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ABSTRACT Particle filtering is probably the most widely accepted methodology for general nonlinear
filtering applications. The performance of a particle filter critically depends on the choice of proposal
distribution. In this paper, we propose using a wrapped normal distribution as a proposal distribution for
angular data, i.e. data within finite range (−π,π]. We then use the same method to derive the proposal
density for a particle filter, in place of a standard assumed Gaussian density filter such as the unscented
Kalman filter. The numerical integrals with respect to wrapped normal distribution are evaluated using
Rogers-Szegő quadrature. Compared to using the unscented filter and similar approximate Gaussian filters
to produce proposal densities, we show through examples that wrapped normal distribution gives a far
better filtering performance when working with angular data. In addition, we demonstrate the trade-off
involved in particle filters with local sampling and global sampling (i.e. by running a bank of approximate
Gaussian filters vs running a single approximate Gaussian filter) with the former yielding a better filtering
performance than the latter at the cost of increased computational load.

INDEX TERMS Nonlinear dynamical systems, Angular data, Particle filtering, Wrapped normal
distribution, and Rogers-Szegő quadrature rule.

I. INTRODUCTION

THE popular data-based analytical problem is a latent
state estimation or filtering, which determines the in-

ternal or hidden states of a dynamic system by recursively
combining noisy measurements and model-based predic-
tion [1]. Some popular scientific areas involving filtering
applications are target tracking [1], biomedical modeling
[2], mathematical finance [3], and industrial diagnosis and
prognosis [4], [5].

The filtering literature mainly begins with the linear
Kalman filter (KF) [6], developed in the sixties. In the
sixties itself, a preliminary extension of the linear KF, named
extended Kalman filter (EKF) [7], [8], was introduced for
nonlinear dynamical systems. Although the linear KF is
optimal (in the sense of being conditional mean estimator)
for linear Gaussian systems, the nonlinear EKF has no such

optimality property due to the linear approximation involved
for the nonlinearities. This approximation often results in
poor accuracy and numerical instability. Later, advanced
approximate Gaussian filtering techniques were introduced,
which include the unscented KF [9], the Gauss-Hermite
filter [10], and others [11], [12] for nonlinear systems to
improve the accuracy and the numerical stability while still
staying in the approximate Gaussian filtering framework.
However, all approximate Gaussian filters work poorly in the
presence of severe nonlinearities and/or non-Gaussian data
[5], [8]. Particle filtering [13] was the next major advance-
ment, which uses recursive Monte Carlo simulation, with
the probability density being adjusted using measurements
at each time step. This adapts well to nonlinear and non-
Gaussian systems. Other recent development include heuris-
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tics for filtering with irregular measurements [14], [15] and
assumed Gaussian density filtering with non-Gaussian noise
[16].

A specific, but practically important filtering problem is
the filtering with angular data [17], [18], where the state
and measurement appear on circular path. An example is the
angle estimation problem of a robot arm [19]. Applications
in robotics often require closed-loop position control of the
robot arm, requiring a measurement of the current angle of
the arm as feedback. This, in turn, involves estimate of an
angular quantity from noisy sensor measurements.

Modelling circular data in terms of angles generally leads
to a nonlinear filtering problem. For nonlinear filtering, two
methodologies are popular in literature, Gaussian filtering
[11], [12] and particle filtering [13], [20]. The particle
filtering can be significantly more accurate at the cost of
increased computation and is the main focus of this paper.

The particle filtering represents the desired internal states
of dynamical systems in terms of their posterior conditional
probability density functions (PDF) and characterizes the
PDFs as weighted sum of particles [20]. For generating
the particles and the associated probability weights, particle
filtering uses a representative PDF, often known as the
proposal or importance density [13]. In the state-of-art
particle filtering, the proposal density is approximated as an
appropriate Gaussian density [21]–[23] and is accordingly
characterized by its mean and its covariance. The proposal
density may be defined locally or globally [21], [24] [25]. A
globally defined proposal density generates all the particles
at each time step [24]. However, a locally defined proposal
density is used for generating a single particle and we
require a bank of local proposal densities for generating
all the particles. Some of the popular particle filtering tech-
niques, classified in terms of the underlying proposal density
used, include the particle filter with transition density as its
proposal (PF), unscented particle filter (UPF) [21], cubature
particle filter (CPF) [22], and Gauss-Hermite particle filter
(GHPF) [23].

The particle filtering accuracy depends on the appropri-
ateness of the proposal density and the re-sampling tech-
niques. The choice of proposal density is further affected
by: i) whether its shape is close to the unknown posterior
PDF and ii) whether any multivariate integrals involved in
computing its moments can be computed accurately in real
time. The literature primarily uses Gaussian shape for the
proposal density, while many contributions appeared in the
literature by introducing different numerical approximation
techniques [21]–[23], [25]–[28]. Similarly, the literature also
witnesses many developments by advancing the re-sampling
techniques [5], [29]. As we will observe in the later parts
of this paper, our objective is to improve the shape of
the proposal density to better match the anticipated shape
of the unknown PDFs. This will also require to modify
the numerical approximation technique for computing the
moments involved.

In all the above cases, Gaussian proposal density is

over the entire real line as its support. However, Gaussian
distribution fails to provide a close approximation of the
proposal density, if the variables themselves are constrained
to a smaller support, e.g. (−π , π] [30]. Thus we need a
proposal density specifically designed for angular data. Aca-
demic literature witnesses some preliminary developments
[19], [31], [32], [33]. An early development [31] utilized a
truncated Fourier series with wrapped normal (WN) distri-
bution. However, finite-length truncation of Fourier series
affects estimation accuracy. Some of the later developments
[32], [33] are designed only for linear system models
in angular data. In a further development, Kurz et al.
introduced a nonlinear circular filtering method through a
series of publications [17], [34], [19]. However, this method
is designed for univariate systems, whereas many of the
real-life filtering problems are multivariate. Considering the
several limitations of the existing methods, efficient angular
filtering is still challenging.

In this paper, we propose a novel particle filtering method
for handling nonlinear multivariate angular filtering prob-
lems. We represent the unknown angular proposal density
appearing over (−π , π] with WN distribution, which is
a counterpart of the ordinary normal distribution in the
range (−π , π] [35]. The parameters of the wrapped normal
distribution are the mean and the covariance. In the proposed
method, the computation of the mean and the covariance
involves intractable integrals of the form ‘nonlinear function
× wrapped normal distribution’. We use univariate Rogers-
Szegő quadrature rule [36], [37] for approximating such
intractable integrals and also extend it to the multivariate
case using the product rule. Subsequently, we name the
proposed filtering method as Rogers-Szegő particle filter
(RSPF). We develop and test the proposed RSPF for both the
locally and globally generated proposal densities. Further,
we simulate the proposed filters for two angular filtering
problems and validate its improved accuracy relative to the
existing Gaussian proposal density filters from the simula-
tion results.

Summarizing the above discussion, we highlight the
following contributions of our paper in comparison to the
existing literature on filtering.
• The proposed RSPF considers wrapped normally dis-

tributed proposal density, instead of the Gaussian pro-
posal density which is most commonly used in the
existing particle filtering algorithms.

• The proposed RSPF utilizes Rogers-Szegő quadrature
rule for the numerical approximation of the integrals.
To authors’ knowledge, this is the first use of this
quadrature rule in particle filtering context.

• We demonstrate through comprehensive numerical ex-
amples that the proposed RSPF can accurately handle
angular data, where the existing filters underperform.

• We formulated the proposed RSPF for both the locally
and globally generated proposal density. To authors’
knowledge, this is the first explicit comparison of the
two different particle filtering paradigms in the liter-
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ature, which offer a compromise between estimation
accuracy and computational cost for the same chosen
proposal density.

The rest of the paper are organized as follows. Section II
discusses the problem formulation, followed by the discus-
sion on the proposed RSPF in Section III. The simulation
results are explained and illustrated in Section IV, while
Section V provides conclusions of our work.

II. PROBLEM FORMULATION
Our aim is to develop a particle filtering method suitable
for angular data. The underlying state space model is
represented as

θθθ k = φk−1(θθθ k−1)+ηk−1, (1)

yk = ψk(θθθ k)+ϑk, (2)

where θθθ k ∈ Dn and yk ∈ Dd , with D ∈ (−π,π], are state
and measurement variables, respectively at kth instant with
k ∈ {1,2, · · ·}. φk : Dn→ Dn and ψk : Dn→ Dd are general
nonlinear functions, representing the state dynamics and the
measurement equation, respectively. Finally, ηk ∈ Dn and
ϑk ∈ Dd represent the process and measurement noises,
respectively. Our objective is to recursively estimate θθθ k
∀k ∈ {1,2, · · ·} from a sequentially received set of measure-
ments yk ∀k ∈ {1,2, · · ·}.

The estimation of θθθ k from yk requires characterizing
the PDF P(θθθ k|y1:k) analytically. In this regard, the particle
filter [20] approximates P(θθθ k|y1:k) as a weighted summation
of stochastically generated sample points, also known as
particles. Particles are sampled from an appropriately chosen
proposal density q(θθθ k|y1:k) for representing the unknown
PDF P(θθθ k|y1:k). We denote θθθ

i
k and ω i

k, ∀i ∈ {1,2, · · · ,N},
as the ith particle and the associated weight, respectively, at
kth instant. The weights are normalized, i.e., ∑

N
i=1 ω i

k = 1.
Subsequently, the desired PDF P(θθθ k|y1:k) is approximated
as

P(θθθ k|y1:k)≈
N

∑
i=1

ω
i
kδ

(
θθθ k−θθθ

i
k

)
, (3)

where P(yk|θθθ i
k) represents the likelihood function, δ (·)

represents dirac delta function, and N represents the number
of particles. If q(θθθ k|y1:k) is the same as the transition density
P(θθθ k|θθθ k−1), then the weights can be recursively updated as
ω i

k ∝ ω i
k−1P(yk/θθθ

i
k).

However, using transition density as proposal ignores the
information inferred from the latest measurement, and can
result in poor approximation of P(θθθ k|y1:k) [22]. Using the
proposal density resulting from approximate Gaussian filters
such as the unscented Kalman filter, i.e., the UKF [21]
or the cubature Kalman filter, i.e., the CKF [22], include
the latest measurements information during generation of
particles. There are two fundamentally different approaches
for generating particles. In local sampling, [21] we approx-
imate q(θθθ i

k|θθθ
i
0:k−1,y1:k) = P(θθθ i

k|θθθ
i
k−1,y1:k)≈N (θ̂θθ

i
k|k,Pi

k|k)

for each particle, where N (·) denotes the Gaussian dis-
tribution and θ̂θθ

i
k|k, Pi

k|k, respectively, represent ith posterior
mean and the posterior covariance estimates at time k. This
update of density for each individual particle effectively
involves running a bank of N individual Gaussian filters.
Alternatively, [24], we can approximate q(θθθ i

k|θθθ
i
0:k−1,y1:k) =

P(θθθ i
k|θθθ

i
k−1,y1:k) ≈N (θ̂θθ k|k,Pk|k) for all the particles. This

requires a single Gaussian proposal at each time step and
is termed as global sampling. The authors have not come
across explicit comparison of global and local approaches to
proposal density generation. Most of the subsequent discus-
sion in this paper follows local sampling strategy. However,
we also compare our results using the global sampling
strategy with those using the local sampling strategy in our
simulation examples.

Note that Gaussian proposal density characterizes any
data over entire real line. This is inappropriate character-
ization of the angular data bounded within (−π,π] and
can result in poor accuracy for angular filtering. Here,
we propose a novel particle filtering algorithm for angular
filtering by characterizing the angular PDFs over (−π , π]
instead of the entire real line. As discussed above, we also
illustrate the developed particle filtering method for both the
locally and globally defined proposal densities.

III. ROGERS-SZEGŐ PARTICLE FILTER
In this section, we introduce the proposed RSPF, which
has potential to be far more accurate for angular data ap-
peared over (−π , π]. We approximate the unknown proposal
density with wrapped normal distribution 37, defined over
(−π , π]. Before proceeding further, we briefly discuss this
distribution in the next sub-section.

A. WRAPPED NORMAL DISTRIBUTION
The wrapped normal distribution may be obtained by wrap-
ping the horizontal axis of an ordinary normal distribution
curve around a unit circle [19]. Similar to a normal dis-
tribution, wrapped normal distribution is also completely
characterized by the mean and the variance. If θ is wrapped
normally distributed with mean µ and variance σ2, then the
distribution of θ is given as [17],

fWN(θ ; µ,σ2) =
1

σ
√

2π

∞

∑
l=−∞

exp
(
−(θ −µ−2πl)2

2σ2

)
. (4)

The zero-mean and unit-variance wrapped normal distribu-
tion is plotted in Fig. 1. We refer to [17], [38], [39] for more
detailed discussion on the wrapped normal distribution.

B. PROPOSAL DENSITY APPROXIMATION
As stated in [17], [38], the wrapped normal distribution
follows circular central limit theorem for angular data. Thus,
we consider the following approximations.
• The prior and posterior distributions of θθθ

i
k are ap-

proximated as wrapped normally distributed, i.e.,
P(θθθ i

k|yk−1) ≈ fWN(θθθ
i
k; θ̂θθ

i
k|k−1,Pi

k|k−1) and P(θθθ i
k|yk) ≈
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FIGURE 1: Wrapped normal distribution plot for zero-mean
and unity-variance.

fWN(θθθ
i
k; θ̂θθ

i
k|k,Pi

k|k), where fWN(·) represents multivari-

ate wrapped normal distribution. Here, θ̂θθ
i
k|k, Pi

k|k, re-
spectively, represent the ith posterior mean and the
posterior covariance of the state at time k.

• We further approximate P(yi
k|yk−1)≈ fWN(yi

k; ŷi
k|k−1,

Pyyi
k|k−1), where ŷi

k|k−1 and Pyyi
k|k−1 denote the mean and

the covariance of yi
k, respectively.

• The desired proposal density is approximated as
wrapped normally distributed, i.e., q(θθθ i

k|θθθ
i
0:k−1,y1:k)

≈ fWN(θθθ
i
k; θ̂θθ

i
k|k,Pi

k|k).
• The noises, ηk and ϑk, are approximated as fWN(0,Qk)

and fWN(0,Rk), respectively, where Qk and Rk are the
covariances of the respective noises.

• Additionally, we assume that the noises, ηk and ϑk are
independent of each other as well as serially indepen-
dent.

From the above assumptions, the proposal density can
be characterized by mean θ̂θθ

i
k|k and covariance Pi

k|k for each
particle, which corresponds to local sampling in our earlier
discussion. As in any standard Gaussian filtering algorithm,
we obtain θ̂θθ

i
k|k and Pi

k|k in two steps, prediction and update.
The prediction characterizes the PDF P(θθθ i

k|yk−1) by com-
puting the mean θ̂θθ

i
k|k−1 and covariance Pi

k|k−1. The update
characterizes the desired PDF P(θθθ i

k|yk) by determining the
mean θ̂θθ

i
k|k and the covariance Pi

k|k approximately, using the
formulae for conditional mean and the conditional variance
for Gaussian distributions, which is a step similar to other
assumed Gaussian density filters [11], [39]. We provide the
computational aspects of these two steps in the following
discussion.

1) Prediction

This step computes θ̂θθ
i
k|k−1 and Pi

k|k−1, respectively, as [23]

θ̂θθ
i
k|k−1=

∫
Dn

φk−1(θθθ
i
k−1)fWN(θθθ

i
k−1; θ̂θθ

i
k−1|k−1,P

i
k−1|k−1)dθθθ

i
k−1,

(5)

Pi
k|k−1 =

∫
Dn
[φk−1(θθθ

i
k−1)φ

T
k−1(θθθ

i
k−1)fWN(θθθ

i
k−1; θ̂θθ

i
k−1|k−1,

Pi
k−1|k−1)dθθθ

i
k−1]− θ̂θθ

i
k−1|k−1θ̂θθ

iT
k−1|k−1 +Qi

k.

(6)

2) Update

This step computes θ̂θθ
i
k|k and Pi

k|k, respectively, as [23]

θ̂θθ
i
k|k = θ̂θθ

i
k|k−1 +Ki

k(yk− ŷi
k|k−1), (7)

Pi
k|k = Pi

k|k−1−Ki
kPyyi

k|k−1KiT
k , (8)

where ŷi
k|k−1, Pyyi

k|k−1, Pθθθyi
k|k−1, and Ki

k are determined, respec-
tively, as [23]

ŷi
k|k−1 =

∫
Dn

ψk(θθθ
i
k)fWN(θθθ

i
k; θ̂θθ

i
k|k−1,P

i
k|k−1)dθθθ

i
k, (9)

Pyyi
k|k−1 =

∫
Dn

ψk(θθθ
i
k)ψ

T
k (θθθ

i
k)fWN(θθθ

i
k; θ̂θθ

i
k|k−1,P

i
k|k−1)×

dθθθ
i
k− ŷi

k|k−1ŷiT
k|k−1 +Ri

k,
(10)

Pθθθyi
k|k−1 =

∫
Dn

θθθ
i
kψ

T
k (θθθ

i
k)fWN(θθθ

i
k; θ̂θθ

i
k|k−1,P

i
k|k−1)dθθθ

i
k

− θ̂θθ
i
k|k−1ŷiT

k|k−1,
(11)

Ki
k = Pθθθyi

k|k−1(P
yyi
k|k−1)

−1.

Eqs. (5) to (11) give the steps needed to generate the ith

mean-covariance pair
(
θ̂θθ

i
k|k,P

i
k|k
)
, given

(
θ̂θθ

i
k−1|k−1,P

i
k−1|k−1

)
and the measurement yk. Note that these equations use
the same approximate equations for prior and posterior
distributions as in the case of other assumed Gaussian
density filters [12], apart from one crucial difference that
wrapped normal density is used in place of normal density
for calculating moments.

The characterization of the proposal density using the
above equations requires computing integrals of the form

In(F) =
∫

Dn
F(θθθ)fWN(θθθ ; θ̂θθ ,P)dθθθ , (12)

where F : Dn → Dn is a general nonlinear function. As
closed-form solution is not available for such integrals
in general, the proposed RSPF introduces Rogers-Szegő
quadrature rule [37], [40] for approximating such integrals.
The integrals occurring here are different from those which
occur in traditional proposal densities or in approximate
Gaussian filters [11], [12] or in traditional proposal densities
for particle filters [21]–[23], since these involve a Gaussian
density (rather than a wrapped normal density).

C. APPROXIMATION OF INTEGRALS
In this section, we introduce the Rogers-Szegő quadrature
rule for approximating the desired intractable integral In(F).
While the Rogers-Szegő quadrature rule is applicable only
for univariate systems, the desired integral In(F) is mul-
tivariate. We additionally use the product rule [10] for
extending the univariate Rogers-Szegő quadrature rule to
multivariate case.
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We will first approximate the standard form (zero-mean
and unity-covariance) of In(F), given as

In
0 (F) =

∫
Dn

F(θθθ)fWN(θθθ ;0,In)dθθθ , (13)

where In represents the identity matrix. Further, the multi-
variate integral In

0 (F) can be expressed as

In
0 (F) = I1

0 (F1)× I1
0 (F2)×·· ·× I1

0 (Fn), (14)

where the univariate integrals I1
0 (Fs) ∀s ∈ {1,2, · · · ,n} can

be expressed as

I1
0 (Fs) =

∫
π

−π

F(θs) fWN(θs;0,1)dθs, (15)

with

fWN(θs;0,1) =

√
1

2π

∞

∑
l=−∞

exp
(
− (θs−2πl)2

2

)
. (16)

The univariate Rogers-Szegő quadrature rule is designed for
approximating I1

0 (Fs) given in Eq. (15).

1) Univariate Rogers-Szegő quadrature rule
The Rogers-Szegő quadrature rule, designed for approximat-
ing I1

0 (Fs), is defined over unit circle U [41]. We denote the
unit circle as U= {Z ∈ C : |Z|= 1}, where Z= e jθs , while
C represents the set of all circles. The Rogers-Szegő quadra-
ture rule utilizes Rogers-Szegő polynomials [36], which are
orthogonal with the weight function fWN(θs;0,1) on unit
circle and also normalized, i.e.,

∫
π

−π
fWN(θs;0,1)dθs = 1.

Let us denote the Rogers-Szegő polynomials as νm(Z),
∀m∈{1,2, · · ·}, which are defined on unit circle U [36]. The
orthogonality of νm(Z) is defined in terms of inner product
of νm(Z) induced by fWN(θs;0,1). The inner product must
satisfy

< νm,νm̄ >=
1√
2π

∫
π

−π

νm(Z)νm(Z) fWN(θs;0,1)dθs=δm,m̄,

(17)
where ν̄m(Z) represents the conjugate of νm(Z) and δm,m̄
denotes Kronecker delta.

The Rogers-Szegő polynomials satisfying Eq. (17) are ob-
tained from monic sequences evaluated from iterative solu-
tions of Rogers-Szegő forward recurrence relation [42]. Let
us denote γm(Z), ∀m∈ {1,2, · · ·}, as the monic sequences of
νm(Z), then the Rogers-Szegő forward recurrence relation
is given as [43],[

γm(Z)
γ∗m(Z)

]
=

[
Z βm

β̄mZ 1

][
γm−1(Z)
γ∗m−1(Z)

]
, (18)

where m≥ 1, γ∗m(Z) is reciprocal of γm(Z), and βm = γm(0)
∀m ≥ 0 is Verblunsky coefficient 37. The reciprocal value
γ∗m(Z) is obtained as γ∗m(Z) =Zmγm(1/Z̄), where γ̄m denotes
the conjugate of γm. As mentioned in [36], the recurrence
relation can be initiated with γ0(Z) = γ∗0 (Z) = 1. Moreover,
β0 = 1 and |βm| < 1 ∀m ≤ 1 37. The readers may refer to
[36], [41] for a detailed discussion on γm(Z), βm, and the

properties of Rogers-Szegő polynomials for the family of
orthogonal polynomials on U.

The solution of the recurrence relation Eq. (18) corre-
sponding to fWN(θs;0,1) gives the desired monic sequences
in terms of τ-binomial coefficient as 37

γm(Z) =
m

∑
j=0

(−1)m− j
[

m
j

]
τ

τ
m− j

2 Z j, (19)

where τ-binomial coefficient is[
m
j

]
τ

=
(m)τ

( j)τ(m− j)τ

=
∏

m
k=m− j+1(1− τk)

∏
j
k=1(1− τk)

,

with 0 < τ < 1 and

(0)τ =

(
m
0

)
τ

=

(
m
m

)
τ

= 1.

After γm(Z) is obtained from Eq. (19), the mth Rogers-Szegő
polynomial is obtained as

νm(Z) =
1√
(m)τ

γm(Z), (20)

where

(m)τ =
m

∏
j=1

(1− τ
j).

From [41], τ = e−1 corresponding to the desired weight
function fWN(θs;0,1). Utilizing the above interpretations,
37 derives and states that the Ns number of desire Rogers-
Szegő quadrature points can be obtained as the phase of
complex roots of the polynomial

ANs(Z) =
Ns

∑
j=0

B j

[
1+δ (−1)Nsτ

( j−Ns/2)
]
Z j, (21)

where |δ |= 1 and

B j = (−1)Ns− j
[

Ns
j

]
τ

τ
Ns− j

2 ,

with j ∈ {1,2, · · · ,Ns}. Let us denote the roots of ANs(Z)
as λ j, ∀ j ∈ {1,2, · · · ,Ns}. Then, the jth Rogers-Szegő
quadrature point is obtained as χ j =∠λ j ∀ j ∈ {1,2, · · · ,Ns}.
Subsequently, the weight Wj associated with χ j can be
obtained in terms of monic sequence γNs as 37

Wj =
(Ns)τ

2Re[λ jγ
′
Ns
(λ j)γNs(λ j)]−Ns|γNs(λ j)|2

, (22)

where Re[·] represents the real part of complex number and
γ ′ denotes the first derivative of γ .

After χ j and Wj are obtained the univariate integral I1
0 (Fs)

given in Eq. (15) can be approximated as

I1
0 (Fs)≈

∫
π

−π

F(θs) fWN(θs)dθs ≈
Ns

∑
j=1

F(χ j)Wj. (23)

Table-1 illustrates the complex values of λ , the angular
points χ , and the associated weights W for eight-points
univariate Rogers-Szegő quadrature rule with τ = e−1.
Please note that τ = e−1 is an essential requirement for the
proposed RSPF as mentioned above.
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TABLE 1: Univariate quadrature points and associated
weights for τ = e−1 and Ns = 8.

λ χ = ∠λ W
- 0.82206297 ±0.56939659i ±2.5358 0.015354324

- 0.15523459 ±0.98787764i ±1.7267 0.066536929

0.52747007 ±0.849573610i ±1.0152 0.164552400

0.94424738 ±0.329236820i ±0.3355 0.253556350

2) Multivariate extension of Rogers-Szegő quadrature rule
In the above discussion, we introduced the univariate
Rogers-Szegő rule for approximating the univariate integral
I1
0 (Fs). We now extend the univariate Rogers-Szegő rule for

approximating the multivariate integral In
0 (F).

The product rule states that given the univariate Rogers-
Szegő quadrature points {χ1,χ2, · · · ,χNs} and the associated
weights {W1,W2, · · · ,WNs}, we can approximate In

0 (F) as

In
0 (F)≈

Ns

∑
s1=1

Ns

∑
s2=1
· · ·

Ns

∑
sn=1

F([χs1 ,χs2 , · · · ,χsn ])
n

∏
j=1

Ws j , (24)

where s1,s2, · · · ,sn ∈ {1,2, · · · ,Ns}.
Finally, we can approximate the desired intractable inte-

gral In corresponding to fWN(θθθ ; θ̂θθ ,P), as

In ≈
Ns

∑
s1=1

Ns

∑
s2=1
· · ·

Ns

∑
sn=1

F
(

θ̂θθ +S[χs1 ,χs2 , · · · ,χsn ]
) n

∏
j=1

Ws j .

(25)

We can rewrite the above expression as

In ≈
Np

∑
j=1

F
(

θ̂θθ +SΞ j

)
W j, (26)

where Np = (Ns)
n denotes the number of the multivariate

Rogers-Szegő quadrature points, while Ξ j = [χs1 χs2 , · · · ,χsn ]
and W j = ∏

n
j=1 Ws j , with s1,s2, · · · ,sn ∈ {1,2, · · · ,Ns}, rep-

resent the multivariate quadrature points and weights, re-
spectively. Moreover, S represents the Cholesky decompo-
sition of P, i.e., P = SST .

We can use the product rule-based multivariate Rogers-
Szegő quadrature rule for approximating the intractable
integrals appeared through Eqs. (5) to (11). Subsequently,
we can construct the proposal density q(θθθ i

k|θθθ
i
0:k−1,y1:k)

≈ fWN(θθθ
i
k; θ̂θθ

i
k|k,Pi

k|k) by determining the mean θ̂θθ
i
k|k and

the covariance Pi
k|k from Eqs. (7) and (8), respectively.

Considering that the multivariate quadrature points and
weights, i.e., Ξ j and Wj, ∀ j ∈ {1,2, · · · ,Np}, are available,
we refer to [23] for analytical steps used for implementing
the prediction and update steps discussed in Section III-B.

D. PARTICLE FILTERING WITH WRAPPED PROPOSAL
DISTRIBUTION
We now introduce the proposed RSPF using the wrapped
normal distribution for handling angular data. The RSPF

uses the proposal density determined through the subsec-
tions III-A-III-B in particle filtering. As discussed pre-
viously, we develop two filters, one for local sampling
and another for global sampling. We abbreviate the two
filters as LRSPF and GRSPF, respectively. The previous
discussions of this section provides the formulations for
the local sampling, i.e. for the LRSPF. The formulation for
GRSPF is similar, although simpler due to a single filter at
each time step.

1) LRSPF
The implementation of the proposed LRSPF comprises the
following steps.
• Initialization: We initialize the filter at k = 0 with initial

state θθθ 0 and initial covariance P0|0. Subsequently, we
generate the initial set of particles as {θθθ i

0}N
i=1 ∼ P(θθθ 0)

and the associated weights as {ω i
0}N

i=1 = 1/N.
• Particles and weights calculation at kth instant (k≥ 1):

Construct the initialization for kth instant from the
latest particles and covariance (assign θ̂θθ

i
k−1|k−1 and

Pi
k−1|k−1), and follow the steps below.

-- Propagate θ̂θθ
i
k−1|k−1 and Pi

k−1|k−1 through Eqs.

(5) to (11) to obtain θ̂θθ
i
k|k and Pi

k|k for each
particle. Then, the particles are updated by sam-
pling from wrapped normal distribution as θ̃θθ

i
k|k ∼

fWN(θθθ
i
k; θ̂θθ

i
k|k,Pi

k|k).
-- Subsequently, the weights are updated as

ω
i
k ∝ ω

i
k−1

P(yk|θ̃θθ
i
k|k)P(θ̃θθ

i
k|k|θθθ

i
k−1)

q(θ̃θθ
i
k|θθθ

i
0:k−1,y1:k)

. (27)

• Weight normalization: The weights are normalized as

ω
i
k =

ω i
k

∑
N
i=1 ω i

k
, (28)

and determine the effective sample size Ne f f as

Ne f f ≈
1

∑
N
i=1(ω

i
k)

2
. (29)

• Re-sampling: If Ne f f is below a preassigned threshold
value Nth, then we perform re-sampling [22] and a
new set θθθ

i
k ∀i ∈ {1,2, · · · ,N} is generated from the

current set of particles θ̃θθ
i
k ∀i∈ {1,2, · · · ,N}. In general,

we consider Nth = 2/3N. Furthermore, a new updated
weights are obtained as, ω i

k = 1/N.
• Estimation: Finally, the desired estimate and covariance

are obtained as

θ̃θθ k|k ≈
N

∑
i=1

ω
i
kθθθ

i
k, (30)

P̃k|k ≈
N

∑
i=1

ω
i
k

(
θθθ

i
k− θ̃θθ k|k

)(
θθθ

i
k− θ̃θθ k|k

)T
. (31)

The LRSPF requires implementing the algorithm discussed
through Eqs. (5) to (11) implemented once for each particle,
which increases the computational demand.
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2) GRSPF
In an alternate method to the LRSPF, a single proposal den-
sity is globally defined in order to reduce the computational
demand. This single proposal density is used for generating
all particles. The steps for implementing the GRSPF is
provided below.
• Initialization: This step is same as the LRSPF, which

can be followed from the previous discussion.
• Compute the mean and covariance of particles at kth

instant (k ≥ 1):

θ̂θθ k−1|k−1 ≈
N

∑
i=1

ω
i
k−1θθθ

i
k−1, (32)

Pk−1|k−1≈
N

∑
i=1

ω
i
k−1

(
θθθ

i
k−1−θ̂θθ k−1|k−1

)(
θθθ

i
k−1−θ̂θθ k−1|k−1

)T
.

(33)
-- Propagate θ̂θθ k−1|k−1 and Pk−1|k−1 through the al-

gorithm discussed in Section III-B to obtain θ̂θθ k|k
and Pk|k for single mean and covariances.

• Compute particles: Generate the desired particles as
{θ̃θθ i

k}N
i=1 ∼ fWN(θ̂θθ k|k,Pk|k).

• Compute weights: Update the weights

ω
i
k ∝ ω

i
k−1

P(yk|θ̃θθ
i
k|k)P(θ̃θθ

i
k|k|θθθ

i
k−1)

q(θ̃θθ
i
k|θθθ

i
0:k−1,y1:k)

. (34)

• The remaining steps are same as those discussed for
LRSPF.

For angular data, the proposed RSPF with wrapped normal
proposal and Rogers-Szegő quadrature rule for integration
is more accurate than the numerical approximation methods
used in the state-of-art particle filters such as the UPF,
CPF, and GHPF under assumed Gaussian density, as amply
illustrated in the next section. The LRSPF is slightly more
accurate than the GRSPF due to the local sampling and may
be preferred if computational budget is available.

For angular data, the wrapped normal distribution is
probably the most appropriately shaped distribution for
which numerical approximation methods to the desired
multivariate integrals are available. We have used this in-
tuition to develop a new particle filtering algorithm. In
the next section, we demonstrate its superior performance
on simulation examples on multivariate nonlinear systems
where data is inherently angular.

IV. SIMULATION EXAMPLES
In this section, we validate the performance of the proposed
RSPF for two angular filtering problems. The simulation is
performed in MATLAB on a PC with Intel Core i5, 7th gen
processor running at 3.40 GHz, 32 GB RAM, and a 64-bit
operating system.

We compare the performance of the proposed LRSPF and
GRSPF with various existing filters, including the particle
filter with transition density as its proposal (referred to as

PF) [20], unscented particle filter or the UPF [21], cubature
particle filter or the CPF [22], and Gauss-Hermite particle
filter or the GHPF [23], and the existing nonlinear circular
filter (CF) [19]. The existing filters, UPF, CPF, and GHPF
are implemented with local sampling to characterize them
with their best accuracy. Note that CF is applicable only for
univariate systems. Thus, it will be included in comparison
for the first simulation problem only, as the second problem
is multivariate.

The proposed LRSPF, GRSPF, and GHPF are imple-
mented with two univariate quadrature points. The κ pa-
rameter for implementing the UPF is assigned as κ = 4.
Finally, CF is applied by considering a three-point wrapped
Dirac mixture distribution.

The performance analysis and comparison are based on
angular root mean square error (RMSE) between the true
and estimated states. Note that the true and the estimated
states may often fall beyond the angle range (−π , π] due
to noise. In such cases, we perform aliasing to obtain the
equivalent angle within (−π , π]. The angular root mean
square error (RMSE) is expressed as,

RMSEk =

√
1

MC

MC

∑
i=1

(
min

(
|θ̃ i

k|k−θ i
k|,2π−|θ̃ i

k|k−θ i
k|
))2

where θ i
k and θ̃ i

k|k are the true and the estimated states at kth

time-step and in ith simulation run, and MC is the number
of Monte-carlo simulations.

A. PROBLEM 1
This is an angle estimation problem of a robot’s arm [19],
which is briefly discussed in the introduction section. The
dynamic state space model of the system is given as [19]

θk = θk−1 +d1 sin(θk−1)+d2 +ηk−1, (35)

yk =

[
sin(θ k)
cos(θk)

]
+ϑk, (36)

where d1 and d2 are constants.
The initial true and estimated states are taken as θ0 = 0

and θ̃0|0 = π , respectively, while the initial variance is taken
as P0|0 = 2. We assign d1 = 0.1, d2 = 0.15, Q= 0.1, and R=
diag(0.2,0.2). The simulation is performed for 200 time-
steps and angular RMSEs are computed by implementing
1000 Monte-Carlo simulations.

Fig. 2 shows the angular RMSE plots and Table-2 shows
the average angular RMSEs of the LRSPF, GRSPF and
the existing filters using different numbers of particles. The
figure and table together indicate that RMSE is significantly
reduced for both the LRSPF and GRSPF, as compared to the
existing choices of proposal densities, viz PF, UPF, CPF and
GHPF. More specifically, Table 2 concludes that the average
angular RMSEs of LRSPF and GRSPF (100 particles) are
reduced by 26.45% and 18.05%, respectively compared with
the PF. We can observe a similar relative percentage of
improvement for the proposed filters compared with the
remaining existing filters. However, it is also interesting to
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FIGURE 2: Problem 1: Angular RMSE plot with time for
the proposed and the existing filters.

TABLE 2: Problem 1: Average angular RMSEs obtained
for the proposed filter and the existing filters with varying
number of particles.

Filters 10 particles 50 particles 100 particles
PF 0.838 0.827 0.809

UPF 0.937 0.927 0.883
CPF 0.865 0.855 0.810

GHPF 0.911 0.900 0.830
CF 0.684 0.684 0.684

GRSPF 0.698 0.679 0.663
LRSPF 0.674 0.655 0.595

note that the existing circular filter CF outperforms the other
existing filters.

The RMSE of the GRSPF is higher than the LRSPF, as
expected. However, even global sampling using wrapped
normal distribution as a proposal (i.e. the GRSPF) leads to
a better estimation accuracy than Gaussian density proposal
filters using local sampling, even as local sampling leads to
a significantly higher computational cost.

Relative computational times of different filters are listed
in Table 3. Thus, the computational time for the proposed
GRSPF is lower than all the algorithms which require
local sampling, while it still delivers a superior estimation
performance to PF, UPF, CPF and GHPF. CF is not a
particle filtering algorithm and has a constant computational
cost as well as constant RMSE, relative to the number of
particles. Note that global sampling in UPF, CPF and GHPF
leads to poorer accuracy than that using local sampling, and
hence, the results of the global sampling for these algorithms
are omitted. LRSPF further increases the accuracy of our
algorithm, at the expense of somewhat higher computational
cost.

B. PROBLEM 2
The second problem considered is a general multivariate
nonlinear angular estimation problem [14]. In this problem,
the state dynamics are of oscillatory nature, while the
measurement equation is a monotone increasing function
of arguments (e.g. a positive quadratic form or its positive
square root). Similar, system models often appear in sonar-
based bearing measurements and GPS (Global positioning

TABLE 3: Problem 1: Relative computational times for the
proposed filter and the existing filters with varying number
of particles.

Filters 10 particles 50 particles 100 particles
PF 1 1 1

UPF 2.19 2.13 2.02
CPF 1.93 1.83 1.71

GHPF 1.85 1.83 1.72
CF 4.53 1.22 0.63

GRSPF 1.47 1.44 1.33
LRSPF 1.83 1.85 1.74

system)-based information on the angle of arrival. This
problem has been widely used in literature [11], [14], [44],
[45] for validating the filtering performance. The state-space
model of this problem can be written as [14],

θθθ k = |2cos(θθθ k−1)|+ηk−1, (37)

yk =

√
(1+θθθ

T
k θθθ k)+ϑk. (38)

We consider a three-dimensional system (θθθ k ∈ D3, yk ∈ D)
and assign the initial true and estimated states as θθθ 0 =
[0,−π,π]T and θ̃θθ 0|0 = [−π,π,π/2]T , respectively, while
initial error covariance is taken as P0|0 = 2In. The noise
covariances are assigned as Q = diag([0.05,0.05,0.05]) and
R = 0.1. The states are estimated for 200 time-steps and the
results are evaluated by performing 1000 Monte-Carlo runs.

Fig. 3 shows the angular RMSE plots of the three states
obtained using the LRSPF, GRSPF and the existing filters.
Moreover, Table-4 shows the average angular RMSEs ob-
tained using each filter for varying number of particles. Note
that the figures and table do not include the results for CF,
as this problem is multivariate. As in the case of problem
1, LRSPF and GRSPF yield lower average angular RMSE
than all the other filters examined. Furthermore, Table 4
concludes that the average angular RMSEs of LRSPF and
GRSPF (100 particles) are reduced by 22% and 18.25%,
respectively compared with the PF. We can conclude a
similar relative percentage of accuracy improvement for the
proposed filters compared to other filters as well. The order
of computational times of all filters was observed similar
to the order reported for the first problem. In this case as
well, GRSPF gives a better accuracy than existing Gaussian
proposal filters at a lower computational cost.

C. NOISE PARAMETER VARIATIONS
We further study the effect of varying process and measure-
ment noise parameters on the performance of the proposed
RSPF. In this regard, we define three different scenarios by
varying the process and measurement noise covariances Q
and R. For the first problem, the three different scenarios are
defined as: Scenario 1: Q = 0.05, and R = diag(0.02,0.02),
Scenario 2: Q = 0.1, and R = diag(0.2,0.2), and Sce-
nario 3: Q = 0.5, and R = diag(1,1). Similarly, we define
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TABLE 4: Problem 2: Average angular RMSEs obtained for the proposed filter and the existing filters with varying number
of particles.

Filters 10-particles 50-particles 100-particles
State1 State2 State3 State1 State2 State3 State1 State2 State3

PF 0.768 0.748 0.761 0.666 0.648 0.660 0.641 0.625 0.633
UPF 0.681 0.665 0.672 0.621 0.604 0.610 0.607 0.591 0.601
CPF 0.663 0.646 0.658 0.613 0.599 0.605 0.603 0.587 0.598

GHPF 0.668 0.649 0.656 0.615 0.599 0.605 0.604 0.588 0.597
GRSPF 0.580 0.564 0.589 0.539 0.521 0.543 0.524 0.508 0.522
LRSPF 0.553 0.535 0.542 0.509 0.490 0.500 0.500 0.487 0.495
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FIGURE 3: Problem 2: Angular RMSE plot with time for
the proposed and the existing filters.

the three scenarios for the second problem as: Scenario
1: Q = diag([0.05,0.05,0.05]) and R = 0.1, Scenario 2:
Q = diag([0.25,0.25,0.25]) and R = 0.5, and Scenario 3:
Q = diag([0.5,0.5,0.5]) and R = 1. We draw the bar charts
of the average angular RMSEs obtained for the proposed
and the existing filters for all three scenarios in Fig. 4 for
Problem 1 and in Fig. 5 for Problem 2. In all the cases,
the average angular RMSE is lower for the LRSPF and the
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FIGURE 4: Problem 1: Comparison of the average angular
RMSEs for the proposed RSPF and the existing filters under
three different scenarios.

GRSPF as compared to the other filters.

D. DISCUSSION
The simulation results infer that the proposed RSPF out-
performs the traditional PF, the existing extensions of the
PF (such as the UPF, CPF, and GHPF), and the circular
filter CF for angular data. Interestingly, the proposed RSPF
could outperform all the existing forms of PF at lower
computational demand. We also introduce two forms of
the proposed RSPF, abbreviated as LRSPF and GRSPF.
They can be used to achieve a different trade-off between
the accuracy and computational demand, particularly if the
number of particles is high. We also observe that the pro-
posed RSPF outperforms all the existing filters for various
noisy environments, which validates the improved accuracy
of the proposed method under different practical scenarios.

V. CONCLUSION
The particle filtering is a popular and widely accepted
nonlinear filtering method available in literature. A crucial
determinant of its performance is the choice of proposal
density. Most existing particle filters use Gaussian pro-
posal and tend to perform poorly for estimation of angular
quantities on a restricted domain. The proposed RSPF uses
wrapped normal distribution instead of the ordinary normal
distribution as the proposal density. Subsequently, it closely
represents the proposal density for angular data. Further, we
propose to use i) conditional density approximation similar
to the Gaussian filtering case to derive posterior densities
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FIGURE 5: Problem 2: Comparison of the average angular RMSEs for the proposed RSPF and the existing filters under
three different scenarios.

and ii) use Rogers-Szegő quadrature rule along with the
product rule for approximating the integrals involved. We
compare the performance of two variants of the new filter
(with local sampling and with global sampling) with existing
Gaussian filters. On two different simulation examples, the
proposed filter is shown to outperform Gaussian proposal fil-
ters comprehensively. We show that even a global sampling
variant of our filter is more accurate than the local sampling
versions of existing Gaussian filters, even though global
sampling leads to a significantly reduced computational cost.
Local sampling version of the RSPF can lead to some what
increased accuracy at the cost of a higher computational
load. Additionally, the product rule suffers from the curse
of dimensionality problem [46]. However, the practitioners
may replace the product rule with the Smolyak rule [46]
and adaptive sparse-grid method [47] to partially address
this problem.
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