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a b s t r a c t

Due to the ever-increasing amount of various information provided by the internet, recommendation sys-
tems are now used in a large number of fields as efficient tools to get rid of information overload. The
content-based, collaborative-based and hybrid methods are the three classical recommendation tech-
niques, whereas not all real-world problems (e.g. the food recommendation problem) can be best
addressed by such classical recommendation techniques. This paper is devoted to solving the food recom-
mendation problem based on many-objective optimization (MaOO). A novel recommendation approach
is proposed by transforming the original recommendation problem into an MaOO one that contains four
different objectives, i.e., the user preferences, nutritional values, dietary diversity, and user diet patterns.
The experimental results demonstrate that the designed recommendation approach provides a more bal-
anced way of recommending food than the classical recommendation methods that only consider indi-
viduals’ food preferences.
Crown Copyright � 2022 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recommendation systems (RSs) employ users’ history data
records to predict their preference, and have been widely used in
fields like e-commerce, movie, and music recommendation to help
people overcome information overload [48,49,1,50]. Due to the
growing attention to a healthy and balanced diet, food recommen-
dation has now become more and more popular among people
worldwide. It has been shown by researchers that a long-term
unhealthy diet exposes people’s health to unaware risks [9], e.g.
the development of certain chronic diseases such as cancer, dia-
betes and obesity [11]. Given the importance of a balanced and
healthy diet, there is an urgent need to use recommendation tech-
niques to assist people in selecting scientific yet personalized food
plans.

Generally speaking, food RSs utilize users’ food consumption
data to predict their food preferences and recommend healthier
substitutes to such preferences. It has been verified that traditional
recommendation techniques (e.g. the content-based, collaborative-
based and hybrid methods) perform well in analyzing rectangular
data sets [10,23]. When it comes to non-rectangular food-related
data sets such as meals, restaurants and food intake, these tradi-
tional recommendation techniques fail to provide satisfactory sug-
gestions on a balanced and nutritional diet.

In order to solve this problem, the many-objective optimization
(MaOO) algorithms have been introduced to the food recommen-
dation field, where the original recommendation problem has been
converted into an MaOO one. It should be noted that most MaOO-
based recommendation studies have restricted themselves to the
optimization of only two objectives (i.e. user preferences and food
nutritional values) regarding the users’ health needs, and this often
leads to sub-optimal food recommendation plans. Taking into
account the fact that many other objectives (e.g. food diversity
and user diet patterns) also pose significant impacts on health-
related recommendation, it would be quite interesting to investi-
gate how such objectives could be integrated into the MaOO prob-
lem so as to provide more scientific and efficient recommendation.
This seems to be a nontrivial task due to the great difficulty in con-
sidering so many food-related objectives simultaneously in one
MaOO model, which can bring high computation costs and great
visualization difficulties [36,51].

In this paper, a novel MaOO-based approach is developed to
provide a balanced and systematic way of dealing with food rec-
ommendation tasks. An MaOO model is proposed by considering
four crucial objectives related to user preference, user diet pattern,
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food nutritional values, and food diversity. Three Pareto-based
algorithms are applied to solve the given recommendation task,
and the experimental results demonstrate the effectiveness of
our model in food recommendation.

The main contributions of this paper can be summarized as fol-
lows: 1) a new food recommendation problem is considered that
targets at supplying users with a scientific yet personalized diet,
where four different food related objectives are required to be
simultaneously optimized; 2) a novel MaOO based recommenda-
tion framework is developed to solve the proposed recommenda-
tion task, where three MaOO approaches are delicately combined
to convert the original recommendation task into an MaOO prob-
lem; and 3) a series of experiments based on real-world data sets
are conducted to verify the effectiveness of the proposed MaOO
based recommendation framework.

The rest of the paper is organized as follows: Section 2 presents
the related work about traditional food recommendation methods.
Section 3 develops an MaOO model for food recommendation. Sec-
tion 4 discusses the experimental results and the corresponding
metrics chosen for algorithm evaluation. Section 5 presents some
conclusions and future directions.
Table 1
MyFitnessPal Data Set.

user_id date meal_sequence food_ids

1 2014.09.14 1 1,2,3,4,5,6
4 2014.11.14 2 12,3,4,3
5 2015.01.14 4 9,5,9,2
173 2015.02.03 3 4,7,6,8,69
175 2015.03.14 1 2,12,42,6,9

Table 2
MyFitnessPal Food Data Set.

id item

1 fruit_tropical_banana
2 dessert_confectionery_chocolate
3 staple_wheat_spaghetti
4 meat_sausage_hot_dog, staple_wheat_bun
5 bean_legume_legume_bean
2. Related work

As an efficient tool in helping users coping with overwhelming
food information, the food RS is able to employ recommendation
techniques to 1) learn user requirements from massive historical
user data (e.g. recipe ratings, browsing history, and implicit feed-
back); 2) build a disease- and nutrition-oriented food recommen-
dation model; and 3) provide users with personalized and
healthy diet. In the sequel, a comprehensive introduction to typical
food recommendation techniques and their application status is
provided.

Traditional recommendation algorithms (e.g. the content-
based, collaborative-based, hybrid and collaborative filtering
methods) are featured with machine learning approaches (includ-
ing the logistic regression, random forest and support vector
machine techniques), and are often applied to deal with rectangu-
lar data sets for food recommendation [12]. Note that food recom-
mendation, as a special recommendation field, is different from its
counterparts such as movie or e-commerce recommendation [43]
and the difference can be summarized as follows.

The first difference is about rating. It is known that rating has a
dominant effect on algorithm outputs in movie or e-commerce rec-
ommendation, whereas rating only has a small influence on the
algorithm outputs of food recommendation [33]. The second differ-
ence is about information. Preference learning is a complex and
important task in food recommendation that requires more con-
text information in comparison with general recommendation
tasks [24]. The third difference is about feedback. Unlike many
other recommendation tasks (e.g. movie recommendation), the
feedback from users in food recommendation might not always
result in satisfactory recommendation. To be specific, in food rec-
ommendation, feedback from users only reflects their own taste
preferences, and might not always contribute to a healthy diet
[32].

So far, very little work has been done on food recommendation
under real-world settings [30]. This is due to the reason that the
food intake data in real-world scenarios typically appear in a
non-rectangular form. As a result, it is hard for traditional recom-
mendation techniques to process such data. In addition, the rich
contextual information contained in the real-world food data set
is difficult to be captured by traditional recommendation tech-
niques. To solve these problems, in recent years, the MaOOmethod
has become quite popular in the field of food recommendation as
110
the MaOO is capable of converting food recommendation problems
into MaOO ones, which overcomes the drawback of traditional rec-
ommendation techniques.

Regarding MaOO-based health- or nutrition-oriented food rec-
ommendation, tailored objectives (closely related to research back-
grounds) are required to be added to the MaOO model. For
example, four objectives (i.e. the food preferences, preparation
time of meals, budgets, and availability from cooked dishes) have
been firstly formulated in [46], and the well-known many-
objective evolutionary algorithm has then been used to solve the
diet recommendation problem. A food package suggestion has
been presented in [47] based on real-world restaurants, where
the number of dishes, diversity of dish categories and popularity
of dishes have been considered as three objectives that need to
be maximized. In [45], tailored objectives have been constructed
for recommending healthy meal plans based on the user age and
vulnerable health background in real clinic institutions.

It is worth mentioning that food recommendation is often
accompanied by complex research backgrounds, and this undoubt-
edly brings great challenges to the design of MaOO-based food rec-
ommendation approaches. One way to cope with such challenges
is to come up with more scenario-related objectives. The other
way is to explore more appropriate MaOO algorithms that cast
deeper insights into food recommendation scenarios. Although
the aforementioned two ways perform well in tackling challenges
underlying food recommendation, they both have built themselves
on classical MaOO algorithms and have ignored the fact that, food
recommendation has its uniqueness and restrictions (e.g. the age,
location, environmental information, allergies and food beliefs)
[24]. This motivates us to investigate more specialized MaOO algo-
rithms that target at supplying users with better food recommen-
dation plans.
3. A many-objective optimization model for food
recommendation

3.1. Data Collection and Preparation

A free online health and fitness mobile app called MyFitnessPal
(MFP) is used in this study, which records users’ daily food intake
and counts calories consumed [2]. The MFP data set provides 1.9
million records of meals recorded by 9.8 K MyFitnessPal users from
September 2014 to April 2015 on 71 K food items.

Table 1 provides five examples of the MFP data set. The user_id
and date represents user identifiers and record time of this entry,
respectively. The meal_sequence indicates the order of the meals
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on a given day, e.g., meal_sequence = 1 indicates the day’s first
meal. The food_ids records food entries that users have consumed.

Table 2 contains five examples of food entries for each food_id
list. Each food_id is composed of a triplet of meal type, food types,
and specific food separated by underscores. The MFP API is used to
retrieve nutritional information for each food item.

In Fig. 1, we analyze the dietary frequency of four randomly
users from the MFP data set. The x-axis displays the food_id, and
the y-axis shows the consumption frequency of each food. It is
clear that users 2 and 3 possess a strong preference for certain
foods, while users 1 and 4 exhibit less inclination for certain foods,
but still prefer certain foods as their favorites. We can conclude
from the histogram that users tend to develop a stable preference
for food.

3.2. Problem Formulation

3.2.1. User Preference
User preferences refer to the attitudes and preferences that

individuals have toward foods [12]. It is essential to learn the user’s
preferences for food, since users tend to expect food that satisfies
their preferences. The Positive Point-wise Mutual Information
(PPMI) is used in this paper as a measure of correlation between
two food items in the data set, as well as a qualitative measure-
ment for evaluating food preferences [4]. We compute the correla-
tion matrix using PPMI for all the foods in the MFP data set.

Objective 1: Maximize user preference
Fig. 1. Histograms of four users.

Table 3
PPMI Matrix.

food_id 1 2 3 4

1 0.0 0.0 2.55 2.06
2 0.0 0.0 0.00 2.92
3 0.0 0.0 0.00 0.00
4 0.0 0.0 0.00 0.00
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PPMIðf i; ciÞ ¼max log2
Pðf i; ciÞ
Pðf iÞPðciÞ

;0
� �

ð1Þ

where f i and ci denote the i-th food item in Table 2 and the i-th food
context in Table 1, respectively. If f i and ci are not correlated, Pðf i; ciÞ
is equal to Pðf iÞPðciÞ. Pðf iÞPðciÞ is greater than Pðf i; ciÞ when f i and ci
are correlated. The higher the PPMI, the larger the correlation
between the f i and ci.

The PPMI is chosen as a metric because it performs better in a
context-related scenario by comparing to other similarity mea-
surements. As presented in Table 1, the food_id vectors’ lengths
are time-varying. Other widely applied similarity metrics, such as
Pearson correlation coefficient and cosine similarity, are not suit-
able for the data set due to the following reasons: 1) The Pearson
correlation coefficient (PCC) is a measure of linear correlations
between two sets of data, which is generally used in recommenda-
tion areas where rating matrices are available; 2) The cosine simi-
larity is a measure of similarity between two non-zero vectors of
an inner product space, and the length of the vectors is required
to be the same. Thus, in this paper, the PPMI is chosen as the mea-
sure to assess users’ food preference learning.

Table 3 shows the PPMI scores for all food items. In the PPMI
matrix, each row represents a food item f 2 Vf and each column
represents a context c 2 Vc , where Vf and Vc are the sets of food
items and their contexts, respectively. Each cell Mij represents
the correlation between the food item f i and the context ci indi-
cated by the PPMI in Eq. (1). PPMI matrix is also used in the nutri-
tion section to find healthier substitutes.

3.2.2. Nutrition
Malnutrition is associated with symptoms such as fatigue,

dizziness, and even diseases [39]. Therefore, balanced nutrition
intake is necessary for the users’ health. The World Health Organi-
zation (WHO) published a document entitled Diet, nutrition, and
prevention of chronic diseases in 2002, where unbalanced food
5 6 7 8

2.25 2.45 2.50 2.46
3.15 2.74 2.75 2.45
2.72 2.08 2.11 2.48
0.00 2.67 2.46 2.08

Table 4
WHO Daily Intake Standard.

Ranges of population nutrient intake goals

Dietary factor Goal(% of total energy,
unless otherwise stated)

Total fat 15–30%
Saturated fatty acids 10%
Polyunsaturated fatty acids (PUFAs) 6–10%
n-6 Polyunsaturated fatty acids (PUFAs) 5–8%
n-3 Polyunsaturated fatty acids (PUFAs) 1–2%
Trans fatty acids 1%
Monounsaturated fatty acids (MUFAs) By difference
Total carbohydrate 55–75%
Free sugars 10%
Protein 10–15%
Cholesterol 300 mg per day
Sodium chloride (sodium) 5 g per day (2 g per day)
Fruits and vegetables 400 g per day
Total dietary fibre From foods
Non-starch polysaccharides (NSP) From foods
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intake is identified as the primary cause of chronic metabolic dis-
eases like obesity [34]. Table 4 provides information regarding
the nutritional intake of users according to WHO guidelines.

Table 4 provides the population nutrition intake recommenda-
tion for prevention of diet-related chronic diseases. The recom-
mendation’s percentages may vary depending on the intake of a
particular population.

Table 5 contains the nutrient value of each food in the MFP food
data set and is used to calculate the proportion of each nutrient in
the food.

To quantify the nutritional value of each food, we calculate
nutrition scores from the nutrition indexes of the three major
nutrients: protein, carbohydrate, and fat. We set a default value
of zero for each nutrient. Using protein as an example, if the calcu-
lated intake falls outside the recommended range, we determine
the absolute difference compared to the lower and upper bounds
of the suggested range. Similar results can be obtained for carbohy-
drates and fats.

Objective 2: Maximize Si

Si ¼ jspi � 0:1j þ jspi � 0:15j þ jsci � 0:55j þ jsci � 0:75j þ jsfi
� 0:15j þ jsfi � 0:3j ð2Þ

where Si stands for nutrition score of the i-th food item, and spi; sci
and sfi denote the corresponding calculated protein, carbohydrate,
and fat percentage, respectively.

3.2.3. Food Diversity
Users often overlook the importance of food diversity, which

compensates for nutritional deficiencies to a large extent. For
example, 97% of Americans’ fibre intake don’t reach the daily min-
imum [3]. In this regard, a necessary recommendation strategy is
employed to encourage users to discover more heterogeneous
foods that provide a nutritional supplement of fiber, minerals
and unsaturated fats. The Simpson index is used as the diversity
metric here, which is expressed as follows.

Objective 3: Maximize Diversity

D ¼ 1�
Xn
i¼1

P2
i ð3Þ

where n is the number of food items, Pi indicates the probability for
two food items to be chosen as the same food items of one user’s
food consumption data. P2

i is the random joint probability of two
food items. This diversity index can reflect whether a user’s food
intake is heterogeneous or not in a period.

3.2.4. User Diet Pattern
An individual’s diet pattern is a dynamic feature that reflects

their eagerness for specific types of food at specific times, which
has a non-negligible impact on the acceptance of recommenda-
tions. User diet patterns change over time, resulting in users hav-
ing different daily food intakes [37].

To measure changes in diet patterns over time, we chose
Dynamic TimeWrapping (DTW) as an indicator, which is originally
designed for comparing two time series of different lengths during
the same time-period [38]. The primary reason for choosing DTW
Table 5
Table of Nutrients.

food_id total_calories fat_calories carbohydrate

1 150.0 72.00 48.00
2 627.0 263.97 137.76
3 410.0 117.00 248.00
4 510.0 189.00 104.00
5 270.0 54.00 12.00
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is that it can measure the similarity of two sequences of different
lengths [40].

Objective 4: Maximize DTW

DTWði; jÞ ¼ �Distði; jÞ þmin½DTWði� 1; jÞ;
DTWði; j� 1Þ;DTWði� 1; j� 1Þ� ð4Þ

Given two food vectors X and Y, their lengths are jXj and jY j,
respectively. The wrapping path can be formulated as
W ¼ w1;w2; . . . ;wk, satisfying maxðjXj; jY jÞ <¼ K <¼ jXj þ jY j,
where wk ¼ ði; jÞ is a tuple of jXj and jY j’s coordinates, respectively.
The wrapping path starts from W1 ¼ ð1;1Þ and ends at
Wk ¼ ðjXj; jYjÞ. It finally generates the shortest path between two
distinct length vectors.

3.3. An MaOO Model

In MaOO, there are multiple objectives, typically over three. The
complexity of MaOO increases rapidly with the increasing number
of objectives, making it intractable in case of a large objective num-
ber [16]. In this paper, an MaOO model is developed to provide a
balanced and systematic way of dealing with food recommenda-
tion tasks. Four crucial objectives related to health, user prefer-
ences, user diet patterns, food nutritional values, and food
diversity. Three representative MaOO algorithms are applied, and
their performances evaluated. Our model is structured as follows:

Algorithm 1 describes the fundamental model structure. First,
the initial population is formed by N randomly-generated individ-
uals. Second, a fitness vector of the initial population is obtained,
where each value represents fitness for each individual. Third, mat-
ing selection which includes mutation and crossover is performed
to find the fittest individuals for the next generation. Finally, the
environmental selection is implemented to keep the population
sizes.

Algorithm1: Main Algorithm
s_c
Fitness is an indicator of an individual’s ability to adapt to their
environment. Mating Selection aims to drive the population evolu-
tion towards the optimum by a series of biological reactions, such
as mutation, crossover, and tournament selection. Algorithm 2
gives detailed steps of mating selection. First, mutation and cross-
over, which are characterized by gene recombination, create the
potential of gene diversity. Second, tournament selection finds
the fittest ones of the population to form the offspring population.
Finally, the offspring population is fed into the MaOO problem.
alories sugar_calories protein_calories

44.00 32.00
52.92 189.16
4.00 88.00
40.00 176.00
4.00 80.00
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Algorithm2: Mating Selection

Require: P �Fitness calculationðPÞ
1 MutationðPÞ
2 CrossoverðPÞ
3 P0 �Tournament selectionðPÞ
4 Return P0
Fig. 2. Pareto-front of three objectives.
Environment selection is applied to obtain the best approxima-
tion of the Pareto-set. Only the dominant solution set of the indi-
viduals is chosen to enter the next selection. To maintain
population sizes, external non-dominant sets are created. This pro-
cess repeats until the termination criterion is satisfied.

Algorithm3: Environment Selection

Require: P0 �Mating selectionðPÞ
1 Initialize the external non-dominant set P0

2 Copy non-dominant members of P to P0

3 Remove dominant solutions within P0

4 Calculate the fitness value on four objectives for each
individual in P and P0

5 Return P for initialization step
Fig. 3. Pareto-front of three objectives.
4. Experimental results and evaluation

For performance evaluation, three typical MaOO algorithms, i.e.
the SPEA2 [22], NSGA-II [7], and SPEA2 + SDE [25], are adopted for
two different cases where the first case has three objectives and
the other case has four objectives. Different Pareto optimal solu-
tions are obtained and evaluated in every scenario.

4.1. Case I (three objectives)

In case I, three objectives are selected from the four objectives,
and four different MaOO problems are formed. The experiment is
conducted using the above stated MaOO algorithms, and the
results obtained by the SPEA2 + SDE are presented as an example.
It is demonstrated by the experimental results that the Pareto opti-
mal solutions vary under different combinations of objective func-
tions and therefore, it is used as a reference of comparison in terms
of trade-off patterns when adding the fourth objective.

Figs. 2–5 show that the Pareto-fronts optimization results of the
three objectives, i.e. user preferences, nutrition scores and food
diversity. Fig. 3 shows better convergence and diversity than Figs. 2,
4 and 5 for the fact that, the results in Fig. 3 are obtained by min-
imizing the distance of solutions to the optimal front and maximiz-
ing the distribution of solutions over the Pareto-front. The reason
behind this is that the information (about the user’s dietary prefer-
ences, nutritional intake, and dietary patterns) is fully extracted
from the data set in Fig. 3. Meanwhile, food diversity is limited
by the users’ dietary range of choices in Figs. 2, 4 and 5. In sum-
mary, food diversity is an essential factor in guaranteeing individ-
uals’ health and should be considered and optimized
simultaneously with other objectives.
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4.2. Case II (Four objectives)

In Case II, user preference, nutrition values, food diversity and
user diet patterns are optimized simultaneously, and the experi-
mental results of the SPEA2 + SDE-based methods are presented
in Figs. 6–8. Three kinds of user group sizes are set for evaluating
the convergence and diversity of these algorithms. It is found that
Fig. 5 shows better convergence performance due to the density of
the intersection of lines located on small range of the objective
value.
4.3. Performance Comparison

Many metrics are put forward to evaluate the performance of
MaOO algorithms, where convergence and diversity are the two



Fig. 4. Pareto-front of three objectives.

Fig. 5. Pareto-front of three objectives.

Fig. 7. Average of five user on four objectives.

Fig. 6. Average of one user on four objectives.

Fig. 8. Average of ten user on four objectives.
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most widely-used ones. Convergence evaluates the approximation
of the experiment results to the Pareto optimal front, while diver-
sity is used to evaluate the distribution over the Pareto front [6,44].
In this paper, the hypervolume is used as the performance metric
and it has the advantage of being fully in line with Pareto domi-
nance [41]. The hypervolume calculates solution sets by computing
the intersection n-dimensional polytope between a set of solution
points and an additional set of reference points. The volume of this
polytope is referred to as the hypervolume. The hypervolume indi-
cator is defined as follows:

HðSÞ ¼ Kð q 2 Rdj9p 2 S : p 6 q and q 6 r
� �Þ ð5Þ

Given a Pareto-front point set S � Rd and a reference point
r 2 Rd, the hypervolume indicator of S is the measure of the Lebes-
gue measure region weakly dominated by S and bounded above by
r.
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A point p 2 Rd is said to weakly dominate a point q 2 Rd if
pi 6 qi for all 1 6 i 6 d, i.e. p 6 q. If p R q, then p is said to (strictly)
dominate q, i.e. p < q. If pi < qi for all 1 6 i 6 d, then p is said to
strongly dominate q, i.e. p� q.



Fig. 9. Hypervolume illustration.

Table 6
Comparison of three MaOO algorithms’ experimental results.

Model Hypervolume indicator

SPEA2 0.59
NSGA-II 0.62

SPEA2 + SDE 0.73

J. Zhang, M. Li, W. Liu et al. Neurocomputing 503 (2022) 109–117
As it is difficult to illustrate the hypervolume indicator in four
or more dimensions, Fig. 9 shows an example of hypervolume indi-
cator calculation for two-objective optimization. As to the choice of
reference point, it remains unclear how to decide the best refer-
ence point to use in a particular situation. Therefore, this paper
has chosen the reference point by 1.1 times the biggest value of
every objective based on common practices [26]. The hypervolume
indicator in two-objective optimization is defined as the area
between each solution point and the reference point r, and the area
size is used to compare the performance of different algorithms.

Table 6 presents a comparison of three MaOO algorithms
according to the performance metrics. The hypervolume indicator
performs as a quantifier where higher values indicate better
Fig. 10. The performance of different algorithms with different user group size.
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results. Among the three MaOO algorithms, the SPEA2 + SDE pro-
vides the best performance when using Hypervolume indicator
to measure Pareto-front quality.

Fig. 10 shows the running time of the three algorithms with dif-
ferent user group size. SPEA2 + SDE displays certain fluctuations for
different group sizes. It is observed that 1) the first ten users have a
large volume of data; 2) the shift-based density step takes longer
time to process the data; 3) the running time of the three algo-
rithms reaches stable as the user number increases beyond a cer-
tain point; and 4) SPEA2 + SDE performs better than SPEA2 and
NSGA-II in the running time under different user group sizes.
5. Summary & Contributions

In this paper, a novel MaOO-based recommendation approach
has been developed to provide a balanced and systematic way of
dealing with food recommendation tasks. Four crucial objectives
(including the user preference, user diet pattern, food nutritional
values and food diversity) have been simultaneously considered
in the proposed recommendation method. Then, three Pareto-
based algorithms have been applied to solve the presented recom-
mendation task, and comprehensive experiments based on real-
world data sets have been conducted to verify the effectiveness
of the proposed MaOO-based recommendation framework. Some
future research directions include 1) the consideration of more
user related objectives in the MaOO model; 2) the conduction of
more experiments under different food recommendation data sets;
and 3) the introduction of machine learning techniques to analyze
the food related time series data. Further research topics would
include the extension of the main results of this paper to more
comprehensive systems using more up-to-date filtering algorithms
[17,15,27,28,31,52,8,53,19,18,21,5,14,13,42,35,29,54,20].
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