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Conformational stability of a protein is usually obtained by spectroscopically measuring the unfolding
melting temperature. However, optical spectra under native conditions are considered to contain too lit-
tle resolution to probe protein stability. Here, we have built and trained a neural network model to take
the temperature-dependence of intrinsic fluorescence emission under native-only conditions as inputs,
and then predict the spectra at the unfolding transition and denatured state. Application to a therapeutic
antibody fragment demonstrates that thermal transitions obtained from the predicted spectra correlate
highly with those measured experimentally. Crucially, this work reveals that the temperature-
dependence of native fluorescence spectra contains a high-degree of previously hidden information relat-
ing native ensemble features to stability. This could lead to rapid screening of therapeutic protein vari-
ants and formulations based on spectroscopic measurements under non-denaturing temperatures only.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The measurement of conformational stability is crucial in pro-
tein folding study, as well as for the engineering and formulation
development of protein-based therapeutics [1–3]. Proteins are
marginally stable with their tertiary structures formed by many
weak non-covalent interactions, such that a small change in buffer
composition or temperature can lead to unfolding and aggregation.
The thermodynamic stability of proteins is often determined by
monitoring the fraction of protein unfolding as a function of
step-wise increases in temperature or chemical denaturant, giving
rise to a transition phase that defines a thermal- or chemical-
denaturation mid-point (Tm or Cm) [4]. These measures are often
used as rapid screens for improving the conformational stability
of proteins through mutagenesis or formulation of the buffer con-
ditions, aiming at a protein variant or formulation with improved
kinetic stability to unfolding or aggregation at a given storage tem-
perature. In some cases, a buffer increasing the Tm also makes the
protein more kinetically stable [5]. Recently, mutations of an anti-
body fragment led to improved aggregation kinetics in cases that
decreased the native ensemble flexibility, yet without altering
the Tm [6].

The known influence of local unfolding, conformational flexibil-
ity and protein–protein interactions within the native structure
ensemble, on the conformational stability of proteins, as measured
by their Tm and their propensity to aggregate, led us to examine
whether spectra of proteins under native conditions (at tempera-
tures much lower than the Tm) contain sufficient information to
predict their thermal unfolding transitions at higher temperatures.
Indeed, it has been observed previously that the intrinsic fluores-
cence in the baseline of denaturation curves at lower temperatures
or lower denaturant concentrations, for thermal and chemical
denaturation experiments respectively, is sensitive to changes in
the buffer [7]. For example, with increasing guanidinium concen-
tration, the slope of the baseline became steeper which was postu-
lated that the local structure of the tryptophan residues was
rearranged prior to the major unfolding of the protein.

Machine learning (ML) refers to a series of algorithms capable of
identifying underlying patterns, features and relationships
between various variables from complex datasets such that robust
prediction models can be built [8–10]. In biological studies, ML has
shown great potential to analyze the genomics [11,12] and pro-
teomics [13–15] data. Recently, ML has been applied also to predict
the infrared spectra of proteins [16] and the impact of sequence
mutations or buffer compositions on protein stability and
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aggregation kinetics [17–21]. However, none of these studies has
attempted to use the spectral data of the native protein generated
under different buffer conditions as the input variables from which
to predict its conformational stability.

Here, we perform an experimental and ML analysis of the
temperature-dependent intrinsic fluorescence spectra of a
therapeutic antibody fragment for antigen-binding (Fab) over
industrially-relevant experimental conditions including six protein
concentrations at 1–100 mg/mL, three pH values from 4.5 to 7.0,
and three ionic strengths (IS) spanning 30–200 mM (Fig. 1). We
obtained the full thermal denaturation curves for each of the 54
experimental conditions, whereby the fluorescence emission
intensity was measured over a wide range of wavelengths (300–
400 nm), at 0.5 nm intervals. Using a subset of the fluorescence
spectra (330–350 nm), which has the maximal changes upon
unfolding, a neural network algorithm was applied to model the
curves in the transition and denatured regions from only the spec-
tral data in the native baseline regions at lower temperatures. The
entire modelled curves were then each fitted to a two-state unfold-
ing model for comparison to equivalent fits obtained directly with
the experimental data. In doing so, we interrogated whether the
baseline spectral data, which correspond to the native state of
the protein structure, contain sufficient information to enable a
robust prediction of the denaturation profile and associated con-
formational stability of the protein. This was based on the hypoth-
esis that the native structure ensemble and hence spectral data
represent fingerprints of underlying characteristics such as local
unfolding, conformational flexibility and protein–protein interac-
tions. The ML-modelled denaturation curves and the derived Tm
showed a good consistency with the experimental results. This
suggests that it is possible to reveal hidden information within
the native-state fluorescence spectra at lower temperatures to pre-
dict the transition and denaturation profiles for unfolding.
2. Materials and methods

2.1. Materials

The E. coli strain W3110 containing pTTOD plasmid for Fab
expression was obtained from UCB (Slough, UK). A C226S variant
of Fab was used as described previously, to eliminate any dimeriza-
tion through disulphide bond formation [22]. All reagents includ-
ing buffers and inorganic salts are analytical grade and purchased
from Sigma-Aldrich (Poole, UK).

2.2. Protein preparation

Fab was produced in a pilot-scale 30 L fermenter (BIOSTAT
Cplus, Sartorius, Goettingen, Germany) and purified using AKTA-
based liquid chromatography as described elsewhere [22]. The
purified protein was then exchanged to respective buffers: sodium
acetate was used to prepare pH 4.5 and pH 5.5 buffers, and sodium
phosphate was used to prepare pH 7.0 buffer, to make the initial
ionic strength of the buffers were 30 mM. The protein was then
concentrated to make 1, 5, 10, 20, 50, 100 mg/mL solutions with
the final ionic strength adjusted to 100 mM or 200 mM using
1 M sodium chloride.

2.3. Thermal denaturation measurement

The thermal stability of Fab was measured using a UNit system
(UNCHAINED LABS, Pleasanton, US). 9 lL of the protein was loaded
into the sample well in a 16-well cartridge. The cartridge was
loaded into the instrument and equilibrated to 20 �C prior to being
step-heated from 20 to 90 �C at 30 s per 2 �C interval. The intrinsic
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fluorescence spectrum at each temperature was recorded for 3
independent samples from 250 to 725 nm. The static light scatter-
ing (SLS) of the sample was concurrently collected by the instru-
ment for 266 and 473 nm, which corresponds to the formation of
small and large aggregates, respectively.

2.4. Fitting of the denaturation curve

The fluorescence intensity at 340 nm for each experiment or
model-predicted curve was extracted and plotted against temper-
ature, then fitted to a two-state unfolding model to obtain the mid-
point of unfolding transitions (Tm), as described previously [6]. In
most cases, the fluorescence data below 330 K (57 �C) and over
363 K (90 �C) were removed to improve the fits to the transition
region, by using the most linear portions of the baselines:

IT ¼ IN þ aTð Þ þ ðID þ bTÞK
1þ K

ð1Þ

where K is the equilibrium constant for the transition between the
native and denatured state; T is the experimental temperature; IT, IN
and ID are the spectroscopic signals of the protein at each given
temperature, at the native and at the fully denatured state, respec-
tively. a and b are the baseline slopes of the native and denatured
region of the curve.

K ¼ exp
DHvh

R
1
Tm

� 1
T

� �� �
½2�

where Tm is the temperature at which the protein is half denatured;
DHvn is the van’t Hoff enthalpy and R is the gas constant. All tem-
perature terms in this equation are absolute temperatures in Kelvin.

To obtain Tm individually from each 1 nm between 330 and
350 nm, the denaturation curves of each wavelength were globally
fitted to the two-state model by sharing the DHvh but varying Tm
values. The obtained Tm values were plotted against native slope
baseline or initial fluorescence at 20 �C (Figure S6 & S7).

2.5. Machine learning of the thermal denaturation data

Artificial neural network (ANN) algorithms are a type of
machine learning (ML), inspired by human neural networks, which
result in data-driven models that can interpret effectively patterns
in multivariate data from non-linear systems [23]. In this study, a
common ANN algorithm, Feedforward Neural Network (FFNN) was
applied to construct models with one hidden layer of 20 neurons
using Matlab (R2017a).

For each epoch, the training set was used to train the neural
network model by fitting the weights of connections between neu-
rons while the current model was evaluated by the test set and
adjusted according to the test result. The validation dataset pro-
vided an unbiased evaluation of the model fit on the training data-
set. When the whole training procedure was completed, the model
with the best performance from the validation set was selected as
the final optimal neural network model.

The maximum number of epochs to train was set to 1000. The
performance of the trained network was assessed by the mean
squared error (MSE) function and the performance goal as
expected MSE of the model was set as 20,000 (based on 1.5% error
of the average fluorescence data). To prevent the trained network
model from over-training, the training procedure stops if the vali-
dation performance degrades for 10 consecutive epochs and the
optimal trained network with the best validation performance is
selected. The training function used in this work to construct FFNN
was the Levenberg-Marquardt algorithm, which is designed to
solve non-linear least squares problems [24]. The Levenberg-
Marquardt algorithm uses the Jacobian matrix in the following
Newton-like model:



Fig. 1. (a) The original denaturation fluorescence data (wavelength 330-350 nm) measured for 54 experiment conditions. (b) The performance of Feedforward Neural
Network model with one hidden layerof 20 neurons using Matlab (R2017a). After 208 epochs the training stopped when the validation check was met.
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xkþ1 ¼ xk � ½JT J þ lI��1
JTe ð3Þ

where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a
vector of network errors. If the scalar m is zero, this is just Newton’s
method using the approximate Hessian matrix. If m is large, this
becomes gradient descent with a small step size. Thus, m is
decreased after each successful step and is increased only when a
tentative step would increase the performance function. The activa-
tion functions for the hidden layer and output layer are the hyper-
bolic tangent sigmoid transfer function and linear transfer function,
respectively.

A total of 2268 thermal denaturation measurement data,
including protein concentration, pH, IS, wavelength and native
state fluorescence intensity at each 0.5 nm of 330–350 nm, were
used as inputs to feed the training model. The output of the model
was the high temperature (52–90 �C) section of the denaturation
curve corresponding to the transition and denatured state of the
protein.

Cross-validation of the ML models was achieved with one of the
simplest and commonly-used techniques known as the holdout
method [25]. This method was suitable for this work since it per-
mitted the same training, test and validation sets to be used for
building different models and therefore made it easier to compare
the predicted Tm values across models derived from different input
ranges. To avoid the potential risks of overfitting and selection bias
with the holdout method, the splitting strategy was designed to
split the total thermal denaturation measurement data into train-
ing, validation and test sets in the ratio of 66%, 17% and 17% and to
guarantee an even spatial distribution throughout the experimen-
tal conditions. More specifically, the six protein concentrations
were split into two categories, low concentration (1, 5 and
10 mg/ml) and high concentration (20, 50 and 100 mg/ml)
(Fig. 1b). Given the two concentration categories, three pH values
and three ionic strength values, a total of 18 combinations resulted.
Then, from each combination, the method picked two concentra-
tion values from a set of three values as the training set, while
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the other concentration was allocated to either the validation set
or test set. In this case, there were 3 runs of cross-validation to
make sure all experimental conditions were used for both training
and test/validation and that each condition was used for test/vali-
dation exactly once. The performances (measured in MSE) for the
three runs of cross-validation were 22043, 23778 and 25309 and
the splitting strategy with the best performance (as shown in
Table 1) was selected for model building in this work.

In order to demonstrate that there was no overfitting bias with
the holdout method, the FFNN modelling procedure was repeated
using the k-fold cross validation method and their performance
compared [25]. The thermal denaturation measurement data was
randomly partitioned into k = 6 equal size subsets. Of the six sub-
sets, two subsets were retained as the validation set and test set
respectively, and the remaining four subsets used as training data.
The cross-validation process was then repeated six times (the
folds), with each of the six subsamples used exactly once as
the validation data and test data. This work chose k = 6 to make
sure the ratio of training, validation and test sets were 66%, 17%
and 17% so as to match the ratio in the holdout method. The per-
formance (measured as MSE) of the k-fold cross-validation had
an average MSE of 24,333 compared to 22,043 for the holdout
method. The similar performance demonstrated that the splitting
strategy applied in the holdout method avoided overfitting or bias
issues. The holdout method had the additional benefit of saving
time to retain a similar performance result.

3. Results

3.1. Thermal denaturation measurement of Fab

The denaturation of Fab results in the exposure of the trypto-
phan residues that lead to a change in fluorescence intensity as a
function of temperature. The fluorescence at 340 nm was selected
and fitted to a two-state model for each protein concentration and
buffer condition (Fig. 3 a1-6). The temperature at which the pro-
tein was half-denatured (Tm) was obtained from the fit and shown



Table 1
Splitting strategy of data set into training, validation and test dataset for Neural Network model.

Concentration
(mg/mL)

pH IS
(mM)

Division Concentration
(mg/mL)

pH IS
(mM)

Division

1 4.5 30 Validation 20 4.5 30 Test
5 Training 50 Training
10 Training 100 Training
1 4.5 100 Training 20 4.5 100 Training
5 Test 50 Validation
10 Training 100 Training
1 4.5 200 Training 20 4.5 200 Training
5 Training 50 Training
10 Validation 100 Test
1 5.5 30 Test 20 5.5 30 Validation
5 Training 50 Training
10 Training 100 Training
1 5.5 100 Training 20 5.5 100 Training
5 Validation 50 Test
10 Training 100 Training
1 5.5 200 Training 20 5.5 200 Training
5 Training 50 Training
10 Test 100 Validation
1 7 30 Validation 20 7 30 Test
5 Training 50 Training
10 Training 100 Training
1 7 100 Training 20 7 100 Training
5 Test 50 Validation
10 Training 100 Training
1 7 200 Training 20 7 200 Training
5 Training 50 Training
10 Validation 100 Test

Fig. 2. (a) The original denaturation fluorescence data (wavelength 330–350 nm) measured for 54 experiment conditions. (b) The performance of Feedforward Neural
Network model with one hidden layer of 20 neurons using Matlab (R2017a). After 208 epochs the training stopped when the validation check was met.
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in Table S1. Previously, 1 mg/ml Fab was observed to aggregate
rapidly at above the Tm, whereby the thermal unfolding transition
was a convolution of the conformational unfolding equilibrium,
and the aggregation kinetics [22]. Thus, the precise Tm value
obtained is affected by the experimental settings, particularly the
ramp rate of the thermal denaturation, which is accordingly kept
constant across all experiments.

The change in Tm with increasing protein concentration shows
stability variation across the experimental conditions, showing a
convergence towards a low variability at 100 mg/mL (Figure S1).
This could be partially owing to the quality of data for the fit as
the fitting error obtained for Tm at 1–10 mg/mL is generally larger
than those of 20–100 mg/mL data, which have better unfolding
transitions to determine the Tm. However, if a comparison is made
within the 20–100 mg/mL group, a smaller variation in Tm over dif-
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ferent buffers is still observed for 100 mg/mL suggesting that the
Tm of Fab becomes relatively insensitive to changes in pH or ionic
strength at 100 mg/mL.

The Tm has comparatively larger errors for Fab at 1–10 mg/mL
than at higher concentrations. The light scattering of Fab shows
the aggregates formed from the denatured state at 1 mg/mL
rapidly precipitate out of the solution resulting in a drop of scatter-
ing intensity, whereas the size of aggregate formed at higher con-
centrations is still within the measurable range (Figure S5 & S6).
This is consistent with previous results showing that the aggrega-
tion of Fab is kinetically (unpublished results) and also thermody-
namically stabilized at the higher protein concentrations [26].
Therefore, at lower concentrations of Fab, the greater convolution
of aggregation kinetics with the unfolding transition leads to the
higher fitting error for Tm.
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3.2. Modeling of the denaturation curves from the native state
fluorescence

A common artificial neural network algorithm, Feedforward
Neural Network (FFNN), was applied and carried out with a split-
ting of the 2268 experimental datasets into 1512 (66%) for training,
378 (17%) for validation, 378 (17%) for testing (Table 1). The valida-
tion and test datasets were selected to obtain an even spatial dis-
tribution throughout the concentration, pH and IS conditions, so
as to avoid overfitting or bias in the results (as described in Mate-
rials and Methods).The results of the k-fold cross-validation is
Fig. 3. Thermal denaturation curves of Fab obtained by fluorescence measurements for
buffer conditions. The ML-derived fluorescence (training from 20 to 50 �C shown as exam
intensity at 340 nm was plotted as filled circles (pH4.5 IS 30 mM: , pH4.5 IS 100 mM:

, pH7.0 IS 30 mM: , pH7.0 IS 100 mM: , pH7.0 IS 200 mM: ) and squares (pH4.5 IS
100 mM: , pH5.5 IS 200 mM: , pH7.0 IS 30 mM: , pH7.0 IS 100 mM: , pH7.0 IS 20
two-state unfolding model to derive the Tm.
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shown in Figure S2. For each dataset, the fluorescence intensity
between wavelength 330–350 nm at 0.5 nm intervals of the emis-
sion spectra were selected from the temperatures corresponding to
the native state baseline of the protein. In the first model, each
wavelength had 16 fluorescence intensity data points, correspond-
ing to the 2 �C intervals spanning 20–50 �C (293–323 K). The fluo-
rescence intensity data were combined with the protein
concentration, pH, IS and wavelength information to form the 20
inputs defined as input range 1 (Table S2).

The outputs of the model were the fluorescence intensities
between 330 and 350 nm at 0.5 nm intervals for 52–90 �C spanning
(a1-6) 1 mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL, 50 mg/mL and 100 mg/mL over 9
ple) over the same temperature range are shown in b1-6. The change in fluorescence
pH4.5 IS 200 mM: , pH5.5 IS 30 mM: , pH5.5 IS 100 mM: , pH5.5 IS 200 mM:
30 mM: , pH4.5 IS 100 mM: , pH4.5 IS 200 mM: , pH5.5 IS 30 mM: , pH5.5 IS

0 mM: ) against temperature. The solid lines represent the best fit of the data to a



Fig. 3 (continued)
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the transition region and denatured-state baseline (Figure S3). The
neural network training performance was analyzed in terms of the
mean squared error (MSE) of each epoch for the training, test and
validation datasets, as shown in Fig. 2b. The MSE decreased with
the increase in the number of epochs for all training, validation
and test datasets. The optimal model was found at epoch194 with
the best validation performance in terms of the lowest MSE value.

The predicted output fluorescence data (52–90 �C) were plotted
together with the experimental native-state baseline data used as
the input (20–50 �C), to generate the complete denaturation curves
(20–90 �C). Their native and denatured baselines were truncated in
the same way as for the experimental data, to include only the lin-
ear regions of the baselines prior to fitting to the same two-state
model (Fig. 3, Table S1).

In three subsequent models, to characterize the impact of input
data volume on the quality of the output, we reduced the input flu-
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orescence intensity range from 20 to 50 �C to 20–40 �C, and even-
tually to 20–30 �C. The predicted curves were also plotted as above,
and then fitted to the two-state model (Figure S4). Moreover, to
investigate whether the feature information in the native state
baseline was evenly distributed in temperature or biased to a cer-
tain temperature range, we carried out the same modelling proce-
dure but limited the input fluorescence intensity for smaller
scanning windows of 20–30 �C (as above), 30–40 �C or 40–50 �C
(Figure S3). Finally, to investigate the reliance of the models upon
experimental condition information (concentration, pH and IS), we
removed these parameters from the input, and built up a baseline-
only model (Figure S3f) using the fluorescence in the native base-
line (20–50 �C) only.

The quality of model-predicted curves from different input tem-
perature ranges of the fluorescence was compared with the exper-
imental curves (Fig. 3). The RMSE% shows the model-to-
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experiment RMSE deviation in fluorescence intensity throughout
52–90 �C relative to the fluorescence intensity of the experimental
curve at the midpoint (Tm). Most RMSE% falls below 10% over the
concentration, pH and IS, with a number of exceptional datasets
below 3% found at 5 and 10 mg/mL, regardless of the range of input
data (Fig. 4). RMSE% was the greatest at 1 mg/mL, pH 4.5, IS
100 mM / 200 mM. In general, using the input ranges of 20–
50 �C and 40–50 �C gave the lowest RMSE% (in some cases, such
as at 50 mg/mL and 100 mg/mL, the RMSE for 20–50 �C was better
than for 40–50 �C), indicating that the modelled curves from these
input ranges most closely resembled the experimental curves. For
each concentration, using only the baseline fluorescence data as
the input gave marginally greater deviations from experimental
curves on average.

3.3. Conformational stability obtained from experimental and model-
predicted data

The unfolding transition midpoints (Tm) obtained from the
experimental and model-predicted curves show a good consis-
tency over the experimental conditions (Fig. 5 and Table 2). There-
fore, the Tm derived from model-predicted curves are observed to
present similar trends of change over the concentration and buffer
conditions, as those of obtained directly from the experimental
data fitting (Figure S1). However, minor differences were observed
from the predictive results when modelling from different input
ranges. A better consistency with experimental Tm was obtained
when larger input data volumes were used, as expected. The RMSE
values between Tm values obtained from 20 to 50 �C, 20–40 �C, and
20–30 �C input data were 1.0, 1.0, and 1.2 �C, respectively, for the
entire dataset; and 1.1, 1.2, and 1.2 �C, for the test dataset alone
(Table 2). Interestingly, the quality of model-predicted results
Fig. 4. The deviation of the ML model-derived denaturation curves to the experiment dat
of fluorescence intensity for 52–90 �C of the experiment and model-predicted values to
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improved when using an input range from a higher temperature
window, such that the RMSE values for predictions based on 20–
30 �C, 30–40 �C, and 40–50 �C input data, were 1.2, 1.1, and
0.8 �C, for both the entire dataset, and the test dataset alone.

The linear regression of the test datasets shows larger devia-
tions, compared to those of the validation and the entire datasets.
However, the test predictions still fall close to the parity line
against experimental values, and so the increased RMSE likely
reflects only the relatively small range of test Tm values between
78 and 82 �C.
4. Discussion

The thermal unfolding transition of proteins from which the
conformational stability is determined, is usually measured by
the intrinsic fluorescence (differential scanning fluorimetry),
molecular chirality (circular dichroism), or specific heat capacity
(differential scanning calorimetry)[27–33]. Although the native
structure of a protein is largely homogeneous, it is not a rigid body
but undergoes continual dynamic motion, including frequent
unfolding and conformational switching of local regions of struc-
ture [34,35]. Under the native state, the intrinsic fluorescence of
a protein reflects the average local environment around trypto-
phan, tyrosine or phenylalanine residues for the whole native
ensemble of structures. This fluorescence is sensitive to protein
conformational changes induced by changes in temperature, pro-
tein concentration and the buffer solution conditions [36]. The
local unfolding events, conformational states, and protein–protein
interactions within the native ensemble directly influence the sta-
bility of the protein to global unfolding, and hence probing fluores-
a for different data input range to the model. RMSE % is the ratio between the RMSE
the fluorescence intensity at the Tm.
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cence under native conditions has the potential to reveal the ther-
modynamic propensity to globally unfold.

The conformational stability of an antibody fragment, Fab, was
studied for 54 combinations of concentration, pH and ionic
strength. The fluorescence intensity of Fab increased as unfolding
exposed tryptophan residues to the solvent and eventually
decreased as Fab was fully denatured. The resulting denaturation
profiles throughout the thermal transition were compared to their
model-predicted twin datasets predicted from only the spectra
obtained below the transition temperature. The model-predicted
curves show similar profiles to their experimental twins and the
RMSE% indicated that the discrepancy of the fluorescence signals
Fig. 5. Parity plot of the Tm obtained from the experimental and ML-derived data. The res
used to train the ML model (a) 20–30 �C (b), 20–40 �C (c), 20–50 �C (d), 30–40 �C (e), 40
omitting the pH, IS and protein concentration information. The Tm obtained from the vali
Tm, Ex is equal to Tm, ML (i.e. slope = 1) is shown as black diagonal dash line.
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across the temperature range was less than 10%. This provided a
high-quality prediction with the model-predicted curves, for fur-
ther analysis using the same thermal-unfolding model fitted to
the experimental data. The Tm values obtained from ML models
showed a robust agreement with the equivalent experimentally
determined values. Altogether, the fluorescence measurement
and ML depicted similar behaviours of Fab over changes in protein
concentration, acidic to neutral pH, and from low to high ionic
strength.

Consistent with previous work, the Fab became apparently self-
stabilized at high concentrations [26]. Moreover, Tm at 100 mg/mL
became very similar across the pH and IS range, suggesting some
ults are presented based on the temperature range of the experimental fluorescence
–50 �C and (f) the prediction from only the fluorescence data in the native baseline
dation and test datasets are plotted and fitted separately. The ‘‘ideal” scenario where



Fig. 5 (continued)
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‘‘protective” species formed during the unfolding/aggregation pro-
cess makes the protein stability resistant to changes in buffer envi-
ronment. The balance of aggregation and denaturation behaviour
clearly changes from the lower to the higher concentrations. This
complex shift in the protein denaturation pathway was still suc-
cessfully modelled by ML, indicating the robustness of the
approach, and the ability of ML to unpick different outcomes based
on the input spectra.

We attempted to consider which specific features in the native-
state fluorescence spectra may have been adopted by the ML algo-
rithm, to predict the unfolding transition. As described above, the
prediction improved when using an input range of temperatures
closer to the transition region. This was most likely due to a closer
correlation between the high-temperature native structure ensem-
2758
ble encoded in the spectra and the states that lead to protein
unfolding, as expected due to Hammond effects on the free-
energy [37]. However, we could not identify any simple linear rela-
tionships between features of the input data and the experimental
Tm values. We fitted the denaturation curves at each wavelength
between 330 and 350 nm to investigate the wavelength-
dependent change of features (Figure S7 & S8, Table S3). For exam-
ple, the native baseline slope, and the initial fluorescence intensity
at 20 �C, each varied significantly within each buffer condition, due
to changes in protein concentration, but with no clear relationship
to experimentally-determined Tm values in most cases (Figure S7 &
S8). In addition, the buffer conditions affected the Tm values, but
these did not correlate with the native baseline slope or initial
intensity. Furthermore, the experimental Tm values obtained were



Table 2
Goodness of the correlation between the experimental and ML-derived Tm values. The slope and R2 are obtained from the linear fit of the data in Fig. 5. The correlation with
experimental data was also compared within each ML group between the validation, test and the entire datasets.

Input range RMSE (�C) Slope R2

20–30 �C All Tm values 1.21 0.80 ± 0.06 0.80
Tm from validation 0.75 0.81 ± 0.45 0.98
Tm from test 1.22 0.68 ± 0.23 0.48

20–40 �C All Tm values 1.01 0.89 ± 0.05 0.85
Tm from validation 0.57 0.92 ± 0.06 0.97
Tm from test 1.21 0.57 ± 0.31 0.33

20–50 �C All Tm values 1.01 0.91 ± 0.05 0.86
Tm from validation 0.61 0.91 ± 0.06 0.97
Tm from test 1.12 0.52 ± 0.23 0.42

30–40 �C All Tm values 1.10 0.87 ± 0.06 0.83
Tm from validation 0.61 0.90 ± 0.06 0.97
Tm from test 1.09 0.64 ± 0.26 0.46

40–50 �C All Tm values 0.84 0.93 ± 0.04 0.90
Tm from validation 0.34 0.98 ± 0.04 0.99
Tm from test 0.77 0.81 ± 0.19 0.71

Baseline-only All Tm values 1.18 0.86 ± 0.06 0.80
Tm from validation 0.99 0.94 ± 0.11 0.91
Tm from test 1.12 0.50 ± 0.26 0.35
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also dependent on the wavelength used for denaturation curves
within each buffer condition, particularly at the higher protein
concentrations, but these were not consistently linked to either
the initial fluorescence intensity or the native baseline slopes.
Instead, the ML model must have relied upon more complex rela-
tionships across these various features. The neural network algo-
rithm could grasp these features together with other unknown
ones from the native state baseline to make an overall linkage to
the spectroscopic signal in the transition and denatured states.

This study provides a predictive approach that could be used to
accelerate the development of stable therapeutic protein formula-
tions. Therapeutic proteins, such as antibody and antibody frag-
ments (full IgG, Fab, scFv, sdAb etc), have become a leading class
of pharmaceutical product in recent decades [38–41]. The confor-
mational stability of a therapeutic protein is important for the
safety, efficacy and shelf-life of the product. Any enhancement
through optimization of the pharmaceutical formulation can bring
a reduction of immunogenicity and an increase in storage stability
[42–44]. Therefore, therapeutic protein candidates under develop-
ment are usually screened across a wide variety of buffer combina-
tions to identify the most ideal condition to formulate. This
approach is highly resource intensive, and uses up protein materi-
als that are often in very short supply at the early stages of
development.

The success of the ML predictions show us that the change in
thermal stability of a protein in response to different solution con-
ditions, can be entirely predicted from spectra obtained only for
the native ensemble. This finding is consistent with the growing
understanding that global unfolding events and aggregation mech-
anisms are critically dependent on local unfolding, conformational
states, or protein–protein interactions that occur already within
the native ensemble. Therefore, future protein engineering and for-
mulation endeavours can focus on controlling these properties
within the native ensemble.

We aim to build this method to accelerate the drug develop-
ment process by 1) experimentally validating less buffer conditions
and 2) only low temperature is needed for screening. Furthermore,
the running time of FFNN neural network in this study can process
the total 2268 thermal denaturation curves in about 15 min, by
obtaining fluorescence spectra in 10 mins over only a 10 �C range
of the pre-transition region, which greatly accelerated the process-
ing time compared to conventional data analysis methods which
usually measure in 70 mins over a 70 �C range. An additional
advantage is that the protein does not need to be denatured, often
irreversibly causing aggregation, and would therefore be re-
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useable for other experiments. This work shows the potential
and capability of the incorporation of ML into the future digital
platform for the developability characterization of biopharmaceu-
tical products. In future investigations, we plan to test the general-
ity of this method on a wider range of buffer conditions and on
other proteins of different sizes, structure, surface charge and sta-
bility. We aim to achieve a better robustness via training the ML
algorithm from a larger volume of datasets spanning from different
proteins and protein families.
5. Conclusion

In this work, we applied the Feedforward Neural Network
model to study the intrinsic fluorescence of the native state of
Fab, a multi-domain therapeutic protein, to derive the fluorescence
spectra in the transition and denatured state regions of the thermal
denaturation profile. The Tm derived from the experiments and
from the predictive model were highly correlated, showing that
there is sufficient information in the temperature-dependent
native state spectra of proteins, to derive their conformational sta-
bility. Based on this discovery, a non-denaturing measurement can
be developed to make fast prediction of the stability of a therapeu-
tic protein under different formulation conditions.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgement

Funding from the UK Engineering & Physical Sciences Research
Council (EPSRC) for the Future Targeted Healthcare Manufacturing
Hub hosted at University College London with UK university part-
ners is gratefully acknowledged (Grant Reference: EP/P006485/1).
Financial and in-kind support from the consortium of industrial
users and sector organizations is also acknowledged.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.04.047.

https://doi.org/10.1016/j.csbj.2021.04.047


H. Zhang, Y. Yang, C. Zhang et al. Computational and Structural Biotechnology Journal 19 (2021) 2750–2760
Reference

[1] Clarkson BR, Schön A, Freire E. Conformational Stability and Self-Association
Equilibrium in Biologics. Drug Discovery Today 2016():342–7. https://doi.org/
10.1016/j.drudis.2015.11.007.

[2] Thiagarajan G, Semple A, James JK, Cheung JK, Shameem M. A Comparison of
Biophysical Characterization Techniques in Predicting Monoclonal Antibody
Stability. MAbs 2016;8(6):1088–97. https://doi.org/10.1080/
19420862.2016.1189048.

[3] Goldberg DS, Bishop SM, Shah AU, Sathish HA. Formulation Development of
Therapeutic Monoclonal Antibodies Using High-Throughput Fluorescence and
Static Light Scattering Techniques: Role of Conformational and Colloidal
Stability. Pharm Assoc J Pharm Sci 2011;100:1306–15. https://doi.org/10.1002/
jps.22371.

[4] Santoro MM, Bolen DW. A Test of the Linear Extrapolation of Unfolding Free
Energy Changes over an Extended Denaturant Concentration Range.
Biochemistry 1992;31(20):4901–7. https://doi.org/10.1021/bi00135a022.

[5] Cordes AA, Carpenter JF, Randolph TW. Selective Domain Stabilization as a
Strategy to Reduce Human Serum Albumin-Human Granulocyte Colony
Stimulating Factor Aggregation Rate. J Pharm Sci 2012;101(6):2009–16.
https://doi.org/10.1002/jps.23118.

[6] Zhang C, Samad M, Yu H, Chakroun N, Hilton D, Dalby PA. Computational
Design to Reduce Conformational Flexibility and Aggregation Rates of an
Antibody Fab Fragment. Mol Pharm 2018;15(8):3079–92. https://doi.org/
10.1021/acs.molpharmaceut.8b00186.

[7] Eftink MR. The Use of Fluorescence Methods to Monitor Unfolding Transitions
in Proteins. Biophys J 1994;66(2):482–501. https://doi.org/10.1016/S0006-
3495(94)80799-4.

[8] Alpaydin E. Introduction to Machine Learning. 3rd Edition,, 2014.
[9] Witten IH, Frank E, Hall MA, Pal C. J Data Mining: Practical Mach Learn Tools

Tech 2016. https://doi.org/10.1016/c2009-0-19715-5.
[10] Lecun Y, Bengio Y, Hinton G. Deep Learning. Nature Nature Publishing Group

2015:436–44. https://doi.org/10.1038/nature14539.
[11] Liu C, Che D, Liu X, Song Y. Applications of Machine Learning in Genomics and

Systems Biology. Comput Math Methods Med 2013. https://doi.org/10.1155/
2013/587492.

[12] Huang S, Nianguang CAI, Penzuti Pacheco P, Narandes S, Wang Y, Wayne XU,
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.
Cancer Genomics and Proteomics. International Institute of Anticancer
Research, 2018, pp 41–51. https://doi.org/10.21873/cgp.20063.

[13] Barla A, Jurman G, Riccadonna S, Merler S, Chierici M, Furlanello C. Machine
Learning Methods for Predictive Proteomics. Briefings Bioinf Oxford Academic
2008:119–28. https://doi.org/10.1093/bib/bbn008.

[14] Kelchtermans P, Bittremieux W, De Grave K, Degroeve S, Ramon J, Laukens K,
et al. Machine Learning Applications in Proteomics Research: How the Past
Can Boost the Future. Proteomics 2014:353–66. https://doi.org/10.1002/
pmic.201300289.

[15] Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J. Application of Machine
Learning to Proteomics Data: Classification and Biomarker Identification in
Postgenomics Biology. OMICS Mary Ann Liebert, Inc 2013:595–610. https://
doi.org/10.1089/omi.2013.0017.

[16] Ye S, Zhong K, Zhang J, Hu W, Hirst JD, Zhang G, et al. A Machine Learning
Protocol for Predicting Protein Infrared Spectra. J Am Chem Soc 2020;142.
https://doi.org/10.1021/jacs.0c06530.

[17] Teng S, Srivastava AK, Wang L. Sequence Feature-Based Prediction of Protein
Stability Changes upon Amino Acid Substitutions. BMC Genomics 2010;11
(SUPPL. 2):S5. https://doi.org/10.1186/1471-2164-11-S2-S5.

[18] Masso M, Vaisman II. Accurate Prediction of Stability Changes in Protein
Mutants by Combining Machine Learning with Structure Based Computational
Mutagenesis. Bioinformatics 2008;24(18):2002–9. https://doi.org/10.1093/
bioinformatics/btn353.

[19] Capriotti E, Fariselli P, Casadio R. A Neural-Network-Based Method for
Predicting Protein Stability Changes upon Single Point Mutations. In
Bioinformatics. Bioinformatics 2004;20. https://doi.org/10.1093/
bioinformatics/bth928.

[20] Gentiluomo L, Roessner D, Frieß W. Application of Machine Learning to Predict
Monomer Retention of Therapeutic Proteins after Long Term Storage. Int J
Pharm 2020;577:. https://doi.org/10.1016/j.ijpharm.2020.119039119039.

[21] Hebditch M, Warwicker J. Charge and Hydrophobicity Are Key Features in
Sequence-Trained Machine Learning Models for Predicting the Biophysical
Properties of Clinical-Stage Antibodies. PeerJ 2019;7:. https://doi.org/10.7717/
peerj.8199e8199.
2760
[22] Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the
Aggregation Kinetics of a Therapeutic Antibody Fragment. Mol Pharm
2016;13(2):307–19. https://doi.org/10.1021/acs.molpharmaceut.5b00387.

[23] Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural
Networks Elsevier Ltd January 1 2015:85–117. https://doi.org/10.1016/j.
neunet.2014.09.003.

[24] Marquardt, D. W. AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF
NONLINEAR PARAMETERS*; 1963; Vol. 11.

[25] Arlot S, Celisse A. A Survey of Cross-Validation Procedures for Model Selection.
Stat Surv 2010;4(none):40–79. https://doi.org/10.1214/09-SS054.

[26] Zhang H, Dalby PA. Stability Enhancement in a MAb and Fab Coformulation. Sci
Rep 2020;10:21129.

[27] Razinkov VI, Treuheit MJ, Becker GW. Accelerated Formulation Development
of Monoclonal Antibodies (MABS) and Mab-Based Modalities: Review of
Methods and Tools. J Biomol Screen SAGE PublicationsSage CA: Los Angeles, CA
2015:468–83. https://doi.org/10.1177/1087057114565593.

[28] Freire E, Schön A, Hutchins BM, Brown RK. Chemical Denaturation as a Tool in
the Formulation Optimization of Biologics. Drug Discovery Today
2013:1007–13. https://doi.org/10.1016/j.drudis.2013.06.005.

[29] Kunz P, Zinner K, Mücke N, Bartoschik T, Muyldermans S, Hoheisel JD. The
Structural Basis of Nanobody Unfolding Reversibility and Thermoresistance.
Sci Rep 2018;8(1). https://doi.org/10.1038/s41598-018-26338-z.

[30] Wang S, Wu G, Zhang X, Tian Z, Zhang N, Hu T, et al. Stabilizing Two IgG1
Monoclonal Antibodies by Surfactants: Balance between Aggregation
Prevention and Structure Perturbation. Eur J Pharm Biopharm
2017;114:263–77. https://doi.org/10.1016/j.ejpb.2017.01.025.

[31] Neergaard MS, Nielsen AD, Parshad H, Van De Weert M. Stability of
Monoclonal Antibodies at High-Concentration: Head-to-Head Comparison of
the IgG1 and IgG4 Subclass. J Pharm Sci 2014;103(1):115–27. https://doi.org/
10.1002/jps.23788.

[32] Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, et al. Examination of
Thermal Unfolding and Aggregation Profiles of a Series of Developable
Therapeutic Monoclonal Antibodies. Mol Pharm 2015;12(4):1005–17.
https://doi.org/10.1021/mp400666b.

[33] Mehta SB, Bee JS, Randolph TW, Carpenter JF. Partial Unfolding of a
Monoclonal Antibody: Role of a Single Domain in Driving Protein
Aggregation 2014. https://doi.org/10.1021/bi5002163.

[34] Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH,
et al. A Unified Model of Protein Dynamics. Proc Natl Acad Sci U S A 2009;106
(13):5129–34. https://doi.org/10.1073/pnas.0900336106.

[35] Yang LQ, Sang P, Tao Y, Fu YX, Zhang KQ, Xie YH, et al. Protein Dynamics and
Motions in Relation to Their Functions: Several Case Studies and the
Underlying Mechanisms. J Biomol Struct Dyn 2014;32(3):372–93. https://
doi.org/10.1080/07391102.2013.770372.

[36] Mallam, A. L.; Jackson, S. E. Chapter 3 Use of Protein Engineering Techniques to
Elucidate Protein Folding Pathways. Progress in Nucleic Acid Research and
Molecular Biology. Academic Press January 1, 2008, pp 57–113. https://doi.
org/10.1016/S0079-6603(08)00403-0.

[37] Dalby PA, Oliveberg M, Fersht AR. Movement of the Intermediate and Rate
Determining Transition State of Barnase on the Energy Landscape with
Changing Temperature. Biochemistry 1998;37(13):4674–9. https://doi.org/
10.1021/bi972798d.

[38] Ayoub MA, Crépieux P, Koglin M, Parmentier M, Pin JP, Poupon A, et al.
Antibodies Targeting G Protein-Coupled Receptors: Recent Advances and
Therapeutic Challenges. mAbs 2017;9:735–41. https://doi.org/10.1080/
19420862.2017.1325052.

[39] Bannas P, Hambach J, Koch-Nolte F. Nanobodies and Nanobody-Based Human
Heavy Chain Antibodies as Antitumor Therapeutics. Front Immunol
2017:1603. https://doi.org/10.3389/fimmu.2017.01603.

[40] Nie S, Wang Z, Moscoso-Castro M, D’Souza P, Lei C, Xu J, et al. Biology Drives
the Discovery of Bispecific Antibodies as Innovative Therapeutics. Antib Ther
2020;3(1):18–62. https://doi.org/10.1093/abt/tbaa003.

[41] Ecker DM, Jones SD, Levine HL. The Therapeutic Monoclonal Antibody Market
mAbs 2015:9–14. https://doi.org/10.4161/19420862.2015.989042.

[42] Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The State-of-Play and Future
of Antibody Therapeutics. Adv Drug Deliv Rev 2017:2–19. https://doi.org/
10.1016/j.addr.2016.11.004.

[43] Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC,
et al. Role of Buffers in Protein Formulations. J Pharm Sci 2017;106(3):713–33.
https://doi.org/10.1016/j.xphs.2016.11.014.

[44] Frokjaer S, Otzen DE. Protein Drug Stability: A Formulation Challenge. Nat Rev
Drug Discov 2005;4(4):298–306. https://doi.org/10.1038/nrd1695.

https://doi.org/10.1016/j.drudis.2015.11.007
https://doi.org/10.1016/j.drudis.2015.11.007
https://doi.org/10.1080/19420862.2016.1189048
https://doi.org/10.1080/19420862.2016.1189048
https://doi.org/10.1002/jps.22371
https://doi.org/10.1002/jps.22371
https://doi.org/10.1021/bi00135a022
https://doi.org/10.1002/jps.23118
https://doi.org/10.1021/acs.molpharmaceut.8b00186
https://doi.org/10.1021/acs.molpharmaceut.8b00186
https://doi.org/10.1016/S0006-3495(94)80799-4
https://doi.org/10.1016/S0006-3495(94)80799-4
http://refhub.elsevier.com/S2001-0370(21)00159-8/h0040
https://doi.org/10.1016/c2009-0-19715-5
https://doi.org/10.1038/nature14539
https://doi.org/10.1155/2013/587492
https://doi.org/10.1155/2013/587492
https://doi.org/10.1093/bib/bbn008
https://doi.org/10.1002/pmic.201300289
https://doi.org/10.1002/pmic.201300289
https://doi.org/10.1089/omi.2013.0017
https://doi.org/10.1089/omi.2013.0017
https://doi.org/10.1021/jacs.0c06530
https://doi.org/10.1186/1471-2164-11-S2-S5
https://doi.org/10.1093/bioinformatics/btn353
https://doi.org/10.1093/bioinformatics/btn353
https://doi.org/10.1093/bioinformatics/bth928
https://doi.org/10.1093/bioinformatics/bth928
https://doi.org/10.1016/j.ijpharm.2020.119039
https://doi.org/10.7717/peerj.8199
https://doi.org/10.7717/peerj.8199
https://doi.org/10.1021/acs.molpharmaceut.5b00387
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1214/09-SS054
http://refhub.elsevier.com/S2001-0370(21)00159-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00159-8/h0130
https://doi.org/10.1177/1087057114565593
https://doi.org/10.1016/j.drudis.2013.06.005
https://doi.org/10.1038/s41598-018-26338-z
https://doi.org/10.1016/j.ejpb.2017.01.025
https://doi.org/10.1002/jps.23788
https://doi.org/10.1002/jps.23788
https://doi.org/10.1021/mp400666b
https://doi.org/10.1021/bi5002163
https://doi.org/10.1073/pnas.0900336106
https://doi.org/10.1080/07391102.2013.770372
https://doi.org/10.1080/07391102.2013.770372
https://doi.org/10.1021/bi972798d
https://doi.org/10.1021/bi972798d
https://doi.org/10.1080/19420862.2017.1325052
https://doi.org/10.1080/19420862.2017.1325052
https://doi.org/10.3389/fimmu.2017.01603
https://doi.org/10.1093/abt/tbaa003
https://doi.org/10.4161/19420862.2015.989042
https://doi.org/10.1016/j.addr.2016.11.004
https://doi.org/10.1016/j.addr.2016.11.004
https://doi.org/10.1016/j.xphs.2016.11.014
https://doi.org/10.1038/nrd1695

	Machine learning reveals hidden stability code in protein native fluorescence
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Protein preparation
	2.3 Thermal denaturation measurement
	2.4 Fitting of the denaturation curve
	2.5 Machine learning of the thermal denaturation data

	3 Results
	3.1 Thermal denaturation measurement of Fab
	3.2 Modeling of the denaturation curves from the native state fluorescence
	3.3 Conformational stability obtained from experimental and model-predicted data

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	Reference


