
A data-driven disease progression model of
fluid biomarkers in genetic frontotemporal
dementia
Emma L. van der Ende,1 Esther E. Bron,2 Jackie M. Poos,1 Lize C. Jiskoot,1

Jessica L. Panman,1 Janne M. Papma,1 Lieke H. Meeter,1 Elise G. P. Dopper,1

Carlo Wilke,3,4 Matthis Synofzik,3,4 Carolin Heller,5 Imogen J. Swift,5

Aitana Sogorb-Esteve,5,6 Arabella Bouzigues,6 Barbara Borroni,7

Raquel Sanchez-Valle,8 Fermin Moreno,9,10 Caroline Graff,11,12 Robert Laforce Jr13

Daniela Galimberti,14,15 Mario Masellis,16 Maria Carmela Tartaglia,17

Elizabeth Finger,18 Rik Vandenberghe,19 James B. Rowe,20 Alexandre de Mendonça,21

Fabrizio Tagliavini,22 Isabel Santana,23 Simon Ducharme,24

Christopher R. Butler,25,26 Alexander Gerhard,27,28 Johannes Levin,29,30,31

Adrian Danek,29 Markus Otto,32 Yolande A. L. Pijnenburg,33 Sandro Sorbi,34

Henrik Zetterberg,5,35 Wiro J. Niessen,2 Jonathan D. Rohrer,6 Stefan Klein,2

John C. van Swieten,1 Vikram Venkatraghavan2,† and Harro Seelaar1,† on behalf of
the GENFI consortium

†These authors contributed equally to this work.

Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those
reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse
dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation
(C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could fa-
cilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal demen-
tia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker
abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data
from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study.
Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or
MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the
aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample col-
lection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discrimina-
tive event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate
probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or
biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their
position along the disease progression timeline.
CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood
phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q.
Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the
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C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presympto-
matic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80–0.89) and 0.90 (0.86–
0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic car-
riers was 0.85 (0.75–0.95).
Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are
the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate
selection tools for pharmaceutical trials. The model’s ability to accurately estimate individual disease stages could
improve patient stratification and track the efficacy of therapeutic interventions.
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Introduction
Frontotemporal dementia (FTD), a form of early-onset dementia
characterized by prominent behavioural and/or language impair-
ments, is frequently caused by autosomal dominant mutations in
granulin (GRN), chromosome 9 open reading frame 72 (C9orf72) or
microtubule-associated protein tau (MAPT).1,2 Upcoming thera-
peutic trials may be most effective in early-stage FTD, when neur-
onal damage is minimal. In contrast to genetic Alzheimer’s
disease, disease onset in FTD mutation carriers cannot be pre-
dicted based on familial onset age,3 highlighting the need for bio-
markers that can identify early disease activity. Furthermore, as
drug efficacy may vary depending on disease severity, objective
tools to stratify patients according to their disease stage are
needed.4,5

Several promising CSF and blood biomarkers of FTD have
been investigated, including neurofilament light chain (NfL) and
phosphorylated neurofilament heavy chain (pNfH), which reflect
neuroaxonal degeneration6–9; neuronal pentraxin 2 (NPTX2), a
marker of synapse integrity10,11; glial fibrillary acidic protein
(GFAP), a marker of astrogliosis12–14 and complement factors C1q
and C3b, which reflect activation of the complement system.15,16

As of yet, it is unclear when these biomarkers become abnormal
and what temporal relationship exists between them.
Determining the sequence in which biomarkers change could fa-
cilitate disease staging and elucidate which biomarker is the
most sensitive to detect early disease activity in presymptomatic
mutation carriers.

Discriminative event-based modelling (DEBM) is a class of dis-
ease progression modelling that uses cross-sectional data to esti-
mate the most probable order of events, in this case abnormality
of biomarkers, over the course of disease. Individuals are subse-
quently assigned a disease stage within this sequence based on
their biomarker values. These models are robust to missing data
and do not rely on predetermined clinical diagnoses or biomarker
cut-off points.17 We previously used DEBM to study the sequence
of mostly cognitive and neuroimaging biomarker changes in GRN-
associated FTD,18 and similar event-based models have been
applied to various other neurological disorders, including
Alzheimer’s disease,17,19–22 Parkinson’s disease,23 amyotrophic lat-
eral sclerosis24 and multiple sclerosis.25 The encouraging results of
these studies indicate that DEBM may be a promising strategy to
model fluid biomarker changes.

The current study aimed to estimate the sequence in which the
aforementioned fluid biomarkers become abnormal over the
course of genetic FTD, by applying DEBM to data from the Genetic
Frontotemporal dementia Initiative (GENFI).26

Materials and methods
Subjects

Subjects were included from 21 centres across Europe and Canada
participating in GENFI, an ongoing longitudinal cohort study
since 2012 of patients with FTD due to a pathogenic mutation in
GRN, C9orf72 or MAPT and healthy 50% at-risk relatives (either pre-
symptomatic mutation carriers or non-carriers). Participants
underwent an annual assessment as previously described,26

including neurological and neuropsychological examination, MRI
of the brain and collection of blood and CSF. Knowledgeable
informants completed questionnaires about potential changes in
cognition or behaviour.

For the present study, participants were selected based on the
availability of one or more of the following biomarker measure-
ments: CSF or serum NfL, serum pNfH, CSF NPTX2, plasma GFAP,
CSF C1q and CSF C3b (Table 1). The final cohort consisted of 127
symptomatic mutation carriers (49 GRN, 54 C9orf72, 24 MAPT), 275
presymptomatic mutation carriers (128 GRN, 102 C9orf72, 45 MAPT)
and 247 non-carriers. In the case of multiple available biomarkers
at different time points, the time point with the most available bio-
markers was selected. The follow-up duration after sample collec-
tion was at least 18 months for all subjects.

Mutation carriers were considered symptomatic if they fulfilled
international consensus criteria for behavioural variant FTD
(bvFTD) or primary progressive aphasia (PPA).32,33 Subjects with
isolated or concomitant amyotrophic lateral sclerosis were
excluded from the current study, as biomarker trajectories in this
clinically distinct phenotype differ from those in other FTD sub-
types,34–36 which could affect the overall model. We calculated dis-
ease duration based on a caregiver’s estimation of the emergence
of first symptoms. The Mini-Mental State Examination (MMSE) and
the Clinical Dementia Rating scale plus NACC FTLD-sum of boxes
(CDRVR + NACC FTLD-SB) were used as measures of global
cognition.37

T1-weighted MRI on 3-T scanners was obtained within 6
months of sample collection using a standardized GENFI protocol.
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T1-weighted volumetric MRI scans were parcellated into brain
regions as previously described,26 using an atlas propagation and
fusion strategy to generate grey matter volumes of the whole brain
and frontal, temporal, parietal and occipital lobes. Brain volumes
were expressed as a percentage of total intracranial volume, com-
puted with SPM12 running under MATLAB R2014b (MathWorks,
Natick, MA, USA).38

Sample collection and laboratory methods

Serum and plasma were collected by venipuncture in serum-
separating tubes and EDTA tubes, respectively, and CSF was col-
lected in polypropylene tubes. Samples were centrifuged and
stored at –80�C until use according to a standardized GENFI
protocol.

All biomarker measurements were performed as part of
previous or ongoing GENFI studies,7,10,12 leading to minor varia-
tions in the sample set per biomarker (Supplementary Table 1).
Measurements for each biomarker were performed in duplicate,
and samples with a duplicate coefficient of variation 420% were
remeasured or excluded from the analyses. Laboratory technicians
were blinded to clinical and genetic status.

CSF and serum NfL and serum pNfH were measured using the
Simoa NF-light Advantage kit and pNfH Discovery kit from
Quanterix (Billerica, MA, USA) on a Simoa HD-1 Analyzer.7,8,10 An
in-house ELISA was used to measure CSF NPTX2.10,11 Plasma GFAP
was measured using the multiplex Neurology 4-plex A kit from
Quanterix on a Simoa HD-1 Analyzer.12 CSF C1q and C3b were
measured using the ELISA kits Human Complement C1q
(ab170246) and Human Complement C3b (ab195461) from Abcam
(Boston, MA, USA).15

Standard protocols and patient consents

Local ethics committees at each site approved the study, and writ-
ten informed consent was obtained from all participants according
to the declaration of Helsinki. Clinical researchers were blinded to
the genetic status of at-risk individuals unless they had undergone
predictive testing.

Statistical analysis

Demographic and clinical variables were compared between
groups (symptomatic, presymptomatic, non-carrier) using
Kruskal–Wallis tests for continuous variables and a Chi-square
test for sex. Biomarker levels were correlated with MMSE and

CDRVR + NACC FTLD scores as well as with grey matter volumes
using Spearman’s rho.

All biomarkers were non-normally distributed. Normal distri-
butions for biomarkers were achieved after log-transformation,

DEBM requires sufficient separation of biomarker distributions be-
tween symptomatic mutation carriers and non-carriers, and we
used independent sample t-tests to ensure the presence of statis-
tically significant differences in biomarker distributions between
these groups. All models were corrected for age, sex and study site.

Estimating biomarker ordering using discriminative
event-based modelling

To estimate the most likely biomarker ordering, DEBM follows a
three-step process.17 First, it estimates the distribution of normal
and abnormal values for each biomarker using Gaussian mixture
modelling (GMM) and computes the probability for each subject
that the biomarker is abnormal. In the present study, normal
Gaussians were fixed to the mean and standard deviation of bio-
marker values from the non-carriers, and GMM was subsequently
used to estimate the abnormal Gaussians and the mixing param-
eter.18 Next, based on the probability distributions of the bio-
markers, an approximate sequence of biomarker abnormality is
calculated for each subject. Finally, these individual sequences are
combined to create a robust biomarker ordering for the whole
population. To estimate the uncertainty of this ordering, we per-
formed bootstrap resampling with 100 different random seeds
from the same cohort and estimated biomarker ordering for each
of those randomly sampled datasets.

The number of subjects for whom CSF biomarkers were avail-
able was smaller than for blood biomarkers due to the relative dif-
ficulty of obtaining CSF. As these differences in sample size could
potentially affect biomarker ordering, we additionally constructed
models that included only subjects for whom all CSF biomarkers
were available (‘CSF only model’) and for whom all blood bio-
markers were available (‘blood only model’); in these models, the
sample size was equal for all biomarkers.

To detect potential gene-specific biomarker orderings, we built
separate models for each genetic subgroup (GRN, C9orf72 and
MAPT) using co-initialized DEBM, a modified version of DEBM.21

Briefly, co-initialized DEBM splits the different steps of DEBM into
group-unspecific and group-specific parts. The entire dataset is
used to train the group-unspecific parts and data from genetic sub-
groups is used to train the group-specific parts, resulting in more
accurate orderings than the default approach of independently

Table 1 Selected fluid biomarkers and their biological significance

Biomarker Primary source in the
nervous system

Primary function in the
nervous system

Direction of biomarker
change in FTD

Process implicated in
biomarker change

CSF and serum NfL6–9,27 Axonal cytoskeleton Axon stability and
transport

Increase Neuroaxonal breakdown

Serum pNfH8,27,28 Axonal cytoskeleton Axon stability and
transport

Increase Neuroaxonal breakdown

CSF NPTX210,11,29–31 Excitatory synapses on
GABAergic interneurons

Glutamate-receptor re-
cruitment, synaptic
plasticity

Decrease Loss and/or dysfunction
of synaptic
connectivity

Plasma GFAP12–14 Astrocytes Structural integrity, move-
ment and shape change

Increase Astrocytosis

CSF C1q15,16 Neurons and microglia Classical complement
pathway activation

Increase Activation of the comple-
ment system

CSF C3b15,16 Neurons and microglia Opsonization and down-
stream activation of the
complement system

Increase Activation of the comple-
ment system
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training a DEBM model in each group. To test for differences in bio-
marker ordering between genetic subgroups, we estimated the dis-
tribution of the Kendall’s Tau distance under the null hypothesis
using 10 000 random permutations of the three subgroups. One-
sided P-values were computed for the actual Kendall’s Tau distan-
ces between the orderings of the groups based on the proportion of
the sampled permutations where the distance was greater than or
equal to the actual distance.

Model validation and estimating disease stages

Using 10-fold cross-validation, each subject was assigned a disease
stage on a continuous scale from zero to one. These disease stages
were solely based on individual biomarker profiles and their pos-
ition along the disease progression timeline (based on the esti-
mated order of biomarker changes), without the use of clinical
labels (e.g. presymptomatic or symptomatic) or conventional clin-
ical severity measures such as grey matter atrophy or clinical dis-
ease severity. We calculated areas under the curve (AUCs) to
discriminate between symptomatic and presymptomatic carriers,
as well as between symptomatic carriers and non-carriers.
Presymptomatic carriers were subsequently split into two groups:
those who became symptomatic within 18 months of follow-up
(‘converters’) and those who remained presymptomatic (‘non-con-
verters’), and we calculated the AUC to discriminate between these
two groups as well. Using Spearman’s rank correlations, we exam-
ined whether estimated disease stages correlated with (i) MMSE
score and CDRVR + NACC FTLD-SB score in mutation carriers, (ii)
grey matter volume of the whole brain and frontal, temporal, par-
ietal and occipital lobes in mutation carriers (iii) disease duration
in symptomatic carriers and (iv) time to symptom onset in
converters.

Data availability

The raw data of this project is part of GENFI and de-identified par-
ticipant data can be accessed on reasonable request to h.seelaar@
erasmusmc.nl and genfi@ucl.ac.uk.

Results
Subjects

Subject characteristics are shown in Table 2. Symptomatic muta-
tion carriers were older and had lower MMSE and higher CDRVR +
NACC FTLD-SB scores than presymptomatic carriers and non-car-
riers. Furthermore, symptomatic carriers had significantly higher
levels of serum and CSF NfL, serum pNfH, plasma GFAP, CSF C1q
and C3b, as well as lower levels of CSF NPTX2, compared to pre-
symptomatic carriers and non-carriers. Nine presymptomatic car-
riers converted to the symptomatic stage during follow-up; the
median time interval between sample collection and symptom
onset was 6 months (range 2–13 months). For all biomarkers, we
observed correlations with MMSE and CDRVR + NACC FTLD-SB
scores as well as grey matter volume among mutation carriers
(Supplementary Table 2).

Sequence of biomarker abnormalities

Figure 1 shows GMM estimations with normal and abnormal
Gaussian distributions for each biomarker. Overall, estimated
Gaussians fitted the observed histograms well.

The estimated sequence of biomarker abnormalities and asso-
ciated uncertainty is shown in Fig. 2. CSF NPTX2 was ordered first,
followed by serum and CSF NfL, serum pNfH, plasma GFAP and fi-
nally CSF C3b and C1q. Two clusters of relatively large uncertainty

were noted: the first for NfL measurements in serum and CSF, and
the second for biomarkers that became abnormal at later disease
stages (pNfH, GFAP, C3b and C1q).

The models including only subjects with all CSF biomarkers
(n = 225) or all blood biomarkers (n = 342) estimated the same
ordering as the full model (Supplementary Fig. 1).

Estimation of disease stage

Overall, most non-carriers and presymptomatic carriers were
assigned low disease stages, with little or no biomarker abnormal-
ity, whereas most symptomatic carriers were assigned later stages
of disease. Furthermore, converters (n = 9) were assigned higher
disease stages than non-converting presymptomatic carriers
(n = 267) (Fig. 3). Estimated disease stages could discriminate
symptomatic from presymptomatic carriers with an AUC of 0.84
[95% confidence interval (CI) 0.80–0.89], and symptomatic carriers
from non-carriers with an AUC of 0.90 (95% CI 0.86–0.94). The AUC
to discriminate converters from non-converters was 0.85 (95% CI
0.75–0.95).

Estimated disease stages in mutation carriers correlated with
MMSE (rs = –0.467, P50.001) and CDRVR + NACC FTLD-SB scores
(rs = 0.530, P5 0.001), but not with disease duration (rs = 0.124,
P = 0.127) (Fig. 4). Correlations were additionally found with whole

(all correlations: P50.001). In converters, estimated disease stages
correlated with the time to symptom onset (rs = –0.678, P = 0.045).

A small number of symptomatic carriers was assigned relative-
ly low disease stages. To further investigate this, we divided symp-
tomatic carriers into three equal-sized groups with low, moderate
and high disease stages as estimated by the model. Subjects with
low disease stages were more commonly C9orf72 or MAPT muta-
tion carriers, more frequently suffered from bvFTD, had higher
MMSE scores and a trend towards longer disease duration than
those with higher disease stages. Furthermore, these subjects had
significantly lower levels of CSF NfL, serum NfL and plasma GFAP
than symptomatic carriers with moderate or high disease stages
(Table 3).

Genetic subgroup analyses

Biomarker levels for genetic subgroups are reported in
Supplementary Table 3. Supplementary Fig. 2 shows the gene-spe-
cific GMM estimations of normal and abnormal biomarker
distributions.

Estimated sequences of biomarker abnormality did not differ
significantly between each of the genetic subgroups or compared
to the full model. More uncertainty was observed than in the full
model, especially for C9orf72 and MAPT mutation carriers
(Supplementary Fig. 3).

In each genetic subgroup, symptomatic carriers were assigned
higher disease stages than presymptomatic carriers (Fig. 5).
However, separation of symptomatic and presymptomatic carriers
was much clearer for GRN than for C9orf72 and MAPT mutation car-
riers, which was reflected in the AUCs [GRN: 0.91 (95% CI 0.87–0.95);
C9orf72: 0.75 (0.66–0.84); MAPT: 0.68 (0.52–0.84)].

Discussion
In this large, international study, we constructed a disease pro-
gression timeline of genetic FTD using a broad selection of fluid
biomarkers. DEBM revealed that CSF NPTX2 was the first biomark-
er to become detectably abnormal, followed by NfL in serum and
CSF, whereas pNfH, GFAP, C3b and C1q abnormality was estimated
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to occur at later disease stages. These findings provide novel
insights into biomarker trajectories in genetic FTD and have im-
portant consequences for clinical trial design.

Our model indicates that NPTX2 reductions, which are thought
to reflect a loss or dysfunction of certain excitatory synapses,11,29–

31 occur at a relatively early stage in FTD. This finding is in line
with the NPTX2 decreases observed before and around symptom
onset in a small number of longitudinal CSF samples10 in genetic
FTD, and corroborates extensive evidence for synapse pathology
as an early event in the neurodegenerative process.39–41 The early
changes in serum and CSF NfL similarly correspond with previous
studies,6,7 including our DEBM study of GRN mutation carriers,18

and support the use of these biomarkers as tools to identify early
FTD in mutation carriers.4 Within-individual changes in NPTX2
and NfL might be even more sensitive to disease activity than sin-
gle measurements.7,10,27,28 Using CSF biomarkers to screen muta-
tion carriers for clinical trial enrolment is inevitably hampered by
the invasive nature of lumbar punctures, especially for repeated
measurements, and blood is the preferred medium. Therefore, it is
promising that NPTX2 also appears to be measurable in blood,42

and future studies should aim to determine blood NPTX2 levels in
FTD. Furthermore, it is reassuring that our model ordered serum
NfL change before CSF NfL. While this finding could partly be influ-
enced by the larger sample size for serum than CSF, and therefore
greater statistical power to detect biomarker abnormality, it sug-
gests that serum NfL is not inferior as an early disease marker.

Serum pNfH was estimated to become abnormal later than CSF
or serum NfL. This suggests that early-stage FTD might be charac-
terized by elevated levels of serum NfL, but not pNfH, in which
case the simultaneous measurement of both neurofilaments could
facilitate disease staging. pNfH and NfL are both major structural

components of axons normally present in a ratio of 4:1 (NfL:pNfH)
and are released on neuroaxonal damage.43 While pNfH has not
been extensively studied in FTD, a longitudinal study of familial
amyotrophic lateral sclerosis showed that both serum NfL and
pNfH levels increased before symptom onset, but only NfL
exceeded absolute thresholds in the presymptomatic stage.28 A
possible explanation for this discrepancy in NfL and pNfH dynam-
ics lies in the ratio of NfL to pNfH expression, which increases dur-
ing neurodegeneration as an energy-saving mechanism,44,45

leading to relatively more NfL and less pNfH release.
Consequently, only measuring pNfH could underestimate the de-
gree of axonal breakdown. Furthermore, in contrast to NfL, CSF
and serum pNfH are only moderately correlated8,46,47; whether this
reflects differences in clearance dynamics,8,28,48 or difficulties in
detecting serum pNfH, e.g. due to aggregate formation or dephos-
phorylation,43,49–51 is unclear. Including CSF pNfH measurements
in similar models might help elucidate these complex
relationships.

The relatively late ordering of GFAP in our model contrasts
somewhat with a previous study that indicated GFAP levels in-
crease in the presymptomatic stage in conjunction with early atro-
phy.12 This discrepancy might be explained by the overlapping
GFAP levels between presymptomatic and symptomatic mutation
carriers, especially in C9orf72 and MAPT carriers. The ensuing un-
certainty could lead the model to estimate detectable abnormality
at a later stage. Similarly, C1q and C3b are relatively weak bio-
markers, as is seen in the GMM distribution figures, possibly
explaining their late position on the disease progression timeline.
These considerations underline that one cannot comment on the
order of underlying pathological processes, as the estimated se-
quence may be affected by the strength of the biomarkers.17,19 The

Table 2 Subject characteristics

Non-carriers Presymptomatic carriers Symptomatic carriersa P

n 247 275 127 –
GRN – 128 49 –
C9orf72 – 102 54 –
APT – 45 24 –

Age 45 (37–58) 44 (35–54) 63 (56–69) 50.001e

Sex, male (%) 109 (44%) 105 (38%) 75 (59%) 50.001
MMSEb 30 (29–30) 30 (29–30) 25 (20–27) 50.001e

CDRVR + NACC FTLD-SBc 0 (0–0) 0 (0–0) 9.5 (3.5–14) 50.001e

Whole brain volumed 80.4 (78.8–82.4) 80.2 (77.7–81.9) 71.6 (69.3–75.0) 50.001e

Frontal lobe volumed 12.5 (12.0–12.9) 12.5 (11.9–13.0) 10.6 (9.8–11.3) 50.001e

Temporal lobe volumed 8.5 (8.2–8.8) 8.4 (8.1–8.7) 7.5 (6.9–7.9) 50.001e

Parietal lobe volumed 6.6 (6.3–6.9) 6.5 (6.2–6.9) 5.7 (5.4–6.1) 50.001e

Occipital lobe volumed 5.1 (4.8–5.5) 5.1 (4.8–5.3) 4.8 (4.4–5.0) 50.001e

CSF NfL, pg/ml 422 (298–555) 470 (315–731) 2393 (951–4023) 50.001e

Serum NfL, pg/ml 7 (5–11) 8 (5–8) 40 (23–62) 50.001e

Serum pNfH, pg/ml 48 (21–101) 42 (20–94) 139 (80–326) 50.001e

CSF NPTX2, pg/ml 990 (604–1373) 988 (633–1274) 624 (291–872) 50.001e

Plasma GFAP, pg/ml 105 (80–144) 109 (82–156) 212 (131–310) 50.001e

CSF C1q, ng/ml 295 (208–397) 265 (207–350) 339 (279–464) 0.002f

CSF C3b, ng/ml 2634 (1730–3556) 2456 (1786–3285) 3296 (2612–4737) 0.001g

Continuous variables are shown as medians (interquartile range, IQR). All continuous variables were compared between groups using Kruskal–Wallis tests, and, in the case of

statistically significant differences, post hoc tests with Bonferroni correction were applied. Sex distributions were compared using a Chi-square test. Regional grey matter vol-

umes are expressed as a percentage of total intracranial volume. The sample size for each of the fluid biomarkers is reported in Supplementary Table 1.
aPhenotypes: behavioural variant FTD (n = 93), primary progressive aphasia (PPA) not otherwise specified (n = 13), non-fluent variant PPA (n = 12), memory-predominant FTD

(n = 3), corticobasal syndrome (n = 2), dementia not otherwise specified (n = 2), semantic variant PPA (n = 1), progressive supranuclear palsy (n = 1).
bMMSE score available in 231 non-carriers, 263 presymptomatic and 111 symptomatic carriers.
cCDRVR + NACC FTLD-SB score available in 173 non-carriers, 205 presymptomatic and 85 symptomatic carriers.
dNeuroimaging data available in 225 non-carriers, 255 presymptomatic and 79 symptomatic carriers.
eSymptomatic versus presymptomatic carriers: P50.001; symptomatic versus non-carriers: P50.001.
fSymptomatic versus presymptomatic carriers: P = 0.001; symptomatic versus non-carriers: P = 0.019.
gSymptomatic versus presymptomatic carriers: P = 0.001; symptomatic versus non-carriers: P = 0.002.
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reported biomarker changes provide valuable insights into the
pathological processes occurring during FTD; animal and cellular
models might elucidate their role in disease pathogenesis (i.e.
whether these processes are causal or secondary and whether
they are protective or detrimental).

We validated the model by showing that the estimated disease
stages could accurately distinguish presymptomatic from symp-
tomatic mutation carriers and correlated with MMSE and CDRVR +
NACC FTLD-SB scores. Interestingly, converters had similar dis-
ease stages to symptomatic carriers, providing evidence that at
least some of the included biomarkers were already abnormal be-
fore symptom onset. The high accuracy to distinguish converters
from non-converting presymptomatic carriers and the inverse cor-
relation between estimated disease stages and time to symptom
onset tentatively suggest that the model might be able to predict
conversion. Replication of our findings with more converters is
needed to confirm this. The small number of presymptomatic
non-converters with high disease stages raises the question
whether these subjects may be approaching conversion, or
whether unrecognized factors might be either delaying symptom
onset or affecting biomarker levels. Further follow-up as part of
the GENFI study might clarify this.

Notably, we observed several mutation carriers, both presymp-
tomatic and symptomatic, with high estimated disease stages but
near-normal MMSE and CDRVR + NACC FTLD-SB scores, suggesting
that these clinical measures might underestimate the ongoing
pathological process. It would be interesting to examine the rela-
tionship between estimated disease stages and more sensitive
cognitive and behavioural measures of FTD, such as those specific-
ally reflecting executive functioning, language and social
cognition.52,53

Some symptomatic mutation carriers were assigned unexpect-
edly low disease stages. These subjects had less severe disease, as
measured by the MMSE and CDRVR + NACC FTLD-SB, and a trend
towards a longer disease duration than those with higher disease
stages. The low disease stages in these subjects are probably
driven by the low levels of CSF and serum NfL as well as plasma

Figure 1 GMM distributions for each biomarker. Histogram bins are shown for non-carriers (blue), presymptomatic carriers (orange) and symptomatic
carriers (dark pink). The blue Gaussian represents the distribution of normal biomarker values based on non-carriers, whereas the dark pink
Gaussian shows the distribution for abnormal biomarker values, as estimated by GMM. The amplitudes of these Gaussians are based on an estimated
mixing parameter. Black curves show the total estimated biomarker distribution, i.e. the summation of blue and dark pink Gaussians, and indicate
the overall fit of the estimated Gaussians to the observed data. All biomarker values were log-transformed.

Figure 2 Positional variance diagram showing the sequence of bio-
marker abnormalities. The colour intensity of each of the squares rep-
resents the number of bootstrap resampling iterations in which the
biomarker was placed at a certain position. The darkest square for each
biomarker therefore signifies the mode, i.e. the position where the bio-
marker was placed most frequently. The spread obtained from boot-
strap resampling represents the standard error of the distribution and
signifies uncertainty in the estimation of the ordering. The ordering of
biomarkers is based on their position in the entire dataset (without
bootstrap resampling), which is akin to mean position.
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Figure 3 Estimated disease stages per clinical group. Disease stages were obtained using 10-fold cross-validation. (A) Histogram showing the fre-
quency of occurrence of each of the disease stages per clinical group, normalized for each clinical group. Estimated disease stages are a continuous
measure and were discretized for visualization purposes only. (B) Box plots of estimated disease stages for each clinical group. Box plots indicate
median ± IQR; whiskers indicate median ±1.5� IQR. Symptomatic carriers and converters had higher estimated disease stages than presymptomatic
non-converters (P5 0.001 and P = 0.004 respectively), but no difference was found between symptomatic carriers and converters (P = 0.712) (by
Kruskal–Wallis tests).

Figure 4 Relationship between estimated disease stage and disease severity measures in mutation carriers. (A) MMSE score (rs = –0.467, P5 0.001); (B)
CDRVR + NACC FTLD-SB score (rs = 0.530, P5 0.001); (C) disease duration in years (rs = –0.124, P = 0.127) and (D) whole brain volume (rs = –0.392,
P5 0.001). Whole brain volume was expressed as a percentage of total intracranial volume. Presymptomatic carriers are shown in orange, and symp-
tomatic carriers in dark pink. The regression lines were fit using splines; dotted lines indicate 95% prediction intervals.
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GFAP. These biomarkers have previously been shown to predict
the rate of subsequent decline in clinical and/or neuroimaging
parameters, with low levels predicting a slow disease
course.6,7,12,14 Taken together, these subjects might have a relative-
ly indolent disease course. The high frequency of C9orf72 mutation
carriers with low disease stages further supports this: progression
is often slow54 and can even span several decades.55,56 An alterna-
tive explanation for the low disease stages lies in the fact that dis-
ease stages are computed based on the average estimated
sequence of biomarker changes in the study population, and sub-
jects who do not follow this sequence might wrongly be assigned
low disease stages. Future studies using data-driven subtyping
methods, such as SuStaIn,57 could potentially identify clusters of
subjects with a differential sequence of events.

Using co-initialized DEBM, a recently proposed approach to
compute biomarker orderings in predefined subgroups,21 we dem-
onstrated that GRN, C9orf72 and MAPT mutation carriers followed
the same biomarker ordering. This is of particular importance for
clinical trials, which will most likely target genetic subgroups.4

However, much more uncertainty was noted for C9orf72 and
MAPT, with poorer ability to discriminate symptomatic from pre-
symptomatic carriers than for GRN. Several possible explanations
for this uncertainty exist. First, CSF and blood NfL levels are less
markedly elevated in C9orf72 and MAPT mutation carriers (with
the exception of patients with amyotrophic lateral sclerosis58)
than in GRN,6,7 which could reduce the model’s power to detect ab-
normal levels. Second, especially in C9orf72 mutation carriers, the
striking clinical heterogeneity might translate into more variable
biomarker levels.56 Third, previous neuroimaging and cognitive
studies have suggested that C9orf72 mutation carriers may have a
more protracted disease onset compared to the relatively abrupt
onset presumed to occur in GRN mutation carriers.53,59–62 This

might be reflected in a more gradual change of fluid biomarkers,63

which would explain the relatively large number of presympto-
matic C9orf72 mutation carriers with high disease stages and com-
plicates discriminating presymptomatic from symptomatic
carriers based on biomarker data. Finally, especially for MAPT, the
smaller sample size compared to other genetic subgroups may
have contributed to the observed uncertainty, underlining the ne-
cessity to validate our findings in larger cohorts.

Strengths of this study include the well-characterized cohort of
presymptomatic and symptomatic mutation carriers and the
availability of several fluid biomarkers of different FTD-related
processes. These biomarkers are not currently used for the diagno-
sis of FTD, enabling us to investigate the relationship between esti-
mated disease stage and clinical diagnosis (presymptomatic or
symptomatic) in a non-circular way. Using non-carriers as our
control group ensured that they were ‘true controls’, in contrast to
similar models of sporadic diseases, which run the risk of controls
in fact being asymptomatic cases.22 The ability of DEBM to com-
pute a disease progression timeline using cross-sectional rather
than longitudinal data enabled relatively large sample sizes des-
pite the rarity of the disease. Our model can be extended to include
other biomarkers; of note, the model assumes monotonic changes
over the course of disease.17 Serum NfL is highly stable in the pre-
symptomatic stage7; for the remaining biomarkers, obtaining lon-
gitudinal data will improve our understanding of their natural
dynamics. In the current model, which combines multiple markers
of different pathological processes, presymptomatic fluctuations
in individual biomarkers are not expected to affect the obtained
disease stage, and hence should not affect inclusion or exclusion
in clinical trials. This is because the model derives disease stage by
comparing the abnormality of biomarkers with the estimated se-
quence of abnormalities in genetic FTD progression, and

Table 3 Clinical characteristics of symptomatic carriers with low, moderate and high disease stages

Estimated disease stage P

Low (40.55) Moderate (0.56–0.78) High (50.79)

n 43 42 42 –
GRN 9 18 22 0.038
C9orf72 22 18 14
MAPT 12 6 6

Sex, male 29 27 19 0.080
Age at sample, years 62 (56–68) 62 (57–69) 64 (54–69) 0.741
MMSE 26 (24–29) 24 (19–27) 23 (16–27) 0.004a

CDRVR + NACC FTLD-SB 8 (4–10) 10 (4–16) 11 (4–15) 0.430
Disease duration, years 4.4 (2.5–8.0) 2.6 (1.9–5.0) 3.9 (2.0–6.3) 0.052
Phenotype, n

bvFTD 37 28 28 0.038
PPA 3 12 11
Memory-predominant FTD 2 1 0
Dementia not otherwise specified 1 1 0
Corticobasal syndrome or progressive supranuclear palsy 0 0 3

CSF NfL, pg/ml 933 (722–1750) 3489 (1870–6073) 2867 (2480–5278) 50.001b

Serum NfL, pg/ml 15 (12–22) 48 (37–89) 58 (41–85) 50.001c

Serum pNfH, pg/ml 110 (56–235) 122 (84–206) 206 (76–464) 0.135
CSF NPTX2, pg/ml 741 (483–873) 399 (237–619) 780 (243–1111) 0.116
Plasma GFAP, pg/ml 127 (93–207) 222 (169–329) 294 (186–472) 50.001d

CSF C1q, ng/ml 319 (267–464) 308 (215–369) 373 (318–598) 0.078
CSF C3b, ng/ml 2974 (2546–4501) 3162 (2657–3668) 4568 (2596–5819) 0.418

Continuous variables are shown as medians (IQR). Categorical variables were compared using Chi-square tests. Continuous variables were compared using Kruskal–Wallis

tests, and in the case of statistically significant differences, post hoc tests with Bonferroni correction were performed. bvFTD = behavioural variant FTD.
aHigh versus low disease stage: P = 0.005; moderate versus low disease stage: P = 0.045.
bHigh versus low disease stage: P5 0.001; moderate versus low disease stage: P = 0.003.
cHigh versus low disease stage: P5 0.001; moderate versus low disease stage: P5 0.001.
dHigh versus low disease stage: P50.001; moderate versus low disease stage: P = 0.010.
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fluctuations in individual biomarkers (e.g. due to unrelated neuro-
logical disease) would most probably not align well with the esti-
mated sequence of changes.

Our findings must be viewed in light of some limitations. First,
the model estimates the ordering of biomarker events relative to
one another, but not whether biomarkers become abnormal before

or after symptom onset, highlighting the need for longitudinal
studies. Second, biomarker studies of neurodegenerative diseases
are inevitably hampered by a relative under-representation of
end-stage disease, which could bias the model towards earlier dis-
ease stages.64

In conclusion, the present study provides an insightful event
ordering of a range of fluid biomarkers in genetic FTD. Future re-
search should aim to validate our findings in independent cohorts
and using longitudinal data. The accurate estimation of disease
stages demonstrates the model’s potential as a tool for patient
stratification, which could in turn reduce heterogeneity in clinical
trials.
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