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This paper presents an innovative approach, based on industry 4.0 concepts, for

monitoring the life cycle of optoelectronical devices, by adopting image

processing and deep learning techniques regarding defect detection. The

proposed system comprises defect detection and categorization during the

front-end part of the optoelectronic device production process, providing a

two-stage approach; the first is the actual defect identification on individual

components at the wafer level, while the second is the pre-classification of

these components based on the recognized defects. The system provides two

image-based defect detection pipelines. One using low resolution grating

images of the wafer, and the other using high resolution surface scan

images acquired with a microscope. To automate the entire process, a

communication middleware called Higher Level Communication Middleware

(HLCM) is used for orchestrating the information between the processing steps.

At the last step of the process, a Decision Support System (DSS) collects all

information, processes it and labels it with additional defect type categories, in

order to provide recommendations to the optoelectronical engineer. The

proposed solution has been implemented on a real industrial use-case in

laser manufacturing. Analysis shows that chips validated through the

proposed process have a probability to lase at a specific frequency six times

higher than the fully rejected ones.
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1 Introduction—problem statement

Nowadays, the demand for optoelectronic devices is rising

while, on the other hand, the optoelectrical manufacturing is

facing significant challenges in dealing with the evolution of the

equipment, instrumentation and manufacturing processes they

support. Due to the increased customization requirements, not to

mention the added complexity of planning and control of

production systems, it appears that the manufacturing is only

affordable when performed in many stages and in multiple

locations. Thus, we are becoming witnesses to the

introduction of new processes and technologies in

optoelectrical manufacturing, towards digital, virtual, flexible

and resource-efficient factories (Mourtzis et al., 2022)

(Mourtzis and Doukas, 2014). Specifically, the improvement

of process efficiency and yield is obtained by the deployment

of automation, where the quality is increased by minimising the

generation of defects. Furthermore, when reducing the defects

and increasing the yield, the assembly costs in terms of

nonmaterial expenses, scrap and rework costs are reduced

respectively as well.

Optoelectronic and photonic components and systems pose

specific challenges for zero-defect manufacturing. A long and

complex value chain starts with individual components

manufacturing by classical optical (grinding, polishing) as well

as lithographic wafer processing technologies, whereas also bulk

material properties significantly contribute to the component’s

performance. System integration, on the other hand, is often

characterized by high demands on cleanliness and accuracy,

already dealing with high-value components that render single

failures in manufacturing a high economical risk. The

combination of both bulk volume and surface structure

properties of optoelectronical components usually also don’t

enable for rework nor recycling. Consequently, full and

generic zero-defect production infrastructures in the

manufacturing of optoelectronics and photonics rarely can be

found, although there are highly individualized, singular

functionalities implementations available that often also rely

on specialized know-how of the human workforce.

This paper aims to present a flexible and scalable zero-defect

manufacturing solution for systems with optoelectronics

components. Zero-defect-manufacturing by definition is a

“holistic approach for ensuring both process and product

quality by reducing defects through corrective, preventive, and

predictive techniques, using mainly data-driven technologies and

guaranteeing that no defective products leave the production site

and reach the customer, aiming at higher manufacturing

sustainability.” (Psarommatis et al., 2022) Our proposed

solution considers the optimisation and design of the entire

process chain and the assembly process for optoelectronic

components and devices. At the same time, it incorporates the

identification of possible defective (sub-) systems in the process

chain, the possible rework, and the recycling of components back

to the value chain, when reaching their end-of-life. It is one of the

main results of the iQonic project (iQonic-H2020, 2022), funded

under the Horizon 2020 initiative of the European Union. The

project pertains to the development of a holistic framework

applicable both to new and existing manufacturing lines of

optoelectronics to achieve flexibility, zero-defect

manufacturing, and sustainability. The zero-defect-

manufacturing approach was selected as a baseline over other

quality improvement approaches, such as Six Sigma or lean Six

Sigma, as in photonic specifics such as low to medium volume

production, high individualization of high value products, and

long value chains through heterogeneous sequences of

manufacturing processes and technologies, not only create a

high amount of production related data, but also require their

interpretation by a combination of statistical and knowledge-

based techniques.

The iQonic project develops solutions mainly on the data

analysis and the shop floor level, taking generic zero-defect

manufacturing concepts (Psarommatis et al., 2020) (Mourtzis

et al., 2021), applying those to four different use cases that cover

product level functionalities. The use cases comprise

manufacturing of passive crystalline components out of the

bulk material, semiconductor laser-optical chips processing on

the wafer, and laser systems integration by assembly and

alignment. The data analysis in the iQonic zero-defect

manufacturing infrastructure is mainly based on image

acquisition and analysis, but also comprises contamination

measurements and manufacturing sensorics such as

vibrations, for both product quality and machine health

analysis. A middleware provides the interface for these

sensorics and images to the shop floor level functionalities of

decision supporting, knowledge-base systems, reverse supply

chains and cyber-physical systems.

The solution presented in this paper comprises a

semiconductor laser-optical chip and package product and is

applied to a real optoelectronic production line at Alpes Lasers

(St. Blaise, Switzerland), henceforth denoted as the manufacturer.

The manufacturer is a fabless company in the field of quantum

cascade lasers (QCL) manufacturing and assembly, representing

the huge sector of laser manufacturers for the aim of the present

work. Indeed, as a Swiss SME, the manufacturer is focused on the

development of optoelectronic devices in the Mid-Infrared (mid-

IR) range that are of particular interest for various consumers,

e.g., from the clinical diagnostic to the environmental (Harrer

et al., 2016) and industrial quality control (Isensse et al., 2018)

(Abramov et al., 2019). The QCLs are processed on

semiconductor wafers including hundreds of devices (Bismuto

et al., 2015). However, important process steps are outsourced

and difficult to control and to optimise. This results in some

performance variations, even for devices from the same

processed wafer. Thus, the manufacturer’s aim is to improve

the quality control of its outsourced processes, as well as its in-

house one, by integrating all relevant information into a “single

Frontiers in Manufacturing Technology frontiersin.org02

Moustris et al. 10.3389/fmtec.2022.946452

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2022.946452


window platform”, which will allow for a better overview of the

production process reducing the production costs, the material

waste and the work done on defective devices.

The production area of the manufacturer is divided into the

mounting area, where laser chips are separated from wafers and

mounted into various device configurations, and the lab area,

where all the characterization of the devices takes place. All

mounting performed by the manufacturer is done manually by

operators. The working stations include a cleaving station, a

manual die bonder, a facet inspection microscope and various

optical setups, to name a few. To satisfy a specific customer

need, it is necessary to identify the devices with a high

probability to meet certain criteria, mount them and test

them intensively. This preliminary selection is done

manually, with limited access to relevant information. In

order to obtain several devices who meet specifications, a

substantial amount of laser chips has to enter the process

flow, increasing the total production costs. For this reason, it

is important to identify the defective devices as soon as possible,

even prior to the cleaving process, when possible. Thus, the

vertical production chain before iQonic demands high

investments and operating costs, presents difficulties in

monitoring, data tracking and information exchange, with

high cost for failures and low production yield. In this

context, it is important to investigate how defect detection,

defect management (by prediction the consequences of defects

and failures) techniques, and classification techniques to

prevent false-classified components at an early stage to enter

long processing sequences, will pave the way towards zero-

defect manufacturing of optoelectronic and photonic devices.

Consequently, three out of four zero-defect-manufacturing

items area addressed directly by our approach–detection,

prediction, and prevention. The final goal is to ensure the

quality of the manufactured QCL, as only a high quality

throughout the manufacturing process sequence ensures the

laser optical performance of the QCL device, which is

mandatory for the demanding applications in sensing, where

those devices are used for. There is a high benefit for the

manufacturer, as the process sequence starts already with

high value components, where the subsequent manufacturing

process add even more value to the product, resulting in a high

economical risk for the manufacturer at non-sufficient yields.

The structure of our paper, presenting the proposed solution,

is as follows; in Section 2, the related work, along with a brief

overview of the state of the art, is reviewed. In Section 3 the

methodology of the defect detection process is discussed, while in

Sections 4 and 5, a detailed exposition of the defect detection

pipelines, both using a low resolution image of the wafer, as well

as a high resolution one produced with a microscope, is given.

The implantation of the various components of the system is

discussed in Section 6, and in Section 7 the performance

evaluation of the solution is addressed. The paper concluded

with Section 8.

2 Related work

Several non-destructive quality monitoring approaches such

as ultrasonic, Eddy current, thermography, circuit probe, X-ray

and visual inspection are currently being used to inspect products

for defects. Among the previously mentioned techniques, visual

inspection is considered the most common procedure employed

in industry. Visual inspection techniques can be categorized into

two classes; manual inspection, which is performed by a human

inspector and automatic inspection, performed with the aid of an

image sensor and a processor. Both are very common in

optoelectronics and photonics manufacturing, although the

specifics of optics (high transparency) often make it very

difficult to apply standard imaging techniques. Manual

inspection by highly skilled humans is very often applied,

although rapid development in computing capabilities and

imaging devices has widely opened the doors towards using

automatic visual inspection to overcome the limitations and

reduce the false positive rates of human inspectors.

Furthermore, modern imaging devices can detect tiny defects

with low intensity and contrast that even the most experienced

human inspectors cannot detect. In automatic visual inspection,

many algorithms are used to help in isolating the region of

interest for inspection, extract defect characteristics and classify

them to certain categories. Image processing techniques such as

template matching, segmentation and edge detection can be used

for feature extraction purposes. On the other hand, techniques

such as machine learning and rule-based classifiers can be used

for classification purposes (Ebayyeh and Mousavi, 2020). Zhong

et al. (2015) considered template matching and blob analyzation

techniques based on normalised cross-correlation (NCC) to

detect fragmentary and polycrystalline defects on LED dies.

Regional image segmentation was first performed to locate the

blob defect features and extract them. NCC was then used to

localize LED dies at pixel accuracy. A specific threshold was set to

classify the abnormal LEDs from the normal ones. The study

resulted in good accuracy in detecting normal dies with zero false

alarm rate. However, a false alarm rate is presented in detecting

defective dies due to the NCC threshold value selected. Chang

et al. (2016) proposed an algorithm that relies on thresholding

and edge detection to classify touch panel flaws. The distance

measured between the edges of the flaws were considered as the

criteria for deciding the flaw type. For example, if the measured

width and length of the flaw ranges from 7 to 21 µm and

1–10 mm respectively, the flaw is considered as a crack. The

accuracy of the algorithm ranged from 0.94 to 0.99 based on the

flaw type. However, the inspection time of the algorithm was

relatively long because of the high-resolution images considered.

Old visual inspection methods are limited in their ability to

detect novel defect patterns. To address this issue Schlosser et al.

(2019) proposed a novel deep neural network-based hybrid

approach, consisting of stacked hybrid convolutional neural

networks (SHCNN) which concluded that the automation of
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the visualisation inspection (depending on the level of details)

enables the limitation of defect patterns in earlier stages of the

manufacturing process.

Furthermore, human based inspections require significantly

more human hours. To address this issue Anantathanasarn et al.

(2019) described an application of Artificial Intelligence using

machine learning and deep learning on laser diode module

manufacturing which resulted in quality control improvement

via A.I.-assisted visual inspection, reducing human work by a few

man-hours per day.

3 Proposed methodology

One of the most challenging tasks to the industrial defect

detection is the definition of a common approach for the visual

inspection process. There are several varying parameters

amongst inspection and detection processes that constitute

this challenge. One of the most notable differences can be

found from different existing infrastructure that are related to

the vision part (existing camera). For example, in the use case

described in this paper, there are two different types of images

that must be processed for each wafer.

A visual inspection process can be applied in many phases

during the production process in order to monitor the product

quality. Based on (Ferretti et al., 2013) the visual inspection

process for defect detection can be directly applied in real time as

in-process action or post process action. The proposed approach

in our use case is an in-process action directly after the Wafer

construction process and consists of four steps, namely: image

collection, device mapping, defect detection and finally, decision

support system (Figure 1). This approach is common for both

types of images that available. At the first step, that is the image

collection of the overall process, the device images are being

collected from the field. This step usually utilizes a variety of

equipment for producing those images and also deals with

different image types in general. The second step is the device

mapping. Prior to performing the actual mapping itself, many

images are not in the desired state and require further

manipulation before being ready for visual inspection. These

pre-processing actions are essentially correcting a set of

parameters such as the perspective view, the lens distortion

etc, as well as enhance specific image features that are

important for further processing. These actions, dubbed image

pre-processing, comprise the first part of the device mapping. The

second part is the mapping of the image to the device map, which

deals with finding the correspondence between the device image

and the wafer map. More specifically, the images depict a

fabricated wafer which consists of many small optoelectronic

devices. Each one of these devices’ dimensions should be

recognized and marked in order to be analysed for defection,

further down the pipeline. The third step is the defect detection

process. This is divided into two phases: 1) the preparation of a

training dataset, where a set of devices are being categorised in

order to form a collection of data which can be used by detection

models for predicting defects and 2) the defect detection models

themselves that, after the training phase, provide accurate

recommendations for potentially detected defects inside the

image. The fourth process is the decision support system that

fuses the output of the previous steps and visualizes the results to

the operator. Finally an orchestrator controls the data flow

between all previous steps as will be described in Section 6.

The aforementioned approach is applied to two different

types of wafer images, provided by the manufacturer’s vision

inspection infrastructure: 1) low resolution wafer images and 2)

high resolution images taken with a microscope. Although the

proposedmethodology is the same for both image types, different

approaches are applied for the mapping and defect detection

processes, driven by the different peculiarities of each step. A

detailed analysis of these approaches is presented in the next

sections.

4 Low resolution defect detection

Low resolution defect detection refers to an initial wafer

inspection, using an image of the wafer revealing its grating. This

was requested by the manufacturer from its suppliers as an initial

screening stage, prior to executing the next steps. Note that the

grating is embedded into the top cladding and is not visible at the

end of the device fabrication. Thus, this image is the single source

of information about the grating aspect. A typical example of

such an image is shown in Figure 2-LEFT. Since the image is

captured at an unspecified angle each time, the superposition

with the wafer mapping is not apparent. The first step to this

mapping is to account for the perspective of the image, as well as

the lens distortion of the camera. This is performed using the

Hugin open-source software (Conversion, 2022). The final image

is shown in Figure 2-RIGHT, revealing a well-aligned wafer,

ready for the next step of mapping the wafer map onto this image.

4.1 Mapping process

Prior to performing the actual mapping process, a pre-

processing stage is first applied. This consists of two steps; the

first is the image “normalization” i.e., resizing of the grating

image to a nominal size. This is done to reduce the computational

load and memory requirements of the algorithm. The grating

image is resized to match the nominal image dimensions of

2,667 × 2,739 pixels. Since we want to preserve the aspect ratio,

only one dimension is scaled to exactly match the nominal one,

leaving the other to follow accordingly.

The second step is the reconstruction of the wafer map and

the creation of a raster image which matches the normalized

grating image dimensions. The information of the wafer map
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FIGURE 1
A generic approach for defect detection process.

FIGURE 2
LEFT: Original wafer image. The red lines are drawn as guides for the perspective correction tool. RIGHT: Wafer image after the perspective and
lens correction. The grating is visible as straight lines running vertically down the wafer.

FIGURE 3
Overview of the mapping process for the grating image.

Frontiers in Manufacturing Technology frontiersin.org05

Moustris et al. 10.3389/fmtec.2022.946452

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2022.946452


contains the coordinates of the rectangular shapes of the devices.

The rectangles are inserted into the raster image using image

drawing primitives. The resulting image, an example of which

can be seen in Figure 4-Left, is used in the registration tool, along

with the normalized grating image. Following the registration,

the transformation is altered in order to take into account the

normalization step. The entire process is seen in Figure 3.

The mapping process, as is currently performed by the

manufacturer, consists of manually overlaying the vector

image of the map onto the grating image, using software

such as Inkscape. This manual registration is facilitated by the

alignment marks on the wafer. Even so, these marks are often

obscure, coinciding with defected areas, and change in

appearance, size and location in each wafer. Thus,

automatic registration will be prone to detection failure,

leading to erroneous results. This was also experimentally

observed during the research and development process. The

image processing algorithms and filters were not robust

enough to ensure a high rate of success across different

wafers, and were easily fooled by different illumination of

the images, different colour hues, noise in the image,

geometry of the marks etc. It was thus decided to follow a

semi-autonomous registration process, where the user would

be involved as little as possible, but importantly enough to

accommodate the process.

The implemented process takes corresponding point pairs

across two images, and computes the geometric transformation

which, when applied to one image, is warped in such a way so as

the selected points coincide (or their distance error is minimized,

more accurately). This registration process is well known and

supported off-the-self by various image processing libraries. We

have deployed MATLAB’s dedicated tool, which allows one to

inspect the two images of interest simultaneously, and select the

point pairs. A screenshot of this control point selection tool is

presented in Figure 4.

Using this tool, a set of pairs is selected, which is then fed to

an appropriate function that calculates a non-reflective similarity

transformation between those points. This transformation

assumes that the two images differ by a combination of

translation, rotation, and scaling. The resulting transformation

can then be used to map pixels from the grating image, to points

in the wafer map, and thus identify devices which include defects.

FIGURE 4
View of the Control Point Selection Tool. The raster image of the wafer map (left) and the grating image (right) for the wafer are clearly visible.
The corresponding control pairs are marked with numbers 1 to 12.
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4.2 Machine learning-based defect
detection

The machine learning-based defect detection solution is

focused on defect identification on the wafer parts and

produces a new wafer image where the defective parts are

highlighted. Specifically, this module includes the image

collection with image pre-processing, the labelled data

creation (annotation of images) via the COCO Annotator

(Gygli and Ferrari, 2020) (Figures 5 – TOP ROW) and the

deployment of deep learning algorithms for image defect

segmentation (Tabernik et al., 2020). In the integrated defect

detection pipeline, as soon as this module receives the

perspectively corrected image, it inputs it to the trained

segmentation model. This model has been developed with the

aim to detect any possible defective spots and grating on the

wafer image and produce a segmentation mask, with the different

categories of classes represented with distinct colours. The final

step in this process is to forward the result to the Decision

Support System for inspection by the user. An example of this

case can be seen in Figure 5 (BOTTOMROW) where the marked

image is presented.

5 High resolution defect detection

After the reception of the processed wafer, the

manufacturer’s staff checks the fabrication quality following a

dedicated procedure, which includes the recording of high

resolution images of the wafer surface. This is done using a

Sensofar microscope with a 5x magnification objective. For

imaging an entire 2-inch wafer, the Sensofar microscope

records about 400 images that are then stitched together with

a dedicated software. The resulting wafer scan image is then

normalized (20,000 × 20,000 px, jpeg format with 0.75 quality

factor) yielding a rasterized image with a typical size of about

FIGURE 5
TOP ROW: Original wafer image (left) and annotated image (right). BOTTOM ROW: Original wafer image (left) and corresponding defect
detection result (right).
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100 MB. An example of such an image can be seen in Figure 6-

Left, along with an image of a single device, (Figure 6-Right),

which is taken after zooming into the initial wafer image. These

images provide indeed a very detailed view of the wafer as well as

each device and defects are clearly revealed. Interestingly, the

image quality is high enough to localize each cell in the wafer and

to see the ones impacted by a given defect. To be useful, this

information must be registered and easily accessible, i.e. stored in

a database, together with the other relevant laser properties. This

task cannot be done manually since it is too time consuming and

prone to registration errors. Thus, combining a machine

learning-based defect detection algorithm with an automated

device to defect mapping, greatly simplifies the process.

5.1 Mapping process

In this task, we have to register the wafer map onto an ultra-

high resolution surface scan of a wafer. The resulting images

range from 10,000 × 10,000 pixel dimensions, to 20,000 ×

20,000 and up. Loading these images into memory for

processing, results in a significant allocation of blocks e.g. a

10,000 × 10,000 uncompressed image with a 32bit color depth

pixel leads to about 381 Mb of memory while a 20,000 ×

20,000 image requires 1.5 GB. These values are the bare

minimum and in reality the requested memory is quite

larger due to non-sequential allocation, memory

segmentation, meta-data loaded for the image etc. From tests

during the development stage, it was decided to resize the

images to a “nominal” dimension which would not

bottleneck the system.

Due to the high resolution of the wafer scan, it is possible

to see each individual device on the image. The devices are

delineated by the dark blueish bands that run vertically on the

image, while their horizontal boundaries run through the

crosses/junctions, as seen in Figure 7. The wafer map

describes the boundaries of each device, given by the four

corner points (red dots in Figures 7– left) in a counter-

clockwise fashion. These dots/points are exactly located on

the cross junctions (Figures 7– right). This dictates the

strategy of registering the map to the image; detect the

crosses in the image, extract the dots and map them to the

unique points of the map. Essentially, this will create two sets

of 2D point clouds for which we must find a geometric

transformation that involves only translation, rotation,

uniform scaling, or a combination of those, which creates

an optimal “fit” between them, according to some measure i.e.

bring them as “close” as possible. This is known as the

Procrustes problem (Gower and Dijksterhuis, 2004) and in

the planar case has 4 degrees of freedom (2 for translation,

1 for rotation and 1 for uniform scaling). Given the fact that

each wafer can contain many hundreds of devices, leading to

thousands of corner points, this will require searching a 4D

space and many thousands of point pairs to elucidate an

optimal fit. However, due to implicit assumptions in the

entire imaging (and map creation) process, we can solve

each sub-transform of the Procrustes map as a

separate–and simpler-problem. For example, we know that

the cross points should align vertically and thus fall on vertical

straight lines. This can be checked in the surface scan image,

and compensate for possible rotations.

An overview of the various steps of the mapping process

is seen in Figure 8. In the following, we will analyse each

block separately, and see examples of the intermediate steps

of the process, as well as final results using actual surface

scans.

FIGURE 6
Surface scan of a wafer and blow-up of a region. The zoomed-in area is telling of the ultra-high resolution of the image.
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5.2 Pre-processing steps

The initial steps consist of computing the unique points of

the map that comprise the device rectangles, and the

“normalization” i.e. resizing, of the surface scan image to a

nominal size and some color processing. Specifically, let N be

the set of nominal map points which must be registered on the

image. If N contains |N| points, this number serves as a target

value for the number of points that must be identified on the

wafer image. The normalization step has a twofold purpose; first

it reduces the computational load of the algorithms, making the

mapping process tractable, and second, it is needed since the next

steps are dependent on the image resolution and profile. Thus,

image features which may vary greatly in size, will not be

detected, leading to poor results. The following tasks refer to

the actual detection of the cross points on the image. To

accommodate this, a common technique in image processing

has been used, namely the detection of a pre-set feature using

cross-correlation. Cross-correlation is a measure of similarity of

two signals as a function of the displacement of one relative to the

other. This is also known as a sliding dot product or sliding inner-

product. It is commonly used for searching a long signal for a

shorter, known feature (Briechle and Hanebeck, 2001). In our

application, the reference signal was a region-of-interest cut out

from the wafer image, containing a cross junction (Figure 9-

Top). Since we are interested in the morphology of the reference

feature only, the color information is irrelevant. To this end, both

the feature and the wafer scan images have been binarized i.e.

converted into images containing only black and white pixels.

Since binarization is applicable only to grayscale images, they

have been converted to such by casting them to the HSV

colorspace and keeping only the luminance plane (the V

FIGURE 7
Depiction of a device, as seen on the surface scan image, and its abstraction as a rectangle in the map (yellow lines). Its edges are located at the
crosses, seen on the right.

FIGURE 8
Overview of the mapping process for the surface scan image.
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FIGURE 9
TOP: Reference feature used for detection (left). Its binary image is seen on the left. MIDDLE: Binary image of the test wafer and blow-up of a
region showing individual devices. BOTTOM: Clustering of the test wafer and blow-up region depicting two clusters.
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values). Examples of the binary image of the feature and the wafer

scan, are given in Figure 9-Middle.

Following the binarization, the normalized cross correlation

between the feature and the scan images is calculated. This

produces a matrix r with values between 0 and 1, and the same

dimensions as the scan image. Essentially for each pixel of the

scan image, the corresponding element of r indicates the

similarity of this pixel’s neighbourhood to the reference

feature. A value of “1” means that the neighbourhood

matches exactly the feature, while a value of “0” indicates

complete dissimilarity. Apparently, we want to select only

the pixels with a large enough value, by applying a threshold

on r. However a large value might lead to only a small number

of selected points, while a low value might result in many false

positives. Furthermore, neighbouring pixels usually contain

similar cross-correlation values since the values generally

change smoothly.

To produce an “optimal” set of points, we resort to an

iterative heuristic algorithm, which tries to find a suitable

threshold for r, while at the same time clustering the

resulting points. More thoroughly, the algorithm returns the

local maxima of matrix r, each within a specified

neighbourhood. It searches for such a threshold that when

applied on r, the points above that threshold are clustered into

neighbourhoods of a given radius, and the number of resulting

points are at most within a specified tolerance of the number of

nominal map points |N|. For each cluster, the maximum point

in r is returned.

In our tests, we have set a 5% tolerance for the number of

clustering points and a 50 pixel radius for the clusters. If the

algorithm doesn’t converge to the required number of clusters

after 100 iterations, it terminates and outputs the current clusters.

A clustering operation for the wafer is presented in Figure 9 -

Bottom. The points resulting from the thresholding are seen as

red crosses on the left image. The cluster maxima are depicted as

blue circles. The clustering process is more obvious on the right

image, where it can be seen that the thresholded points create

close neighbourhoods (red crosses). The clustering then selects

the point with the maximum cross-correlation value, among each

neighbourhood (blue circles). The final output from the

clustering process is a set of points M, which correspond to

the device coordinates. The next steps of the mapping process are

then to map this set M to the nominal map points N. Note that

their number is not the same, thus there is no apparent one-to-

one correspondence.

5.3 Rotation compensation

As stated earlier, detecting, and removing, a possible

rotational component of the surface scan image, accounts for

the 1 degree-of-freedom of the Procrustes transform, and

significantly reduces the search space. Although the surface

scans appear to be vertically aligned, at closer inspection, and

after various trials, it was discovered that the images are actually

rotated by an amount that varies from −1⁰ to 1⁰. Even though this

might seem small, the image dimensions are quite big and thus a

very long line rotated by a small angle, will present a large

deflection at its edges. The detection of the image rotation is

performed by applying the Hough transform on the data set M.

The Hough transform (Cantoni and Mattia, 2013) is the de facto

method for detecting lines in images and point clouds. After

detecting the rotational component, the image is counter-rotated

in order for the points to align finer, both vertically and

horizontally.

5.4 Scale compensation

Having the two data sets rotationally aligned, the next step is

to compensate for their scale, i.e. find a multiplication factor such

that when applied on one of the data sets, the two then differ only

by a translation factor. Following the steps from the Procrustes

analysis, we first remove the translational component from each

set by subtracting their mean, i.e. geometric centroid, from each

coordinate. Thus, if the set contains k points, {xi,yi}, i = 1...k, then

its centroid is,

�x � x1 + x2 + . . . + xk

k
, �y � y1 + y2 + . . . + yk

k
(1)

and the translated points are,

(xi − �x , yi − �y) , i � 1 . . . k (2)

This centres the two data sets on (0,0), and by applying a

uniform scale, their centre remains invariant. To find the scaling

factor, we resort to the intraset distances. The idea is that since

the two data sets differ by a scaling factor, the relative distances

between their points, per set, should follow a similar distribution

among sets. Given that the points lie on a regular grid, the mode

i.e. most frequent value of these distributions should correspond

to the same physical distance. Thus, let �N, �M be the centred sets

for the nominal map points and the detected cross points

respectively. Let,

d �M � {∣∣∣∣∣�pi − �pj

∣∣∣∣∣}, where �pp ∈ �M, i, j � 1 . . . |M| and i ≠ j

(3)
d �N � {∣∣∣∣∣�qi − �qj

∣∣∣∣∣}, where �qp ∈ �N, i, j � 1 . . . |N| and i ≠ j (4)
be the intraset distance distributions for each set. Then, the

scaling factor for each set is,

s �M � mode(d �M) (5)
s �N � mode(d �N) (6)

By dividing each point with the respective scaling factor, the

sets are normalized such as the most frequent distance between

their points is “1”. The new normalized sets are denoted as ~N, ~M.
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Although the two sets may overlap significantly, they need to be

further optimized in the translational component to increase

their “match”. This is presented in the following section.

5.5 Translation compensation

To compensate for the translation component of the two

normalized data sets, we run a Random Sample Consensus

(RANSAC) algorithm (Derpanis, 2010). RANSAC is an

iterative method to estimate parameters of a mathematical

model from a set of observed data that contains outliers,

when outliers are to be accorded no influence on the values of

the estimates. It is a non-deterministic algorithm in the sense that

it produces a reasonable result only with a certain probability,

with this probability increasing as more iterations are allowed. A

basic assumption is that the data consists of “inliers”, i.e., data

whose distribution can be explained by some set of model

parameters, though may be subject to noise, and “outliers”

which are data that do not fit the model. The outliers can

come, for example, from extreme values of the noise or from

erroneous measurements or incorrect hypotheses about the

interpretation of data. RANSAC also assumes that, given a

(usually small) set of inliers, there exists a procedure which

can estimate the parameters of a model that optimally

explains or fits this data.

Applied to our specific problem, let ~N be a set of

observations, which contains inliers and outliers, and also a

set ~M of reference points. The goal is to find a translation

model T � [tx, ty] which, when applied on ~N it aligns it with
~M according to a cost C. The optimal model parameters tx, ty,

minimize C. To find the optimal T, we create a set of random

pairs from ~M and ~N, denoted as

S � {si � (p̃i, q̃i)}, ~pi ∈ ~N, q̃i ∈ ~M, i � 1 . . .K. For each pair,

we calculate Ti as,

Ti � p̃i − q̃i (7)

and we apply this translation on ~M, resulting to the translated set

Ti( ~M). This essentially shifts ~M such that points pi, qi coincide.

For each element in Ti( ~M) we compute the distance e from the

closest point in ~N. If its distance is below a threshold value ε, then

this element is considered an inlier, otherwise it is an outlier. To

each element, we assign a score as following,

ρ(e2) � { e2, e2 < ε2
ε2, e2 ≥ ε2

(8)

The total cost for the particular Ti is the sum of all scores, viz,

Ci � ∑
k
ρ(e2k) (9)

By iterating over all pairs in S, we get the optimal pair which

minimizes the cost C. This implementation of the RANSAC

algorithm is called “Maximum Likelihood Estimation Sample

Consensus” MLESAC (Torr and Zisserman, 2000) and provides

more robust performance and better results than the standard

format.

Selecting the number of random pairs which comprise S, is

crucial for finding a good fit. Apparently, the maximum number

of pairs is | ~N|| ~M|. If we opt for selecting all pairs, i.e. perform an

exhaustive search, then the required iterations might be

prohibitively high. For example, for the test wafer, all available

pairs are 4,592,328 and in other wafers this number can grow

even larger. To make the problem more tractable, we limit the

number of pairs using two thresholds; the first is a hard threshold

which selects a strict percentage of the available pairs. This is

called the search ratio R. The second threshold derives by an

implicit assumption regarding the sets ~M and ~N. From Figure 9

we observe that the two sets do not vary greatly and are, more or

less, centered. Thus we need only search for translations which

shift ~M a “small” amount about its center. This shift can be

expressed as a percentage of the range of ~N, where

range( ~N)p � ( ~N)p − ( ~N)p , p � x, y. We call this number,

the bound coefficient B. For example if B = 0.3, then a pair

si ∈ S is valid if,

(Ti)x≤ 0.3 · range( ~N)
x
and (Ti)y ≤ 0.3 · range( ~N)

y
(10)

By applying this bounding condition on all pairs, we get the

subset of valid pairs V. If the number of valid pairs is |V|, and
|V|≤R| ~N|| ~M|, we search all the pairs in V, otherwise we search

the first R| ~N|| ~M| pairs of V. Thus, in any case the number of

searched pairs is,

min(|V| , R∣∣∣∣ ~N∣∣∣∣∣∣∣∣ ~M∣∣∣∣) (11)

If so � (~po, ~qo) is the optimal pair that minimizes the cost C,

this corresponds to a translation,

To � ~po − ~qo (12)

To register the two sets, this translation is applied to each

point ~q ∈ ~M, resulting in points,

qT � ~q + To � ~q + ~po − ~qo (13)

For each point in qT we calculate its closest point in ~N. If

their distance is smaller than the ε then this point is marked as

an inlier; otherwise it is rejected as an outlier. For the inlier set,

we compute the root mean square distance rmsde, which

provides another measure of fit. By subtracting each inlier

to its corresponding closest point in the nominal set ~N, we can

also visualize the 2D error distribution of the fit. Returning to

the test wafer, the rmsde = 0.2775. The error is normalized and

thus, a value of “1” means that it corresponds to the most

frequent intraset distance. The physical interpretation of this

is the following; since the nominal map points lay on a grid,

and given that the wafer largely consists of devices with

identical dimensions, the most common distance
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corresponds to a device’s dimension. Thus, an error smaller

than “1” means that a detected cross point is at most a device

away from its corresponding nominal map point. This also

indicates the importance of the inlier threshold ε, which in

essence serves as the upper distance limit.

The final registration map is conceived by combining the

rotation, scale and translation components, calculated in the

previous sections. The registration for the test wafer is presented

in Figure 10.

5.6 Image-based defect detection

Following the mapping process, the defect detection

algorithm is then applied on the corrected image. Defect

detection is performed using image processing primitives such

as template matching, thresholding, morphological operations,

and edge detection. The methodological goal is to assess the

quality of the waveguide of the optoelectronic wafer devices in

terms of detecting potential discontinuities. The steps taken in

this module are summarised as follows.

Stage 1: the image is received and goes under two pre-

processing stages by correcting its rotation and performing

median filtering for better highlight of the region of interest.

Stage 2: Template matching is performed by comparing a

template that represents a non-defected waveguide with the

inspected waveguide, as a first check.

Stage 3: Thresholding and morphological operations are

applied to the binarized image, which is then smoothen as

a preparation step for the edge detection part.

Stage 4: Edge detection is performed to count the number of

edges on the waveguide as a second check.

Template matching is considered one of the pattern

recognition techniques (Ebayyeh and Mousavi, 2020). In

automatic optical inspection applications, the template

matching algorithm starts by first identifying a reference

FIGURE 10
Final registration for the test wafer.
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template which usually represents the normal non-defected case

(also known as golden template) which can be used for

comparison. The chosen template is then compared to the

inspected samples using different types of correlation

functions. In our case, a template of non-defected waveguide

was selected as shown in Figure 11-Top. This template is

compared to other inspected samples of QCL devices using

Pearson correlation coefficients (PCC) (Zhong et al., 2015)

given by the equation,

r � ∑i(xi − xm) · (yi − ym)∑i(xi − xm)2
√

·
∑i(yi − ym)2√ (14)

where xi is the intensity of the ith pixel in the inspected image, yi

is the intensity of the ith pixel in the golden template. xm is the

mean intensity of the inspected image, and ym is the mean

intensity of the golden template. The absolute values of PCC are

between “0” and “1” and express the level of similarity between

two images. The closer the coefficient to “1”, the more the two

images are similar to each other. Based on experiment, a

threshold of 0.9 was used for comparison such that, if the

threshold exceeds this number, then the inspected image is

considered for the next check stage; otherwise it is considered

as defected.

At the next stage, thresholding and morphological

operations on the image generate a binarized image which

allows the analysis of the waveguide’s edges. Edge detection

is used to find boundaries and sharp edges, and can be

performed by locating the discontinuities in pixel intensities

using specific filters and operators (Ebayyeh and Mousavi,

2020). Here, we have employed the Canny filter in order to

distinguish the edges of the waveguide. Depending on the

number of edges found, the waveguide can either pass or fail

this stage. Figure 11–Bottom illustrates the result of binarizing

the image, applying morphological operations and finding the

edges.

FIGURE 11
(TOP) Templatematching process. The golden template is the black waveguide, seen inside the red rectangle in themiddle of the optoelectrical
device (BOTTOM): Binarized image for edge detection.
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A logical conjunction operation was used for the result of the

template matching and edge detection as a rule-based decision to

specify whether the device is defected or not. If the waveguide has

passed both checks successfully, the device is labelled as “Pass”.

Otherwise, if one or both checks was not successful, the device is

labelled as “Fail”.

6 System implementation

Architecturally, the solution consists of sub-services

developed by individual technology providers and

communication via a common bus, implemented through a

Higher Level Communication Middleware (HLCM). The

backbone of the integrated solution is the HLCM which

follows a standard micro-service architecture and acts as an

orchestrator of the whole integrated system. Figure 12 shows

the abstract flow of information from end to end, as well as the

internal structure of the HLCM so that the overall data path can

be understood. This information flow is applied in both wafer

image types (low resolution and high resolution images).

Distribution of data is accomplished by publishing and

subscribing to topics of an MQTT broker. A description of

this data for every step is given below.

• The process starts with the publication of images by the

manufacturer through the MQTT broker of the HLCM on

a predefined topic.

• The data through the Data Source Plugin, which is attached

to the Data Provider micro-service, are aggregated and

relayed to the service which is responsible for the mapping

of the wafer devices process. Two different mapping

processes are implemented; one for each wafer image

type according to the proposed methodology. The

mapping processes subscribe to a specific topic of the

HLCM, fetch the uploaded images and the device wafer

topology, process it and publish the generated

transformation matrix to a specified topic.

• Through the Transformer micro-service, the data are

delivered to the service that is responsible for the

detection of the defected devices on the wafer. Similar

to the previous step, two different defect detection

processes are implemented; one for each wafer image

type (image based defect detection for high resolution

images and machine learning based detection for low

resolution images). The detection processes subscribe to

a specific topic of the HLCM and fetch the image, enhanced

with the transformation matrix. After processing they

generate the defect map of the wafer.

• The outputs of both analyses are transferred through the

HLCM to the Decision Support System, which combines

the various inputs and provides a user-friendly interface to

the manufacturer engineers for identifying the problematic

devices.

The next sections describe the various components used in

this implementation.

6.1 Higher level communication
middleware

HLCM has the responsibility of acquiring data and

distributing it. HLCM follows a standard micro-services

FIGURE 12
Overview of the solution pipeline.
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architecture, where all the functionality is implemented in

distinct micro-services and the communication between the

services is done through a central bridge (MQTT Broker). For

each microservice, one or more plug-ins have been implemented

for the individual processes that take place. The micro-services

that have been implemented are the following:

• Data Provider: Data Provider is a tool responsible for

periodically fetching data from a specific data source to the

Event Bus (by publishing on a specific topic).

• Transformer: This module is responsible for transforming

incoming data. These data can be transformed if it is

required from the use case, and formatted to fit the

expected JSON format. Then, they are transferred to the

relevant data targets by using the Message Bus.

• Reporter: Reporter is a micro-service that produces

reports which include results. Incoming results arrive

from different micro-services and the Reporter is

responsible for collecting the results and delivering them

to the internal or external destinations.

Finally, the HLCM provides a user-friendly interface to allow

for task management and monitoring.

6.2 Device mapping component

The two mapping processes have been interfaced with the

appropriate servers to fetch and output the mapping information

produced via their respective algorithms. These algorithms have

been made to communicate with the HLCM via the MQTT

protocol, in order to exchange their messages. Finally, to facilitate

integration, the user experience has been augmented to enable a

more streamlined operation. Thus, the algorithmic

implementations of the mappings have been integrated with

appropriate Graphical User Interfaces which manage the

process of communication with the rest of the components, as

well as the internal algorithmic modules of the mapping

processes. The two programs have been packed for easy

redistribution and installation on user computers, as separate

stand-alone executables. Both algorithms have been “wrapped”

with a similar program which handles input/output operations,

error handling, logging and internal I/O with the mapping

process. Defect detection component.

6.3 Defect detection components

6.3.1 Low resolution images
Regarding the integration of the segmentation model to the

ecosystem of iQonic, a microservice architecture has been

designed and implemented by leveraging containerization

technologies such as Docker which allows each service to be

independent and self-sufficient (Jaramillo, Nguyen and Smart,

2016). Specifically, a consumer service has been developed which

subscribes to the respective topic on the HLCM that waits for

data streams. The expected message contains the perspective

corrected image of the grating, encoded and included in a JSON

document. This image is extracted and pre-processed (resize,

noise reduction, RGB-grayscale transformation) in order to be

sent for inference. To deploy the model in production a base

image has been developed that simulates the ML environment,

wraps the model and exposes a trigger function that accepts the

pre-processed image while providing as output (inference) the

segmentation mask that highlights the defects on the received

grading. Finally, this output is encoded and wrapped in a

document (JSON) alongside with some relevant metadata and

distributed back to the relevant services such as DSS

through HLCM.

6.3.2 High resolution images
As mentioned in earlier, an image based approach has been

chosen for detecting defects in high resolution images. This is

implemented as a LabView application. Figure 13 depicts the

front panel display of LabView. Through the UI, a user can

select a specific image of a device contained inside the wafer.

The application processes the device image and labels it as

either “Pass”, if no failure is detected, or “Fail” if defects are

detected.

In order to integrate the defect detection application with the

entire iQonic system and automate the detection process, a

process execution engine (PEX) has been developed which can

crop the high resolution wafer scan image into several smaller

ones that depict the individual devices inside the wafer. For each

device image it executes the application, acting as a wrapper,

providing labelling. The PEX follows the same micro-service

architecture as HLCM, and adopts enterprise application

messaging patterns. The main functionality of the PEX, is to

create and manipulate data flows between a data provider and a

data consumer, applying a transformer to the streamed messages.

6.4 Decision support system

The last step of the pipeline is the combination of the outputs

from mapping and defect detection processes for both wafer

images, into a user-friendly web interface, which manufacturer

engineers use to identify the good, or faulty, parts of the wafer

and the respective devices. As it is presented in the previous

sections, mapping and defect detection processes run

independently, processing the images provided by the

manufacturer. The results are aggregated, transferred through

the HLCM and persisted at the DSS, which provides a user

interface, where results can be filtered by wafer and/or device id

and visualised in an interactive interface based on the wafer

device map.
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FIGURE 13
GUI that displays the device name along with device result (pass and fail cases).

FIGURE 14
Decision Support System UI web interface.
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Figure 14, presents the implemented DSS user interface,

where a grid with the mapped devices is presented on top of

the marked image, providing the filtering functionality to detect

the problematic devices. An interactive view of the fusion of the

wafer image and the machine learning detection results is

presented to the end-users via the DSS. The view is created by

encoding the detection results as an RGB image, centering an

SVG graphical representation of the wafer’s device map using the

transformation matrix and subsequently is placed on a UI area,

which is interactive through the use of Javascript and HTML. The

inverse transformation matrix is used to map the separate devices

to regions in the machine learning detection result and to

estimate the degree of defects for each device obtained by

filtering in the mapped pixel region for the encoded pixels

indicating a defect. The defect indicative and no defect

indicative ratios of the pixels that belong to each device are

used to categorize the device as defected. In addition, a filter for

categorizing the affected devices is given to the end user by

selecting a threshold of the destruction rate of each device that is

acceptable to the user. Alternatively, users can rank all the devices

by the number of defected pixels within the mapped image

region. Finally, following the defect status assignment, the

DSS visualizes and reports the results to the final user and/or

disseminates them to other connected services.

The second process of the manufacturer use case and

scenario for faulty device identification produced on a

microscope, are actually the wafer scan images in Quantum

Cascade Laser fabrication used for the analysis. The wafer

should be segmented to show the device in each segment

where three types of classes are being investigated after this

step, i.e., normal, dirt and defect. The normal class represents

devices that do not have any defect type and are considered

eligible for further manufacturing process. The dirt class

represents the devices that contain dirt in a form of large

black spots. Such devices can be investigated thoroughly on

each case basis. Hence, it can be either accepted or rejected

depending on the severity of dirt. Finally, the defect class, this

class represents the devices with defects and can be identified by

the discontinuity of the laser path. In this process, the same

device mapping technique as it is already presented in the

previous process is used while the defect identification process

is applied. As such, the final data analysis of the defect prediction

and classification results of the wafer segments, i.e., normal, dirt

and defected wafer segments are sent to DSS through the HLCM.

7 Discussion and outlook

As it is expected, defects are detrimental to the performance

of the quantum cascade lasers. However, depending upon their

nature and severity, different properties of the lasers can be

impacted. In this section, we discuss preliminary results

regarding the impact of the developed tools upon the

production of such optical devices. This evaluation is

performed by comparing the predictions of the presented

algorithms with real physical data recorded during the

production of quantum cascade lasers by the manufacturer.

This is a blind experiment, since the lasers have been tested

without prior knowledge about the algorithm classification

results, meaning that lasers with different classification status

are included in this study.

The irst use case is focused on the analysis of defects

occurring during the grating fabrication. The purpose of the

grating is to force a monomode emission and, for this reason, it is

meaningful to compare the monomode range (derived from the

optical tests performed by the manufacturer) and the degree of

defect associated with the device by the analysis algorithm. This

comparison was done for hundreds of lasers from several wafers,

showing a good correlation between the reduction of the

monomode range and an increase of the grating defect rate.

For some wafers, it was found that the devices with the highest

defect rate are not able to produce a monomode emission,

meaning that the grating does not provide the expected

feedback for the mandatory laser mode selection. Globally, the

monomode range for devices with no grating defect is three times

larger than for devices tagged with a defect rate of 100%, as shown

in Figure 15, LEFT panel. In other words, a healthy device covers

a much larger frequency range and has a higher probability to

meet the requirements for a specific application, as targeting a

specific molecular vibration band for example. From a

production point of view, mounting and testing only devices

with healthy grating only will drastically reduce the work

required to obtain a laser with a monomode emission at a

specific emission frequency and the total laser production cost.

The second use case concerns the analysis of high-quality images

of the devices’ surfaces recorded with Sensofar microscope. In this

case, the impact on the device operation can be even more dramatic

than in the use case discussed previously. Indeed, the aim here is to

automatically detect discontinuities along the laser ridge, which can

clearly prevent the corresponding device from lasing. About 50 lasers

from the test wafer have been mounted, including cells tagged as

“Pass” and “Fail” and the optical response of the lasers characterized

following the standard manufacturer’s production procedure. These

lasers have been classified in two categories: “valid” for the devices

able to lase in the continuous regime, and “invalid” for the devices not

able to lase in the continuous regime. The two classification sets have

been compared, showing that two thirds of the lasers have been

successfully classified by the decision algorithm (Pass/valid and Fail/

invalid). That means that a laser from the “Pass” category has a

probability to be valid, two times higher than that of a laser from the

“Fail” category, as shown in Figure 15, RIGHT panel. Note that the

invalidity of a laser can clearly be caused by a defect not visible on the

recorded images, for example due to a defect in the cladding.

All-in-all, combining the two defect detection schemes

discussed herein, a laser classified in the “Pass” category with

a 0% defect rate for its grating, has a probability six times higher to
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lase at a specific frequency than a laser classified in the “Fail”

category, with a 100% defect rate regarding its grating evaluated

score. On the basis of this information, it is then possible to define

cleaving and mounting strategies to target the most promising

chips, in order to reduce the production costs.

8 Conclusion

This research describes an industry 4.0 concept approach for

wafer-level defect detection on optoelectronic devices and

presents an innovative integrated solution. Current market

trends were considered in the design and implementation of

the current work in order to create an innovative end-to-end

solution for the optoelectrical sector. The system comprises a

monitoring tool for the life cycle of optoelectronic devices, as well

as image processing and deep learning algorithms. Defect

identification has been automated utilizing two image-based

defect detection pipelines that use low-resolution grating

pictures and high-resolution surface scan images, respectively.

The communication middleware orchestrates the image

processing, transporting the information through the different

processing phases all the way to the DSS. All acquired data is

labelled with additional defect type classification, resulting in

device maintenance advice for the optoelectronic engineer. End

users evaluated this authentic laser manufacturing sector use case

as well as the solution implementation. The initial results appear

to fulfil end-user expectations while showing positive outcomes

as the analysis showed that combining the two defect detection

systems presented, a laser classed as “Pass” with a zero percent

defect rate for its grating has a six-fold higher likelihood of lasing

at a certain frequency than a laser categorized as “Fail” with a

100 percent defect rate for its grating evaluation score. This is

considered by the end user to be already a huge benefit of the

iQonic zero-defect-manufacturing approach applied to its QCL

manufacturing, as fail-classified components will not enter a long

and high value adding manufacturing sequence, and thus not

compromising yield.

Furthermore, sub-sequent cleaving andmounting techniques

may be developed to target the most promising chips and lower

manufacturing costs. The iQonic system will be fine-tuned in the

near future, as it is recognized that the entire system potential

may match the end-user’s goals and motivations for enhanced

dependability, availability, performance, quality, and cost

savings. As a result, continuous improvements to the

collaborative system are anticipated in the near future.
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