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Abstract—Accurate quantification of retinal Optical Coherence
Tomography (OCT) images provides important clinical informa-
tion of the pathological changes present in age-related macular
degeneration (AMD). Currently, monitoring the progress of AMD
is mostly performed manually by ophthalmologists, which is time-
consuming, difficult and prone to errors. In this work, we have
developed a model Deep ResUNet++ to address this issue and
to provide an automatic solution to the problem of simultaneous
segmenting retinal layers and fluid regions from retinal OCT
images. We have evaluated the method on the Annotated Retinal
OCT Images (AROI) dataset. Experimental results demonstrate
that our method outperformed the baseline U-Net model, the
current state-of-the-art models (UNet ASPP, ResUnet and Re-
sUnet++) and even the human experts’ annotation results, and
achieved the best performance by a clear margin with Dice Score
above 90% in every single class.

I. INTRODUCTION

Age-related macular degeneration (AMD) is the most com-
mon cause of severe central vision impairment among patients
over 50-years old in the developed world [7]. AMD can be
classified as Dry AMD (also called atrophic AMD) which is
less severe and more common, and Wet AMD (also called
advanced neovascular AMD) which is the later stage of Dry
AMD and is more severe and less common. Presently therapy
with anti-vascular endothelial growth factor (anti-VEGF) is
the main treatment for Dry AMD [1]. Ophthalmologists often
advise the patients on behavioural changes such as diets and
regular exercises which can help to slow down the progression
and in some cases even lead to the prevention of the disease.
Monitoring the progress of AMD is paramount, but so far this
has been largely done manually, which is laborious and prone
to errors. Optical Coherence Tomography (OCT), a cross-
section scan of the retina with three dimensions, can provide
high quality visualisations of the retinal layers with extensive
information about the retinal anatomy. The development of an
automatic method for analysing the retina structure from OCT
images and therefore monitoring the progress of AMD will be
of great importance.

To address the above issue, we present a model developed
in this work, termed Deep ResUNet++. As opposed to the
common approach of treating retinal layers and fluid regions
alone separately, we aim to provide an automatic solution for
segmentation of both simultaneously.

The rest of the paper is organized as follows. A brief review
of the previous studies is provided in Section II. Section III

presents the proposed methods. The experiments and result
analysis are presented in Section IV. Finally, the conclusion
with our contributions is described in Sections V.

II. BACKGROUND

Segmentation of retinal images has been of great interest
for several decades. Various methods have been studied for
this problem, from the traditional methods of graph-cut [17],
[19], Markov Random Fields [18], [20], level set [3], [4], to
the recent deep learning methods that will be briefly reviewed
as below.

De Fauw et al [6] from Moorfields Eye Hospital NHS
Foundation Trust London and DeepMind Health presented a
framework for diagnosis and referral in retinal disease that
consists of two parts, a segmentation model and a classification
model. A three-dimensional U-Net architecture [22] was used
in their segmentation model and the model was trained on
14,884 OCT scan volumes obtained from 7,621 patients.

Fang et al [5] reported an approach of automatic seg-
mentation of nine retinal layer boundaries in OCT images
of patients with dry AMD, where a regular Convolutional
Neural Network (CNN) is used to extract the layer boundaries
features from an input image and classify them into the nine
classes representing the nine layer boundaries, and a graph
search method to further classify the extracted features into
ten classes using probabilistic methods so as to eliminate miss-
classified features.

Another CNN-based approach is developed in [11] for
retinal fluid segmentation and detection from OCT images.
They build a framework to detect and segment three retinal
fluids: Intraretinal fluid (IRF), subretinal hyperreflective mate-
rial (SRF) and Retinal Pigment Epithelial Detachment (PED)
in retinal OCT images using CNN. Their frame work consists
of three main parts. The first part is to pre-process the image
and segment the layers: Internal limiting membrane (ILM) and
Retinal pigment epithelium (RPE) where the fluids are found,
the second part is a two-dimension U-Net architecture used to
extract the fluid features, and the third part is a Random Forest
classifier which they used to classify the extracted features to
further eliminate miss-classified features.

The ReLayNet architecture was presented in [16] for the
segmentation of the layers and fluids in the OCT images. They
used the Duke dataset which is publicly available. The dataset
consists of 110 annotated B-scan (divided into 10 classes of 1
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background, 8 layers and 1 fluid) acquired from ten patients
suffering from Diabetic Macular Edema (DME).

Rashno et al [14] presented an approach to fluid segmenta-
tion in OCT images using neutrosophic transformation and a
graph-based shortest path, and also evaluated with the DME
dataset.

Other segmentation methods of the retinal structure using
the OCT image modality includes [2], [9], [21].

Between the two most widely used network architectures
of U-Net and CNN, previous studies indicate that the U-Net
(two sided, encoder and decoder) tends to outperform CNN,
and therefore in many applications U-Net is a preferred choice.

III. METHOD

A. Deep ResUNet++

Fig. 1: Structure of Deep ResUNet++.

The proposed model Deep ResUNet++ is inspired and
based on previous work ResUNet++ [8] but adapted to the
specific problem of retina image segmentation. In the follow-
ing, we will describe the architecture of the proposed model
and explain the differences to the ResUNet++.

1) Encoding and Decoding Paths: The basic unit of the
Deep ResUNet++ is like the 2D U-Net architecture [15] with
an encoding and decoding path. The encoder phase is used to
capture local contextual information and the decoder phase
to enable precise localization of the pixel with a bridge layer
in between the encoder and decoder phases. The encoder is
made up of five blocks and each block consists of three main
parts or layers in sequence which are : batch normalization
layer, the ReLU activation layer and the convolution layer.
The batch normalization was used to prevent over-fitting
during training, a rectangular kernel size of 7X3 was used
to match the image dimension of 512X1024 instead of the
square kernel size of 3X3 that was used in ResUNet++.
Padding was set to zero to ensure that the feature map before
and after the convolutional layer is the same. A stride of one

was used to ensure there is no overlapping when constructing
the feature map. The decoder is made up of five main parts
or layers in sequence which are : batch normalization layer,
the ReLU, the convolutional layer, the upsampling layer
and the concatenating layer. The upsampling layer is used
to capture spatial information from the feature map and the
concatenating layer was used to concatenate images from
the encoder phase to their corresponding decoder phase so
that the size of the input image is the same as the output
image, the three other layers were setup in the same way like
in the encoder path. Before the encoding layer is an input
layer that uses the Atrous Spatial Pyramid Pooling (ASPP)
to capture global information and after the decoder layer is
a classification layer that uses a SoftMax activation function
to classify each of the pixel or voxel from the input feature
map to belong to each of the 8 classes or labels. Unlike the
ResUNet++ where a 2D convolutional layer was used, here
we have used the dense layer as explained in III-A5.
The architecture of the proposed model is similar to
ResUNet++ but is deeper (Deep ResUNet++ has 5
convolutional blocks instead of 4 in ResUNet++) with
an added convolutional layer in every convolutional block to
efficiently deal with larger images.

2) The Bridge Layer: An Atrous Spatial Pyramid Pooling
(ASPP) block is used as a bridge to the encoding and decoding
phases. The ASSP is an up-sampled filtering technique use to
capture global information in a feature map. It is comprised
of multiple parallel atrous convolutional layers with different
sampling rates. The ASPP blocks are designed for convolution
with up-sampled filters, and are capable of capturing global
contextual features or information and are also computation-
ally efficient. Unlike ResUNet++ where 3 parallel filters with
a dilation rate or frequency of 6, 12, and 18 were used in
the Deep ResUNet++ we have used 4 parallel filters with
a dilating rate 6, 12, 18, and 24, this is because we have
double the image capacity of the model therefore we also
increases the model’s capacity to capture global information.
The introduction of the ASPP block is important for this
problem because the number of fluid types found in the B-
Scans varies (at least one fluid type was absent in some
B-Scans). The ASPP block used in the Deep ResUNet++
architecture is demonstrated in Fig. 2

Fig. 2: The ASSP captures global information by employing
multiple parallel filters with different rates.

3) Deep Residual Learning: In a neural network when
adding more layers using certain activation functions like

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to
final publication. Citation information: DOI10.1109/CISP-BMEIXXXXX2022.XXXXXXX, 2022 15th IEEE EMBS Regional Conference on Image and
Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2022)



Sigmoid (it squashes large input into smaller values between
0 and 1), the gradients of the loss function approaches zero.
This will make the network difficult to train. In deep learning
this problem is called the vanishing gradient problem. One
way to circumvent this problem is to use the skip or residual
connections, where some of the activation function layers
are skipped during training, therefore reducing the number
of times that the derivatives are squashed by the activation
function. This is an important component in our model,
because increasing the depth of the model will increase the
likely-hood of the gradient problem to occur.

4) Squeeze and Exciting Block: The Squeeze and Ex-
citing Block (SE) uses the Global Average Pooling (GAP)
technique to capture global information by employing the
average pooling method. In the encoding path as we transit
from one convolutional block to another a GAP block is
introduced between the blocks to capture global information.
Here we have used GAP instead of ASPP because GAP has no
parameter to optimize thus it is robust to overfitting as stated
in section 3.2 of [10].

5) Dense Layer: Unlike the ResUNet++ where where 2D
convolutions was used at the final layer of the decoding phase
just before the output layer we have modified this to use
the Dense layer in the Deep ResUNet++, in order to learn
and capture information from all the previous features. This
increases the network’s ability to capture global information
and it is useful to this problem because the fluid regions
demonstrate large degree of variation and are not as consistent
as the retinal layers.

IV. EXPERIMENTS

A. Dataset

The dataset used in the experiments is the Annotated Retinal
OCT Images (AROI) database [12] collected using the Zeiss
Cirrus HD OCT 4000. One OCT volume image of 128 B-scans
from each of the 25 patients of wet AMD is included in the
dataset, resulting a total of 3200 B-scans. Among the B-scans,
1136 from 24 patients are annotated and this is the subset we
used in the experiments. The resolution of the B-scans is 1024
x 512 pixels (pixel size 1.96 x 11.74 µm).

In total 8 labels or classes were identified and the number
of labels per B-Scan depend on the present or absence of
fluids. Subretinal fluid, or subretinal hyperreflective material,
(SRF/SRHM) and Intraretinal fluid (IRF) are not present in
OCT volumes for all patients. SRF is not present in patients:
13, 17, and 19. SRF/SRHM are not present in patient: 3, 4,
6-9, 17, 20-22, and 24.

The B-Scans were labelled or annotated based on three cat-
egories which are layer, fluid and background. Historically the
retinal OCT consists of 10 layers but for simplicity these layers
are grouped into 3 distinct classes as follows: (1) Internal
limiting membrane (ILM), which is the area between ILM
and Inner plexiform layer and Inner nuclear layer (INL/IPL)
boundaries, (2) Inner plexiform layer and Inner nuclear layer
(IPL/INL), which is the area between the IPL/INL and Retinal
pigment epithelium (RPE) boundaries, and (3) the Retinal

pigment epithelium/Bruch’s membrane complex (RPE/BM),
which is the area between the RPE and BM boundaries.
Four main retinal fluids were identified and categorized into
3 classes or labels as follows: (1) The Intraretinal fluid (IRF),
(2) the Subretinal fluid and subretinal hyperreflective material
(identified as SRF as they are in the same location), and
(3) the Retinal Pigment Epithelial Detachment (PED). Two
backgrounds were identified and categorized into 2 classes as
follows: (1) the area above Internal limiting membrane (ILM)
and (2) the area below the Bruch’s membrane (BM).

The classes are coloured as follow: Black is the area above
ILM, red is the ILM layer, yellow is the area between the IPL
and INL layers, white is the the RPE and BM layers, blue is
the area under the BM, Light Blue is the PED fluid, Pink is
the SRF/SRHM fluids and green is the IRF. An example of
labelling and annotation of classes of both retinal layers and
fluids is shown in Fig. 3.

Fig. 3: An example of annotation of the layers and fluids in
the AROI dataset.

The AROI dataset is particularly interesting because it was
collected for two problems - retinal layer segmentation and
fluid segmentation. To the best of our knowledge as of now
AROI is the only publicly available retinal OCT dataset with
more than one layer and more than one fluid with annotations.
To add to the complexity of the problem, the dataset is also
highly imbalanced. Out of the 1136 annotated B-scans, PED,
SRF, and IRF are present in 1014 (89.26%), 648 (57.04%),
and 229 (20.16%) B-scans, respectively.

B. Training and Testing

It is a common practice to separate the segmentation of
regular retinal layers and detection of fluids, but in this work
we aim to perform both tasks simultaneously.

K-fold cross validation was used for training, validation and
testing. For fair comparison, we used the same data splits
as in the baseline model [13]: Each fold consists of B-scans
from 4 patients. For examples, the first fold consists of patient
1,2,3 and 4, and then patient 5,6,7 and 8 for the second fold
and so on. Splitting B-scans from the same patient across
training, validation, and test is not recommended as adjacent
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B-scans are similar and that could lead to bias. The test set is
approximately 15% of the dataset. For all the experiments the
following parameters were set as follows, again, the same as in
the baseline study: the value of k was 6, the original image size
of 1024 × 512 pixels, the loss function used was Categorical
cross-entropy, the batch size was set to 4, AdaBound was the
optimizer used, the learning rate was 0.001 and early stopping
was used to prevent overfitting.

Dice score was the evaluation metric used to measure the
performance of the algorithm. It is a similarity measure often
used as a metric in the segmentation of medical images. The
Dice Score is the percentage of pixels or voxels in an image
that is classified correctly per class or segment. It is calculated
by taking twice the intersection and dividing it by the union
for each class or segment as in Eqn (1).

DSC =
2|X ∩ Y |
|X|+ |Y | (1)

The Dice Score was calculated per patient in the test fold (4
patients per fold) and the mean value of the patients per fold
was taken but only for patients with segmentation reference.
At least one of the IRF and SRF fluids are missing in some
patients (both fluids were missing in patient 17, and one fluid is
missing in patient 3, 9, 13, 16, 20, 21, 22, and 24). Therefore,
during testing, patents with whom at least one fluid is missing
in the B-scans the Dice Score was exempted for that class
and that patient in other to avoid over estimation or under
estimation. In patients with whom at least one fluid is missing
in some B-scan but not all of them, the Dice Score was set
to zero. The Dice Score was calculated per patient because
mixing adjacent B-sans of the same patients with other patients
will lead to over estimation.

The models were trained on a GPU Server with NVIDIA
RTX A6000 48GB. The models were implemented in Python,
using the Keras library with the TensorFlow backend.

C. Results

In this section we report the performance measured by
the Dice Score for each segment classes and each methods
including the Inter-observer, the baseline U-Net, the pro-
posed Deep ResUnet++ and other state-of-the-art architec-
tures (UNet ASPP, ResUnet and ResUnet++) in this domain.
The segmentation performance grouped by segment classes is
illustrated in Fig. 4, and all the Dice Scores in Table I. From
these results, we notice the following:

1) The proposed model Deep ResUnet++ outperforms the
human experts, the baseline (U-Net) and current state-of-
the-art models (UNet ASPP, ResUnet and ResUnet++)
in very single class with a Dice Score above 90%.

2) The IRF class was the most difficult to segment with the
Deep ResUnet++ achieving a Dice Score of 91% which
is 11.5% higher than that archived by the second best
Model, ResUnet++ for that class.

3) It is observed an increase of performance from the
standard U-Net to more complex architectures in
the order of UNet ASPP, ResUnet, ResUnet++ and
Deep ResUnet++.

4) It is also observed that the Deep ResUnet++ obtained an
overall mean Dice Score of 98% which is 10% higher
than that of the human experts’ annotation results of
88%.

5) The Dice score of the background classes and the layer
(except the RPE/BM) classes were always very high for
all the models. This was expected as the background
classes occupy most of the image, and the two other
layers except RPE/BM are made up of three or more
thick retinal layers as oppose to the RPE/BM which is
made up of two thin retinal layers.

Fig. 4: Performance comparison (measured by the Dice scores)
of the proposed method of Deep ResUnet++, together with the
baseline U-Net model, the Inter-Observer (by human experts)
and other state of the arts models: UNet ASPP, ResUnet and
ResUnet++ in this domain. The results are grouped by the
segment classes.

TABLE I: Table of the Dice Scores by segment classes (rows)
and models (columns).

Inter Ob. Baseline UNet ASPP ResUNet ResUNet++ Proposed

Above ILM 0.9820 0.9950 0.9990 0.9991 0.9996 0.9998
ILM 0.9500 0.9500 0.9877 0.9859 0.9953 0.9973
IPL INL 0.9480 0.9230 0.9873 0.9843 0.9947 0.9956
RPE BM 0.6990 0.6690 0.9049 0.8907 0.9599 0.9640
Under BM 0.9890 0.9880 0.9993 0.9993 0.9997 0.9998
PED 0.8600 0.6380 0.9620 0.9594 0.9846 0.9902
SRF SRHM 0.8760 0.5310 0.8741 0.8805 0.9543 0.9615
IRF 0.7350 0.4800 0.6757 0.7233 0.7940 0.9098
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Examples of the segmentation results are shown in Fig. 5
together with the original input images and their annotations.

Fig. 5: Examples of segmentation results, from left to right, the
inputs, annotations and outputs for the Baseline Unet, the three
state-of-the-arts models and the proposed Deep ResUnet++.

V. CONCLUSIONS

In this work, we have investigated the problem of simulta-
neous segmentation of both retinal layers and fluid regions
from OCT retinal images. Based on the previous studies
of [8] and taking into considerations of the specific prob-
lem of retina image segmentation, a new model named the
Deep ResUnet++, was developed and evaluated on the AROI
dataset. Experimental results show that our proposed method
outperformed the baseline U-Net method, other state of the
arts methods (UNet ASPP, ResUnet and ResUnet++) in this
domain and even the human experts results by a clear margin.

It is important to note that, instead of separating the two
problems of retinal layer segmentation and fluid region seg-
mentation alone, our model is designed to segment both simul-
taneously and therefore it is a much more challenging task. In
addition, the chosen dataset AROI is highly imbalanced which
further adds to the complexity of the problem.

The method presented in this work can be directly applied
for structure analysis of OCT retinal images and further
monitoring the progress of eye diseases such as AMD. In
the future, we will investigate the performance of this method
on other datasets once they are publicly available. Also we
will look into extending the models from the current two-
dimensional architecture to three-dimensional.
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Annotated retinal oct images database. In 2021 44th International
Convention on Information, Communication and Electronic Technology
(MIPRO), pages 371–376. IEEE.

[13] Martina Melinscak, Marin Radmilović, Sven Loncaric, and Zoran
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