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Abstract—The nnUNet is a fully automated and generalisable
framework which automatically configures the full training
pipeline for the segmentation task it is applied on, while taking
into account dataset properties and hardware constraints. It
utilises a basic UNet type architecture which is self-configuring
in terms of topology. In this work, we propose to extend the
nnUNet by integrating mechanisms from more advanced UNet
variations such as the residual, dense, and inception blocks,
resulting in three new nnUNet variations, namely the Residual-
nnUNet, Dense-nnUNet, and Inception-nnUNet. We have evalu-
ated the segmentation performance on eight datasets consisting
of 20 target anatomical structures. Our results demonstrate that
altering network architecture may lead to performance gains, but
the extent of gains and the optimally chosen nnUNet variation
is dataset dependent.

Index Terms—nnUnet, Biomedical image segmentation, Resid-
ual networks, Dense networks, Inception networks.

I. INTRODUCTION

Medical imaging provides a non-invasive tool for clinicians
to assess anatomical structures [14]. Within the context of
medical imaging, segmentation consists in sub-dividing raw
images into distinct anatomical regions, and thereby supports
clinicians with evidence during anatomical diagnosis [11],
[12]. Manual segmentation is highly time consuming, and
subject to intra and inter observer variability, with results
dependent on clinicians’ experience [4]. Accurate and robust
automatic-segmentation methods, therefore, provide the poten-
tial for significant impact via increased reproducibility and the
improvement of clinical workflows.

The rise of deep learning (DL), and particularly the success
of the convolutional neural network, has resulted in DL based
methods being the state-of-the-art approach for medical image
analysis [4], [10], [11], [18]. The UNet [17] is a fully convolu-
tional encoder-decoder style network which has demonstrated
promising results in biomedical image segmentation tasks,
with UNet based networks being the most successful DL
segmentation approach [18]. DL based segmentation, however,
is not solely reliant on network architecture but is also
dependent on other components and hyperparameters of the
network training pipeline such as dataset preprocessing, image
augmentation styles, training batch size etc [10]. The design
of the training pipeline is dataset dependent and non-optimal
component choices lead to a deterioration in performance.

The nnUNet framework developed by Isensee et al. [9]
aimed to address the challenge of optimally selecting training
pipeline components without the need for manual trial and
error based selection. The nnUNet is a fully automated and
generalisable framework which automatically configures the
full training pipeline for any segmentation task it is applied
on, taking into account dataset properties and hardware con-
straints. The nnUNet utilises a UNet type architecture which
is self-configuring in terms topology (network depth, kernel
sizes, and pooling operations); it consists of standard convolu-
tional blocks, and apart from its use of deep supervision, does
not utilise architectural features found in the more advanced
variations of UNet type architectures such as residual, dense,
or inception blocks [9], [18]. The nnUNet achieved state-of-
the-art performance on 33 of the 53 anatomical structures,
while otherwise attaining results very close to the top of the
respective leaderboards [9].

It is emphasised that the impressive performance of nnUNet
is not due to an advanced UNet architecture, but instead
attributable to utilising a systematic method for tailoring
the training pipeline configuration to new datasets [9]. In
fact, while the method utilises a relatively standard UNet
architecture, it achieved state-of-the-art results on a variety
of datasets.

Utilising more advanced architectures, however, may lead to
an improvement in specific task performance. The key contri-
bution of this article is the extension of the nnUNet framework
via the integration of advanced architectural components, and
thereby we propose the following three variations: Residual-
nnUNet, Dense-nnUNet, and Inception-nnUNet. The perfor-
mance of our nnUNet variations is evaluated on 8 medical
imaging datasets consisting of 20 anatomical structures, and
we demonstrate that optimal network architecture is dataset
dependent. Furthermore, we provide source code for the cus-
tom variations and thereby allow users to select the nnUNet
variant for optimal performance. 1

II. RELATED WORKS

It has been widely reported that the use of advanced UNet
architectures attains improvements to segmentation perfor-

1Source code of the project is available at
https://github.com/niccolo246/Extended nnUNet.git

https://github.com/niccolo246/Extended_nnUNet.git


mance compared to the standard vanilla UNet [17]. However,
nnUnet attains performance at or close to the state-of-the-
art in most segmentation tasks using a standard Unet. There
is limited research into the integration of more advanced
architectures into the nnUNet segmentation framework.

In the original nnUNet paper, Isensee et al. [9] investigated
the integration of an alternative UNet inspired network which
utilised an asymmetrical fully residual encoder with increased
convolutional layers, while the decoder remained unchanged.
The standard nnUNet, however, achieved superior average
performance on eight of the ten datasets. Isensee et al. [8]
later extended nnUNet to be tailored to the 2020 Brain
Tumour Segmentation Challenge (BraTS) [2], [13]. The non-
architecture related extensions included BraTS specific result
post processing, improved augmentation, region based train-
ing, increased training batch size, and use of batch Dice. The
resulting framework achieved first place in BraTS 2020; the
alterations to nnUNet consisted of minor architecture related
changes, namely the replacement of instance normalisation
layers with batch normalisation layers. Xu et al. [22] proposed
an extension to the nnUNet framework which was developed
for the 2021 Kidney Tumour Segmentation Challenge (KiTS).
The authors adjusted the data augmentation component to
be tailored to the challenge, and additionally adopted an
ensemble type approach for improved prediction performance.
The proposed extension to nnUNet, however, did not involve
alterations to the network architecture component of nnUNet.
Luu et al. [12] extended nnUNet to be tailored for optimal
performance in BraTS 2021, and, in fact, built upon the
BraTS 2020 winning submission by Isensee et al. [8] discussed
previously. Alterations to the architecture component included
the use of an asymmetrically larger UNet encoder, use of
axial attention mechanism in the decoder, and replacement of
batch normalisation with group normalisation. The Luu et al.
nnUNet extension [12] achieved first place on the unseen test
data of BraTS 2021.

In this work, we take forward the concept of altering
the nnUNet architecture component to create three new
nnUNet variations, namely Residual-nnUNet, Dense-nnUNet,
and Inception-nnUNet, and evaluate the segmentation perfor-
mance on multiple datasets.

III. METHODS

The prominent advantage of the nnUNet framework lies in
its ability to automatically tailor the network training pipeline
to any segmentation task on which it is applied, without the
need for manual intervention, while attaining results which are
in line or superior to expert-configured pipelines. We provide
a brief summary of the nnUNet methodology, although for a
deep dive into the inner workings, please refer to the original
paper by Isensee et al. [9].

Firstly, training data is inputted to nnUNet, and it will
automatically retrieve a “data-fingerprint” which consists of
information on the data’s imaging modality, intensity dis-
tribution, median image shape, and median image spacing.
Based on the data-fingerprint, heuristic based decisions will be

automatically executed, taking into account the system GPU
memory constraints, in order to determine the “rule-based
parameters”, which include image resampling method, label
resampling method, training batch size, network topology,
patch size to be inputted to network etc. “Fixed parameters”
which remain constant regardless of the task being considered
include the use of ADAM optimiser, combined Cross Entropy
plus Dice loss function, and data augmentation techniques
done on the fly during training. The nnUNet also has the ability
to train three types of UNet inspired architectures which are
the 2D UNet, 3D UNet, and 3D cascade UNet, and based
on the results will determine “empirical parameters” which
include the result post-processing approach as well as the
use of an ensemble method. In this work we concentrate
exclusively on the use of the 3D UNet.

A. Standard-nnUNet

The Standard-nnUNet utilises a 3D encoder-decoder UNet
inspired network in which the encoder and decoder are inter-
linked with skip connections for improved information preser-
vation during the decoding stage. 3D convolutions are utilised
for feature extraction, upsampling is performed via transposed
convolutions while downsampling is performed via strided
convolutions. The network’s convolutional blocks consist of a
convolutional layer followed by instance normalisation, and fi-
nally a LeakyReLU activation function is applied with gradient
0.01. An example representation of the architecture template
is illustrated in Fig. 1a. The nnUNet framework automatically
configures network topology via selection of the number of
downsampling operations (network depth), kernel sizes, and
stride parameters in order to ideally achieve a feature map
size of 4x4x4 in the bottleneck layer while using the largest
input patch size possible and at least a training batch size of
two given hardware constraints. Deep supervision is utilised by
default in Standard-nnUNet in order to inject gradients deeper
into the network during training; this is achieved by adding
auxiliary losses to all but the deepest two layers of the decoder,
with the final loss function being a weighted sum of losses at
all the relevant depth levels.

A Note on the Architectural Variants: The key nnUNet
ability to self-configure network topology is preserved in the
more advanced architectures that we subsequently integrated.
Therefore, the following visual network representations (as
with the standard-UNet mentioned above) are subject to topo-
logical changes depending on the dataset utilised and are,
hence, meant to serve as a conceptual illustration rather than
provide details of actual trained networks.

B. Residual-nnUNet

Inspired by the success of ResNet [5], we integrated a fully
residual UNet into the architecture component of nnUNet and,
hence, propose Residual-nnUNet which incorporates residual
connections at depth level as illustrated by the template
in Fig 1b. The residual connection performs addition of a
convolutional block’s input to its output, and thereby enables
the network to preserve information from previous layers; the
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Fig. 1: Graphical architecture representations (quantity on blocks represent output channels). (a) Baseline-UNet representation. (b) Residual-UNet representation.
(c) Inception-UNet or Dense-UNet representation, depending on whether orange blocks replaced with Dense block or Inception block, respectively. (d) Dense
block representation. (e) Inception block representation. Note: legend is shared across (a)-(e).

residual connections theoretically improve training in deep net-
works as they ameliorate gradient flow during backpropogation
and help mitigate against the vanishing gradient problem [6].

C. Dense-nnUNet

DenseNet [7] can be thought of as an extension of
ResNet which instead utilises dense connections. Our proposed
DenseNet inspired Dense-nnUNet was designed by integrating
dense blocks into nnUNet via the template illustrated in Fig.
1c, in which the orange blocks represent the denseblocks
visualised in Fig. 1d.

In a dense block every convolutional sub-block (consisting
of convolutional layer, instance normalisation, LeakyReLU)

receives as input the channel-wise concatenated feature maps
of all previous sub-blocks, with each sub-block outputting K
channels (K represents the growth rate). The dense connections
allow for deeper networks through improved preservation
of information between layers, improved gradient flow, and
implicit deep supervision [7].

Our defined dense block consists in four convolutional sub-
blocks, with each sub-block having growth rate K=10. A key
element for nnUNet integration is the dense block’s use of
a 1x1x1 kernel in its final convolutional layer, as this allows
the dense block to output the nnUNet-determined number of
channels (thereby preserving its self-configuring nature) to be
passed on to the rest of the network.



D. Inception-nnUNet

Inception UNet variants are inspired by Google’s Inception-
Net [20], with inception blocks finding success in being
integrated into vanilla UNet architectures [3]. The idea being
instead of choosing a fixed convolutional filter size for each
layer, one can use an inception block in which multiple filter
sizes are present, with the resulting output from each filter
then being concatenated together. Inspired by Szegedy et al.
[20], we defined the inception block illustrated in Fig. 1e,
in which the input is passed to four branches which include
kernel size 1x1x1, kernel size 3x3x3, kernel size 5x5x5 and
an average pool operation. The outputs of each branch then
undergo channel-wise concatenation with the block’s final
output having the nnUNet-determined number of channels
to be passed on to the rest of the network (preserving its
self-configuring nature). The correct final output channels is
achieved by having each branch’s penultimate layer output
a quarter of the desired number of final output channels as
there are four total branches (although this could be optionally
altered by including use of the 1x1x1 convolutional layer as
was done with dense block in Fig. 1d).

Our proposed Inception-nnUNet was defined by integrating
our custom inception block into nnUNet via the template
illustrated in Fig. 1c, in which the orange blocks represent
the aforementioned inception blocks from Fig. 1e.

IV. RESULTS

A brief summary of the eight explored datasets is presented
in table I. Datasets D1-D7 originate from the Medical Seg-
mentation Decathlon Challenge [1], [19] whereas dataset D8
originates from the 2021 Fetal Brain Tissue Annotation and
Segmentation Challenge (FeTA) [16] - for a more in depth
description of the datasets, refer to the respective challenge
papers. As there are no ground-truth labels in the testing
sets, we used only the training sets in our experiments.
Because all the training, validation, and testing splits happen
locally for each dataset, this results in some tasks having a
reasonably restricted training dataset which may negatively
impact performance.

We trained five different nnUNet variants for datasets D1-
D8 on an Nvidia A6000 GPU. The average Dice scores for
each anatomical region are presented in Fig. 2; Dice score was
selected as the evaluation metric as it is the most commonly
utilised metric for the validation of medical volume segmenta-
tions [21]. Standard-nnUNet refers to the original nnUNet dis-
cussed in section III-A which makes use of deep supervision,
while Baseline-nnUNet is equivalent to Standard-nnUNet al-
though without the use of deep supervision. Residual-nnUNet,
Dense-nnUNet, and Inception-nnUNet refer to our proposed
nnUNet extensions which make use of residual (section III-B),
dense (section III-C), and inception (section III-D) blocks,
respectively; note that the deep supervision feature is preserved
throughout our proposed nnUNet variations.

V. DISCUSSION

It is observed that different nnUNet variants performed op-
timally on different respective datasets. Overall, the Baseline-
nnUNet (deep supervision free) failed to achieve best per-
formance on any of the datasets, relative to the other four
architectures, while the Standard-nnUNet achieved best per-
formance on at least one anatomical region in five of the eight
datasets. The Residual-nnUNet, Dense-nnUNet, and Inception-
nnUNet achieved top performance on at least one anatomical
region in five, three, and two of the explored datasets, respec-
tively.

Relative to Standard-nnUNet, the Baseline-nnUNet dis-
played a drop in average performance ranging up to -7.98%
and attained lower performance on 17 of the 20 explored
anatomical structures, with the model never achieving top
performance on any datasets. We therefore hypothesise that the
removal of deep supervision generally resulted in decreased
performance due to reduced gradient flow, which is espe-
cially relevant for deeper UNet architectures. This may also
explain why the nnUNet variations which make use of residual
(Residual-nnUNet) and dense (Dense-nnUNet) features gener-
ally resulted in marginal gains in performance compared to
the Standard-nnUNet as their theoretical aim is to improve
gradient flow which is already helped via the incorporation
of deep supervision. In fact, our Residual-nnUNet and Dense-
nnUNet variants attained a performance improvement of up
to 2.99% and 15.02%, respectively, compared to Standard-
nnUNet. This compares to a performance improvement of up
to 6.74% and 25.00%, respectively, when Residual-nnUNet
and Dense-nnUNet variants are, respectively, compared to
Baseline-nnUNet. The results, hence, suggest that the deep
supervision is indeed an important feature for performance,
and is, therefore, appropriately utilised in the original nnUNet
framework by default.

Overall, the results suggest that altering the nnUNet network
architecture has a marginal effect on performance across the
majority of the datasets explored, which was in line with
our expectations as the nnUNet framework currently performs
at or close to state-of-the-art, with the differences in perfor-
mance for top ranked competition entries also being marginal.
Importantly, however, the best performing nnUNet variation
as well as the extent of performance gains is dependant on
the dataset in question, as was evidenced by the use of
Dense-nnUNet which increased average Dice score for the
D5 Tumour region by 25.00% compared to Baseline-nnUNet.
While the consistent use any one single architecture does
not appear to significantly impact the average performance
and generalisability of the nnUNet framework across several
datasets, the optimal selection of an architecture depending on
the specific dataset in question may result in considerable or
marginal gains in performance which could be sufficient to
establish a new state-of-the-art result. Consequently, for users
who wish to maximise performance on a specific dataset, it
is worth experimenting with alternative network architectures
integrated into nnUNet such as the ones we proposed.



Dataset Modality Regions of Interest Median Volume Size
(Voxel)

Median Volume
Spacing (mm)

No. Cases
(train/valid/test)

D1 - Brain Multi-modal MRI
(FLAIR, T1w, T1w Gd,

T2w)

Edema, non-enhancing
tumour, enhancing

tumour

[138, 169, 138] [1.00, 1.00, 1.00] 484 (290/ 73 / 121)

D2 - Hippocampus Mono-modal MRI Anterior hippocampus,
posterior hippocampus

[40, 56, 40] [1.00, 1.00, 1.00] 260 (166/ 42 / 52)

D3 - Liver Portal venous phase CT Liver, liver tumour [482, 512, 512] [1.00, 0.76, 0.76] 129 (68/ 18 / 43)

D4 - Lung CT Lung, lung cancer [253, 512, 512] [1.25, 0.79, 0.79] 63 (33/ 9 / 21)

D5 - Pancreas Portal venous phase CT Pancreas, pancreatic
tumour mass

[96, 512, 512] [2.50, 0.79, 0.79] 280 (179/ 45 / 56)

D6 - Colon CT Colon cancer primaries [152, 512, 512] [3.00, 0.78, 0.78] 126 (67/ 17 / 42)

D7 - Hepatic Vessels CT Hepatic vessels, hepatic
tumour

[150, 512, 512] [1.50, 0.80, 0.80] 303 (161/ 41 / 101)

D8 - Fetal Brain Mono-modal MRI External cerebrospinal
fluid, grey matter, white

matter, ventricles,
cerebellum, deep grey

matter, brainstem/
spinal-cord

[256, 256, 256] [0.50, 0.50, 0.50] 80 (51/ 13/ 16)

TABLE I: Summary of explored datasets. MRI—magnetic resonance imaging, FLAIR—fluid-attenuated inversion recovery, T1w—T1 weighted image,
T1w Gd—post-Gadolinium (Gd) contrast T1-weighted image, T2w—T2 weighted image, CT—computed [19].

Finally, we hypothesise that further potentially significant
gains in performance may be attained by experimenting with
altering the architecture in tandem with altering other elements
of the nnUNet training pipeline, although these are likely to be
dataset specific as mentioned section II. A current limitation of
this work is the restricted train/validation/test dataset utilised.
Our results are therefore not directly comparable to the original
dataset competition leaderboards as we use a subset of the train
dataset as our test dataset seeing as the official competition test
dataset do not have open access labels. A further limitation
is due to each volume in the explored datasets consisting of
only one ground-truth segmentation map, and therefore we are
unable to determine the expert-performance as well as inter-
observer variability for each task.

Future avenues of exploration could include investigating
performance from combining the different network compo-
nents explored in this work, as well as inclusion of the UNet
attention mechanism [15]. Furthermore, we plan to explore
potential performance gains resulting from the ensembling of
more advanced UNet network variants.

VI. CONCLUSION

In this work, we have presented three extensions to the
nnUNet framework, namely the Residual-nnUNet, Dense-
nnUNet, and Inception-nnUNet, inspired from the ResNet [5],
DenseNet [7] and Inception-Net [20], respectively. Experi-
ments on eight medical imaging datasets consisting of 20
anatomical structures demonstrate that the deep supervision
plays an important role in all nnUNet variants (including the
original Standard-nnUNet) and especially for deeper UNet
architectures, with the Baseline-nnUNet without deep super-
vision not attaining top performance on any of the datasets.
Among the variants with deep supervision, while altering

network architecture may result in performance gains, both the
extent of the performance increase and the optimal network
variation are dataset dependent. We have made the source
code publicly available which allows future users to easily
experiment with multiple nnUNet variations and select the
modification which provides optimal performance on their
specific dataset.
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