E  be a set of edges,

m n×∈ℜA  be a matrix encoding all node attribute 
information, where n  represents the number of attribute 
dimensions, and an attributed information network be 
denoted as ( , , )G V E= A , where ( , )V E  denotes the 
topological structure. Let m m×∈ℜS  denote the adjacency 
matrix of ( , )V E . In detail, if two nodes iv V∈  and jv V∈
is linked by an edge, 1ijs = , otherwise, 0ijs = , and then the 
problem of attributed network embedding with community 
preservation is defined as follows: 

Definition 3.1 Given an attributed information network 
( , , )G V E= A , attributed network embedding with community 

preservation aims to find a mapping function 
: d

i if v → ∈ℜy , which can preserve the proximity of the 
topological structure, community structure and node 
attributes, and each node iv V∈  can be expressed as an 
underlying feature vector iy  based on the mapping function, 
where ( )d d n

 is the dimension of iy . 

B. The Framework of ANECP
In this study, we develop a novel deep neural networks

based approach for NE, ANECP, which combines micro-
information (first-order and high-order proximity) of 
topology, attribute information and meso-information 
(community information) to jointly construct the feature 
representation of each node. Fig. 2 illustrates the framework 
of ANECP, which comprises of three components: Attribute 
Component, Community Component and Structure 
Component. The Attribute Component is composed of an AE 
with deep structure, aiming to extract the highly non-linearity 
information in node attributes, the Community Component is 
composed of a community detection module and a multi-
layer FCN, aiming to detect community structure and encode 
the mesoscopic information contained in community 
structure, and the Structure Component is composed of a 
CVAE with deep structure, aiming to extract the highly non- 
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Fig. 2. The framework of ANECP 

linearity information of topological structure under the 
constraint of the community structure. 

1) The Attribute Component: In order to capture highly
non-linearity information existing in node attributes, the 
“Attribute Component” in Fig. 2 uses an AE with deep 
structure, which is a powerful unsupervised deep neural 
network with a highly non-linearity map for feature learning, 
aiming to map the input to the latent low-dimensional space 
to disclose the high non-linearity in attributes. In addition, to 
capture attribute global information, we compute similarities 
amongst attributes as the input of the AE, rather than use 
attributes themselves directly. 

Let m n×∈ℜA  be the attribute matrix, m m×∈ℜU  be the 
similarity matrix, , m

i i ∈ℜa u  be the i-th row of A  and U  
respectively, ia  indicate the attribute information of node 

iv V∈ , and iu denote the similarity between node iv  with
other nodes. , 1,...,iju j m=  can be computed through cosine 
similarity defined in Equation (1). 

|| || || ||
i j

ij
i j

u =
×

a a
a a



(1) 

Where   signifies the dot product of the two vectors, || ||  
indicates denotes ℓ2 norm, and ×  indicates the product of 
two scalars. iju  measures the similarity of node iv  and node 

jv , it indicates the possibility between node iv  and node jv  
being connected if the attribute similarity of two nodes is 
regarded as an uncertain link [29]. 

Let ( )k d
i ∈ℜy  be the hidden representation of k-th layer 

from the encoder, i
uy  is the desired underlying compact 

representation of the node iv  in terms of attributes, ˆ m
i ∈ℜu

be the reconstructed data point from the decoder, and K  be 
the number of layers in the encoder (correspondingly there 
will be K  layers in the decoder), then ( ) ( 1,..., )k

i k K=y  and ˆ iu  
are defined as: 

(1) (1) (1)( )i if= +u uy W u b (2) 

( ) ( ) ( 1) ( )( ), 2, ,k k k k
i if k K−= + =u uy W y b  (3) 

' ' '( ) ( ) ( )ˆ ( )K K K
i if= +u uu W y b (4) 

Where ( )f ⋅  represents the non-linear activation function, 
( )k
uW  and ( )k

ub  denote the weight matrix and bias vector of the 
k-th layer. 'K  denote the k-th layer of the corresponding
decoder. We call ( ) ( ){ , }( 1,..., )k k k Kθ = =u uW b  as the model 
parameters of the “Attribute Component”. 

The Attribute Component has two goals: (1) to minimize 
reconstruction error with respect to the attribute global 
proximity, and (2) to protect the first-order proximity of node 
attributes. The first-order proximity means that the more 
similar two nodes are, the closer their embedding should be 
in underlying low-dimensional space. To this end, we define 

the attribute global proximity loss 2

2
1

ˆ
m

r i i
i=

= −∑u u u  and the 

first-order proximity loss 
, , 1

log ( , )
ij

f i j
i j s

p v v
=

= − ∑u u , where

( , )i jp v vu  is the joint probability of node iv  and node jv , 

which is defined as: 1( , )
1+exp( ( ) )i j T

i j

p v v =
−

u
u uy y

 [23], 

where ( )T


 denotes transpose of a vector. The larger 
( , )i jp v vu  indicates that two nodes have more similarity 

with respect to attributes. Therefore, the loss function of the 
Attribute Component u  is defined as: 

2

2
1 1

ˆ log ( , )
ij

m

r f i i i j
i s

p v v
= =

= + = − −∑ ∑u u u uu u    (5)

2) The Community Component: The Community
Component in Fig. 2 is composed of a community detection 
module and a multi-layer FCN. The community detection 
module may call community detection algorithms, such as 
Infomap [30], Fast Unfolding algorithm [31] and Label 
Propagation Algorithm (LPA) [32], to acquire a community 
structure (a collection of communities), while the multi-
layer FCN is used to learn the mean of community 
distribution. 

Suppose a network topological structure ( , )V E  has been 
divided into r  communities, r m×∈ℜC  is the membership 
matrix of nodes, m

i ∈ℜc  is the i-th row of C , and ijc
signifies the probability that the node jv  belongs to the i-th 
community. Community structure describes the structure of 
the network from the mesoscopic perspective. For two nodes 
in a community, even though there is only weak relationship 
between them in the micro-structure due to data sparsity, the 
influence between them will be strengthened by the 
constraints of the community structure [16]. 

The detected community structure is fed into the multi- 
layer FCN, which maps the input ic  to the latent low-
dimensional space to capture the high non-linearity in 

Community Component

 Topological structure

FCN
KL 
loss

 Topological structureNode attributes
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communities. Let 
icμ  be the mean of community distribution, 

which is fed into the Structure Component to constrain the 
learning of topological structure. 

Suppose there are K  layers in the FCN, ( ) ( 1,..., )k
i k K=y  be 

the output of k-layer, then ( ) ( 1,..., )k
i k K=y  and 

icμ  are de-  

fined as: 

(1) (1) (1)( )i if= +c cy W c b (6) 

( ) ( ) ( 1) ( )( ), 2, , -1k k k k
i if k K−= + =c cy W y b 

 (7) 

( ) ( -1) ( )( )
i

K K K
if= +c c cμ W y b (8) 

Where ( )f ⋅  represents the non-linear activation function, 
( )k
cW  and ( )k

cb  represent the weight matrix and bias vector of 
the k-th layer, respectively. We call ( ) ( ){ , }( 1,..., )k k k Kϖ = =c cW b  
as the model parameters of the Community Component. 

3) The Structure Component: The Structure Component
in Fig. 2 uses a CVAE to extract the highly non-linearity 
information of topological structure under the constraint of 
community structure. Variational Auto-Encoder (VAE) [33] 
is an unsupervised learning method based on traditional AE. 
Two learning objectives of VAE includes: (a) minimizing 
the reconstruction loss of samples; (b) minimizing the KL 
divergence between the encoded latent variable z  and the 
standard Gaussian distribution. The difference between 
VAE and ordinary AE is that the encoder does not directly 
map the input to the latent space, but the mean μ  and 
standard deviation σ  is output for sampling the latent 
variables z , and then generates z  from the Gaussian 
distribution with the mean μ  and standard deviation σ . 
Finally, the sample vector z  is fed to the decoder for 
generating output. Compared to other AE, VAE can 
preserve the distribution of data and add Gaussian noise to 
obtain more robust representations. CVAE [34] is an 
extension of VAE. It can use label information on the basis 
of VAE to generate data under specific label conditions. 

Let m m×∈ℜM  be the high-order proximity matrix, 
m

i ∈ℜm  be the i-th row of M , im  signifies the high-order 
proximity between node iv  with other nodes respectively. M
is defined as 1 2ˆ ˆ ˆ t= + + +M S S S

 [24], where ˆ tS  is the t-step 
probability transition matrix which is acquired from the row-
wise normalization of the adjacency matrix S , 1 1ˆ = −S D S , 

1 1ˆ ˆ ˆt

t

=S S S



, where D  denotes the degree matrix for a graph,

,

0,
ipp

ij

if i j

otherwise

 == 


∑ S
D

 . 

Let ( )k d
i ∈ℜy  be the hidden representation of k-th layer 

from encoder, i
my  is the desired underlying feature 

representation of the node iv  in terms of the topological 
structure, ˆ m

i ∈ℜm  be the reconstructed data point from the 
decoder, 

imμ  and 
imσ  be the mean and standard deviation of 

the input im , iz  be the latent variable that can be sampled 

from a Gaussian distribution determined by 
imμ  and 

imσ . 
Suppose there are K  layers in the encoder and decoder 
respectively, ( ) ( 1,..., )k

i k K=y  be the output of k-layer, then 
( ) ( 1,..., )k
i k K=y  and ˆ im  are defined as: 

(1) (1) (1)( )i if= +m my W m b (9) 

( ) ( ) ( 1) ( )( ), 2, ,k k k k
i if k K−= + =m my W y b  (10) 

' ' '( ) ( ) ( )ˆ ( )K K K
i if= +m mu W y b (11) 

Where ( )f ⋅  represents the non-linear activation function, 
( )k
mW  and ( )k

mb  denote the weight matrix and bias vector of the 
k-th layer. 'K  represents the k-th layer of the corresponding
decoder. We call ( ) ( ){ , }( 1,..., )k k k Kϑ = =m mW b  as the model 
parameters of the Structure Component. 

The Structure Component has three goals: (1) to 
minimize reconstruction error, i.e., if two nodes share similar 
neighbors, they should be similar in the latent feature space, 
(2) to protect the first-order proximity of topological
structure, i.e., if two nodes is linked by an edge, they are 
close in the latent feature space, and (3) to protect the global 
proximity of community, i.e., the nodes belonging to the 
same community are more closely to each other in the latent 
vector space. To this end, we define the high-order proximity 

loss 2

2
1

ˆ
m

r i i
i=

= −∑m m m , the first-order proximity loss 

1
log ( , )

ij

f i j
s

p v v
=

= −∑m m , where ( , )i jp v vm  is the joint 

probability of two nodes iv  and jv , which is defined as: 
1( , )

1 exp( ( )i j T
i j

p v v =
+ −

m
m my y )

 [23]. 

In order to use community information to guide 
representational learning for topological structure, we control 
the mean of community distribution 

icμ  such that nodes 
within the same community can be embedded in close low-
dimensional spaces, making latent variables iz  as close as 
possible to the community distribution. Thus, we define KL 
loss KL

m  as: 

d
2

1

( ( , ) || ( , ))
1= [( ) log 1]
2 i i i i

KL

i

KL N N

=

=

− + − −∑

m 2
m m c

2 2
m c m m

μ σ μ I

μ μ σ σ


(12) 

Therefore, the loss function of the Structure Component 
m  is defined as: 

2

2
1 1

d
2

1

ˆ log ( , )

1 [( ) log 1]
2

ij

i i i i

r f KL

m

i i i j
i s

i

p v v
= =

=

= + +

= − − +

− + − −

∑ ∑

∑

m m m m

m

2 2
m c m m

m m

μ μ σ σ

   

 (13) 

4) Consistent and Complementary: [6] pointed out that
the learned low-dimensional representation from the topo-  

This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may change prior to 
final publication. Citation information: DOI10.1109/DSAA49011.2020.00047, 2020 IEEE 7th International Conference on Data Science and Advanced 
Analytics (DSAA)



logical structure and node attributes should be consistent and 
complementary, because they are the two modal information 
of the same network, and these two kinds of information give 
the description of different aspects of the same node and the 
relationships between nodes, so they can provide 
complementary information. In addition, [6] also proposed 
the following consistent and complementary loss based on 
the most negative sampling strategy: 

( )log ( , ) log(1 ( , ))CC
i i i j

i
p v v p v v= − − −∑ (14) 

Where 1( , )
1 exp( ( ) )i j T

i j

p v v =
+ − m uy y

, jv  is the most 

negative sample with respect to node iv , i.e., 

, 0
arg min ( )

ij

T
i jj s

j
=

= m uy y . 

Based on CC , [6] obtained robust embedding results, 
thus we also adopt CC  as our consistent and complementary 
loss. 

In summary, to maintain microscopic first-order and 
high-order proximity of network topology, attribute 
information and mesoscopic community information, and to 
learn the consistency and complementarity in learning the 
vector representation of each node, ANECP optimize the 
following objective function jointly: 
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(15) 

Where α , β  and γ  are hyper-parameters, which are 
used as the weight of the Attribute Component, Structure 
Component, and the consistency and complementarity of 
three heterogeneous information with respect to topological 
structure and node attributes as well as community structure 
information. We concatenate i

uy and i
my  as the final 

representation iy  of node iv . 

IV. EXPERIMENTS AND RESULTS

In this section, we present the performance of ANECP 
for representing nodes, via tasks of node classification (su-
pervised task), node clustering (unsupervised task) and 
visualization of latent representation of nodes on six real-
world datasets. We also evaluate the performance of ANECP 
through comparing with those of several baseline methods. 
In addition, we examine the hyper-parameter sensitivity of 
ANECP as well. 

A. Datasets
The six real-world datasets we adopted in our experi-

ments are extracted from WebKB networks and Facebook 

networks [35], where Facebook networks consist of 100 
American institutions. WebKB1 consists of Cornell (Corn), 
Texas (Texa), Washington (Wash), Wisconsin (Wisc) 4 
subnetworks, and we used Hamilton (Hami) and Rochester2 
(Roch) two datasets from Facebook networks. In WebKB, 
nodes represent webpages and edges represent citation 
relations, while nodes act for users and edges act for 
friendship relations in Facebook. Each node of Cornell, 
Texas, Washington, Wisconsin dataset is described by 
attributes that are represented via a feature vector with 1703 
dimensions, and all nodes are classified into courses, 
teachers, students, projects and staff 5 classes. Each node of 
Hamilton and Rochester is described by student/faculty 
status flag, gender, major, second major/minor, dorm/house, 
year, and high school 7 attributes, which are represented via 
a 144-dimensional and 235-dimensional feature vector 
respectively. We select student/faculty status flag as class 
label for Hamilton and Rochester two datasets, and all nodes 
are classified into 6 and 5 separately classes. 

More detailed information of the six datasets are 
summarized in Table I. 

TABLE I. DETAILS OF THE DATASETS 

Datasets Number 
of nodes 

Number 
of edges 

Number of 
attributes 

Number 
of classes 

Cornell  195 304 1703 5 
Texas 187 328 1703 5 
Washington 230 446 1703 5 
Wisconsin 265 530 1703 5 
Hamilton 2314 192788 144 6 
Rochester 4563 322808 235 5 

B. Baseline Methods
In order to evaluate the performance of our proposed

ANECP, we compared it with 12 representative learning 
approaches, including 2 Attribute-only methods, 3 Structure-
only methods, 3 Attribute+Structure methods, 3 Structure+ 
Community methods and 1 Structure+Attribute+Community. 

• Attribute-only: This group of baselines makes use of
node attribute information only, which are used to
verify the contribution of node attributes. ANECP-AF
and ANECP-AS, two variants of ANECP, are used as
two baseline algorithms that neglect topological
structure and community information. ANECP-AF
uses feature vectors of attributes as input directly, but
ANECP-AS uses similarities amongst feature vectors
of attributes as input. We want to know whether the
attribute global information revealed via the
similarities amongst feature vectors of attributes has
more contribution to the attributed network
embedding.

• Structure-only: This group of baselines utilizes
topological structure information only, which are
used to verify the contribution of topological structure.
DeepWalk [7], Node2Vec [8] and SDNE [9] are
selected as our baseline algorithms.

• Structure+Attribute: This group of algorithms tries
to incorporate both attribute information and
topological structure information simultaneously,
which are used to evaluate the collective effect of

1 https://linqs-data.soe.ucsc.edu/public/lbc/ 
2 https://escience.rpi.edu/data/DA/fb100/ 
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node attributes and topological structure. We choose 
ANECP-TA, DANE [6] and ANRL [27] as our 
compared algorithms, where ANECP-TA is the 
simplified version of our model without incorporating 
community structure. 

• Structure+Community: This group of approaches
incorporates both in topological structure and
community information at the same time, but ignores
node attribute information. ANECP-TC, M-NMF [16]
and ComVAE [28] are selected as our baseline
algorithms. ANECP-TC is the reduced version of our
model without introducing attribute information.

• Structure+Attribute+Community: ANECP and
ANECP-VAE, proposed in this paper, integrates node
attribute, topological structure and community
information together. ANECP-VAE, one variant of
ANECP, used a variational autoencoder in the
“Attribute Component” and a conditional variational
autoencoder in the “Structure Component”, which is
to verify the effectiveness of different frameworks.

For all baselines, we employ the implementation 
published by the original authors. The parameters for 
baselines are tuned to be optimal. The embedding size d  is 
set to 128 in Cornell, Hamilton and Rochester datasets and 
64 for the remaining datasets. For ComVAE, ANECP-VAE 
and ANECP, we use Infomap [30] to detect communities. 
For ANECP-TC, ANECP-VAE and ANECP, we utilize a 
FCN with two layers, and the frameworks of the encoder for 
topology and attributes of different datasets are presented in 
Table II. For each dataset, the first row corresponds to the 
topology, and the second row corresponds to node attributes. 
The framework of the decoder reverses that of the encoder. 

TABLE II. THE FRAMEWORK OF ANECP FOR DIFFERENT 
DATASE 

Datasets Number of neurons 
in each layer 

Datasets Number of neurons 
in each layer 

Cornell 195-200-100-64 
195-500-100-64 

Wisconsin 
(Wiscon) 

256-128-64-32 
256-128-64-32 

Texas 187-128-64-32 
187-128-64-32 

Hamilton 
(Hamil) 

2314-200-100-64 
2314-500-100-64 

Washington 
(Washing) 

230-128-64-32 
230-128-64-32 

Rochester 
(Roches) 

4563-200-100-64 
4563-500-100-64 

The framework of ANECP-TC is the consistent with first 
line of ANECP, while ANECP-AS and ANECP-AF are the 
same as the second row, but for ANECP-AF the number of 
neurons in the first layer is the dimensions of the feature 
vectors of attributes rather than the number of nodes. The 
framework of ANECP-AF is shown in Table III. 

TABLE III. THE FRAMEWORK OF ANECP-AF FOR DIFFERENT 
DATASETS 

Datasets Number of neurons 
in each layer 

Datasets Number of neurons 
in each layer 

Cornell 1703-500-100-64 Wiscon 1703-128-64-32 
Texas 1703-128-64-32 Hamil 144-500-100-64 
Washing 1703-128-64-32 Roches 235-500-100-64 

TABLE IV. THE HYPER-PARAMETER SETTINGS OF ANECP 
FOR NODE CLASSIFICATION 

Datasets α β γ Datasets α β γ 
Cornell 10 10 0.1 Wiscon 100 100 0.001 
Texas 0.001 50 200 Hamil 1 1000 0.01 
Washing 50 10 0.001 Roches 50 1 0.1 

The hyper-parameter settings of ANECP for node 
classification and node clustering are shown in Table IV and 
Table V respectively. 

TABLE V. THE HYPER-PARAMETER SETTINGS OF ANECP 
FOR NODE CLUSTERING 

Datasets α β γ Datasets α β γ 
Cornell 500 1000 1 Wiscon 200 10 10 
Texas 10 50 10 Hamil 0.1 500 10 
Washing 500 10 0.001 Roches 0.01 100 0.1 

C. Evaluation metrics
In this subsection, we evaluate the ability of node

representation of our proposed ANECP in reconstructing the 
topological structure and node attributes, via tasks of node 
classification, node clustering and visualization. The 
performance of node classification is measured by Micro-F1 
(Mi-F1) and Macro-F1 (Ma-F1) [9] metrics, and the 
performance of node clustering is measured by clustering 
Accuracy metric [6].  

D. Results and Analysis
1) Node Classification: Node classification is carried

out on the learned node representations and ℓ2-regularized 
Logistic Regression is used as the classifier. {10%, 30%, 
50%} labeled nodes are randomly selected as the training set 
for training the classifier and the remained nodes as the 
testing set for evaluating the classifier respectively. In the 
experiments, five-fold cross-validation is used. This process 
is repeated 20 times, and the average performances with 
respect to both Macro-F1 and Micro-F1 are reported for 
each dataset. The detailed results are shown in Table VI~XI. 

From Table VI~XI, we have followed four observations. 
First, ANECP obtains the best average performance in most 
situations and ANECP-VAE is second only to ANECP. 
Second, all Structure+Attribute methods (ANECP-TA, 
DANE and ANRL) perform better than Structure-only 
methods (DeepWalk, node2vec and SDNE) and Attribute-
only methods (ANECP-AF and ANECP-AS) on almost all 
datasets. It shows that it is insufficient to exploit only the 
topological structure or the node attribute information 
individually. Third, Structure+Community methods 
(ANECP-TC, ComVAE and M-NMF) is inferior to 
Structure-only methods (DeepWalk, Node2Vec and SDNE)  

TABLE VI. NODE CLASSIFICATION RESULTS ON SIX DATASETS  

Datasets Method 
10% 30% 50% 

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 

Cornell 

DeepWalk 0.338 0.206 0.347 0.210 0.358 0.208 

Node2Vec 0.231 0.194 0.391 0.228 0.397 0.230 

SDNE 0.369 0.225 0.423 0.171 0.428 0.229 

DANE 0.437 0.121 0.496 0.318 0.642 0.469 

ANRL 0.511 0.367 0.494 0.361 0.530 0.369 

ANECP-TA 0.586 0.461 0.669 0.526 0.731 0.571 

M-NMF 0.361 0.244 0.399 0.228 0.391 0.244 

ComVAE 0.242 0.204 0.391 0.183 0.368 0.189 

ANECP-TC 0.301 0.243 0.416 0.265 0.367 0.253 

ANECP-AF 0.527 0.382 0.560 0.418 0.648 0.499 

ANECP-AS 0.522 0.398 0.642 0.557 0.663 0.555 

ANECP-VAE 0.569 0.443 0.640 0.509 0.688 0.514 

ANECP 0.564 0.456 0.691 0.581 0.704 0.579 
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Texas 

DeepWalk 0.520 0.211 0.519 0.216 0.539 0.216 

Node2Vec 0.526 0.230 0.532 0.240 0.542 0.240 

SDNE 0.550 0.175 0.564 0.159 0.543 0.140 

DANE 0.551 0.142 0.663 0.320 0.781 0.534 

ANRL 0.532 0.258 0.587 0.291 0.542 0.140 

ANECP-TA 0.553 0.289 0.782 0.524 0.827 0.586 

M-NMF 0.553 0.142 0.557 0.143 0.542 0.140 

ComVAE 0.556 0.142 0.548 0.143 0.542 0.140 

ANECP-TC 0.538 0.196 0.557 0.143 0.542 0.140 

ANECP-AF 0.556 0.143 0.557 0.143 0.767 0.556 

ANECP-AS 0.585 0.298 0.717 0.437 0.787 0.542 

ANECP-VAE 0.586 0.312 0.699 0.447 0.789 0.543 

ANECP 0.597 0.321 0.755 0.496 0.815 0.581 

Washing 

DeepWalk 0.456 0.193 0.475 0.217 0.466 0.212 

Node2Vec 0.457 0.207 0.503 0.228 0.504 0.213 

SDNE 0.449 0.124 0.602 0.277 0.643 0.289 

DANE 0.449 0.124 0.677 0.338 0.771 0.537 

ANRL 0.449 0.124 0.658 0.375 0.643 0.384 

ANECP-TA 0.657 0.384 0.711 0.386 0.752 0.505 

M-NMF 0.455 0.251 0.474 0.296 0.507 0.305 

ComVAE 0.449 0.124 0.447 0.133 0.443 0.192 

ANECP-TC 0.443 0.124 0.503 0.222 0.608 0.268 

ANECP-AF 0.458 0.137 0.719 0.416 0.773 0.539 

ANECP-AS 0.468 0.149 0.757 0.507 0.800 0.581 

ANECP-VAE 0.669 0.379 0.746 0.505 0.770 0.541 

ANECP 0.692 0.400 0.783 0.601 0.799 0.591 

Wiscon 

DeepWalk 0.401 0.221 0.444 0.258 0.451 0.267 

Node2Vec 0.429 0.264 0.451 0.259 0.458 0.264 

SDNE 0.431 0.150 0.440 0.158 0.451 0.178 

DANE 0.573 0.329 0.758 0.501 0.797 0.590 

ANRL 0.514 0.277 0.430 0.120 0.541 0.333 

ANECP-TA 0.702 0.427 0.794 0.566 0.833 0.649 

M-NMF 0.457 0.240 0.430 0.235 0.421 0.279 

ComVAE 0.397 0.155 0.430 0.130 0.443 0.184 

ANECP-TC 0.439 0.211 0.430 0.120 0.496 0.210 

ANECP-AF 0.707 0.432 0.752 0.499 0.788 0.553 

ANECP-AS 0.627 0.370 0.779 0.495 0.774 0.536 

ANECP-VAE 0.726 0.443 0.786 0.556 0.820 0.639 

ANECP 0.736 0.452 0.777 0.537 0.831 0.621 

Hamil 

DeepWalk 0.906 0.285 0.915 0.290 0.918 0.292 

Node2Vec 0.917 0.293 0.922 0.295 0.924 0.296 

SDNE 0.899 0.280 0.899 0.278 0.887 0.270 

DANE 0.929 0.299 0.935 0.302 0.942 0.306 

ANRL 0.920 0.294 0.925 0.297 0.934 0.301 

ANECP-TA 0.927 0.299 0.930 0.299 0.939 0.304 

M-NMF 0.794 0.147 0.798 0.148 0.799 0.148 

ComVAE 0.797 0.147 0.800 0.148 0.804 0.148 

ANECP-TC 0.828 0.227 0.851 0.227 0.855 0.247 

ANECP-AF 0.920 0.292 0.926 0.297 0.933 0.301 

ANECP-AS 0.928 0.298 0.925 0.297 0.933 0.306 

ANECP-VAE 0.927 0.298 0.934 0.302 0.938 0.304 

ANECP 0.941 0.306 0.938 0.305 0.948 0.311 

Roches 

DeepWalk 0.860 0.288 0.870 0.319 0.872 0.329 

Node2Vec 0.852 0.265 0.867 0.307 0.874 0.338 

SDNE 0.850 0.239 0.854 0.244 0.862 0.249 

DANE 0.889 0.328 0.893 0.305 0.902 0.331 

ANRL 0.884 0.284 0.882 0.273 0.902 0.331 

ANECP-TA 0.892 0.312 0.894 0.303 0.906 0.329 

M-NMF 0.815 0.149 0.813 0.149 0.817 0.149 

ComVAE 0.811 0.149 0.811 0.149 0.817 0.149 

ANECP-TC 0.811 0.149 0.830 0.238 0.839 0.262 

ANECP-AF 0.882 0.290 0.876 0.268 0.888 0.316 

ANECP-AS 0.889 0.310 0.888 0.279 0.896 0.296 

ANECP-VAE 0.881 0.300 0.893 0.325 0.907 0.346 

ANECP 0.894 0.314 0.897 0.304 0.912 0.352 

in most cases. It implies that the high-order structure is very 
important for NE, and community information cannot be 
considered more useful than first- and high-order proximity 
information, although community information is one of the 
most important characteristics of networks. Fourth, ANECP-
AS is better than the ANECP-AF. It proves that the cosine 
similarity matrix of the feature vector of the original 
attributes revels more global information of nodes than the 
original attribute vector itself. In summary, ANECP achieves 
the best performance by the combination of the micro-
structure information with meso-structure information of the 
network, as well as the cosine similarity of the node 
attributes. 

2) Node Clustering: Node clustering is completed by
running K-means++ method on the learned underlying 
feature representations of nodes. K-means++ clustering 
algorithm is run 20 times for each dataset, and the average 
accuracy is reported. The clustering result is presented in 
Table XII, where bold numbers represent the best results. 
From Table XII, we can find that:  

• Our ANECP and its variants obtain the best clustering
performance on 5 of the 6 networks. On average, 
ANECP improved upon the best baseline method M-
NMF by 4.9%. It verifies the effectiveness of our 
proposed approach. 

• In most cases, Structure+Attribute methods (ANECP-
TA, DANE and ANRL) obtain superior performance 
than Structure-only methods (DeepWalk, node2vec 
and SDNE). Furthermore, the performance of 
Attribute-only methods (ANECP-AS and ANECP-AF) 
is second only to Structure+Attribute+Community 
methods (ANECP-VAE and ANECP). It verifies the 
importance of attribute information in NE. 

• Structure+Community method M-NMF and AN-
ECP-TC achieves superior performance than Struc-
ture-only methods (DeepWalk, node2vec and SDNE) 
and Structure+Attribute method (DANE and ANRL). 
How-ever, ComVAE is inferior to M-NMF and 
ANECP-TC. It further demonstrates the significance 
of the high-order structure for NE. 

3) Visualization of latent representation of nodes： To
further validate whether the embedding result of ANECP is 
discriminative, we visualize the latent representation of each 
node by using t-SNE [36], i.e., each node vector learned by 
a method is visualized as a point in a two-dimensional space, 
and different categories are labeled with different colors. 
The latent representations that can be well separated are 
more discriminative and easier to classify. Fig. 3 presents 
the visualization results for the Wisconsin dataset as the rep-  
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TABLE VII.  ACCURACY OF NODE CLUSTERING 

resentative case. The visualization for other datasets is 
omitted due to the space constraints. 

From Fig. 3, we can observe that ANECP can obtain 
more clear visualization results compared with the other 
baseline methods, which are manifested as the nodes are 
closer within cluster and separated among clusters. This can 
further explain why it has achieved good performance in the 
aspect of both node classification and clustering tasks. 

(a) DeepWalk (b) Node2Vec

(d) DANE

(e) ANRL

(g) ComVAE (h) ANECP

(c) SDNE

(f) M-NMF

Fig. 3. Visualization of different embedding methods for the Wisconsin 
dataset 

E. Hyper-Parameter Sensitivity
In this subsection, we study the hyper-parameter

sensitivity of ANECP. We evaluate the effects of different 
hyper-parameters α , β  and γ  on the performance of tasks 
of node classification and node clustering. In the node 
classification, ℓ2-regularized Logistic Regression is utilized 
as the classifier, and 80% labeled nodes are randomly 
selected as the training set and the remained nodes as the 
testing set. Fig. 4 and Fig. 5 present Micro-F1 of node 
classification and accuracy of node clustering with respect to 
different α , β  and γ  respectively. The trends of Macro-F1 
with respect to different α , β  and γ  is similar to the one 
of Micro-F1, so we do not present it. 

From Fig. 4 and 5, we can see that values of Micro-F1 
are basically stable under different hyper-parameters expect 
Cornell and Texas, but for node clustering ANECP is more 
sensitive, for example, in Fig. 5 (c), the values of AC on 
Hamilton and Rochester present large fluctuations. Thus, 
how to set hyper-parameters of ANECP for node clustering 
is a sensitive issue. 

(I) Node Classification (II) Node Clustering

(a) α（β=50，γ=100）

(b) β（α=1，γ=0.01）

(c) γ（β=200，α =200） (f) γ（β=0.1，α =500）

(e) β（α=500，γ=0.01）

(d) α（β=1，γ=0.001）

Fig. 4. Sensitivity of ANECP w.r.t. different α , β  and γ  of node 
classification and node clustering 

V. CONCLUSION
In this study, we develop ANECP framework to investi-

gate the representation learning on social networks. ANECP 
is the first to incorporate first- and high-order proximity of 
topological structure, node attributes and community 
information into the embedding. ANECP not only inherits 
the ability of deep neural networks for capturing the 
underlying high non-linearity, but also establishes the 
consistent and complementary relationship between the node 
representations and topological structure, node attributes and 

Method Cornell Texas Washing Wiscon Hamil Roches 
DeepWalk 0.328 0.380 0.357 0.343 0.265 0.287 
Node2Vec 0.343 0.503 0.417 0.355 0.299 0.281 
SDNE 0.364 0.578 0.396 0.408 0.274 0.279 
DANE 0.393 0.377 0.424 0.398 0.370 0.334 
ANRL 0.384 0.488 0.494 0.467 0.319 0.340 
ANECP-TA 0.463 0.495 0.514 0.586 0.369 0.331 
M-NMF 0.431 0.631 0.596 0.456 0.321 0.363 
ComVAE 0.380 0.426 0.375 0.364 0.290 0.281 
ANECP-TC 0.451 0.444 0.422 0.396 0.323 0.301 
ANECP-AF 0.465 0.573 0.316 0.622 0.370 0.323 
ANECP-AS 0.500 0.530 0.601 0.587 0.319 0.310 
ANECP-VAE 0.545 0.524 0.628 0.605 0.374 0.360 
ANECP 0.527 0.515 0.667 0.581 0.385 0.394 
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the community structure. Consequently, the obtained node 
representations can preserve proximity and discriminative. 

The approach proposed in this study is devoted to 
homogeneous networks (all nodes have the same type, and 
all edges have the same type). However, real-world networks 
are often heterogeneous, i.e., either nodes or edges have 
multiple types, which contain richer semantic information. 
So, one of our future work is to extend our ANECP 
framework to heterogeneous networks to obtain more 
effective representations. 
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