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BRUNEL UNIVERSITY LONDON

Abstract
College of Engineering, Design and Physical Sciences

Electronic and Electrical Engineering

Complexity-reduced Hardware-based Track-Trigger

Maziar GHORBANI

The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC)
is designed to study the results of proton-proton collisions. The Tracker
sub-detector is designed to detect and reconstruct the trajectories of charged
particles produced by the collisions. During the lifetime of the CMS detector,
there have been several upgrades aimed at increasing the chance of discovering
new physics through increased luminosity levels and instrumentation of
advanced technology. The High-Luminosity upgrade optimises the LHC to
accelerate high-energy particles with an average of 200 proton-proton
interactions per bunch crossing. The Level-1 Trigger system promptly analyses
and filters collisions using hardware to reduce the data volume in real-time. For
the upgrade, the trigger mechanism will use a particle trajectory estimator that
discriminates between particles based on their transverse momentum (pT ).
Particles with pT ≥ 2 GeV/c will be transmitted to the Level-1 Track-Trigger
system for trajectory reconstruction within a fixed 3 µs latency. This thesis
presents a novel Hardware-based Multivariate Linear Fitter (MVLF) system
focusing on robustness in tracking efficiency and reduction in logic resource
usage within the specified latency. The system components are implemented in
Field Programmable Gate Arrays (FPGA), targeting 16 nm FinFET UltraScale+
silicon technology. The development was performed using the High-Level
Synthesis (HLS) automation tools and the Hardware acceleration platform for
Application-Specific Integrated Circuits (ASIC). A firmware demonstrator has
been assembled to verify the feasibility and compatibility of the scaled system
with the CMS Level-1 Track-Trigger infrastructure. The system’s performance is
compared to past and current system developments, and the results are
presented accordingly.
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“From the point of view of the physicist, a theory of matter is a policy rather than a
creed; its object is to connect or co-ordinate apparently diverse phenomena, and
above all to suggest, stimulate and direct experiment. It ought to furnish a compass
which, if followed, will lead the observer further and further into previously
unexplored regions.”

Sir Joseph John Thomson
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Chapter 1

Introduction

1.1 Theory and Motivations

Modern research in experimental particle physics continues to reduce the gap
between theory and practice [1]. With current advancements in technology,
new detectors are developed and made available to help researchers in their
quest for exciting discoveries [2]. At Large Hadron Collider (LHC), located at
the European Council for Nuclear Research (CERN) [3], technological
innovations are explored by scientists in R&D projects. The LHC particle
accelerator is an international High-Energy Physics (HEP) organisation with
more than 7000 physicists, engineers, and technicians, taking part in an
endeavour to understand the world on the smallest scales. The LHC
installation comprises circular beam pipes with superconducting magnets
and the accelerating mechanism to energise and steer particles in controlled
orbits in opposite directions. Strong magnets force the particles to collide at
intersections alongside the beam pipe at a velocity close to the speed of light.
In proton-proton collisions, building elements of two protons: quarks and
gluons, interact. In their interaction, a wide array of low- to high-energy
particles are produced and measured by the super-sensitive sensors [4]. In
recent years, the LHC has played an essential role in identifying new physics
concerning subatomic particles. During the lifetime of the LHC, the
accelerator has undergone several upgrades. The optimisations enhance the
potential of discoveries by increasing the number of collisions to produce
more data [5]. The generated data contain particle’s energy and properties at
the time of collision and moments after the collision. Scientists can validate
hypotheses concerning the matter’s origin by measuring these parameters.

1
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More hypotheses are waiting to be tested and confirmed in particle
physics. Experimental physicists predict further discoveries are possible
under a highly intense environment where more particles interact [6]. The
idea inspires scientists to conceptualise and implement compatible
instrumentation to increase the chance of finding exciting physics. Shining
light over rare physics phenomena and unveiling the universe’s secrets
continues to present new experimental challenges for researchers. The LHC
accelerator and its detectors undergo several significant optimisations to
overcome the present limitations and bridge the gap between their conceptual
design capabilities and the real-life performance. One of these optimisations
occurs during the High-Luminosity upgrade, enabling LHC to increase the
number of collisions by order of magnitude greater than the LHC today. With
the increase in data volume, a tracking mechanism is required to identify
interesting physics against the background noise in the CMS detector [7].
This thesis presents a novel hardware-based trajectory estimator that
operates during the data-taking phase of the detector. The custom-designed
integrated circuit will act as a track finder to detect and select particles with
transverse momentum greater than 2 GeV/c and reject particles with
transverse momentum less than 2 GeV/c.

1.2 Large Hadron Collider

The Large Hadron Collider (LHC) was constructed to replace the Large
Electron-Positron (LEP) storage ring. The LHC forces the sub-atomic particles
to travel in clockwise and anti-clockwise directions as beams (27 km in
circumference) [8]. The technologies deployed for the acceleration are
ultra-high vacuum tubes, superconducting electromagnetic coils, liquid
helium cooler systems, null resistance electrical cables, and various
radioactive hardened electrical components. The accelerator carries out its
duties in stages. First, protons are bunched and squeezed down in size to
increase the possibility of collisions. Then they are injected into the Linear
accelerator (Linac 2) in preparation for injection into the accelerator ring. The
Synchrotron Booster (SB) and Super Proton Synchrotron (SPS) increase the
kinetic energy of protons from 9 MeV to 1.4 GeV in sequence [9]. The LHC
main ring consists of two smaller parallel vacuum pipes that the beams
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circulate within. Electric fields spaced around the accelerator create radio
waves that accelerate particles in bunches, while electromagnets steer and
focus the particles in opposite directions to the kinetic energy of 7 TeV per
beam. At four interaction points (ATLAS, LHCb, CMS, ALICE) located on the
beamline, particles collide in a process known as Bunch Crossing. The LHC
detectors measure the effects of collisions (events) in 40 million intervals per
second and store the data for further analysis. In Figure 1.1, a simplified
illustration of the LHC acceleration beam-pipes and underground
installations is shown.

Figure 1.1: CERN’s Accelerator Complex [10].

1.3 Compact Muon Solenoid

The Compact Muon Solenoid (CMS) particle detector is one of the LHC
detectors. Its purpose is to observe wide ranges of particles produced by
high-energy collisions. The detector was constructed in fifteen sections at the
ground level before being lowered into an underground cavern near Cessy in
France. The individual detectors (sub-detectors) are built surrounding a large
magnet in the shape of a cylinder capable of generating a magnetic field of 4
Tesla. Figures 1.2 and 1.3 illustrate the CMS detector from different views;
the inner sub-detectors and their structural hierarchy.
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Figure 1.2: Compact Muon Solenoid Particle Detector [11].
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Figure 1.3: Compact Muon Solenoid Detector Regions [12].
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The interactions occur at the centre of the CMS detector. The strong
magnet bends the charged particle’s trajectory back toward the detector’s
centre (interaction point). The centripetal force sets particles in a circular
motion perpendicular to the velocity of the particle along the LHC beampipe.
Various measurement sensors and readout electronics rotationally
symmetrical to the beampipe capture the particle’s trajectories. The detector
measures the energy and momentum of photons, electrons, muons, and
other products of the collisions. The silicon-based tracker occupies the
innermost regions near the interaction point, surrounded by a scintillating
crystal electromagnetic calorimeter surrounded by the hadronic detector. The
tracker and the calorimetry are compact and fit inside the CMS magnet. The
large muon detector consists of small and large sections encircling all other
detectors. The functionality of all detectors is to record a particle’s path
through interpolating and extrapolating its primary vertices.

1.3.1 Silicon Tracker

The Silicon Tracker is the closest to the LHC beam and hence experiences the
most significant particle density and multiplicities. The area is also the
smallest in radius, and it is made up of silicon devices and readout
electronics. The tracker is divided into two inner and outer trackers, each
having a barrel and two disks at both ends known as endcaps. Being closest
to the particle interaction point means more radiation from collisions and a
higher signal-to-noise ratio. Hence, tracking devices in these regions are
hardened to radioactivity and have a relatively short life expectancy. In the
current Tracker design, the inner tracker deploys pixel sensors near the
interaction point surrounded by strip sensors in the outer tracker. A detailed
description of the CMS Tracker can be found elsewhere [13].

1.3.2 Electromagnetic Calorimeter

The particles generated in a bunch-crossing have to pass through the Tracker
regions to reach the Electromagnetic Calorimeter (ECAL). The hermetic, fine-
grained, homogeneous calorimeter comprises photo-detectors, preshower and
readout electronics. The ECAL detector comprises a barrel with two disk-like
endcaps at both ends. In the Electromagnetic Preshower (ES), lead and silicon
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sensors are installed before both endcaps for background noise rejection and
better detection resolution for particles with an energy range of 25 GeV to 150
GeV. A total of 75,848 crystal modules, 4,288 sensors, and 137,216 silicon
strips are installed within 36 super-modules in between the Barrel (EB) and
Endcaps (EE) regions. A detailed description of the ECAL detector can be found
elsewhere [14].

1.3.3 Hadron Calorimeter

Surrounding the Electromagnetic Calorimeter is the Hadron Calorimeter
(HCAL), where hadrons are detected and measured. The layers of HCAL are
formulated in a staggered design to increase particle detection. The HCAL
sections consist of closely-spaced absorbers and rectangular plastic
scintillators in Hadron Barrel (HB) and Hadron Endcap (HE) calorimeters.
The inner section of the HCAL detector is inside the CMS magnet, and the
outer area is integrated into the first layer of the Muon chamber outside the
superconducting magnet. Approximately 4,300 towers with 17 layers of
scintillator tiles are grouped into two light-sampling depths to measure
hadronic showers efficiently. The summation of samples on a layer-to-layer
basis defines the particle energy in HCAL. A detailed description of the HCAL
sub-detector can be found elsewhere [15].

1.3.4 Superconducting Magnets

The magnets are well studied in different fields of particle physics, theoretically
and experimentally. The CMS cylindrical coil is large enough to surround the
silicon tracker and ECAL with a 12.5m length and 5.9m inner diameter. The
magnet’s yoke comprises five wheels and two endcaps containing three disks
each. The primary characteristic of the solenoid magnet in the CMS detector
is creating a uniform magnetic field up to 4 Tesla. The strong magnetic field
bends particles back towards the centre of the detector, preventing low-energy
particles from reaching the outer sub-detectors. A detailed description of the
CMS Superconducting Magnet can be found elsewhere [16].
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1.3.5 Muon Chambers

The outermost sub-detector of the CMS is the Muon Detector aligned with the
central tracker. The particles that escape the Tracker, ECAL and HCAL layers
without interaction with absorbers have an unmistakable signature that
identifies them as Muons. The sub-detector comprises a barrel and two
endcaps. The muon detector captures particles within its four layers of muon
chambers. The particle density and multiplicity in these regions are relatively
low compared to the Tracker, ECAL and HCAL which are closer to the
interaction point. In the CMS three-dimensional (xyz) geometry, the particles
that originate from the interaction point and reach the muon detectors have
high-energy levels. Their trajectories resemble almost straight lines in the x-y
plane and straight lines in the x-z plane. The muon trajectory signatures
make them a good source for simulations in the track reconstruction
algorithm. A detailed description of the CMS Muon detector can be found
elsewhere [17].

1.3.6 Data Acquisition System

The Data Acquisition (DAQ) system is a compilation of complex software and
hardware to process data generated by the CMS sub-detectors. In every
collision, the resulting particles interact with various embedded sensors
within the detectors to collectively create a picture of each event. The sensors
output their data in continuous analogue signals (a combination of noise and
data). A series of sensitive electronic devices convert the analogue signals to
digital with an acceptable signal-to-noise ratio [18]. The front-end electronic
components of DAQ encompass amplifiers, comparators, integrators,
quantisers, and convertors [19]. The digitisation encodes the data generated
from more than a million channels and thousands of events into binary data
streams that logic gates can process. The CMS front-end electronics process
raw data captured in events during the data-taking phase. A control
mechanism schedules the data processing by generating appropriate signals
and flags to middleware components and buffers. The Level-1 Trigger system
performs event selection or filtering using fully pipelined custom-designed
electronic components. The selected events are sent to buffers, and the
rejected events are discarded immediately. The Event Manager subsequently
schedules data for distribution to computing services through switches.
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In Figure 1.4, the DAQ system with data processing components including
Level-1 Trigger is illustrated.

Figure 1.4: CMS Data Acquisition System [20].
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Chapter 2

CMS High-Luminosity Upgrade

2.1 High-Luminosity LHC Upgrade

Luminosity (L) in High-Energy Physics is defined as the number of events per
second for a given distance and has unit cm−2s−1. The High-Luminosity LHC
upgrade [18] increases the number of collisions in five consecutive steps
(Runs) known as the integrated luminosity period. In integrated luminosity,
the performance of the accelerator is evaluated by the measurement of the
collected data. The operation commenced in late 2009 and will be finalised in
2040. The research and development life-cycle of the HL-LHC upgrade project
follows design study, prototyping, construction, installation and the
verification phase in periodic steps. During this time, the functionality of
LHC is reduced to a minimum in some periods and a complete stop in others.
The latter is known as the Long Shutdown period. The operation takes place
in three stages: the first shutdown (LS1), second shutdown (LS2) and third
shutdown (LS3). The Particle Physics Project Prioritization Panel (P5) [21] has
identified five major targets for the future of the LHC, which can be
summarised into two main objectives. The discovery of dark matter through
Higgs Boson studies and pioneering instrumentation to explore the unknown.
Following the upgrade, LHC will be optimised to accelerate more particles to
produce more data. The HL-LHC will rely on several key technological
innovations and scientific research to overcome challenges under extreme
experimental conditions.

10
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2.2 Planned Upgrade for the CMS Detector

As the collision rate increases, some of the existing detectors that were
originally planned for the CMS experiment would not perform well enough.
Hence, the CMS detector must be optimised to allow precision measurements
of events under increased luminosity. In LS2, the innermost pixel layer of the
detector will be replaced with high-luminosity-tolerant and radiation-tolerant
components. The pixel sensors will be installed closer to the centre of
collisions in a new beam pipe. During the LS3 the new generation pixel
devices will replace current pixel detectors entirely. The optimisations for
ECAL and HCAL comprise hexagonal silicon sensors and plastic scintillator
tiles, distributed over endcaps, providing more information for electrons,
photons and hadrons. The outermost muon detectors will be replaced with
large Multi-Gas Electron Multiplier (GEM) chambers to increase the precision
measurement of scattered muons. These upgrades present new challenges in
software and hardware optimisations in preparation for new technologies and
advanced physics analysis techniques.

2.3 Motivations for CMS Tracker Upgrade

In Run 1 of the HL-LHC upgrade, optimisations of the CMS tracker delivered
successful results of above 95% tracking efficiency for proton-proton
collisions with the luminosity of 7.7x1033cm−2s−1 which led to the discovery
of Higgs Boson. The luminosity increased in Run 2 to 2x1034cm−2s−1 and will
continue in consecutive Runs until the nominal luminosity of 7x1034cm−2s−1

is achieved [22]. Scientists aim to boost the capability to adapt to the higher
data rate of superimposed collisions, also known as pileup (PU) [23]. In the
pileup, the multiple numbers of individual proton-proton collide per bunch
crossing. The mean interaction rate of 140 pileup per collision will create a
higher level of particle density and challenges in particle trajectory
estimations. The plan to extend the cylindrical section of the tracker toward
the beam will extend the coverage of precision tracking and the overall CMS
measurement capabilities. The replacement of a large diameter beampipe
with a new thinner design will bring sensors closer to the interaction point,
introducing new infrastructural challenges in utilising suitable ASIC devices
and detection algorithms. Radiation-hardened all-silicon devices will replace
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gaseous detectors in the form of system-on-chip integrated circuits.
State-of-the-art 50-300 µm n-on-p technology silicon sensors aim to produce
robust electronic readout with a faster algorithm for particle detection.
All-silicon cost-effective tracker solution will withstand higher irradiation
levels with decreased degradation period, infrastructural flexibility for
upgrades, and accurate measurements of particle trajectory through high
granularity modules. A new pixel detector with 65 million channels in
cylindrical dimensions of 4 cm, 7 cm and 11 cm with discs at both ends will
receive 10 million particles per square centimetre per second with only 3.5
cm distance from the beam. The pixels are mounted on cooling tubes in
rectangular tiles with dimensions 100 µm by 150 µm in several
two-dimensional chip layers to create a three-dimensional view of particle
trajectories in high occupancy regions [24]. In Figure 2.1, the upgrade view of
the pixel modules (red) around the beam pipe (centre of the detector) and
surrounding the strip-strip modules (blue and black) is shown.

Figure 2.1: Tracker overview with various sensor modules [25].
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The barrel region of the tracker wraps around the pixel modules and
encompasses four Inner Barrels (TIB), three Inner Endcaps (TID), six Outer
Barrels (TOB), and nine outer Endcaps (TEC) or disks on both sides. The
colour-coded sensors represent Pixel (red), single strip (blue) and double strip
(green) modules on the layers of the tracker. The regions are constructed from
concentric layers and small disks with 15,200 sensitive compact modules
with 10 million strip sensors and 80,000 readout microelectronic chips. A
particle that originated at the centre of the detector may cross more than one
region and interact with multiple sensor modules along its path [26].

2.4 Level-1 Trigger in CMS Upgrade

The HL-LHC upgrade and the associated increased pileup will impose
challenges in managing higher data rates and limitations in pipelining the
processed data efficiently. There are several restrictions on the rate at which
the information is processed in trigger systems that primarily fall on low-level
circuit implementation and their accumulative latency in the system. The
capability to transfer data across a known region is characterised by its
bandwidth. The trigger mechanism processes more data within a minimum
specified bandwidth by utilising faster electronic devices and paralleled
algorithms. If the realisation of faster circuitry proves unfeasible, the system
must truncate the data flow to meet the latency requirement of the trigger
system, which is not desirable. The trade-offs of truncating data are always
between the improved levels of trigger efficiency versus the risks associated
with losing data containing useful physics detection. As the triggers are
functional during the real-time operation of the CMS, the costs are even
higher because once the data is discarded, there is no way of retrieving it. In
the Level-1 trigger system, the triggering frequency will be increased from 100
kHz to 750 kHz to achieve the required latency of 12.5 µs imposed by the
Level-1 front-end readout electronics. Achieving such latency is made
possible through utilising transverse momentum (pT ) modules that are
capable of rejecting particles that whose pT is less than a selected threshold
[27].
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2.5 Transverse Momentum pT Modules

The transverse momentum pT parameter is the first discriminatory factor in
reducing data in the real-time data-processing trigger system. A study
concerning the CMS tracker indicates that the number of reconstructed
tracks is substantially higher in particles with pT ≥ 2 GeV/c versus all
particles [25]. These particles predominantly produce effects that provide
crucial information for understanding the particle’s interactions. In Figure
2.2, the tracking efficiency of particles as a function of momentum with pT

range of 0 to 10 GeV/c is illustrated. The study provides a means to
differentiate between particles using their pT as a selection parameter.
Identifying and removing particles with pT < 2 will improve the tracking
efficiency and results in a reduction in data volume.

Figure 2.2: Tracking efficiency for pT ≥ 2 GeV/c selection [28].

This idea is used to design a real-time track-trigger mechanism to exploit
the high pT tracks relevant to reconstructing exciting physics. The modules
use the pT threshold to reduce the Level-1 outputted data rate to 750 kHz
from the initial 40 MHz input. Tracks with lower pT are immediately
discarded. The pT module design is based on the correlation of particle
interactions on two single- and double-sided closely-spaced parallel layers of
silicon sensors (strips) and readout front-end ASIC instrumentation [29]. Two
hits in the designated area on individual strips create a pair, also known as a
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stub. Stubs provide the locations of particle’s interactions on a layer of the
tracker. The correlation window for the strips varies depending on the
location of the modules in the detector and the estimation of the particle’s
trajectory in the same region. The spacing between strips is greater for
modules at larger tracker radii. In Figure 2.3, the concept of low and high pT

with two closely-spaced correlation strips is shown. The arrows represent the
particle trajectories with low pT (left) and high pT (right) crossing parallel
layers of silicon sensors.

Figure 2.3: Trajectory selection using pT concept [5].

The particles with high pT create hits in the pre-configured correlation
window. One PASS (P) on the bottom layer and one PASS (P) from the top
layer generate a pass for the particle trajectory. If the particle has low pT , its
second hit on the top layer returns FAIL (F), indicating that the particle
creating the trajectory must be rejected. Two models of pT modules are under
construction, each suitable for different proximity to the interaction point.
Pixel-Strip (PS) in the inner part (at a radius below 60 cm) and Strip-Strip
(2S) further outside.

2.6 Tracking Model for Trajectory Reconstruction

The trajectory across prototype pT modules (PS and 2S) provides initial
coordinates of the hit (stub) instance in Cartesian and Polar systems. The
global positions are converted into the local points to be used in the track
model calculations. In the firmware approach, the segmentation reduces the
logic resources and potentially the latency. The significant size of the CMS
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detector produces very large global coordinate values that are costly if
deployed in hardware directly. The tracker region divisions of 2π/9 in r-ϕ and
2π/9/16 in r-z are illustrated in Figure 2.4.

Figure 2.4: Tracker segmentation in r-ϕ (top) and r-z (bottom) [5].

The modules and devices in each segment are addressed through global or
local values. To minimise the gap between sectors, overlapping with
neighbouring sectors is introduced. The particles that interact with more
than one sector are often detected separately. The particles that are detected
twice become duplicates, and only one is reconstructed following duplicate
removal. The chosen values T (58 cm) in r-ϕ and S (50 cm) in r-z in the
illustration are offsets to separate Pixel-Strip (blue) and Strip-Strip (red)
modules for targeted performance analysis using either of the modules or a
combination of two modules. Every segment has all required parameters for
track reconstruction with predefined spatial resolution within 1σ of the pT

module position.
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2.6.1 Pixel-Strip Modules

The Pixel-Strip (PS) modules are designed from a micro-pixel sensor
(pixel-strip) parallel to a silicon strip sensor with a supporting frame and
ASICs. A module contains a strip sensor of 2.4 cm in length and a
micro-pixel sensor holding 32 rows of 1.5 mm long pixels. The reduced size of
the PS modules makes them suitable for the layers closest to the beam, where
the particle occupancy and density are at their highest. Different
gap-variants of PS modules (1.6 mm, 2.6 mm, 4.0 mm) allow high spatial and
pT resolutions to reconstruct different particle trajectories in the Level-1
Trigger mechanism. The spacing between two top and bottom sensors
calibrates to provide sufficient spatial resolution at the right granularity and
particle density in different regions of the sub-detector. In Figure 2.5, two
parallel top- and bottom-silicon sensor structures that follow the concept of
trajectory discrimination are illustrated.

Figure 2.5: Pixel-Strip (PS) module with ASIC device [30].

2.6.2 Strip-Strip Modules

The Strip-Strip (2S) modules are designed of 5 cm silicon strips along with
the holding frame and ASIC readout components covering an area of
approximately 2,060 cm2. The internal fabrication precision is 5 µm in the
sensor plane and 30 µm in the coordinate plane with an absolute position
accuracy of 10 µm. Depending on the position, the geometry of the sensors
and the number of readout strips varies. In the barrel region, the sensors are
rectangular, and in the endcap, they are structured in a trapezoidal shape to
fit on discs. The modules are placed in the Inner Barrel (IB), Outer Barrel
(OB), Inner Disks (ID) and Endcap (EC) regions. The realisation of 2S
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modules with two different gaps (1.8 mm and 4.0 mm) makes them suitable
for the detector regions with lower particle density. In the strip tracker’s
innermost layer, the occupancy is approximately 5%, decreasing to 2% in the
outermost layer. The reason for the approximation is the overlapping
placement of adjacent sensors to ensure coverage that can lead to detecting
the same hit twice in the same plane. In Figure 2.6, two parallel top- and
bottom-silicon sensor structures and ASIC devices are illustrated.

Figure 2.6: Strip-Strip (2S) module with ASIC device [30].

2.7 Front-End and Back-End Electronics

Implementation of ASICs with CMOS technology for tracker front-end
electronics is under development in form of CMS Binary Chips (CBCs) design
[31]. A CBC will instrument special silicon detectors to identify high pT

particles in real-time that can be used in the Level-1 triggering. The basic
functionality of CBC is implemented by 128-channels with an analogue
front-end pre-amplifier, and comparator, followed by a binary pipeline RAM.
The communications between CBC and the front-end electronics are
implemented using the I2C protocol. The serial communication transfers bits
through a single wire synchronously by a clock signal shared between the
master and the slave modules. The CBC development aims to meet the final
specification of a 254-channel chip designed for the CMOS sensors and the
necessary readout logic to identify stubs and transmit them from the module
to back-end FPGA devices. The module’s output is stored in a 512 kb pipeline
memory to handle the trigger latency up to 12.8 µs. The data generated in
front-end modules are read and correlated over eight re-configurable CBC
boards.
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In Figure 2.7, a single CBC with memory, logic components and
inputs/outputs is shown.

Figure 2.7: CMS Binary Chip and readout electronics [32].

Currently, the trigger system processes data in a pipelined structure at a
rate of 40 MHz and latency of 128 bunch crossings with an output rate of 100
kHz. Pipelining data is the most challenging part of data transmission. It
requires fast custom-designed electronics with a significant clock control and
distribution system through memory partitioning and front-end readout
optical links. The 10 Gb/s TCP/IP links interfaced to the FPGA devices
function as high-performance switches transmitting on available bandwidth.
The total bandwidth is divided between all sub-detectors according to their
event allocation within ±10% for the 1 MB event size in the Trigger system. If
the size exceeds the nominal total event capacity, the data is scheduled back
to the buffers, which can cause a system crash leading to data loss. The
application controlling the hardware and data flow is an online software
framework known as the cross-DAQ (XDAQ) [33]. The platform is designed
specifically to develop distributed data acquisition systems for hardware
access, data transfer protocols, and communication services. The
Concentrator Integrated Circuits (CICs) [34] are the interconnectors between
all CBC modules in the tracker.
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In Figure 2.8, a simplified overview of the Level-1 Trigger architecture
required for the HL-LHC with its corresponding data rates is shown.

Figure 2.8: Front-end electronic components.

The data generated by the pT modules and CBCs are grouped into CIC
signals and transmitted to Data Trigger Control (DTC) through several
Low-Power GigaBit Transceiver (LPGBT) ASIC chipsets. The LPGBT are
responsible for assembling the data into packets for transmission and
routing. On the generation of the Level-1 accept trigger signal, a frame
encapsulates and aggregates the generated hits to off-detector electronics.
The average Level-1 data rate will soon increase to 750 kHz per event of 48
hits in PS modules and 54 hits in 2S modules. The capacity of the front-end
electronics depends on the number of hits allowed by the CIC aggregation
constraints. The data for the trigger is generated in streams of evenly-sized
intervals per eight bunch crossing per eight CICs. The overall system capacity
per module is 70 stubs per PS module and 34 stubs per 2S module at average
rates in interactions containing 200 pileup events. The number of stubs is
considerably lower in the layers with larger radii. Full documentation of CBC
and CIC developments can be viewed elsewhere [35].
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In Figure 2.9, an illustration of Level-1 front-end electronics shows the
data transmission through the component’s hierarchy.

Figure 2.9: Level-1 electronics architecture.

2.8 Tracking Particle Instrumentation

The concept of particle acceleration and tracking is not new. In 1897, Nobel
Prize winner Sir Joseph John Thomson experimented with the first
cathode-ray glass tube to examine the nature of electric discharge in
high-vacuum [36]. The tube consisted of a plate that would emit particles
when heated at one end. If the plates in the middle of the tube were
electrically charged, the electrodes would accelerate the particles passing
through. The accelerated particles would then hit a screen at the other end of
the tube, that glowed when heated. Thomson then changed the voltage
across the plates and observed that the beam bent as the voltage varied. The
experiment led to the discovery of a new subatomic particle known as the
Electron.
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Figure 2.10 illustrates the instrumentation that led to this discovery.

Figure 2.10: Thomson’s cathode ray tube [36].

Today’s technology deploys a similar approach in the current particle
experiment. In the CMS experiment, protons are accelerated in opposite
directions in beams before reaching the interaction point at the centre of the
detector. The beams are forced to collide at the intersection point creating
energetic showers of subatomic particles. The interaction of two particles can
result in the destruction of both particles and the formation of new particles.
The CMS superconducting magnet is configured to create a constant and
uniform magnetic field parallel to the beam line. The motion of a subatomic
particle that is affected by the magnetic field follows a curved path. A particle
starts its trajectory from the centre of the detector and moves radially
outward. The interactions of a particle with different tracking detector layers
are recorded by the sensors that make up every layer. Connecting the dots
where positive sensor readings are recorded will reveal the particle’s
trajectory which is known as a track. The same rules apply to the particles
with sufficient energy to reach the outer regions of the detector. The
sub-detector technologies define the type of particles that they can measure
and return information to classify the interactions. The main types of
subatomic particles that the CMS experiment can detect are Electrons,
Photons, Hadrons, and Muons.
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2.9 Tracking Parameterisation in CMS

The most efficient design for studying the motion of charged particles in a
uniform magnetic field dictates the tracking detector’s geometry. The
coordinates of the particle’s hit and the corresponding sensor’s location
provide all the parameters required to determine the particle’s motion. In
reality, the process is a little more complicated than this, bearing in mind
that the particle size is smaller than the smallest detection resolution of the
electronic sensors. Besides, the closer the detector layer is to the interaction
point, the higher the particle occupancy on that layer and the probability that
several particles pass through the same sensor is high. For simplicity, this
complication is ignored, which means that a hit corresponds to a good
reading on one layer of the detector and multiple hits on consecutive layers
form a track. The sensor positions are interpolated from one sensor to the
next on adjacent layers to reconstruct the first piece of the particle’s
trajectory. Typically two such hits on two layers are the minimum
requirement to define a valid track. The locations of the sensors follow the
right-hand CMS coordinate system with the nominal collision point at the
centre of the detector as shown in Figure 2.11.

Figure 2.11: Measurement parameters coordinate in CMS.
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The structure of the detector is a three-dimensional (3D) cylindrical shape
with the beam passing through its z axis, anticlockwise [37]. The parameters
are used in the trajectory estimation algorithm throughout the design and
verification stages. The relationship defines the association between the CMS
coordinate system (x, y, z) and the particle trajectory (track) with polar
coordinates θ and φ at the centre of collision with the distance d0

representing the closest approach of the track to the nominal Interaction
Point (IP) in the r-ϕ plane. The vertical axis perpendicular to the z axis is the
y axis, and the horizontal axis perpendicular to the z axis is the x axis. All
axes have positive and negative values as the interaction point is located at
the centre of the detector. If the position and direction of the particles are
determined using the CMS global coordinate system, the Cartesian
parameters are derived from the momentum p⃗ = px, py, pz. The azimuthal
angle between the momentum p⃗ and the x-axis is denoted as φ and the angle
between p⃗ and the z-axis is denoted as θ. The track curvature in the
illustration is exaggerated to display the parameters more clearly. In reality, a
high-energy track (GeV) only has a small deviation from a straight line in the
xy (circumferential) and no deviation in the xz (longitudinal) plane [38].

2.10 Trigger Systems in LHC Experiment

LHC experiment encompasses other projects with general- and
special-purpose detectors for investigating physics phenomena and
cross-confirmation discoveries. Each detector has a unique triggering
mechanism to identify potentially interesting particle interactions, so they
can be set aside for further study. During the high luminosity upgrade phase,
novel triggering technologies are being developed to ensure detectors can
continue taking data with an upgraded LHC. The following sections provide a
short overview of operational and under development triggering systems in
other main LHC (ATLAS, ALICE and LHCb) experiments.

2.10.1 ATLAS Trigger System

ATLAS (A Toroidal LHC ApparatuS) is one of the large detectors in the LHC
experiment, with its sub-detector’s layout similar to the CMS detector. ATLAS
detector fundamentally had a two-level triggering system. The first-level
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trigger is implemented in custom hardware that uses a subset of the detector
information from the Level-1 Calorimeter and the Level-1 Muon subsystems
to select specified physics signatures. The readout of the accepted events
from Level-1 is passed to the High-Level Trigger to be processed
synchronously by many CPU cores in the software-based Level-2 trigger
system. For the high luminosity upgrade, the detector electronics are being
upgraded to increase the Level-1 event acceptance rate by implementing a
custom-designed hardware-based Track-Trigger system. The information from
newly installed pixel- and silicon-strip modules in the inner tracker are
processed by ASIC devices and FPGA technology. The full-silicon application
is similar to the CMS detector except for the Associated Memory tracking [21]
dedicated for fast track finding in real-time. The Associated Memory
algorithm is the central processing element of the tracking system in the
ATLAS detector, which detects particle trajectories based on programmable
logic devices and dedicated memory infrastructure for pattern matching with
a high degree of parallelism. Matched patterns from multiple inner tracker
layers are grouped and compared with pre-defined track patterns stored in
templates to select trajectories with pT > 4 GeV/c. In the matching process, if
a track candidate is selected, linear fitting χ2 is performed to evaluate track
information such as transverse momentum, track direction (φ, η) and impact
parameters. The information is combined with other trigger data to accept or
reject the track candidates. A detailed description of the ATLAS triggering
system can be found elsewhere [22].

2.10.2 ALICE Trigger System

ALICE (A Large Ion Collider Experiment) is one of the general-purpose particle
physics detectors designed to exploit the full discovery potential of the LHC.
ALICE Central Trigger Processor (CTP) and several Local Trigger Units (LUTs)
act as a uniform interface to sub-detector front-end electronics. ALICE has a
three-stage hierarchical hardware trigger designed to derive a fast trigger for
charged particles with high transverse momentum. The Level-0 trigger sends
an early signal to front-end systems to indicate there is an event, followed by
the Level-1 trigger that reclassifies the trigger class to characterise the event,
followed by the Level-2 trigger to determine whether to accept or reject the
event. The CTP has seven VME-based trigger processors [23] that can handle
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trigger inputs in parallel, based on multiple custom-designed hardware and
independently programmable trigger classes. Information about trigger
classes is used at each level of the trigger decision-making process. For the
high luminosity upgrade, a novel seven-layer silicon pixel detector will be
built close to the interaction point with Fast Interaction Trigger (FIT) to
measure beam luminosity, charged-particle multiplicity and azimuthal
distribution. FIT trigger and readout electronics are under development as
integrated custom-designed processors which allow digital trigger processing
and continuous readout for high pileup events. The custom hardware design
allows algorithm flexibility for particle identification via the time-of-flight
technique as an essential feature of the ALICE detector. A detailed description
of the ALICE triggering system can be found elsewhere [24].

2.10.3 LHCb Trigger System

The LHCb (Large Hadron Collider beauty) experiment is one of the LHC
particle physics detectors that is specialised for collecting b-physics data.
LHCb consists of two-stage triggering system. Level-1 hardware-based trigger
reduces that data rate by finding track candidates with high transverse
momentum in the muon chambers or high transverse energy in the
calorimeter. The selected tracks are sent to the software-based High-Level
Trigger to perform a partial track reconstruction to reduce the data rate
further. High-Level Trigger is equipped with a software trigger implemented
on GPU technology and many CPU processors. A second pass to trigger will
select tracks with pT > 300 MeV/c reducing the data rate even further in the
process. For the high luminosity upgrade, the Vertex Locator (VELO) will be
replaced by a new silicon pixel detector [25], installed, close to the interaction
point with a tracking system that relies on fast pattern recognition and tracks
reconstruction in real-time. The development continues to ensure that LHCb
trigger and reconstruction algorithms are optimally designed to take
advantage of integrated luminosity in the LHC experiment. A detailed
description of the LHCb triggering system can be found elsewhere [26].
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Chapter 3

Tracking System in Level-1 Trigger

Track reconstruction in CMS refers to the mechanism that utilises software
and hardware for estimating the trajectory of a charged particle using the
interpolation of its interactions with tracking detector layers. A particle’s path
begins at the interaction point and passes through the layers of
sub-detectors. Reconstructing a trajectory provides crucial information about
the particle’s characteristics and behaviour. For the High-Luminosity
upgrade, reconstructed tracks will be used as part of the decision-making
process in the trigger over whether to keep or discard particles based on their
transverse momentum. The approach reduces the data volume produced by
the upgraded accelerator to maintain efficient storage utilisation. This
chapter examines the current and proposed practices for trajectory
estimation and track reconstruction in the Level-1 Track-Trigger system.

3.1 Level-1 Track-Trigger Overview

A typical collision event size per bunch-crossing corresponds to
approximately 1 MB of data [39]. At 40 MHz, the CMS detector generates
approximately 40 TB of data per second. The current technologies do not
allow the processing or storing data of this magnitude. An intermediary
solution is needed to reconstruct tracks quickly and determine which tracks
are worth keeping in real-time data-taking. The hardware-based Level-1
Trigger [40] introduces a mechanism to keep only a fraction of the data and
discard the rest. The concept behind the data reduction stipulates that
discrimination in transverse momentum leads to the elimination of unwanted

27
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data significantly. Standard CMS event simulations suggest that a high
percentage of data produced by collisions are low pT particles. The focus of
HEP is on energetic particles with pT in the range of GeV/c as they often hold
interesting physics signatures [5]. The Track-Trigger at Level-1 aims to deliver
track objects with a configurable pT threshold to the DAQ system within 3 µs
latency. Custom-built electronics and front-end readout devices impose
timing constraints in building efficient and robust designs in the CMS
detector.

The track reconstruction requirements state that the pT threshold must be
kept sufficiently low [41] to maintain high efficiency for potential discoveries.
A comprehensive study into the feasibility of all-silicon implementation
proposes a pixel-based approach for the inner Tracker and silicon-based
strips approach for the outer Tracker in PS and 2S device variations [42]. The
prototypes have been tested for durability and resilience at high radiation
levels within a ten-year life expectancy [43]. In addition to new sensors, a new
layout geometry for the Tracker proposes enhancement in pseudorapidity
detection coverage from |η| < 2.4 to |η| < 4.0 by installing flat-structured
layers very close to the beampipe. The modifications aim to increase the
tracking acceptance as a function of η significantly. Further proposals
introduce tilted angle modules with supporting conical rings to replace
minimum incident-rate flat-structured layers [44]. Rotating the sensor
perpendicular to the interaction point (z = 0), or tilted geometry, increases the
particle hit coverage and tracking efficiency.

In the area of data transmission, a new architecture for fast readout
systems proposes the Telecommunication Computing Architecture (TCA)
standards to host a custom-built FPGA-based Advanced Mezzanine Card
(AMC) for linking the Tracker Front-End (FE) electronics to µ-TCA crates. The
ATCA and µ-TCA devices are extremely fast with a downlink of 2.5 Gb/s and
uplink of 10 Gb/s, transmitting data from on-detector to off-detector
electronic devices. The technology and its feasibility in the CMS experiment
are under study [45]. As discussed in the previous chapter, low-power gigabit
transceivers control the readout electronics between pT modules and the DTC
boards. The data is formatted in transmission packets and payloads. The
packets are unpacked to extract information concerning the hit coordinates
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and regional information. The data is reformatted into stub information
associated with a given event and bunch-crossing. The off-detector
electronics for the Level-1 Track Finder receive the stubs for particle
trajectory reconstruction through a chain of hardware- and software-based
modules. Managing around 15,000 stubs [46] per bunch crossing in a
sequence of 25 ns intervals requires a fast and efficient data processing
system. The following sections discuss the requirements, techniques and
approaches to achieve such performance.

3.2 Level-1 Tracking System Requirements

The HL-LHC upgrade will increase the luminosity to 7.5x1034cm2s−1 with an
average 140 pileup [47]. The individual regions of the CMS Tracker are under
development to significantly optimise the data processing mechanism to
maximise the exploitation of the produced information. The data generated at
the centre of the CMS detector is aggregated through various ASIC and FPGA
modules to reach the off-detector data farms. The data is transmitted in
binary formats in streams containing the location of the stubs whose
transverse momentum is greater than the specified threshold [48]. The
Level-1 tracking aims to process stub streams and find tracks. The
requirements for an efficient tracking system are:

• Compatibility with front-end and back-end ASICs.

• Ability to identify tracks for the Tracker in the range |η| < 4.0.

• Tracking efficient for all particles with 2 GeV/c ≤ pT < 100 GeV/c.

• Tracking particles in high pileup events within specified η and pT ranges.

• Producing valid tracks with a latency of less than 3 µs.

• Robust tracking efficiency in both low pileup and high pileup scenarios.

• Compatibility with floating-point and fixed-point simulations.

• Agreement with Level-1 Track-Trigger Demonstrator for emulations.

• Instantiation in paralleled Tracking system as self-contained IP core.

• Maintaining performance in standalone and integrated development.

• Scalability in software and hardware architecture for the entire system.
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The requirements can be extended to be compatible with the Continuous
Integration (CI) [49] verification platform and extensible clang-tidy framework
for diagnosing and fixing typical programming errors in real-time. Clang-tidy
is a clang-based C++ tool for customisation of sanity and correctness, checking
and fixing errors at the early stages of the algorithm development and before
version release.

3.3 Level-1 Tracker Layout Modeling

Various modules containing one or two types of single- or double-sided
sensitive sensors occupy different radii1 of the CMS detector layers. Three
layers of pixel and strip sensors cover the radius of 4.4 cm < r < 10.2 cm with
endcap disks at both ends. The 2S sensor modules cover the radius of 20 cm
< r < 110 cm in closed-ends barrel-shaped regions. The Tracker geometry
follows the D49 (T15) tkLayout with optimised values for efficient coordinate
digitisation. The tkLayout [50] is a software package developed to create
three-dimensional models for the design of the CMS Tracker and evaluation
of the Tracker performance. The package assists developers to design an
architecture that offers the best trade-off among many figures, such as
physical positions of hardware modules, the layout of the Tracker layers and
the tracking resolution to explore the feasibility of innovative solutions for the
tracking detectors. In the layout, r and z coordinates represent the distances
of the sensor layers from the interaction point in the barrel and endcap,
respectively. The ϕ coordinate gives the azimuth angle of at least one segment
of the Tracker (2π/9) regions. In Figure 3.1, the layout of the Tracker is
illustrated. In this geometry, the double-sided strip modules 2 are rotated by
a 0.1-radian angle facing the centre of the detector. The Upper-Left plot
shows the Tracker tilted geometry with Pixel-Strip (PS) modules in blue and
Strip-Strip (2S) modules in red with pseudorapidity |η| describing the angle of
a particle relative to the beam axis (z) in positive (r−z) plane. The
Upper-Right plot shows the Tracker modules in the x, and y plane, Lower-Left
shows the number of layers in the |η| range, and Lower-Centre presents the
number of hits in the η range, and the Lower-Right quantifies the distribution
of track objects.

1Fixed step-size distance interval from the CMS interaction-point to Tracker layers.
2Two single-sided modules mounted back to back to produce the hit information in 3D.
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The geometry is configured to cover most instances of a particle trajectory
up to |η| = 4.0.

Figure 3.1: Tracker layout in D49 (T15) arrangement [51].

A particle trajectory creates hits on a maximum of seven layers in the
selected layout, and the number of hits for a single layer does not exceed four
per processing stream. The boundaries of Tracker segments are identified in
terms of η and ϕ. The η is used as a spatial coordinate concerning the angle
θ and the beam axis. The relation is defined in 3.1:

η = −ln

[
tan

(θ
2

)]
(3.1)

The segmentation of 0.0 < η < 4.0 values encodes into {0.0, 0.20, 0.41, 0.62,
0.90, 1.26, 1.68, 2.08, 2.50} η-sectors in flat geometry and {0.0, 0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0} in tilted geometry. The segmentation of ϕ at r > 55.0 cm
decodes into {-6.2832, -4.7124, -3.1416, -1.5708, 0.0, 1.5708, 3.1416, 4.7124,
6.2832} radians for ϕ-sectors. These chosen values are important parameters
that are used in the tracking systems throughout the software and hardware
implementation.
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3.3.1 Hit Clustering

Track reconstruction begins with the calculation of the binary information
transmitted from all pT modules. The algorithm groups the local sensor
readings, configured threshold, and accumulative charges in the
neighbouring pixels and strip sensors according to the identified spatial
regions. The grouping is known as Hit Clustering, which identifies the
primary vertex and hits produced by particles. The PS modules provide the
best spatial resolution because they provide two-dimensional measurements.
A cluster defines the particle’s transverse momentum pT , position and
direction, calculated through an iterative template-matching and
weighted-averaging correction algorithm [25].

3.3.2 Seed Generation

A seed is defined when two particle hits are detected on two adjacent layers or
disks. In several track-finding algorithms, the formation of seeds is the first
step in calculating the trajectory of a particle originating from the beam spot.
A seed contains approximations of all track parameters on individual layers
of the Tracker. The extrapolation of detected seeds can reconstruct the entire
trajectory of a particle [25].

3.3.3 Track Finder Modeling

Track finding is an essential part of the track reconstruction and is widely
used in CMS off-detector algorithm approaches [52]. A reconstructed track
encapsulates the character of the particle that produced it. The process is
usually an iterative procedure that uses the initial primary vertex and the
subsequent detection on a layer-by-layer basis to determine its trajectory. A
track may still be considered genuine if the hit positions do not occur in every
layer. If the track-finding algorithm determines that a particle has generated
both hits, it adds the new candidate to its partially reconstructed trajectory
and searches for the next hit. A robust track finder must reduce the number
of probabilities and consequently decrease the number of searches. The cost
in terms of timing and resources is too high otherwise and must be avoided.
In the hardware implementation, the logic utilisation of the search algorithm
must be kept to a minimum, possibly to a single iteration. The resource and
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latency estimations are obtained in single iteration modules to present a more
precise design evaluation. The new modules must be compatible with the
track finder for integration in the Track-Trigger firmware chain.

3.3.4 Track Fitter Modeling

The track fitting terminology in conventional track reconstruction refers to
the process initiated after the track-finding ends. A track fitter processes all
the hit occurrences in the track-finding stage to determine the best possible
trajectory. The algorithm used for track fitting must reduce the probability of
misidentified hits contributing to the final determination of the particle
trajectory and use the initial parameters combined with the geometric
information to minimise the duplicated tracks. Duplicates are generated
when the algorithms employ a particle hit to find more than one track. In the
realisation of a track fitter, one hit belongs to one track only and finding
multiple tracks with sharing hits must be avoided. In recent years, the track
finding and track fitting terminologies have been used interchangeably in
track reconstruction stages [48]. The advancement in technology and
hardware acceleration platforms allow both algorithms to be developed in a
single module. The track-fitting algorithms are also used in the final
goodness of fit estimations and selection of candidate tracks using χ2 fit
calculations in software and hardware.

3.4 Motivation for Hardware-Based Tracking

Since installing the first detector at the LHC, developers have conceptualised
desired behaviours of trajectory estimation systems and used algorithms to
implement their theories running on commercial Central Processing Units
(CPUs) [53]. The approach is solely software-based, orchestrating the fetching
and execution of instructions by Arithmetic Logic Units (ALUs). Although the
software approach is convenient and relatively fast, it has limitations imposed
by the CPUs. One of the main constraints in using only commercially
available CPUs is the limitation in programmability in a low-level algorithm
abstraction and high-level parallelism. Other constraints are the limitations
in designing asynchronous systems and inflexibility in partitioning the
system into smaller subsystems if required. In the HL-LHC experiment, the
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latency, or the accumulative time that individual blocks consume to produce
valid outputs is the fundamental constraint in developing an optimal
hardware-based system. Various methods of task scheduling and pipelining
architectures have been studied and used in multiple applications for the
CMS upgrade to avoid the latency limitations [54]. The pipelining efficiency
relies on the techniques that store and execute instructions in order by
logistically managing resources. In a pipelined structure, the execution of
tasks overlaps to increase the throughput and reduce latency at different
levels of the design hierarchy.

FPGA semiconductor technology is mainly designed for flexible pipelining
based on the consumer’s requirements. Hardware Description Languages
such as VHDL and Verilog allow the customisation of desired algorithmic
behaviour at Register-Transfer Level (RTL) abstraction. The combination of
sequential and combinational data flow in the structural or behavioural levels
creates semi- and fully-pipelined designs by effectively controlling logic gates,
memory structures, and timing resources. In recent years, the Very
High-Speed Integrated Circuit (VHSIC) design has gained popularity as the
demands for complex hardware implementation have risen. The CMS
Collaboration has announced plans to explore the FPGA technology in ASIC
and System-on-Chip designs for the Level-1 Tracker and Trigger systems in
preparation for 200 pileup events [55]. These strategies aim to filter tracks to
the lowest number possible without compromising the potential discovery of
exciting physics. Designing such a robust system using only CPUs is not
feasible, leading to costly and redundant subsystems.

3.5 Motivations for High-Level Automation

The computer application development’s life-cycle has become exponentially
complex in the past decade, particularly in various phases of hardware
testing and verification stages. When electronic circuits were not too large,
developers coded the entire hardware behaviour in Register-Transfer Level
(RTL) or Gate-Level Description Modeling to create a high-level representation
of an electronic circuit. After the testing and debugging stages, developers
mapped the algorithm into target FPGA devices and sent them for mass
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production. At this stage, the probability of failing to achieve the client’s
specifications was too high. If the design had an undetected flaw, modifying
or redesigning the entire hardware was too costly and time-consuming, as
often, many areas of the hardware require redeveloping. Computer
algorithms and applications have continuously grown in complexity and, as a
result, so have hardware development life cycles. The need for automated
design tools has become evident since Hardware Description Language (HDL)
implementation of the complex algorithm has frequently delayed the design
cycle.

The solution for a hardware-based tracking system proposes a composite
deployment of Hardware Description Language (HDL) and automated design
tools to develop the Level-1 Tracking system. Designing and pipelining
hardware-based complex equations in high-energy physics is almost
impossible through conventional hardware languages within specified timing
and resource requirements. Hence, the algorithms with the lowest complexity
are programmed in HDL, and complex algorithms are programmed in
High-Level Synthesis (HLS) [56] automation design [57]. The technique
supports the development at a higher abstraction level while promoting
control and access to a low-level hardware hierarchy. The HLS describes
hardware in Object-Oriented Programming (OOP) language C, System-C, C++
using Electronic Design Automation (EDA) tools to construct low-level logic
structures automatically. The time often spent in the design verification
phase is primarily utilised in optimisation by analysing concurrency, critical
path, resources usage and latency issues. HLS tools can be integrated into
the CMS software framework to evaluate algorithms on both software and
hardware platforms. In designing hardware for the trajectory reconstruction
of the Level-1 Tracking system, HLS has enabled developers to design, test,
and verify the algorithm’s feasibility on several FPGA boards simultaneously.
In particular, the Level-1 Track-Trigger Demonstrator of the track finder and
track fitter, where the physics equations are computationally demanding and
complex. Automation practices divide the modules into smaller blocks
separated by their data-flow characteristics, arithmetic equations, or top-level
design. The modules containing top-level and data flow functionalities are
programmed in HDL, and the modules with arithmetic equations are
designed using HLS tools on a hardware acceleration platform.
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3.6 Level-1 Tracking Architecture

The architecture for the Level-1 Tracking system follows the track
reconstruction model in four stages seeding, tracking, fitting and selection. In
the Seeding stage, the hits known as stubs are detected using clusterisation.
The stubs have the primary characteristics of an incomplete trajectory of a
particle. In the tracking stage, trajectories are estimated by finding the stubs
that share the same trajectory across other layers of the Tracker. In the fitting
stage, the candidate tracks are fitted to the nearest trajectory. The duplicate
tracks are identified and removed in the selection stage. The duplicate tracks
are formed when a hit is used to construct more than one track. In this stage,
the fake tracks are also identified and removed. A fake track is formed when a
trajectory is reconstructed falsely by the combination of unrelated hits.

3.7 Level-1 Track-Trigger Electronics

This section explains how the tracking modules are integrated into the
tracking system architecture for track reconstruction within latency
specifications of Level-1 Track-Trigger. The front-end electronics aim to
reconstruct particle trajectories with pT ≥ 2 GeV/c at intervals of 25 ns,
corresponding to the 40 MHz frequency of HL-LHC bunch-crossings. The
maximum readout latency across front-end electronics permits 12.5 µs for all
sub-modules in the Level-1 Tracker system. The timing includes the complete
reconstruction and track formation after the correlator module. From the
12.5 µs time allowance, only t ≤ 3 µs is assigned to the Tracking system [58].
This is a fixed latency generated by the hardware components and can not
change. In individual building blocks of the Level-1 Tracking architecture,
bandwidth, latency, and maximum clock frequencies are predefined by the
system. All new modules must be designed in compliance with these
parameters. The DTC components are the first reconfigurable blocks in the
Tracking system. They are responsible for organising and transmitting stubs
from different regions of the Outer Tracker to the rest of the modules down
the firmware chain. Figure 3.2 shows the Level-1 Tracking architecture.
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Figure 3.2: Level-1 Tracking architecture.
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The data sent from the detector regions to the DTCs are fully pipelined and
structured in a parallel configuration of 324 blocks for the entire system. The
data transmission between DTC blocks is handled by switching networks and
µ-TCA technology [59] with a high data rate. The Track Finder blocks are
chained to the DTCs in the architecture. The blocks are responsible for
converting stub data to track candidates.

3.8 Data, Trigger and Control

The data generated by the pT modules are transmitted across LPGBT links to
the DTC modules at 25 Gb/s clock frequency [60]. A DTC processes up to 72
links at a time. The number of links follows the load balancing3 scheme and
better data throughput. In the Level-1 Trigger, latency commences from the
moment stubs appear at the input of the DTCs until a full track candidate is
an output. The structure of a DTC is composed of custom-developed FPGAs
with multi-channel optoelectronic transceiver blades in programmable µ-TCA
technology for pre-processing (organisation, formatting, and routing) and stub
transmission to both Track Finder and DAQ subsystems. The DTC is also
responsible for the timing, control and calibration of data and communication
protocols. One possible variation in Track-Trigger architecture corresponds to
32 links at 16.3 Gb/s per DTC with a total number of 288 modules for the Outer
Tracker [58]. Reducing the number of links per DTC is desirable and preferred.
Having fewer links results in fewer peripherals and lowers the associated costs
of the interface connectivity between DTCs and track finder modules.

3.9 Time Multiplexing in the Track-Trigger

In trigger time-multiplexing, [61], data is transmitted across a single node to
avoid data sharing. The buffers can be configured to hold the data generated
from multiple events and route them to one node per event. For a general
time-multiplexed system, if the multiplexing factor is configured at n events,
n nodes are required at n x 25 ns intervals, one clock phase apart. Nodes are
assigned to the processing boards individually with a configurable
time-multiplexing factor depending on the FPGA chip resources capability

3Load balancing redistributes the workload in a parallelised system to avoid an idle state.
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and timing constraints. The challenge for a successful multiplexer is the
synchronisation of all data in serial-to-parallel conversions; hence, careful
clock distribution and timing management are necessary. In the first clock
transition, enabling the read signal allows switches to read the stubs and
distribute them to down-chain components. In the second clock cycle, stubs
are written and read from the next buffer. The process continues until the
last buffer has completed a write and read transition. In Figure 3.3, the
demultiplexing, buffering, and switching processes across the Tracker
front-end electronics are illustrated.

Figure 3.3: Level-1 Time-Multiplexing with a factor of six [61].

The advantage of using time multiplexing is the capability to see a particle’s
path across a large section of the Tracker if the hits that contributed to the
track reconstruction are detected in one event.

3.10 Regional Segmentation

The data stream generated by each collision is time-multiplexed into a fixed
number of nodes; however, the limited number of input links on each FPGA
board requires additional data segmentation. The regional subdivision of the
Tracker separates each of the Tracker regions into symmetrical sections. A
solution [58] for the Time-Multiplexed Track-Trigger (TMTT) divides the Tracker
into nine π regions over the full range of z as shown in the Figure 3.4.
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In this configuration, the regions are called nonants, where it is ensured
that all stubs required to reconstruct tracks are contained within a single
processing section.

Figure 3.4: Regional segmentation of Outer Tracker [58].

The regional segmentation view presents a two-dimensional perspective of
the Tracker regions. In the cylindrical three-dimensional geometry, Each
nonant is further divided into ϕ and η regions known as stub sectors. The ϕ,
η sectors are hard-wired to DTC blocks. A Track Finder Processor (TFP) block
can process data from two adjacent nonants. The scheme minimises the
number of TFP blocks by half. In the prototyping stage, that building the
entire system is costly, only designing one system out of nine can prove the
feasibility of the entire system. Once the resource usage and latency
requirements are verified, the variables are multiplied by the nine to
determine the costs for the system for all nine nonants. Other benefits are
parallelisation of individual nonant without data dependency on other
nonants, creating efficient testing modules in verification stages for one
section instead of all sections, simplification in algorithm debugging and
reducing the synthesis period in the development life cycle. There are dotted
arcs concerning the area of high efficiency in the Tracker segmentation that
is described in Chapter 6.4.
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3.11 Track Finding in the TMTT Approach

Up to this point, the stubs generated in the Tracker are time-multiplexed and
segmented into smaller regions. The following sections describe the algorithm
and hardware components that are used in trajectory estimation and track
reconstruction. The TMTT 3.11 approach has been studied and developed for
the high-luminosity upgrade of CMS experiment [58]. The TMTT configuration
relies on several blocks that are instantiated in the firmware chain as Geometry
Processor, Hough-Transform, Kalman Filter, and Duplicate Removal modules
to reconstruct tracks from stub streams. The TMTT defines a Track Finder
Processor block that contains all the above modules for each processing nonant
of the Tracker.

3.11.1 Geometric Processor

The data from DTC blocks are transmitted to the GP blocks for unpacking
and pre-processing, where the global coordinates of each stub are extracted,
and further regional segmentation is implemented. The GP module defines
stub sectors by subdividing the nonants (2π/9) into 18 x η sectors in the r−z

plane and 2 x ϕ sectors in r-ϕ plane [58]. A TMTT Track Finder Processor
(TFP) handles 72 (η, ϕ) stub sectors through (2 x 36) DTC blocks. In Figure
3.5, the regions and boundaries for TMTT tracker segmentation are shown.

z [cm]

Figure 3.5: Segmentation of r-z into (η, ϕ) sectors in GP [62].
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3.11.2 Hough Transform

The stubs from the GP block are transmitted to Hough Transform (HT) block
for the primary track reconstruction. In HT, a stub from a stub sector is
mapped to a line in the Hough space. Many stubs produce many lines that
intersect. The Hough space is divided into n x m cells where the intersection
occurs. The intersection returns a coordinate that can be used to reconstruct
a trajectory in the Tracker. The probability of identifying duplicate tracks in
HT is a disadvantage caused by the smallest resolution in cell granularity. If
the intersection of hits belonging to a particle occurs in two adjacent cells,
the algorithm assumes that two tracks are detected. Different techniques are
used to identify duplicates and remove them in the Duplicate Removal stage
of the TMTT algorithm.

Figure 3.6: The transformation from stubs to a track in HT [63].

The HT module is the first computational block in the Time-Multiplexed
Track-Finder firmware chain. The modules that provide input to the HT are
DTC and GP. Both modules are responsible for data routing and data
segmentation with no arithmetic operations. In software, the application of
the HT algorithm has been studied in offline particle trajectory estimation
[63], however, in the hardware for the tracking system, the implementation
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has never been attempted before.

A compact version of a fully pipelined HT system is implemented in the
TMTT Demonstrator targeting Xilinx Virtex-7 FPGA chip running at 240 MHz
clock frequency. In the demonstrator Chapter 8 a prototype of two processing
nonants is implemented and the evaluation of feasibility in physics and
hardware performance are discussed. The selected chip has enough logic
resources to accommodate eight single iterations of fully pipelined HT
modules. Each iteration receives one stub and produces one line. For a stub
stream containing eight stubs, eight iterations are required. An alternative
implementation using the Xilinx Kintex Ultrascale+ and increasing clock
frequency to 320 MHz reduces resources substantially [64]. The faster clock
frequency reduces the time required for processing stubs and decreases the
utilisation of multiplexers and buffers in the design leading to less costly
hardware implementation.

3.11.3 Kalman Filter

The Kalman Filtering (KF) system is essential to the Level-1 TMTT system as
an optimum state estimator. The Kalman System prototype is implemented
and tested in the Level-1 Track-Trigger Demonstrator firmware. The
conventional Linear Quadratic Estimation (LQE) algorithm [65] is at the core
of the Kalman system, which is primarily used in probability measurements
and error corrections to the HT trajectory estimation. The track parameters
generated by the HT modules are transmitted to the Kalman system for
validation and filtering [58]. State generation in the Kalman system combines
all Hough-space track coordinates plus uncertainties and noise generation by
front-end electronics. The Kalman system links to the HT through the helper
mini-HT module responsible for parameterising and routing the outputted
parameters from HT to the KF based on a series of vectorised (row x column)
parameters. HT simulations indicate that track finding measurements are
affected by stub sharing between genuine and fake tracks. The early
observations showed that almost 50% of the overall fitted tracks in HT share
one or more stubs from other tracks, negatively impacting tracking efficiency
in physics performance simulation. The KF aims to detect and eliminate
incorrectly reconstructed tracks. The advantage of deploying the Kalman
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filtering algorithm for trajectory estimation is arithmetic precision in
measurements; however, this comes at a cost in hardware implementation
due to the involvement of covariance matrices and complex recursive
mathematical operations that are described in Chapter 5.

3.11.4 Duplicate Removal

The Duplicate Removal modules link directly to the Kalman System in the
TMTT firmware architecture and possibly the Hybrid system 3.12. Despite
the effectiveness of the KF efforts in eliminating unwanted duplicate tracks,
the simulations indicate that almost half of the track candidates are copies in
the overall track reconstruction. One of the cases occurs when a stub in the
Tracker coordinate system transforms into many tracks in Hough space. The
discretization of these cells is determined by two factors, rows and columns.
The granularity of the cell can be changed trivially in software by choosing
larger values leading to more resolution per cell, however, this can lead to
additional costs in hardware implementation as the cells are implemented
using memories. There is a limited number of memory blocks on an FPGA
chip.

The creation of many identical tracks affects the accuracy of physics
simulations after the fitting process. An algorithmic solution to remove
duplicates has been implemented for the Level-1 Track-Trigger in software
and hardware [58]. The hardware components of the module are designed
using available logic slices in the HDL IEEE STD-1164 library [66]. The
algorithm looks for the track parameters initially identified and generated in
the Hough cells. If the track parameters do not originate in a single cell, the
track is detected more than once and must be removed. The Logic Block in
the DR receives a copy of the event from the HT module before the KF
commences its processing. The event contains information concerning all HT
reconstructed tracks and their cell locations. Once the KF has reconstructed
a track, it is stored in the FIFO block to be used for equality check against all
HT tracks. Two tracks with matching coordinates from two different HT cells
are duplicates, hence, one copy is stored in the RAM block and the second
copy is discarded. Two multiplexers and a demultiplexer ensure that the
correct data is selected for processing by the Logic Block.
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Figure 3.7 shows the Duplicate Removal architecture.

Figure 3.7: Duplicate Removal architecture.

This simple algorithm is faster than comparing all tracks in exhaustive
iterations after the KF has processed all tracks; however, a second pass may
be required to minimise the incorrect selection of duplicates. The second
pass uses the selected duplicates from the first pass to ensure they are not
selected incorrectly.

3.12 Hybrid Tracking Approach

The accumulative all-FPGA-based latencies for all modules in the TMTT must
comply with specified latency requirements. Any additional module to the
system can increase the latency and contribute to the costs associated with
the hardware resources. The development of the DR module has led to a
decrease in the number of duplicate tracks, however, the overall latency of the
TMTT system with HT as the track finder and the KF as the track fitter is a
concern. Hence, the Hybrid tracking system is introduced to achieve the
desired performance within the latency constraint. In the Hybrid system, the



46 CHAPTER 3 TRACKING SYSTEM IN LEVEL-1 TRIGGER

HT module is replaced by the Tracklet module. The Tracklet algorithm is
based on the Road-Search algorithm [67] and template matching techniques
at seed-generation levels, followed by the KF module to reconstruct tracks
based on a series of complex arithmetic equations. The hardware for the
Hybrid system is implemented on a fully FPGA-based system with a mixture
of HDL programming and HLS automation algorithm. The hardware latency
and resource customisation are discussed in Chapter 8.

3.12.1 Tracklet System for Kalman Filter

In the Tracklet algorithm [67], individual seeds are identified to form pairs
or tracklets in adjacent layers in the Tracker barrel and endcaps. A particle
trajectory is estimated to start from the interaction point where the tracklet
parameters are consistent with pT ≥ 2 GeV/c and |z0| < 15 cm for pairs to qualify
for the Kalman system. The pairs are then matched to other layers based on
pre-calculated residuals between projected tracklets and stubs to estimate a
complete trajectory. Every matched stub is added to the track candidate to be
corrected by a linearised χ2 fit algorithm in preparation for Kalman filtering.
The calculated parameters are compared to one another to remove duplicate
occurrences as the algorithm may identify a track more than once. In practice,
following the regional and geometric segmentation of the Tracker, there are
regions near the segmented area where sectors overlap. If a track is formed in
these regions, it will be detected by two track-finder processors independently.
After trajectory reconstruction has taken place if two or more tracks share
the same stubs, they are flagged as duplicates, and only one of them qualifies
for the Kalman filtering stage. The disadvantage of the tracklet approach is
the exhaustive search and the probability of encountering one stub several
times in iterations. The advantage of the Tracklet system is that its latency of
3.333 µs is close to the specified latency of 3 µs. Further investigation in HLS
implementation can help to reduce the latency further.
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3.12.2 Kalman System for Tracking

The Kalman modules containing the KF firmware are linked to the Tracklet to
identify and discard invalid tracks. To meet the tracking latency requirement,
the Kalman system must process streams of stubs in less than 1 µs. A system
with a single iteration consumes approximately 0.3 µs of the latency allowance.
The total latency depends on the number of required iterations and the quality
of reconstructed tracks. More description of the Kalman system is presented
in Chapter 5.

3.13 Proposed Tracking Approach

In this thesis, an alternative approach for trajectory estimation is proposed.
The approach is tested in the Level-1 Track-Trigger firmware, the TMTT and
the Hybrid architecture. The motivation for the new system is to verify the
feasibility of a simpler algorithm to replace the TMTT and Hybrid in software
and hardware. The Kalman system’s limitations beyond latency and resource
usage are the constraints in the operational frequency above 240 MHz. This
is the frequency at which the KF operates currently. The reason for the
limitation is the complex arithmetic operations involving matrix calculations
in recursive iterations. Another constraint in the Kalman system is the
algorithm limitation in considering different parametrisations when encoding
particle hits in barrel and endcap regions separately. This can lead to high
efficiency in the r-ϕ plane and low efficiency in the r-z plane. Selective
modifications to the Kalman system have resulted in additional latency and
hardware resource utilisation. Further discussions can be found elsewhere
[66]. The proposed time-multiplexed Multivariate Linear Fitter (MVLF) system
overcomes the KF low-throughput by increasing the operating frequency up
to 400 MHz in a fully pipelined architecture based on a simple linearised
algorithm. The MVLF considers the layer misalignment in the Tracker by
introducing different offsets for PS and 2S modules in both r-ϕ and r-z
planes. The latency and resource utilisation of the Linear Fitter is low
compared to the KF based on simpler fit calculations and deployment of
Digital Signal Processing techniques in hardware implementation. The Linear
Fitter algorithm and its architecture are described in Chapter 6 and 7.
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3.13.1 Multivariate Linear Fitter in TMTT System

The Time-Multiplexed Multivariate Linear Fitter was initially proposed to
replace KF in the TMTT system. The KF module requires additional modules
such as HT and mini-HT 4 to pre-process the data. The reason for this is to
reduce the data volume generated by the pT modules transmitted through the
CMS front-end electronics. These modules including KF are replaced with the
MVLF module and the performance is studied. During the development of the
MVLF, the module was integrated into the TMTT system. It was observed that
the module can process streams of stubs at high clock frequency with the
tendency to overfilter tracks. Overfiltering occurs when the system outputs a
low number of reconstructed tracks. The nominal number of tracks is
determined by comparing the system under development to other current and
past systems. Further investigation revealed that the Linear Fitter can be
modified to match the KF in performance if the boundaries of the stub
sectors are smaller. More description is provided in Chapter 6.

3.13.2 Multivariate Linear Fitter in Hybrid System

The Tracklet system is used in the proposed MVLF firmware chain instead of
TMTT for its efficiency in producing a high number of valid stubs in 200
pileup events. The Linear Fitter system tends to eliminate a higher number of
tracks in comparison to the Kalman system. The reason for this is the
techniques in the generation of virtual stubs 6.5 on Tracker layers. The
Linear Fitter defines virtual stubs within stub sectors by calculating the
average of stub populations for minimum and maximum parameters from the
edge of stub sectors boundaries.

In the TMTT, the Geometric Processor divides the Tracker sections into 36
(18η x 2ϕ) stub sectors. The segmentation in the Tracklet divides the Tracker
octant into 48 (24η x 2ϕ) stub sectors. Defining more sectors decreases the
edge-to-edge stub sector boundaries and reduces the probability of discarding
tracks. More details and corresponding simulations are presented in the Linear
Fitter System, Chapter 6.

4HT resolution comes from a rough 32x18 HT array which is increased in mini-HT to 64x36.
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3.13.3 Multivariate Linear Fitter System

The Linear Fitter system follows the Multivariate Linear Regression approach
[68]. The algorithm based on the MVLR determines the relation between
stubs to generate an estimation based on the minimisation of the
sum-of-squared residuals between the measured and predicted stub
positions. The algorithm expects an almost straight line in r-ϕ and another
straight line in the r-z plane for particles with pT ≥ 2 GeV/c. The
minimisation is achieved analytically by Least-Squares Regression [69]. The
approach has never been attempted during the data-taking period of the
Level-1 Track-Trigger firmware system. The Linear Fitter architecture allows
scalability and configurability, making it a suitable addition to the Level-1
Tracking system. The Linear Fitter defines its geometric boundaries in two
r-ϕ and r-z planes by hand-coding the ϕ and z boundaries into the algorithm
before estimating stub occurrences in the Tracker sections.

The algorithm is designed to perform efficiently in both planes without the
need for additional helper modules in stub routing and stub processing. In
parallel operations, the algorithm creates a table of layer populations from a
stream of stubs to identify hit occurrences on different layers of the Tracker.
The number of stubs and layers are updated according to their corresponding
pT modules for all variations of Pixel- and Strip-Strip modules,
independently. In instances where more than one stub is detected per layer,
the generation of virtual stub samples hit coordinates based on the mean and
variance of the stubs probability distribution. The algorithm continues by
constructing a line or a curve that represents the best fit to all virtual stubs
on layers of the Tracker. A fit is the best estimation for a straight or curved
line through a two-dimensional data set provided the sum-of-squared
distances between line and data are minimised. The fit becomes the initial
trajectory of a particle using the stubs on every layer of the Tracker.

The Linear Fitter algorithm uses the fit parameters as baseline metrics to
calculate the residuals of all stubs to the calculated fit. The algorithm
identifies the stub with the largest residual5 from the estimated fit and flags it
for removal, declaring that the stub is too far from the estimated trajectory;

5Residual is the difference between the actual and estimated value from the fitted trajectory.
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thus, it can not belong to the trajectory. Following the removal, the algorithm
validates if the minimum number of stubs for constructing a valid track is
achieved by updating the layer population and stub counts. In the current
specification of the Linear Fitter algorithm, a minimum of four stubs on a
minimum of four layers are required for reconstructing a good particle
trajectory. If the requirements are not met, a second iteration will remove the
next stub with the largest residual to the estimated trajectory until the
number of stubs and layers match the specifications. The algorithm
evaluates the exit condition which depends on the minimum number of stubs
and layers based on variations of all sensor modules in barrel and endcaps.

The goodness of the fit or χ2 establishes how well the fitted track matches
the best estimation of the trajectory. The calculation uses the remaining
stubs to generate the χ2 values. For this reason, the Linear Fitter system
stores the stubs in buffers for final analyses. When the buffers are full, the
stubs are transmitted to estimate the trajectory and determine which stubs
contributed to the final track reconstruction. The information is used for the
final evaluation to differentiate between genuine and fake stubs. The
definition of a genuine stub in Linear Fitter is the stub that is closest to the
estimated fit or the last four stubs contributing to the track reconstruction.
Any stub that does not belong to the reconstructed track is fake.

The fit calculations are performed in two planes to reduce arithmetic
complexity and increase parallelism. Each plane in the algorithm is
processed without data dependency on the other plane, hence making the
pipelining possible. The hardware prototype of the Linear Fitter is
implemented in all-FPGA technology and EMP hardware framework [70] for
Level-1 Track-Trigger system in the demonstrator Section 8.4. The Linear
Fitter Chapter 7 describes the algorithm and hardware components in more
detail.
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3.14 Correlator Trigger

The Correlator Trigger (CT) [5] uses the data from the Level-1 Tracking system to
reconstruct events by identifying the primary vertices of generated tracks. The
Correlator outputs a list of physics objects such as photons, electrons, muons,
hadronic taus, and jets programmed into the system in the form of compact
physics classes known as trigger objects. The objects are reconstructed with
the highest possible measurable efficiency and purity over the pT and η range
available. The Correlator firmware is implemented on commercially available
FPGA boards with custom subsystem programming. The implementation and
performance of the Correlator are independent of the Level-1 tracking system
development.
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Chapter 4

Level-1 Trigger Data Analysis

Since the start of the High Luminosity Upgrade of the CMS detector, the
sub-detectors have been in the switch-on mode for periods in-between the
scheduled shutdowns. During the CMS operation, data-taking continues
typically for months without a pause. The Level-1 Track-Trigger responsibility
is to reduce the raw data efficiently to a fraction of its total volume without
compromising the integrity of its contents. This chapter focuses on the data
for the Level-1 Track-Trigger experiment and data analysis tools for
performance validation.

4.1 CMS Offline Data

Offline data is the data that is collected during the data-taking period that is
processed and made available for physics analysis.

4.1.1 Locating Data Samples

The collision data and Monte Carlo (MC) samples are located in the Data
Aggregation System (DAS) [71] and can be accessed and cached through data
services on demand. The DAS-QL [72] is a user-friendly text-based interface
with the capability to chain filters or an aggregator function for queries by the
data category. A user with a valid certificate can access data through the
DAS web page or command-line interface for DAS Client to transfer multiple
event files to a desktop or portable device [73]. Event data is distributed
throughout local sites by Rucio [74] replacing the PhEDEx [75] service

52
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accessible with both web interface and command-line options. CMS provides
data description guidelines for users to identify, verify and use standard
production for further analysis. The samples are characterised by their
average number of interactions per bunch-crossings (e.g., 0PU, 140PU,
200PU). The events are also categorised into Top Quark pairs (tt̄) and single
Muons (µ−), which are used regularly in Level-1 Track-Trigger simulation and
Track-Quality analysis [76].

4.1.2 Data Analysis in CMSSW Framework

All the activities concerning simulation, calibration, alignment and
reconstruction in the CMS experiment are primarily developed in the CMSSW
framework [60]. The CMSSW utility composition is ideal for creating and
filling histograms to analyse data. CMSSW provides interactive access to
control the sample size by adding and removing information. The CMS
software collection encompasses object-oriented programming C++ and
Python, Extendable Markup Language (XML), and sample data stored as text
files. The CMSSW is primarily used in the software development of the
Level-1 Track-Trigger modules and the evaluation of generated data
concerning physics performance.

4.2 CMS Online Data

Online data refers to real-time trigger operation when CMS sub-detectors
continuously take data and transmit them to the Trigger modules. The
analysis is crucial in the early stages of data processing to validate detector
readings. Overall, system data integrity relies on individual components from
front-end electronics to back-end modules.

4.2.1 Data Analysis in EMP Framework

The infrastructural EMP framework has been developed to control and
monitor the track reconstruction algorithm in the Level-1 Track-Trigger
experiment. The project uses custom-built hardware-based electronics for
various FPGA chips. The modules designed by developers are instantiated as
entities inside the Top-Level block individually or as a chain for testing and
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simulation. The data samples are fed to the EMP as payloads with
pre-configured detector parameters such as LHC clock frequency, LHC bunch
count and data-path regions. Data monitoring is captured through TX
(transmit) and RX (receive) channels to allow multi-board testing of the
firmware systems. The transmissions are controlled with an IP-based
protocol known as the IPBus-Builder (IPBB) [77] in the form of data packets.
An IPBB packet contains a 32-bit header to define Packet ID and Packet Type
in specific byte-ordering (little-endian). The EMP framework generates data in
digital waveforms for analysing and validating the performance of hardware
modules.

4.2.2 Continuous Integration of Tracking System

GitHub and GitLab have gained popularity in recent years for collaborative
development and teamwork. The tracking system modules are placed in
CERN GitLab repositories with instructions for other users in the CMS
experiment. The Continuous Integration (CI) and Continuous Development
(CD) [49] platforms have enabled developers to test ideas in parallel design
workflow hierarchies and embed them into the system to meet the targeted
design specifications. In the Level-1 Tracking system development, the design
schematics, figures, and files are uploaded into GitLab repositories with the
added features for creating test vectors and test benches for algorithm quality
control at different stages. The process ensures that the latest release of the
packages is available for checkout without faults or bugs. In the Level-1
Track-Trigger development, all processes are implemented by the CI/CD
automation tools in a pipelined structure to allow additional design plugins at
every stage of the development.

4.3 Firmware Tools and Techniques

In Level-1 Track-Trigger hardware development, most modules targeting FPGA
devices use Xilinx technology. The Xilinx Virtex-7 and Ultra-Scale [78]
platforms have been selected in the development of the tracking system for
high performance within the commissioning budgets. The Vitis Unified
Software platform [79] provides sets of hardware-accelerated libraries for
algorithmic building blocks in custom-design FPGA chips. The platform
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permits the development of architecture-aware synthesis over a shorter
timescale than hand-coded Register Transfer Level design. The tool also
provides a comprehensive report analysis for Quality-of-Result (QoR) in the
verification stages of the project. The Xilinx acceleration platform is used in
all areas of tracking system hardware developments. However, a less
conventional Electronic design automation (EDA) tool, MATLAB [80] is used
to investigate and verify the vector-based arithmetic operations. MATLAB is a
matrix-based programming platform that allows fast exploration of multiple
approaches through a mathematical algorithm or model-based design. A
feature of MATLAB, Simulink [81], is used in Linear Fitter development to
generate a design hierarchy with defined interfaces and peripherals to link
individual IP cores generated in the Xilinx platform in parallel simulations for
the verification of mathematical correctness.

4.3.1 Field Programmable Gate Arrays

In digital electronics, the smallest programmable components are
semiconductors that, in their basic form, are either powered on (high) or
powered off (low). Different combinations of semiconductors in a circuit
produce logic gates (NOR, AND, OR), providing basic programmability and
decision-making levels. A two-dimensional array of Programmable Logic
Devices (PLAs) or Configurable Logic Blocks (CLBs) are interconnected via a
series of programmable wiring and millions of logic gates known as FPGAs.
The strength of the FPGA circuit comes from a large number of CLBs that can
be programmed and reprogrammed at user discretion after manufacturing.
In addition, the logic blocks can be programmed and executed
simultaneously in parallel, provided there is no data dependency. The
primary constraint in creating a data processor that executes instructions in
parallel is the contest to access shared variables by the instructions
simultaneously. The data dependency is removed by providing the shared
resources to the functions at different times at runtime [81].

FPGA devices have improved data processing applications by pipelining
the workload and parallelising the operations. FPGA technology has
gradually replaced ASIC in fast-evolving experiments, such as back-end
electronics and DAQ developments. FPGA circuits are programmed by the
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developer in HDL to describe the desired behaviour of the circuits at a
low-level abstraction. The process is faster than drawing circuit schematics,
and it is flexible for redefining or modifying the structure in large systems.
The behaviour of a design is then mapped onto an FPGA chip through place
and route, structural analysis and optimisation processes. In recent years,
most FPGA devices used in CERN experiments have been designed by Xilinx.
The key features of Xilinx devices are DPS blocks, Look Up Tables (LUTs) and
Flip Flops (FFs), and Block RAMs (BRAMs), which provide basic operations for
arithmetic and Boolean functions synchronous to the generated clock. Each
chip is integrated with a limited number of memory blocks categorised by
their port numbers and access types for data storage functionalities. Further
resources and documentation are available within the different families of
Xilinx products.

4.3.2 High-Level Synthesis Hardware Acceleration

Algorithm development and design specification have evolved in size and
complexity in recent years. The developers must complete design cycles with
the same resource in a shorter time, often moving to the next project or an
upgrade phase. The standard computing platforms no longer satisfy the
fast-evolving workload, and the need for new tools to improve productivity and
efficiency is becoming more evident. Hardware acceleration platforms such
as High-Level Synthesis are being used to accelerate RTL debugging and
signoff in a shorter time by bringing design and verification teams together.
For the High-Luminosity upgrade, the traditional RTL design flow has given
way to HLS design flow to decrease verification time and increase design
exploration. The development stages of a design life cycle are no longer
sequential. The algorithm architecture, RTL test and verification are designed
simultaneously with adaptation to last-minute changes in a matter of days
rather than months. The entire design is easily migrated between
technologies based on the exploration of power performance, resource usage,
and latency constraints. In the Track-Trigger projects, the desired
functionalities are designed in pure C++ language. With the help of HLS
libraries and built-in support, the algorithm can be retargeted for new
designs with minor modifications. It is worth noting that HLS does not
translate C++ code into suitable hardware code. The developer must have
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hardware design skills to achieve an optimal RTL and good QoR. The HLS
tools aim to empower designers with a faster approach, particularly in the
verification and debug stages. One of the advantages of HLS is comparing
C-level algorithms to hardware models to verify and solve functionality
inconsistencies. The RTL/C verification can be applied to different FPGA
devices and ASIC design nodes during the development of the system. The
automated technical reports or solutions are generated for each node and are
accessible for comparisons. Another advantage is the rapid simulation of
proper hardware behaviour by modelling arithmetic precision by measuring
and observing the precision loss and overflow effects due to quantisation at
runtime. The capability is used to model different Tracker layouts in the
Level-1 Tracking algorithm to calculate the goodness of fit by introducing
more or fewer bits in the process. More advantages in hardware acceleration
through HLS automation, such as loop optimisations, scheduling, and
resource sharing, are discussed in Section 7.2.

4.3.3 Automation Firmware Platform

The Xilinx Vivado development kit aims to provide all-in-one required
platforms for developing high-level synthesis and hardware acceleration,
including compilers, analysers and debuggers. Level-1 Track-Finder firmware
chain was initially programmed in HDL and Maxeler technologies [82]
targeting the Xilinx Virtex-7 FPGA chip family. In recent years, the Level-1
Trigger development has migrated to Xilinx Vivado and currently Xilinx Vitis
design environment targeting Virtex UltraScale+ FPGA chips. The migration
to new technologies was necessary as the algorithm grew in complexity,
leading to more complicated FPGA-based Intellectual Property (IP) core
designs. The approach has provided several advantages in developing
tracking systems, such as breaking the gap between software and hardware
performance, increasing architectural exploration and creating efficient
firmware. Several steps are necessary to generate an IP core for the Tracker,
which begins with the cross-conversion between the algorithm written in the
CMSSW framework and the synthesisable algorithm in HDL for the hardware
framework. The sectionrefchap7:hls describes the life cycle of conversions
from CMSSW to Hardware and Hardware back to CMSSW.
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All IP cores must be placed physically in the Tracker system firmware
chain. Each IP contains many interfaces with the signals necessary for
hand-shaking protocols and communications between modules. As the
number of signals increases, the design complexity increases too. The Vitis
HLS tool provides several features in the interconnection of Level-1 Tracking
modules with freedom of choice between several communication protocols.
The Vitis Platform is also used in the simulation, and verification stages of
the development using Vitis accelerated kernel capability and application
acceleration flow with minimal code changes for the migration. The
optimisation is implemented through Vitis accelerated libraries to assess
standard functionalities such as math, statistics and linear algebra. The
interface applications support various connection protocols in the design and
verification stages to help developers focus on the unit under development
without restricting access and cross-talk communications between inner
modules.

4.3.4 Numeric Computing Platform

In the Tracking System project, there have been instances where the results
generated from complex mathematical operations could not be verified by
observing the system signals as waveforms. Engineering the modules in
numeric computing platforms such as MathWorks and Xilinx System
Generator for DSP [83] have provided the capability to study the digital signal
processing aspects of individual modules, particularly the impact of
modelling the Fixed-Point algorithm replacing Floating-Point native variables
in the design. The computational intensive modules in the tracking system
are verified for the quantisation effects, overflows, and precision loss for
numerical accuracy. Different quantisation modellings such as truncation,
rounding and convergence with minimum number-of-bit allocation have been
explored to develop optimised Kalman Filter and Linear Fitter modules using
the MATLAB fixed-point designer [84]. The modules are eventually optimised
by an HDL designer [85] to explore alternative hardware structures in
evaluating Xilinx Vitis FPGA IP cores achieving full pipelining within specified
latency and resources specifications. The System Generator for DSP provides
a Model-Based design environment for FPGA module verifications. The
custom-designed fixed-point Linear Fitter IP cores have been integrated into
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Simulink side-by-side by full precision models created in MATLAB to compare
and validate the outputs. The System Generator assists in rapidly evaluating
new algorithms, design prototyping, and model analysis in the Level-1
Tracking system. The tool is used to flesh out the algorithm deficiency and
investigate the impact of the modifications on hardware. The values in the
bit- and cycle-accurate blocks produced in Simulink are compared to their
corresponding representations designed by the HLS tool.
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Chapter 5

Kalman System for Tracking

The Kalman algorithm is an essential feature of the Tracking system in
Level-1 Track Trigger. Although the concept of trajectory optimisation using
the Kalman algorithm is not new in the CMS experiment, utilising the
Kalman algorithm in online track reconstruction has never been attempted
before. The Kalman algorithm estimates particle motion with the help of
current and previous measurements in error-correcting feedback loops
without knowing how many particle hits make a complete trajectory. The
Kalman system is particularly efficient in the joint probability distribution of
particle coordinates in the spatial plane and their specified uncertainties
related to variations in the parameters. In the HL-LHC upgrade, the KF is
deployed in the tracking system’s chain after the HT module to validate the
output of the Hough trajectory extraction algorithm. This chapter examines
the building blocks of the Kalman system in the context of the Level-1
Track-Trigger hierarchy.

5.1 Motivations for using Kalman Filtering

High luminosity upgrade will increase the number of collisions and
consequently increasing the data volume significantly. The Level-1 Triggering
mechanism is required to extract and deliver the events containing interesting
physics to the DAQ system. The pT modules were introduced to remove
unwanted low momentum particles as the first instance of filtering. At this
stage, the data volume is still significant and further filtering based on limited
tracking information is required. The FPGA-based Associative Memory (AM)
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[86] technique was a possible approach that was rejected at the early stages
of its development. The AM used pattern recognition and template matching
algorithm. In pattern recognition, the algorithm aimed to provide all possible
inputs as templates to generate a matching pair through a series of regional
searches and exact-matching procedures. The AM approach was practical
when all existing patterns were previously identified and converted to
templates before runtime. In this approach, the tracker is divided into η, ϕ

regions known as Trigger Towers. Data aggregated from the tracker front-end
electronics are inputted to towers implemented on FPGA chips. The patterns
were extracted and matched with the pre-made templates. If no match was
found, the algorithm concluded that the event was not interesting.
Approximately one million templates are required per Trigger Tower. In a
full-resolution system, 48 (6η x 8ϕ) Trigger-Towers with additional logic were
responsible for organising and storing approximately 48 million templates
that led to architecturally complex design and costly development.

In the HL-LHC upgrade, the priority is discovering new physics in the
newly upgraded detectors. The Kalman algorithm is exceptionally effective in
estimating new trajectories with no predetermined knowledge of the paths of
the particles with no requirement for storing templates. The hardware
implementation of the Kalman filter has been evolving to meet the timing
constraints under the Level-1 Track-Finder latency specifications [58]. An
advantage of the Kalman system is the possibility of a fully Time-Multiplexed
(TM) design. A fully functional model requires fewer nodes to demonstrate the
architecture based on the generation of paralleled independent sub-modules,
which are easily scalable and reconfigurable. In Chapter 8, an
implementation of the Kalman algorithm with only two nonants has been
possible. The resource estimates are identical across all paralleled nonants.

5.2 Conventional Kalman Estimator

Before designing the optimisation of the Kalman filter for particle trajectory
estimation, a generic version of the algorithm is discussed in this section. As
explained in Chapter 3, the Kalman algorithm is a type of state observer that
combines measurements and predictions to calculate an estimation [87].
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The Kalman algorithm is an iterative process, which is particularly useful
when designing a fully pipelined algorithm in the hardware. Other benefits of
using this algorithm include:

• The calculation process can begin as soon as the first measurement
becomes available in a series of time-sensitive events.

• The algorithm allows placing importance on the measurements or
predictions based on Kalman gain.

• The algorithm can be applied to complex problems with high precision in
arithmetic operations and mathematical calculations.

• In hardware design, the algorithm can be divided into data flow and
calculation blocks in pipelined configuration to reduce design complexity
and latency.

Often in motion estimation, there are errors associated with the
measurements EMEA and errors associated with the estimates EEST that are
taken into account in the calculations. The Kalman algorithm accounts for
uncertainties and errors using the following mathematical processes. The
Kalman Gain KG gives a measure of how much of the prediction comes from
the measurements and how much comes from the estimations by
determining the error-in-measurements and error-in-estimations. The
Equation 5.1 defines this relationship:

KG =
EEST

EEST −EMEA

(5.1)

The Kalman algorithm functions with two-time stamps. The current time
defined as t and previous time as t−1. The current estimate ESTt is the
result of taking into account the previous estimate ESTt−1, KG and current
measurement MEAt defined in Equation 5.2:

ESTt = ESTt−1 +KG(MEAt −ESTt−1) (5.2)

The current error-in-estimate EESTt is calculated from KG and previous
error-in-estimate EESTt−1 defined in Equation 5.3:

EESTt = (1−KG)(EESTt−1) (5.3)
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The procedures in terms of EMEA and EEST are shown in Figure 5.1. In
each algorithm iteration, the calculated data are fed back to the system and
immediately become available as the previous estimate for the current set of
measurements.

Figure 5.1: Kalman algorithm flow for gain and estimate.

The Kalman equation 5.4 is written as position Xt, previous position AXt−1,
and current measurements But with added noise Wt. The parameters A and
B are helper matrices required to perform arithmetic operations as matrix
calculations [88]:

Xt = AXt−1 +But +Wt (5.4)

The measurement equation can be either scalar or a matrix depending on
the elements in the observation and is defined as:

Yt = CXt +Zt (5.5)

Where Yt and Xt are the measurements, C is the helper matrix and Zt is the
additive noise. Equations 5.2, 5.4 and 5.5 can be combined to give:

Xt = AXt−1 +But +K(Yt −C(AXt−1 +But)) (5.6)
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The previous state estimate is denoted as Xt−1, while the predicted state
estimate is defined as Xt and the measurement as Yt. What differentiates Xt

and Xt−1 is the timing interval t when measurements are taken into account
from one estimation to the next. The current error covariance Pt is incorporated
into the estimates by using:

Pt = APt−1A
T +Qt (5.7)

The Kalman Gain called K henceforth with helper matrix H is calculated by
adding the measurement covariance Rt by considering two different scenarios:
when limPt→0 or limR→0 in giving:

K =
PtH

HPtHT +Rt

(5.8)

By adding K to Equation 5.9, a new value for the error covariance Pt is
obtained. Kalman Gain and measurements produce new parameters for the
next iteration:

Pt = (I −KH)Pt (5.9)

The algorithm uses the estimated state Xt−1, error covariance Pt−1, and
current measurement Yt, recursively to generate a new prediction in the next
time interval. Adding new variables to the Kalman system, such as noise, can
increase the complexity of the equations and complicate the design process
when considering hardware implementation.

5.3 Kalman Filter for Track Finding

In the HT stage of the Tracker system, the tracking candidates are roughly
estimated and presented to the Kalman module as input. A track candidate
from the HT usually contains several stubs that are genuine and belong to a
single track, however, some stubs do not belong to the track and never originate
from the HT-initiated search. In 200 pileup events, almost 50% of the track
candidates contain stubs from other tracks or combinations of stubs that do
not correspond to a real track [28]. The Kalman filter aims to remove these
so-called fake stubs to improve efficiency before the fitting process begins. In
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the Time-Multiplexed Track-Trigger, the Kalman algorithm calculates a Kalman
state based on the HT stub parameters and the uncertainties associated with
the precise location of the hits versus their predicted positions. The process
involves pre-estimating track parameters with the uncertainties of individual
stubs in a successive step-wise manner, replacing the time dependence with
the tracker radius dependence r. The algorithm begins with the stubs closest
to the interaction point and then moves layer-to-layer according to where the
stubs occur. A robust Kalman filter must be capable of filtering out fake stubs
by discarding them and storing genuine stubs for final track reconstruction
at the desired efficiency. The Kalman algorithm proposed for stub filtering
has some deviations from the conventional Kalman filtering model; however,
efforts have been made to keep the alteration to a minimum. The changes
are explicitly made in the hardware implementation to help the smooth flow of
data and pipeline. The Kalman algorithm initiates the track finding process
with the following measurement parameters:

x = (
1

2R
, ϕ0, cotθ, z0), where, R =

pT

qBc
(5.10)

The parameter ϕ0 and z0 denote the azimuthal angle and impact
parameter along the z-axis concerning the stub sector position, respectively.
The θ coordinate is the polar angle between the track and z-axis. The R

parameter defines the distance from the interaction point and corresponding
sensor module positions on the layers of the detector. The particle charge is
denoted as q, the magnetic field strength as B and the speed of light as c.
When a track begins its trajectory with r ≈ 0 and transverse through the first
layer of the tracker, its global coordinates ϕ and z are mapped to their local
coordinates ϕ0 and z0 using Equations 5.11 and 5.12, respectively:

ϕ0 =
r

2R
− ϕ (5.11)

z0 = rcotθ − z (5.12)

Once these coordinates are defined, the variables must be mapped to their
corresponding representations in the Kalman Filter equation. Several
discussions concerning trajectory reconstruction concerning the offline
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Kalman Filter algorithm can be found here [89]–[91]. The Kalman algorithm
uses matrix-based calculations for its stub and state estimations. The helix
parameter Ht at radius r is defined by hit position m in (ϕ, z) and hit position
covariance matrix x as:

Ht =
δm

δx
=

[
−r 1 0 0

0 0 r 1

]
(5.13)

If the effects of multiple scattering and white noise are negligible (Qt = 0)
and the positions of the particle hits do not change, Pt is defined by Equation
5.14, if (1/2R, ϕ0) and (cotθ, z0) are independent linear fits in two r-ϕ and r-z
planes:

xPt = (
1

2R
,ϕ0, cotθ, z0)


σ2

a σab 0 0

σab σ2
a 0 0

0 0 σ2
c σcd

0 0 σcd σ2
d

 (5.14)

The uncertainties σa, σb, σc, σd, σab, σcd are the estimated locations of the
pT modules in the different tracker regions and are added to the equation. The
particle hit uncertainties are initiated in the barrel and endcap regions of the
tracker and represented by the parameter R, which is defined as:

R =

[
σ2

ϕ 0

0 σ2
z

]
(5.15)

In the barrel region, the uncertainties are defined as follows:

σ2
ϕ =

(
1√
12

StripP itch

radius

)2

(5.16)

σ2
z =

(
1.5625 StripLength√

12

)2

(5.17)
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For the particle hit in the endcaps, the uncertainties are given by:

σ2
ϕ =

(
1√
12

StripP itch
)2

+

(
1.05

2R

)2

(5.18)

σ2
z =

(
1.5625 StripLength√

12

)2

0.9(cotθ)2 (5.19)

The measurement and their uncertainties are formatted into a vector of
stubs m, covariances of the stubs V, helix parameters x, the covariances of
helix parameters C, the predicted stubs for helix parameters H, and goodness
of fit χ2, which are all related as shown in Equation 5.20. The intermediate
variable S is defined to store the result of helix parameters and covariances
multiplication followed by predicted uncertainties R and the Kalman gain K.

S = HC

R = V ST

K = SR−1

(5.20)

Stub hit uncertainty Q is defined as the difference between the stub mea-
surement and the helix parameters:

Q = m−Hx (5.21)

In the second iteration of the algorithm, the measurements and uncertain-
ties are fed back into the process as follows:

xupdated = x+KQ

Cupdated = C −KS
(5.22)

The algorithm increments the track χ2 to account for the new stub
measurements that have been incorporated. All matrices from the previous
iteration are made available to the next iteration:

χ2 += R−1Q2 (5.23)
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All the states generated from the initial state by adding stubs from
subsequent layers are sorted by the value of χ2 in ascending order meaning
there is a high correlation between the measurements and the estimates. The
first four states are retained if the tracks corresponding to the states have
only one layer. If this condition is not true, the fifth state is considered. In
Figure 5.2, the track-fitting process is illustrated, which is based on
stub-to-stub processing and assumes the Gaussian distribution of
measurements.

Figure 5.2: Kalman algorithm process in filtering stubs [28].

When the Kalman algorithm receives processed stubs from either HT in
the TMTT system or Tracklet in the Hybrid configuration, it assumes that it
contains both genuine and fake stubs. Taking a trajectory originated from (r =
0 and z = 0) and interacts with at least four pT modules on consecutive layers,
the first hit coordinate from the first layer become available to the Kalman
algorithm. The shaded area surrounding the track in Figure 5.2 presents the
standard deviation from the calculated estimates. The first measurement
becomes available to the Kalman algorithm when the particle interacts with
sensors on the first layer (L1). In this example, two hits are recorded on the
second layer (L2), with one yielding a genuine stub and one fake stub. The
Kalman algorithm corrects its trajectory estimation once the information on
the third layer (L3) becomes available, which results in the stub being
rejected. In the process, the trajectory is corrected and the associated data
are not propagated to create a state. In a situation, where, only one stub is
present in the next layer, if it is within the approximation of the calculated
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standard deviation, the data is propagated for state creation. The process
continues until all stubs are processed. The Kalman algorithm
implementation is divided into two parts; Kalman Flow Control and State
Updater to increase throughput. The following section describes the building
blocks of Flow Control modules and data transitions between modules.

5.4 Kalman Algorithm Flow Control

The Kalman algorithm must be fully pipelined and capable of processing one
stub per clock cycle [58]. The pipelining is achieved by introducing Kalman
Workers, each of which consists of a state updater and the flow control blocks
required to ensure the steady transmission of stubs and states via transition
busses. Flow control blocks in the Kalman algorithm architecture are
responsible for formatting and managing the stubs in preparation for the
Kalman updater block. All complex mathematical operations are assigned to
this block in a pipelined hardware structure. The Kalman worker modules
are designed as plugins for the Track-Trigger firmware chain. The modules
are added to the firmware following the stub formatting before the workers
are integrated into the system and reformatting before linking the workers to
other modules in the Level-1 Tracking chain. The process of stub formatting
is implemented in input link formatters and output link formatters in HDL.
The stubs are received in 64-bit binaries that each represent a set of 72
channels containing the stubs parameters in streams. Eighteen Kalman
workers process stubs from two nonant 2π/9 via 72 channels from the DTC
blocks. The stubs are formatted into links for the Kalman worker nodes in
the top-level design architecture. The 64-bit stubs are repacked into 96-bit to
contain information about the states. The Kalman node block deploys link
formatting again to extract stub information from each input node. It
prepares the stubs for the state creator block that is responsible for
extracting Kalman seeds from the previous blocks. The process applies
selection criteria while constructing seeds depending on which tracker region
the seeds are detected initially. The corresponding slope and intercept of a
seed is calculated in Hough-space and converted to what is known as the
Kalman state with appended assignments of covariances and state identifier
encoded into a 96-bit binary word.
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In Figure 5.3 the logic components and inter-connectors are shown with
arrows presenting the data movement between modules.

Figure 5.3: Kalman Worker algorithm functions.

The output stubs and states are passed to the next block which is known
as the state filter. This block ensures the χ2 selection requirements are
applied correctly to the states to remove those that do not qualify under the
selection criteria. At this stage, the selection is based on the states with only
one layer from the first four states. The stubs and states are then transmitted
to the stub state associator block, where associations are made between
stubs and states. A stub and state create a combination that is indexed and
stored in different memories according to the region the combination was
located. The address book holds the stub state indexing information, always
pointing to the newly generated stub state memory location. This block also
returns the subsequent stub association with the input state and the new
output state, increasing the next layer value.

According to the Kalman filtering arithmetic, at this stage, the stubs and
states are associated and transmitted to the computationally intensive
Kalman updater. In this block, the algorithm calculates the Kalman gain that
is used to differentiate between estimates and hit positions. Many states will
not survive this stage of the processing and will be flagged for removal. The
outputted states are then transmitted to the state accumulator block for
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storage. Further selections based on the number of layers and stub positions
are applied in the final filter. The stubs also are formatted for the Duplicate
Removal module and transmitted on the output link formatter.

In the top-level design of the Kalman algorithm, the paralleled workers are
integrated into each Track Finder processor. The pipelining of workers is
enforced across top-level sections by First-In-First-Out (FIFO) memory
blocks. A stub received by a worker is transmitted on two 64-bit buses. The
first bus is stored in memory and passed through to the stub state associator
for indexing. The second bus is inputted to the seed creator block to create a
new state. The stub with a unique identifier is passed to the state updater,
where Kalman computations are implemented to apply selection
requirements based on pT , χ2 and z parameters. Two states (Statet and
Statet−1) are presented to the state control block to decide which direction the
trajectory must take. If the states have more than one stub on each tracker
layer, the stub state association is removed and the stub is fed back to the
algorithm for the second pass. If the stubs are not found on the next layer of
the tracker, it is permitted to search and use stubs from the layer after next
instead. After the process, a comparison between candidate tracks reveals
the number of missed layers per track and their χ2 parameters. Then only a
track with the fewest missing layers and the smallest χ2 is retained. A
complete track is an output following the conclusion of four consecutive
iterations. Further iterations result in more hardware resources under the
tracking system latency specifications. As a consequence, only four iterations
are permitted. The number of iterations is primarily decided by comparing
the tracking efficiency for the different data sets. In the Kalman filter, a
stream of stubs contains four stubs, therefore four iterations are necessary.

5.5 Kalman Firmware Implementation

The implementation of the Kalman system in tracker firmware follows the
hardware design strategy of top-down design and bottom-up implementation
approach. The process allows individual blocks to be tested inside Kalman
workers by introducing a null interface 8.9 in all blocks except the block
under test. The strategy also helps with the overall design process in
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scenarios where implementing a complex block has proven difficult and
requires more time for completion. Following the implementation of the
top-level design, as soon as a block becomes available will be plugged into the
Track Finder Processor and firmware chain. The Kalman system was placed
initially in the Track Fitter architecture and interfaced as a null block. The
inner blocks were added gradually following stand-alone implementation and
testing stages.

Implementing the Kalman algorithm in hardware is computationally
demanding due to matrices and data flow control in a time-sensitive manner
due to recursive iterations of the algorithm. These properties increase the
complexity of the hardware surpassing the latency and resource
specifications of the Level-1 Track Finder system in preliminary simulations.
The solution is to divide the algorithm into smaller manageable functions
that can be pipelined using added registers for temporarily storing data. In
Figure 5.4, an illustration of Kalman worker data flow using an integrated
memory structure is presented.

Figure 5.4: Kalman Worker data flow structure in hardware.

The modules are defined in terms of data flow to transmit the results of
the matrix arithmetic operations, updating bookkeeping parameters,
calculating the covariance matrices, estimating the χ2 value, and finally
controlling the flow of stubs and state association in preparation for the state
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updater. Random Access Memories (RAMs) are used inside the blocks to store
intermediate results ranging from 16 kb to 512 kb storage capacity. The
RAMs are implemented in VHDL with one read and write capability per clock
cycle. The structure is particularly useful in pipelining the data flow between
blocks. Access optimisation directly improves the system’s performance at
the frequency of RAM’s operational capability. The implementation also limits
the data flow rate at a higher frequency due to read/write limitations of the
RAMs.

The state updater is entirely designed using the HLS automation tool. The
rest of the blocks are implemented using HDL. The method separates data
flow blocks that are trivially programmable in HDL from computational
blocks that are complex. Each block is separated by intermediate memory
blocks controlled by the user-defined clock and reset capability, except the
stub state associator, which is implemented using dual-port RAM for storing
associations. The HLS acceleration with supported directives for built-in
fixed-point design and pipeline scheduling has helped the overall hardware
development overcome the latency and resource constraints in implementing
the Kalman system in the final assembly. The primary issue in the
development of the state updater is the use of the division operator while
finding the determinant of the matrix used in the calculation of the track
helix parameters. A custom division algorithm has been devised using lookup
tables and a multiplier for faster matrix inversion. Division operations are the
most costly in terms of logic resources and latency. In hardware design, the
divide expression (a/b) is broken down into two expressions (a x 1/b) and
implemented using custom logic and lookup tables. The diagonal matrix
operations have benefited from implementing inverse operations that
naturally require large RAMs for a variable with a word length exceeding
18-bits. A similar technique is adopted for the calculation of fit parameters in
the Linear Fitter module. The inverse model is described in more detail in
Linear Fitter Chapter 6 and Appendix A2. The implementation of the Kalman
filter in the hardware has made use of several other design alternatives and
techniques to meet the latency and resource usage requirements, which are
discussed in Chapter 7.



74 CHAPTER 5 KALMAN SYSTEM FOR TRACKING

5.6 Kalman Algorithm Performance

Implementing the Kalman algorithm is an ongoing process that requires
further studies to determine the optimal number of Kalman workers per
Track Finder processor. Also transferring the χ2 calculations to a separate
module due to the complexity of the algorithm. The physics simulations in
this section are produced using both old and new implementations of the
Kalman algorithm. In the new Kalman algorithm, the dependency on the
maximum number of stubs (4) is removed. Instead, the algorithm can
process up to six stubs resulting in Kalman performance increasing across
the pT range and a reduction in duplicate tracks. The simulations use
samples containing top quark pair production (tt̄) that also include 200
pileup events. The samples are analysed in the CMSSW framework using the
firmware demonstrator. The new Kalman algorithm improves physics
performance and efficiency by fine-tuning the Kalman filter variables and
modifying data flow transmission in hardware. The Kalman algorithm
reconstructs tracks with hits that are not generated from a real particle. The
reconstruction algorithm allows incorrect stubs in the trajectory estimation if
only part of the trajectory matches a genuine track.

The algorithm combines track-finding and track-fitting in identifying
matched and unmatched tracks to improve performance leading to high
purities and high efficiencies. With the help of the HT algorithm, the
two-stage track reconstruction techniques coarsely identify particles with
high pT reconstructing many candidate tracks. The number of fake tracks at
high pT negatively impacts efficiency due to the Kalman algorithm’s inability
to reconstruct tracks without helical parameters. High energy particles
produce a less helical trajectory through the tracker layers. The trajectory of
high-energy particles is closer to a straight line with almost no bend caused
by the magnetic field. Also, as most particles in the simulated events are
hadrons, the deterioration of the performance can be related to the
production of secondary particles. These particles are often found very close
to the parent particles and can mislead the algorithm. The loss in efficiency
is evident in particles with pT > 70 GeV/c.



SECTION 5.6 KALMAN ALGORITHM PERFORMANCE 75

The tracking efficiency as a function of pT and η are shown in Figures 5.5
and 5.6.

Figure 5.5: Tracking efficiency of Kalman filter as a function of pT .

Figure 5.6: Tracking efficiency of Kalman filter as a function of η.
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5.7 Resource Usage and Latency

The tracker segmentation approach allows paralleled implementation of the
TFP containing Kalman workers. The regional segmentation divides the r-ϕ
plane into two regions and the r-z plane into eighteen regions with a
time-multiplexing factor of eighteen. In this configuration, there are eighteen
Kalman workers assigned to a TFP, receiving stubs from two nonants. The
number of workers is calculated by a trade-off between efficiency and
resource estimations for a minimum number of workers based on the
tt̄+200PU events. This model of the tracking system is proposed for
demonstration purposes to investigate the feasibility of a fully functional
Kalman system, and to estimate resource usage and latency for the entire
system. The results presented for latency and logic resources are identical for
every TFP and nonant. In Table 5.1, the logic resources and latency for Xilinx
Virtex-7 (690T) FPGA chip are shown. The acronyms that are used are
Lookup Table (LUT), FIFO (FF), Block RAM (BRAM) and Digital Signal
Processing slices (DSP) in logic quantity (slices) and percentage of used
resources in the FPGA chip.

resources utilisation available utilisation (%) time (ns)

LUT 305,406 433,200 70.5 -
FF 687,921.6 866,400 79.4 -
BRAM 1,858.1 1,470 126.4 -
DSP 597.6 3,600 16.6 -
LATENCY - - - 1,243

Table 5.1: Resource and latency for the Kalman system.

As can be seen in the Table 5.1, the number of BRAMs (1,858.1) exceeds
the maximum available resources (1,470) on the Xilinx Virtex-7 FPGA chip.
Currently, the memory constraints require the use of two chips. The Kalman
system needs memory for storing stubs, states, and their associations. The
number of DSP blocks also introduces constraints for the scalability of the
design. Reducing the total number of DSP blocks is desirable and may be
necessary for a complete system prototype.
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The tracking efficiency, measured for both software (SW) and the hardware
(HW), for samples of tt̄+200PU events as a function of pT and η shown in
Figures 5.7 and 5.8.

Figure 5.7: Tracking efficiency (SW+HW) as a function of pT

Figure 5.8: Tracking efficiency (SW+HW) as a function of η
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Chapter 6

Linear Fitter for Tracking

This chapter presents an alternative software- and hardware-based approach
using the Multivariate Linear Regression algorithm and Linear Track Fitting
for the Level-1 Track-Trigger system. Two additional architectures, the TMTT
and the Hybrid system, both using the Kalman algorithm for track
reconstruction, have been developed and investigated in terms of
performance, hardware resources and latency requirements. The baseline
metrics defined under the Level-1 Tracking system specifications [92] are
used for comparison. A Multivariate Linear Fitter system prototype is
implemented in software using the CMSSW framework and in the hardware
using the EMP framework, specifically designed for the Level-1 Tracking
system firmware platform. Simulation and emulation results are presented
for the standalone1 version in this chapter and implementation on the
broader system is discussed in the Chapter 8.

6.1 Linear Fitter Model

The Linear Fitter algorithm is based on the Multivariate Linear Regression
approach, perhaps the most well-understood algorithm in statistics and
estimation applications. Although the Linear-Regression-based algorithm has
gained popularity in offline CMS data analysis, the algorithm has never been
used for online track reconstruction and track quality estimation. The Linear
Regression algorithm is simple in terms of the arithmetic operations involved.
The algorithm’s simplicity makes the model a good candidate for real-time

1In standalone development, the dependencies on other systems are manually defined.
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stub processing. There are challenges for modules operating in a real-time
environment, such as constraints in using logic resources and latency
imposed by the Level-1 Track-Trigger system, which are discussed in this
chapter. In the classic Multivariate Linear Regression approach [93]–[96], the
model predicts a relationship between the independent (predictor) and
dependent (outcome) variables through correlation analysis within the
generated data-set. In a two-variate Linear Regression, the process begins
with placing the data (blue points) in a two-dimensional plane with
independent and dependent axes, as shown in Figure 6.1. A horizontal line
with gradient zero passing through the centre of the data points is drawn,
such as the black dotted line shown in the top plot. The centre is determined
by finding the mean of independent and dependent variables. The distances
from the data points to the line are measured and squared to avoid negative
values. The summation is known as the Sum of Squared Distances (SSD).
The calculation results in an SSD value with its corresponding gradient
plotted in the bottom plot.

Figure 6.1: Fitting a line to data with the least SSD.
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The process is repeated by rotating the line by a small degree in one plot,
calculating the SSD and plotting both values in the other plot. Repeating the
operation several times generates two new sets of values; gradients and SSDs.
The line with the least value for SSD defines the best fit. This line minimises
the distance between the estimated line and data points, such as the red line
in the top plot and its corresponding red point in the bottom plot. While the
value of the SSD approaches zero the estimated line becomes closer to a good
fit for the data.

The Goodness-of-Fit χ2 determines if observed data (O) aligns with
estimated data (E) based on the differences between observations and
estimations, depending on the degrees of freedom (c) and the sample size (n).
The degree of freedom is the number of variables in the data-set minus one.
For the two variates linear regression, the degree of freedom is one. The χ2

formula is shown in Equation 6.1;

χ2
c =

n∑
i=1

(Oi −Ei)
2

Ei

(6.1)

A low value for χ2 describes a high correlation between observed data and
estimated fit. The calculated χ2 can be compared to a predefined χ2 table
with a critical χ2 value for various degrees of freedom. If the χ2 is greater
than the critical value, there is a significant difference between the
observations and the estimated fit. This chapter proposes a Linear
Regression model to estimate particle trajectories according to the Level-1
track reconstruction specifications for the High Luminosity upgrade of the
CMS experiment. The algorithm will be described and discussed in terms of
synthesisable algorithms and compatibility with front-end hardware
developments in the Level-1 Tracking system.

6.2 Motivations for using Linear Fitter

The previous chapter described the use of the Kalman algorithm for particle
trajectory estimation and fit calculations for the hardware-based track
reconstruction. The evolution of the hardware-based Kalman algorithm for
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use in the Level-1 Track-Trigger system [95] has resulted in an in-depth study
and analysis of track reconstruction using an estimation algorithm for
particle trajectories with transverse momentum exceeding 2 GeV/c. The
Kalman system was initially conceptualised and developed for the TMTT
firmware alongside the Hough-Transform and Duplicate Removal modules. A
fully pipelined Kalman system can process stubs at 240 MHz within latency
and hardware resources. Hardware simulations have shown that the Kalman
system can achieve high-efficiency levels in physics performance at the
expense of additional hardware resources [97]. To reduce resources and
maintain high efficiency, an additional module known as the mini Hough
Transform (mHT) was implemented to handle data formatting outside the
Kalman system. Any added module to the tracking system results in larger
overall latency and resources. Further examination of the Kalman system
revealed that its complexity is driven by matrix-based arithmetic concerning
covariances and error estimations in the feedback iterations [98].

The efficiency of the Kalman filter relies on using the full dynamic range of
double-precision floating-point variables for the measurements of parameters
to calculate the Kalman gain efficiently. In FPGA design, the representation
of native parameters counterparts in integer-based or fixed-point values
resulted in excessive utilisation of logic resources for equal efficiency levels.
Implementing a full integer-based model is not feasible, considering multiple
copies of the Kalman system will be required in a full tracking system
architecture. Additional techniques are deployed to reduce resource usage in
multiply-accumulate operations with a minimised number of bits without
considering the effects of precision loss and overflow, which otherwise would
introduce extra bits in guard bits declaration. Consequently, the efficiency
deteriorated, and the effects being observed in the final fit efficiency
simulation [99]. In physics simulation, the Kalman filter algorithm is used for
both the r-ϕ and r-z planes without taking into account the pT module’s
misalignment in r-z, resulting in efficiency loss in trajectory estimation for
particles crossing from one plane into the other.
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All the Kalman system advantages and disadvantages have been
considered while developing the linear fitter trajectory estimator that uses a
simple multivariate Linear-Regression approach. In particular, the concept of
complexity reduction in hardware implementations by considering the effects
of deploying simple arithmetic equations in the track reconstruction
architecture. Once the hardware specifications have been met in the full
system, additional features can easily be integrated into the architecture with
room for improvement (e.g., curved track reconstruction plugin). The
Multivariate Linear Fitter algorithm is optimised for a higher frequency of 400
MHz, reducing the latency in compliance with the Level-1 Tracking
specifications. The Linear algorithm estimates a fit immediately after the
geometry processor block without requiring the Hough Transform algorithm
and data conversion block in the r-ϕ and r-z planes. The effects of the
detector’s layer alignments in Pixel-Strip and Strip-Strip modules in the
barrel and endcap regions are encoded into the algorithm, which provides
similar efficiency in both planes. The Linear Fitter system has been
developing in parallel with the Kalman system; hence, it is compatible with
TMTT and Hybrid architectures.

6.3 Linear Fitter for Track Finding

The tracker geometry of the HL-LHC upgrade in the tracker barrel and
endcaps follows the pT module concept with tilted modules for maximised
efficiency in trajectory reconstruction. The Linear Fitter algorithm uses both
Pixel-Strip and Strip-Strip modules within the specified ranges of the CMS
detector geometry. The algorithm uses the CMS coordinate system, as defined
in the Section 2.9.

In the conventional Multivariate Linear Regression approach, the equation
of a line in terms of the independent variable x and dependent variable y with
gradient m and intercept b is shown in the Equation 6.2:

y = mx+ b (6.2)
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The Equation 6.2 is derived from the summation of all distances E to the
fitted line and each data point as given in Equation 6.3:

E =
n−1∑
i=0

(yi − (mxi + b))2 (6.3)

Through a series of algebraic operations, the summation produces the
gradient and intercept as described in more detail in Appendix A5, The final
equation for these quantities are:

m =
x̄ȳ − xy

x̄2 − x2
(6.4)

b = ȳ −mx̄ (6.5)

The values for x and y are the mean of x and y variables, respectively. The
conversion from (x, y, z) to (r, ϕ, z) is defined in the r-ϕ and r-z planes
independently as shown in Equations 6.6 and 6.7:

m =
r̄ϕ̄− rϕ

r̄2 − r2

b = ϕ̄−mr̄

(6.6)

m =
r̄z̄ − rz

r̄2 − r2

b = z̄ −mr̄

(6.7)

The Linear Regression model finds the relationship between two variables
r and ϕ in the r-ϕ plane, independent of r and z in the r-z plane. Even though
the straight lines are calculated and fitted in two planes with the stub radius
as their common shared parameter, minimising the squared distances is
determined in one dimension.

Once the gradient and slope are calculated, they are incorporated into the
equation of a line 6.2 to calculate the estimated ϕ values. The process is
repeated to calculate the estimated z values. The fit generated by these values
in each plane must minimise the distances between the fit and data points,
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resulting in the least sum of squared distances in that plane. Additionally,
the summation of these values obtained from each plane must return the
least squared distance to data points in the three-dimensional plane.

The feasibility of converting a three-dimensional data-set into two separate
fits is examined in Figure 6.2. The figure displays four plots with Subplot 1
showing the data points (stubs) density in the (r, ϕ, z) plane. In Subplot 2, a
linear fit is generated in the three-dimensional plane. In Subplot 3 and
Subplot 4, the fits in r-ϕ and r-z superimposed on data are displayed in
two-dimensional planes separately. The advantage of this approach is the
flexibility of encoding the tracker misalignment in the r-z plane separately
from the r-ϕ plane when calculating the stub distances from the generated fit,
hereafter called the residuals.

Figure 6.2: Converting a 3D fit into two 2D fits.
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The gradient and the intercept of the fit in r-ϕ are used to calculate the sum
of squared residuals in the r-ϕ plane as seen in Equation 6.8:

Eϕ =
n−1∑
i=0

(ϕi − (mrϕri + brϕ))
2 (6.8)

The gradient and intercept of the fit in the r-z plane are used, taking into
account the stub radius offsets as rrϕ and rrz to increase efficiency in the
trajectory estimation as shown in Equation 6.9:

Ez =
n−1∑
i=0

(zi − (mrz(rrϕri + brz)− rrz))
2 (6.9)

The residuals from the estimated trajectory to the individual stubs in two
planes are calculated for all stubs in two planes as shown in Equation 6.10:

E(ϕz)i = Eϕi
+Ezi (6.10)

If the stubs are detected in the tracker endcaps, additional parameters are
introduced in the calculation of their residuals depending on where the pT

modules associated with their original hit are located. The parameters are
chosen to increase tracking efficiency and hand-coded into the algorithm. For
instance, if a stub originated in the endcap and its hit information indicates
that it is from a Pixel-Strip module, its residual Ez is divided by an offset to
compensate for shorter distances between its pT modules in the endcap
regions. If the stub is in the barrel and it originated from a Strip-Strip
module, its residual Ez is divided by an offset to compensate for the larger
distance between pT modules in the barrel. Other classifications are
introduced based on individual layer alignments in barrel and endcap regions
to increase efficiency. These include finding the maximum pT module
population areas in the tracker and introducing offsets to concentrate the
computation intensity on these regions. The sum of squared residuals is
calculated by using three models, Sum of Squares Total (SST), Sum of
Squares due to Error (SSE) and Sum of Squares due to Regression (SSR). The
SST calculates the ϕ residuals from the mean ϕ̄. The SSE calculates the ϕ

residuals from estimated ϕ̂. The SSR is the residuals in estimated ϕ̂ from the
mean ϕ̄.
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Figure 6.3 shows these models with their equations concerning the stub
location, estimated fit and mean.

Figure 6.3: Models for calculating Sum of Squares in the r-ϕ plane.

Similarly, in the r-z plane, SST, SSE, and SSR determine how well the
estimate fits the data. The r coordinate or the distance from the interaction
point is the shared parameter between the r-ϕ and r-z planes, which becomes
the relating factor in calculating residuals in both planes. It is only logical to
use the same sum of squares model in calculations of residuals in the r-z
plane for transparency, as shown in Figure 6.4.

Figure 6.4: Models for calculating Sum of Squares in the r-z plane.
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Generally, just one of these arrangements will be sufficient to establish the
relationship between the data. However, both are typically calculated, and the
best is selected. The SSE model calculates the errors or possible corrections
to the fit without storing the mean in a loop, resulting in fewer logic resources
in the hardware implementation.

Finally, the goodness of the fit χ2 is calculated using the Equation 6.11.
If χ2 > significance level, the estimated trajectory is rejected; otherwise, the
trajectory is flagged as a valid candidate track and stored in memory for further
examination.

χ2 =
SSR

SST

χ2 = 1− SSE

SST

(6.11)

The χ2 is also used in finding the efficiency of the tracking system by
taking into account the total number of tracks before and after the estimation
for many events as shown in Equation 6.12.

χ2 =

tracks∑
i=1

(observedi − estimatedi)
2

estimatedi

(6.12)

6.4 Tracker Geometry for Linear Fitter

In the Time-Multiplexed Linear Fitter, the tracker is divided into 2π/9 regions
known as nonants. The trajectory of particles with pT > 2 GeV/c is observed
as a straight line in the r-z plane; however, the trajectory may slightly bend in
the r−ϕ plane, entering the neighbouring regions. Hence, the tracker is
divided into two areas of high and low efficiency. A trajectory in overlapping
areas contributes to the reconstruction of two candidate tracks and
consequently becomes duplicates. The track finding algorithm can be
modified to differentiate between overlapping and non-overlapping areas as
low efficiency and high efficiency, respectively.
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The overlapping areas are calculated by the Equation 6.13 incorporating a
track radius rT with transverse momentum pT originating from the centre of
the detector and interacting with a PS or 2S module in its path through the
magnetic field B in the CMS. For a 2 GeV/c particle, the rT is approximately
1.7 m, which is larger than the radius of a pT modules on the layers of the
tracker.

rT [m] ≈ pT [GeV/c]

0.3B[T ]
(6.13)

As shown in the Figure 6.5, the tracker is divided into nine nonants with
circles representing tracks with pT = 2 GeV/c. The darker regions represent
the overlapping areas superimposed on the tracker layers: Layer 1 (red) to
Layer 7 (blue).

Figure 6.5: Tracker segmentation for increased efficiency.

The overlapping areas will be minimal as a particle trajectory approaches a
straight line. If the bend is small enough to be neglected, the tracking process
can be implemented without cross-regional communication between nonants,
significantly reducing the algorithm complexity in software and hardware im-
plementation.
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6.5 Virtual Stubs in Linear Fitter

The Linear Fitter algorithm is optimised to process high occupancy 200
pileup events in layers closer to the beam pipe. Following the regional
segmentation of the tracker into stub sectors, calculating virtual stubs is a
necessary step in the track reconstruction algorithm. Virtual Stub creation
reduces the stub occurrences on each tracker layer within stub sectors by
merging all existing hits to one per layer. The model for the virtual stub
module is chosen carefully as the calculated stub per layer must be a good
presentation of all stubs on the processing layer. Figure 6.6 shows an
illustration of possible stub occupancy on four layers in r-ϕ and r-z planes.
The dotted lines define the stub sector boundaries with the minimum and
maximum values configured by the Geometry Processor and top-level
modules. These values are passed to the individual instances of the Linear
Fitter. Blue dots represent particle hits on each tracker layer, randomly
selected in this instance. The algorithm must differentiate between inner and
outer boundary particles.

Figure 6.6: Hit population in a: r-ϕ and b: r-z plane.

In conventional Descriptive Statistics practices, the popular models to cal-
culate an average of random samples are the mean, median, and mode [96].
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If the total number of particle hit is denoted as n and the number of stub
occurrences as (x = x0, x1, . . ., xn−1), the mean or the Simple Average Model as
shown in Equation 6.14:

Xmean =
1

n

n−1∑
i=0

xi (6.14)

The equation is most commonly used in statistics when the total number
of samples is known at the runtime2 of the system. In a fully pipelined Linear
Fitter, the stubs are processed as they arrive at module’s inputs and are
processed immediately, meaning the total number of stubs is unknown at
runtime. As a result, calculating virtual stubs using the mean model is not
practical. Therefore, an alternative method has been developed and
implemented to modify the mean algorithm for pipelining to solve the runtime
problem and the unknown number of hits. In this model, the first iteration
only sees the first stub at its input and stores it in an intermediate variable
xiter(1). In the second iteration xiter(2), the second stub arrives at the input,
which is used in the calculation of the mean of two variables x1 and x2. In the
third iteration, the next stub xiter(3) arrives and the mean value is calculated
in the second iteration xiter(2) is used to calculate the mean of x1, x2 and x3.
The process continues with the result from the previous iteration used to
calculate the mean in the current iteration until the last stub is cleared. In
Equation 6.15 the arithmetic operations in the model with a multiplication,
an addition and a division operator are shown.

xiter(1) = x1

xiter(2) =
1(xiter(1)) + x2

2

xiter(3) =
2(xiter(2)) + x3

3

xiter(i) =
i(xiter(i−1)) + xi+1

i+ 1

(6.15)

2The instance the algorithm commences the stub processing in real-time.
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The software implementation of this model produces the correct results
mathematically. The hardware implementation of the model also produces
reliable synthesis results in a fully pipelined structure. However, it fails to
meet the minimum requirements in terms of logic resources. The reason is
the division operation with the divisor ranging from integer 2 to n, depending
on the number of samples. The division is a costly operation in hardware
implementation for its use of logic resources and the latency associated with
them. In Equation 6.16, the cross-conversion model for replacing the division
with a shift operation is shown provided that the divisor is a radix2 binary
number. Shifting bits in hardware can be implemented by only hard-wiring
bit locations without any use of logic gates. If log2(n) returns a decimal
number, it will be rounded to the nearest value that can be represented in
binary. This will cause precision lost which can affect the correctness of the
results. In the mean model, the cost is significant and therefore its use in the
Linear Fitter design was avoided.

x/n = x >> log2(n) where, n = (1, 2, 4, 8, 16, ...) (6.16)

Other approaches such as the median3 also result in pipelining issues in
hardware. In the median model, all stubs must be present in ascending or
descending order to find the exact middle values in the data set. The
implementation requires all stubs to be stored and then sorted before using
equality logic to find the midpoint. If the number of stubs is even, an
additional division or shifting operation is required to find the mean of two
midpoint values. In this instance, additional operations excessively utilise
logic resources and latency.

An alternative mean approach produces accurate results in a pipelined
structure and uses minimum hardware resources due to utilising a shift
operator instead of division. Following the geometric segmentation of the
tracker regions, the minimum and maximum values for the stub sector
boundaries are retrieved and stored in variables (SectorMin and SectorMax)
for each parameter ϕ, rϕ, z and rz coordinates. For initialisation, the
maximum value of the sector boundary is assigned to the sectorMax and the
minimum value of the sector boundary is assigned to SectorMax. The

3Midpoint of the stubs distribution.
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arrangement helps to pinpoint the stub position within a stub sector. In the
next step, the minimum and maximum values for the sector boundary and
the first stub position on its corresponding layer are found by min/max
conditional operators. The minimum value is added to the maximum value
followed by the shift operator to find the virtual stub position on the layer. If
there are more stubs present on the layer, a second iteration is used to find
the mean of stubs to create only one virtual stub per layer. The arithmetic
blocks used in the calculation are an adder and a shift operator. This reduces
the cost of hardware and consequently the latency associated with the logic
resources. The design can be fully pipelined in a parallel logic architecture
proportional to the number of stubs on that layer. The process for the virtual
stub (VStub) creation for the ϕ parameter is shown below;

Initialisation only:
SectorMinϕ = Max value of stub-sector boundary in ϕ

SectorMaxϕ = Min value of stub-sector boundary in ϕ

Loop over stubs on a layer:
SectorMinϕ = min(SectorMinϕ, StubPosϕ)

SectorMaxϕ = max(SectorMaxϕ, StubPosϕ)

Stubϕ = SectorMinϕ + SectorMaxϕ

VStubϕ = Stubϕ >> 1

6.6 Linear Fitter Flow Control

A fully pipelined implementation of the Linear Fitter divides the module into
smaller and better manageable blocks. The approach deploys the null
algorithm strategy 8.9 in the Track Finder Processor top-level firmware design
for faster integration of the individual blocks. Time-Multiplexed Linear Fitter
modules are instantiated in Track Finder Processors in parallel
configurations. A single module of the Linear Fitter contains two types of
blocks for data processing and data calculations. The data processing blocks
are responsible for routing the streams of stubs between blocks, updating the
runtime values for stubs and layers for bookkeeping, and determining the exit
strategy. The calculation blocks contain arithmetic operators for fit and
residuals estimation. In Figure 6.7, the components of the Linear Fitter are
shown. The arrows show the data flow direction, and the partitioned stacks
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display the memory structures for stubs and reconstructed tracks. In this
configuration, the stubs are stored in memories before and after link
formatting to control the I/O data flow. N number of tracks are produced and
stored for the final track reconstruction algorithm to select the best estimate.
In the simulated 200 pileup events, the algorithm expects high layer
populations4 in all tracker layers. The number of stubs on the layers closer to
the interaction point is higher than those further away. In the Linear Fitter, a
module is designed to keep the count on the tracker layers. The layer
population module holds information about the hit patterns as they are
detected. The information from the layer population is used in the check
validity block for hit validations based on association with the pT ≥ 2 GeV/c
particles.

Figure 6.7: Linear Fitter in the pipeline configuration.

In fitting a straight line, at least two hits (stubs) on two different layers of
the tracker are required to reconstruct a partial path. The check validity
block updates the total number of stubs and layers counts according to
whether the hit was obtained from a PS or 2S module. Considering the data
from the pT modules independently increases the track quality efficiency as
the corresponding module alignments can be incorporated into the
algorithm. The check validity block also determines an exit strategy for
terminating the iterations when the desired number of stubs are filtered. The
exit strategy also considers the number of stubs in PS and 2S layers to
ensure two stubs remain on two layers of the tracker at runtime. For a

4Many hits or stubs are expected on each layer of the tracker.
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stream of sixteen stubs, if a maximum of sixteen iterations are executed, and
a valid candidate track is not reconstructed, the algorithm flags all calculated
fits as invalid. The bookkeeping functions in the check validity block are fully
pipelined, ensuring a steady transmission of one stub per clock cycle until all
stubs in the stream have been processed. In the calculation blocks, the
Linear Fitter arithmetic equations are implemented. The update sums block
receives the stubs in streams and verifies if the coordinates are within the
stub sector boundaries. It also applies corrections to the r coordinate in the
r-ϕ and r-z planes by chosen offsets; rrϕ and rrz to compensate for track
inefficiencies arising from the pT modules and the gaps between layers. The
summation and mean calculations use individual hit coordinates on a
layer-to-layer basis to create a virtual stub per layer. The values of counters
are also incremented, indicating how many virtual stubs are generated at
runtime. The calculated values for gradient and intercept are prepared for the
next block in both planes. The calculate fit block is the most computationally
intensive as it performs the fit arithmetic. In this block, the summation
values from the update sum block are used to generate fit parameters in the
form of gradientrϕ, interceptrϕ, gradientrz and interceptrz accounting for the
pT modules offsets in both planes. Find the largest residual block proceeds
with the fit parameters to calculate the sum of squares in ϕ and z
independently. Further corrections are made to the residuals to align PS and
2S modules in the barrel and endcaps. The sum of squared residuals is
calculated for all stubs by calculating the distance between the observed and
estimated values as the summation of residuals in the r-ϕ and the r-z.

In the remove largest residual block, the individual stub residuals are
compared, and the largest value is selected, which pinpoints the stub with
the greater distance from the fit. The stub with the largest residual is
removed from the stream. The check validity block records the stub and
updates its counters accordingly. The exit conditions decide if the process
must terminate or continue based on the remaining stubs in the stream. If
the block determines that the next iteration is necessary, the remaining stubs
are considered in the next processing iteration until the minimum number of
stubs is reached, and the algorithm terminates accordingly. The output is a
stream of valid/invalid stubs and genuine/fake tracks. The stubs that
survived the filtering are flagged as valid stubs, and their corresponding track



SECTION 6.7 PERFORMING A FIT IN A PIPELINED STRUCTURE 95

is flagged as genuine. The final track parameters are updated and stored in
memory for track quality check. The Linear Fitter is interfaced to the
Track-Trigger firmware chain via the input link formatter and output link
formatter modules. The demultiplexer and multiplexers operate as switches
for stub routing between firmware modules in the tracking chain. When a
track reconstruction is validated by the previous modules and the valid bit of
the track word is set, the check validity block recognises and passes the
reconstructed track to down-chain modules. As a result, the track will skip
the processing operation by default and will transmit instead to the output
link formatter. The building stubs of the reconstructed track can be accessed
through the stub memories in the succeeding clocks.

6.7 Performing a Fit in a Pipelined Structure

The virtual stubs created for each tracker layer with stub occupancy > 1,
return the (r, ϕ, z) coordinates per layer calculated at runtime. If there is only
one hit per layer, the hit is flagged as the virtual stub. The next step is to use
the parameters in the fit calculations in the two planes. The equation for the
fit contains multiply/accumulate at its core, with multiplication as the major
contributor to logic resources and latency. An asynchronous multiplier is
designed and implemented with only AND and XOR logic gates to control the
hardware at the multiplication stages. Designing an asynchronous multiplier
[100] has advantages in Hardware Description Language (HDL) and
High-Level Synthesis (HLS) implementations. In HDL standard library
packages, the multipliers often have additional multi-purpose logic gates to
make the entity suitable for all designs. The added logic capability adds
unnecessary resources to the overall system design. The standard library
multipliers also limit the user’s access to the data path, limiting the use of
rounders and limiters to quantize the word length at runtime. The
custom-designed asynchronous multiplier minimises additional control logic
resources and grants access to the data path, which is critical to managing
the bit growth. An implementation of a 4-bit multiplicand a and 4-bit
multiplier b with an 8-bit product p is shown in Figure 6.8. The partial
additions using AND gates are denoted as (p0−7), and the parity checks are
denoted as (x1−5). In the bitwise configuration, multiplicand and multiplier
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can be either ’0’ or ’1’; however, the only multiplier with value ’1’ can change
the result of partial addition in locations 1→8. The intermediate locations in
the multiplier are hardwired with the critical path not exceeding the 1/sc
(system clock) frequency at 400 MHz. The combinational structure produces
the results as long as the values are present at the multiplier input (a, b). The
implementation strategy allows new transitions to occur earlier than the next
clock cycle, reducing the overall system latency. Concerning the hardware
resources, the building blocks of the multiplier only contain primitive logic
gates.

Figure 6.8: 4-bit asynchronous multiplier with primitive logic.

The multiplication operations in Xilinx FPGA chips are passed to the
DSP48E slices. These blocks are designed to perform multiply/accumulate
operations with added registers for pipelining the data path. The DSP48E
blocks are efficient and effective for arithmetic operations; however, there are
limited slices available on an FPGA chip depending on the product’s series
and costs. In large projects such as Kalman Filter or Linear Fitter, there are
not enough arithmetic units for instantiation of 16-18 parallelised modules
on the most expensive chip; hence, utilisation of DSP48E slices is avoided
unless necessary. A fully pipelined and scaled 18-bit version of the
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asynchronous multiplier is implemented in HDL to carry out
multiply/accumulate in the Linear Fitter fit calculations. The
Multiply/Accumulate (MAC) operation is a reoccurring operation in DSP
projects. Designing an efficient MAC slice is crucial in providing accurate
results from Linear Fitter calculations, considering the overflow and the
precision loss can completely change the arithmetic operation’s outcome.
Hence, a custom-designed fully pipelined MAC architecture is implemented
containing the asynchronous multiplier to access the data path within the
structure and to remove dependency on the global system clock. The
characteristics of MAC benefit the design in minimising the latency,
minimising logic resource usage and reducing power consumption. The
architecture of the MAC is shown in Figure 6.9.

Figure 6.9: Fully pipelined MAC for fit architecture.



98 CHAPTER 6 LINEAR FITTER FOR TRACKING

In this architecture, the fit is calculated and pipelined in four clock cycles
producing the result for the Equation 6.17:

yk = gradient(xk) + intercept (6.17)

The gradient and intercept are available to the block at every rising clock
edge. The multiplexer (4:1) permits only one input to go through the data
path, controlled by a latch. After the latch, the asynchronous multiplier
produces the result for the first part of the equation. A custom-designed
Rounder block is introduced after the multiplier quantizes the data to the
desired word length. The multiplication of n-bit multiplicand and m-bit
multiplier produces an (n+m)-bit product that can grow in length at every
iteration if not cut back to n+m. After multiplication, the data path holds the
result for gradient(xk), quantized.

A custom-designed limiter block is placed after the add/accumulate
operator stops the word length from growing, otherwise resulting in overflow
and the incorrect output. The accumulator using an n-bit adder can produce
an (n+1)-bit result that can contribute to the word length becoming larger
during iterations. The intercept value is added to the data path through a
clocked latch. The path after the addition operator holds the value of yk for
the first iteration, which is fed back to the adder in the next iteration. The y
value is read at the final clock cycle of the fourth rising edge of the clock. The
yk can be read at every clock cycle, which yields a partial fit calculation. The
complete fit is driven after the last stub has entered and cleared from the last
(yk) latch. The rounder and limiter are essential features of the MAC data
processor described in the following sections.

6.8 Integer-based Division for Linear Fitter

In calculating the gradient, the division operation (a/b) is separated into
multiplication and reciprocal operators (a x 1/b). For divisors, with less than
10 bits, the lookup tables store all possible division results in tabulated form
with the precision of 0.0625 and made available at runtime. Even though the
implementation is hardware friendly, it can not be used for operations where
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the divisor has bits more than 10 bits, leading to excessive memory usage.
Hence, an alternative custom-designed hardware structure is implemented
and used to calculate reciprocal operations with minimum logic resources.
The process begins by declaring n-bit registers to hold the values for
dividend, divisor, quotient and remainder with the initiation of all bits to
zeros except the most significant bit of the dividend, which is set to ’1’. In the
first iteration (i = 0), the binary values for the remainder and quotient are
shifted to the left by one bit. A full custom-designed asynchronous
adder/subtractor subtracts the divisor from the remainder, with the result
stored back in the remainder. For example, if the most significant bit in the
remainder is ’0’, the quotient ith-bit becomes ’1’; otherwise, the subtraction is
reversed, and ’0’ is assigned to the quotient ith-bit. The process continues
until all bits in the divisor are shifted out of the register. The model follows
the implementation of Restoring Division in ASIC design [101]. The
architecture of the reciprocal slice is shown in Figure 6.10:

Figure 6.10: Pipelined reciprocal hardware architecture.

A low-power asynchronous Adder/Subtractor in the fully pipelined
architecture is implemented using custom-designed logic. The HDL Standard
Cell Library does not provide Adders with serial data flow characteristics. The
inspiration for the design comes from microelectronics system design
practices [102], [103]. The modified logic uses only one n-bit full-adder in a
serial configuration using only AND, XOR and OR gates. To convert the adder
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into a subtractor, the simplest approach is to negate5 b in a + b n-bit addition
to form a + -b subtraction logic in hardware. An XOR logic gate controls the
add/subtract operations in the architecture. The latches hold the operation
result and can be controlled by the rising/falling edge of the clock 2n times
faster than the master or global system clock. The n value is selected to
compensate for the 1/sc system clock idle period required to calculate the full
result of addition or subtraction. The period that the logic is forced to stay
idle is approximately 75% of the system clock period at 40 MHz frequency.
The critical path in this architecture is the carry bit which limits the speed of
data flow and consequently dictates the overall latency of the structure. A
gate view of the architecture is shown in Figure 6.11;

Figure 6.11: Adder/Subtractor for the reciprocal architecture.

6.9 Regression Fit with Fixed Latency

Finally, the logic blocks (Multiplier, Adder/Subtractor, Multiply/Accumulate,
Reciprocal) are placed in the fixed latency Linear Fitter structure in a fully
pipelined architecture as shown in Figure 6.12. The rising edge of the clock
shows the timing for every stage of the architecture. A stub in the Level-1
Track-Trigger system has at least three parameters (r, ϕ, z). As the Linear
Fitter conducts its operations in two planes, the parameters are grouped into

5Negation in two’s complement is the inversion of bits followed by adding 1 to the result.
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(r, ϕ) and (r, z), which helps to compare the hits and stub sector boundaries
for the generation of virtual stubs. The information is divided into two
(numerator, denominator) for the r-ϕ and the r-z plane, followed by the
reciprocal operator. The values for gradient and intercept are calculated to
determine track parameters in both planes. The total latency for the
architecture is fixed at sixteen clock cycles. As the latency and number of
stubs in the streams are the same, the processing interval of one stub per
clock cycle is achieved.

Figure 6.12: Logic architecture (16 clocks) for driving a fit.

At this stage, about 95% of the reconstructed tracks are invalid. The module
creates a track in every clock cycle without determining if the track is genuine.
To separate the genuine tracks from all tracks, invalid stubs that are wrongly
associated with the track must be identified and eliminated up to only two
stubs of PS or two stubs of 2S remaining on two PS or 2S layers. The removal
of stubs is implemented in the next section.



102 CHAPTER 6 LINEAR FITTER FOR TRACKING

6.10 Residuals in a Pipelined Structure

The general definition of a residual in the Linear Regression algorithm is the
distance between the individual measurement and the estimation. In the
Linear Fitter, a residual defines the distance between each stub and the fit,
calculated for all stubs in the stream. If the fit is performed correctly, the
residuals appear to have random approximation from the fit and are scattered
around the fit. If the residuals appear to have systematic patterns, then the
generated fit has not been performed correctly. Analysing the residuals at
this stage provides insight into the algorithm performance, ensuring that the
arithmetic operations in the previous stages have not encountered large
precision loss or overflow. Calculating residuals permit stub identification
with the largest distance from the estimated fit. The stubs with the largest
residuals indicate that the hit was wrongly associated with the trajectory and
did not belong to the reconstructed track. These stubs are flagged for
elimination and will eventually be removed from the stub stream. Only stubs
closest to the fit will remain to generate the final track.

In hardware, all the custom-designed arithmetic blocks are reused in
finding the stubs with the largest residuals in a pipeline structure. The
algorithm specifically calculates ϕr in the r-ϕ and zr in the r-z plane. The
equations for the arithmetic are shown in the Equation 6.18. The
asynchronous adder/subtractor is utilised in both additions and
subtractions in arithmetic operations.

ϕr = ϕrϕ − (interceptrϕ + gradientrϕ((rrϕ + rrϕ(offset))− rrz(offset))

zr = zrz − (interceptrz + gradientrz((rrz + rrz(offset))− rrϕ(offset))

(6.18)

The offsets are added to maximise the trajectory efficiency in tracker
regions. The values for the offsets are selected according to the physical stub
locations concerning high-occupancy areas. Once the results of residuals are
obtained, the values must be squared to remove negative values and to
prevent the sum from adding up to zero. As taking the square is costly in
terms of logic resources in hardware, taking the absolute value of the
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residuals is preferred. The offsets for pT modules are calculated after taking
the absolute values for ϕr and zr as residualPS for PS modules and residual2S
for 2S modules in barrel and endcaps. The selected offsets differentiate
between PS and 2S modules according to the distance between them in
different regions of the tracker. The thresholds are often hardwired between
modules as constants or directly obtained from the tracker geometry, DTC, or
track reconstruction utility modules. Once the residuals are recalculated
with added offsets for ϕr and zr, they are summed to describe the residuals
in (r, ϕ, z). As the values are being processed, an inequality operator
compares the values to find the largest. The stub with the largest residual is
removed from the stream. All operations are conducted concurrently using
parallelised logic gates to eliminate the use of memory blocks for storing the
results of calculations.

6.11 Precision loss and Overflow

Using fewer binary bits in computations results in a major reduction in logic
resource usage and decreases the total latency when implementing hardware.
Choosing the correct number of bits to present a variable is critical to
ensuring an accurate result mathematically. Standard library packages
support finite word length or fixed-point data representation in HDL and
HLS. However, the effects of quantisation and overflow are not automatically
included in the toolsets. For this reason, the fixed-point implementation of
Linear Fitter is designed in MATLAB. For arithmetic operations using binary
numbers, two’s complement6 is a good choice. The binary representation
supports both unsigned and signed variables with control over the binary
point for declaring integer and fraction bits. The general presentation of a
fixed-point variable xfp in binary b with the number of integer bits n and the
number of fraction bits f is defined by the following relation:

xfp =

n−1∑
i=0

bi2
i +

f∑
i=1

bi2
−i (6.19)

6Bit ranges (0 −→ 2i − 1) for unsigned, and (−2(i−1) −→ 2(i−1) − 1) for signed numbers.
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If guard bits are required, they are added to the Most Significant Bit (MSB)
to facilitate larger integer bits. The quantisation model considers the minimum
and maximum values that a number can present, divided by the number of bits
(2n-1) available for discretisation. The roundoff errors or the noise generated
by quantisation is defined by ±Q/2 that is not in any way proportional to the
represented quantity. The quantisation model is shown in the Figure 6.13.

Figure 6.13: Binary rounding model for a finite word length.

As is shown in the illustration, the representation of a double-precision
floating-point variable in a fixed-point value can result in accumulative noise
depending on the number of assigned bits. The Linear Fitter receives its
input from the preceding and succeeding modules in the Level-1 Tracking
firmware chain. The parameters are provided in fixed-point representation
with a finite number of bits. The output parameters of the Linear Fitter are
also provided in the fixed-point binary format in compliance with the
requirement for the Level-1 Track-Trigger system. The mathematical blocks in
the Linear Fitter include addition, subtraction, multiplication, and reciprocal
operations. These operations permit bit growth in their integer bits except for
the reciprocal operator where growth occurs in the fraction bits. The most bit
growth occurs in multiply/accumulate at runtime during the calculation of
the regression fit. A larger fixed-point variable must be declared to
accommodate the extended bits, negatively affecting the logic resource usage
in the hardware implementation. To address this problem, the possible
ranges of variables in both positive and negative directions before, during,
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and after runtime are considered. The effects of defining the Linear Fitter
signals with a finite number of bits are observed as quantisation noise that
often leads to incorrect system output. More specifically, data path
quantisation is the most challenging task in the Linear Fitter design. There
are two new modules introduced in the Linear Fitter architecture. A rounder
module to control the data path bit growth after the multiplication blocks,
and a limiter module to saturate the data path if overflow is detected. The
logic resources and latency in rounders and limiters must be kept to a
minimum as their use in Linear Fitter design is frequent. Four types of
round, truncate, convergent, and round-to-zero have been investigated for
quantisation, and the effects of precision loss for roundoff errors have been
examined. In the limiter module, a simple algorithm saturates the data path
to maximum and minimum values permitted by the fixed point declaration.
The characteristics of quantisation noise are presented in Table 6.1;

type condition r < Q/2 r = Q/2 r > Q/2

Round - round down round up round up

Truncation - round down round down round down

Convergent s even
s odd

round down
round down

round down
round up

round up
round up

Round to Zero s ≥ 0
s < 0

round down
round up

round down
round up

round down
round up

Table 6.1: Effects of rounding models in quantisation.

In Figure 6.14 the continuous line represents a portion of the
reconstructed track, and the step-wise lines represent the new quantized
track. As can be seen in the figure, the effects of the round and convergent
methods are very similar with signal to noise ratio (SNR) of 1.8202. Also, the
effects of the truncate and round to zero methods are similar with an SNR of
-0.1315. A negative SNR means that signal power is lower than the noise
power.
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These different rounding approaches indicate that either round or
convergent are good choices for hardware implementation in the Linear Fitter;
however, the convergent use more logic gates. The method distinguishes
between even and odd numbers using absolute and remainder operators. The
rounding model uses fewer logic gates and is therefore selected for use in the
Linear Fitter in hardware.

Figure 6.14: Quantisation error in a finite word length.

Investigating finite word length continues with developing a strategy for
overflow. The effects of overflow in the representation of signals with a fixed
number of bits can exceptionally force the value from positive to negative or
vice versa. For example, a simple binary addition of 3 (b’011) + 1 (b’001) can
result in -4 (b’1111) if there are only four bits are available. The most
significant bit is reserved for the sign bit in fixed-point representation. The
logic for overflow detection in limiter uses only NAND and NOR gates to clip
the signal if going over the permitted range. Additional bits are required after
the Most Significant Bit (MSB) as Guard bits. For positive numbers, the MSB
(’0’) is extended by n bits, while for negative numbers, the MSB (’1’) is
extended depending on the polarity of the output expectations. When the
MSB bit and guard bits are not the same, the overflow is detected.
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Input scaling also reduces the potential for bit growth, ensuring the
dynamic range of signals is contained within their minimum and maximum
binary presentations. In Linear Fitter, scaling effects are considered at the
input and the intermediate nodes between inner modules. Several methods
for signal level estimations are considered with the available data set.
However, as the implementation of the Level-1 Tracking system is in its initial
hardware implementation stage, the worst-case scenario is assumed in the
simulation, and the effects of choosing the best scaling factor are studied. If
the scaling factor is too small, the quantisation noise will become the
dominant factor overpowering all signals. If the scaling factor is too large, it
leads to an overflow in the accumulators. Every computational module in the
Linear Fitter has a scaling factor b for each input signal.

For calculating a scaling factor for the worst-case scenario, all variables are
replaced with their minimum and maximum in double-precision floating-point
to carry out arithmetic operations in turn. The same is done for the variables
using the fixed-point representations. The absolute difference between these
two is obtained for all locations in the design. The scaling factor is used to
minimise the difference for every stage or as the summation of all factors per
signal at the input as shown in Equation 6.20:

b =
n∑

i=0

∣∣(Min/Max)node, stage(i)

∣∣ (6.20)

Figure 6.15 shows the impact of the scaling factors in the Linear Fitter for
signals r, ϕ and z. The unbroken lines represent the input signals at runtime,
where dotted lines represent the signals after applied rounders, limiters and
scaling factors. If the signal is deemed as too large for its corresponding fixed-
point number after the first arithmetic operation, the algorithm will detect it
as an overflow and clip the signal. As it can be seen in the first iteration,
saturation logic detects an overflow, observed as a long drop in two signals,
and forces the values to be within their declared fixed-point range.
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The overflow detection algorithm prevents further overflow in the second
and third iterations.

Figure 6.15: Signal scaling in the Linear Fitter.

6.12 Data Format in Linear Fitter

The Tracker segmentation defines the Linear Fitter data format in the DTC,
GP and HT in TMTT implementation. The scheme also applies to the Tracklet
module in the Hybrid configuration. Knowing the ranges of the parameters is
crucial for the hardware implementation of the Linear Fitter, particularly in the
fixed-point implementation of the design. The aim is to identify the absolute
values seen by each module to develop strategies for handling roundoff errors
and overflow.
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In Table 6.2, the ranges for r (barrel) and z (endcaps) are given. There are
Endcaps disks on both sides of the Barrel, resulting in positive and negative
ranges.

Barrel r (cm) range Endcap |z|(cm) range

Layer 1 21.8947 < r < 28.3838 Disk 1 128.9539 < |z| < 133.4292

Layer 2 34.7610 < r < 40.3326 Disk 2 152.7622 < |z| < 157.2374

Layer 3 49.9320 < r < 55.3471 Disk 3 183.1043 < |z| < 187.5795

Layer 4 66.9827 < r < 70.5633 Disk 4 219.3985 < |z| < 223.8289

Layer 5 84.2795 < r < 87.8377 Disk 5 262.7635 < |z| < 267.2387

Layer 6 106.5885 < r < 110.1020 - -

Table 6.2: Ranges of r and |z| in Tracker barrel and endcaps.

The ranges for ϕ are determined by the tracker segmentation in the DTC
module firmware configuration according to the centre of the stub sectors and
their boundaries in the GP module. The stub information for the GP module is
assigned to a 64-bit stub word containing coordinates (r, ϕ, z) and (ϕ, η) sectors
that the stub originated from. The stub word contains minimum and maximum
ranges for HT cells along with the layer identifier where the hit was initially
detected. The MSB of the stub word customarily is reserved for hit validation.
The MSB bit set to ’1’ indicates that the stub word contains information that is
useful for the track reconstruction. As the reserved bits are declared for new
variables or extending the ranges of the current variables. Tracker parameters
r and z are represented by their integer-based values using custom-designed
utility classes in the CMSSW by the Equation 6.21:

x −→ x(1 << scale) (6.21)

The scale is the number of fraction bits present in the word length.
Equation 6.22 converts back the integer-based values to real-world values
after processing:

x −→ x/(1 << scale) (6.22)
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Table 6.3 presents the data format for the GP module in η and ϕ sectors.

parameter unit resolution range min range max bits signed bit range

ϕ rad ∆(ϕ) −∆(ϕ) ∗ 213 ∆(ϕ) ∗ (213 − 1) 14 y [0:13]
reserved - - - - 2 - [14:15]

r cm ∆(r) −∆(r) ∗ 211 ∆(r) ∗ (211 − 1) 12 y [16:27]
layerID layer 1 0 1 3 n [28:30]

reserved - - - - 1 - [31:31]
z cm ∆(z) −∆(z) ∗ 213 ∆(z) ∗ (213 − 1) 14 y [32:45]

reserved - - - - 2 - [46:47]
mbin min bin 1 -16 15 5 y [48:52]
mbin max bin 1 -16 15 5 y [53:57]
η sectorID sub-sector 1 0 1 1 bool [58:58]
ϕ sectorID sub-sector 1 0 1 1 bool [59:59]
reserved - - - - 3 - [60:62]
stubvalid - 1 0 1 1 bool [63:63]

total - - - - 64 - -

Table 6.3: The data format is defined by the GP module.

Using local variables instead of global variables reduces the parameter
ranges and their finite word length of the presentations significantly. If the
Linear Fitter is linked to the HT module in TMTT firmware, the ϕ ranges are
defined by Hough cells configuration. Table 6.4 shows the data format in the
HT module.

parameter unit resolution range min range max bits signed bit range

layerID layer ∆(ϕ) 0 7 3 n [0:2]
η sectorID sector 1 0 17 5 n [3:7]

cBin bin 1 -16 15 5 y [8:12]
z cm ∆(r) −∆(z) ∗ 211 ∆(z) ∗ (211 − 1) 12 y [13:24]
ϕ rad ∆(ϕ) −∆(z) ∗ 28 ∆(z) ∗ (28 − 1) 8 y [25:33]
r cm ∆(z) −∆(z) ∗ 211 ∆(z) ∗ (211 − 1) 12 y [34:45]

mSel bin 1 0 1 1 bool [46:46]
reserved - - - - 2 - [47:62]
stubvalid - - 0 1 1 bool [63:63]

total - - - - 64 - -

Table 6.4: The data format is defined for the HT module.
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In the TMTT configuration, the stubs are formatted into a 64-bit stub word
with additional parameter definitions for HT cells. The ϕ sector is calculated
from the ϕ ranges from the GP module. Similar to the GP data format, the
stub coordinate (r, ϕ, z) and its corresponding η sector with a uniquely
defined layer identifier are assigned to the stub word. The cBin holds
information for the HT cell with the MSB bit assigned for the stub validation.
The reserved bits can be used to extend the ranges of the current parameters.

The Linear Fitter operates on stubs processed by the GP module and
additional information from the DTC module. The stub information required
by the Linear Fitter contains ϕ, r, z, PS, 2S, layerID, valid parameters. The GP
block provides ϕ, r, z, layerID and valid parameters. However, the information
for PS and 2S are obtained from the DTC separately. The track parameters
q/pT (rrϕ), ϕT (ϕrϕ), cotθT (rrz), and zT (zrz) are calculated at the runtime
along with the gradient and the intercept in the r-ϕ and r-z plane. All the
parameters are concatenated into a 96-bit track word. The validity of the
track is tested against the MSB. The variable naming depends on the module
arrangements and deployment of the HT module in the chain. In HT, the
gradient in r-ϕ is defined as q/pT and the intercept as ϕT concerning the
chosen offset. The gradient in r-z is defined as cotθT and its corresponding
intercept as zT concerning the centre of the stub sector. The data format
presented in the Table 6.5 is used to unpack the stub information into
individual parameters in preparation for Linear Fitter arithmetic operations.

parameter unit resolution range min range max bits signed bit range

r cm ∆(r) −∆(r) ∗ 211 ∆(r) ∗ (211 − 1) 12 y [0:11]

ϕ rad ∆(ϕ) −∆(ϕ) ∗ 213 ∆(ϕ) ∗ (213 − 1) 14 y [12:25]

z cm ∆(z) −∆(z) ∗ 213 ∆(z) ∗ (213 − 1) 14 y [26:39]

layerID layer 1 0 7 3 n [40:42]

PS module - 1 0 1 1 bool [43:43]

2S module - 1 0 1 1 bool [44:44]

Table 6.5: Stub word 45-bit format in the Linear Fitter module.
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The data format presented in the Table 6.6 is used to unpack the track
information into individual parameters before Linear Fitter arithmetic
operations.

parameter unit resolution range min range max bits signed bit range

q/pT cm ∆(r) −∆(rT ) ∗ 211 ∆(r) ∗ (211 − 1) 12 y [45:56]

ϕT rad ∆(ϕ) −∆(ϕT ) ∗ 213 ∆(ϕT ) ∗ (213 − 1) 14 y [57:70]

cotθT - ∆(tanλ) −∆(tanλ) ∗ 213 ∆(tanλ) ∗ (213 − 1) 14 y [71:84]

zT cm ∆(zT ) −∆(zT ) ∗ 29 ∆(zT ) ∗ (29 − 1) 10 y [85:94]

stubvalid - 1 0 1 1 bool [95:95]

total - - - - 96 - -

Table 6.6: Track word 96-bit format in the Linear Fitter module.

The data format for the parameters at the runtime are rrϕ, ϕrϕ, gradientrϕ,
interceptrϕ in the r−ϕ plane and rrz, ϕrz, gradientrz, interceptrz in the r-z
plane with defined ranges and word lengths as shown in Table 6.7 and 6.8.
The resolution is defined by the number of bits present in the fractional part
of the word length. The extra number of bits assigned for the r-z plane is
necessary to encode the whole z range and to utilise the chosen offsets. The
values for the offsets are converted to their fixed-point representation in
advance and stored in intermediate lookup tables acting as memory blocks.
There are always trade-offs between bit assignments and efficiency, resulting
in the trade-off between logic resource usage and performance in the physics
simulation.

parameter unit range min range max bits resolution

rrϕ cm −∆(r) ∗ 29 ∆(ϕ) ∗ (29 − 1) 10 0.1195

ϕrϕ rad −∆(r) ∗ 27 ∆(ϕ) ∗ (27 − 1) 8 0.0391

gradientrϕ rad/cm −∆(r) ∗ 25 ∆(r) ∗ (25 − 1) 6 0.0156

interceptrϕ rad −∆(r) ∗ 26 ∆(ϕ) ∗ (26 − 1) 7 0.0078

residualrϕ rad −∆(r) ∗ 25 ∆(ϕ) ∗ (25 − 1) 6 0.0156

Table 6.7: Runtime variables and ranges are declared for the r-ϕ plane.
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The information is accessible during processing and immediately after the
last stub in the stub stream is cleared.

parameter unit range min range max bits resolution

rrz cm −∆(r) ∗ 29 ∆(ϕ) ∗ (29 − 1) 10 0.1195

zrz cm −∆(z) ∗ 210 ∆(z) ∗ (210 − 1) 11 0.00048

gradientrz 1 −∆(r) ∗ 211 ∆(ϕ) ∗ (211 − 1) 12 0.00024

interceptrz cm −∆(r) ∗ 211 ∆(ϕ) ∗ (211 − 1) 12 0.00024

residualrz cm −∆(r) ∗ 26 ∆(ϕ) ∗ (26 − 1) 7 0.0078

Table 6.8: Runtime variables and ranges are declared for the r-z plane.

In the following clock transition, the parameters are passed to external
memory blocks and are no longer visible to the Linear Fitter module. The
track parameters for this stage are assigned to a 64-bit track word and shown
in Table 6.9.

parameter unit range min range max bits signed bit range

gradientrϕ 1/cm −∆(ϕ) ∗ 213 ∆(ϕ) ∗ (213 − 1) 12 y [0:11]

reserved - - - 2 - [12:13]

interceptrϕ rad −∆(r) ∗ 217 ∆(r) ∗ (217 − 1) 16 y [14:29]

reserved - - - 2 - [30:31]

gradientrz 1 −∆(r) ∗ 213 ∆(r) ∗ (213 − 1) 8 y [32:39]

reserved - - - 2 - [40:41]

interceptrz cm −∆(r) ∗ 29 ∆(r) ∗ (29 − 1) 12 y [42:53]

reserved - - - 9 - [54:62]

trackvalid - 1 0 1 bool [63:63]

total - - - 64 - -

Table 6.9: Data-path packing in Linear Fitter runtime.

The reserved bits are pre-allocated for future modifications in tracker
geometry. The extra bit allows the extension of the variable length by two
bits. The added length used in integer or fraction bits increase the resilience
to bit overflow or improves fractional precision.



This page was intentionally left blank.



Chapter 7

Linear Fitter Firmware

7.1 Linear Fitter Firmware Implementation

In the hardware implementation of the Linear Fitter module, the focus is on
the optimisation of the resource usage and latency by simplification of the
track reconstruction algorithm and custom-designed hardware. The key
parameters for hardware optimisation include the number of components
utilised, execution time, memory requirements, power consumption and
resource allocation on an FPGA chip. There are several techniques used to
achieve an optimal design such as simplification of arithmetic operations in
the track reconstruction phase by studying alternative solutions to break
down the necessary equations and replacing them with primitive logic
components. In higher level abstraction, all application-specific data flow and
digital signal processing blocks are carefully custom-designed. The CMS
experiment has commissioned the purchase of the 16 nm FinFET, Xilinx
Virtex Master Processor, and FPGA chip (XC7VX690T) for its capability with
computationally intensive algorithm and high-performance high-throughput
characteristics [103]. An alternative FPGA chip Kintex UltraScale from Xilinx
is also being tested for compatibility with the Linear Fitter for future
scalability. The Kintex family are relatively new in comparison to the Virtex
devices with more on-chip memory and logic slices. In a fully pipelined
implementation, the latency is defined as the time consumed until the last
valid output has exited the last block of the design. An important metric in
latency management is the Initiation Interval (II), which defines a module’s
timing before accepting new input [104]. Typically, in DSP modules three

114
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actions read, process, and write occur repeatably which is described as
reading data from memory, processing the data and writing the data back to
the memory. If there is only one copy of the data processor available, the data
has to be fed to it sequentially, however, with more copies of the same
processor, the data can be scheduled for processing in parallel. Multiple read,
process, and write are sent to multiple copies, one clock phase apart. In
Figure 7.1, the timing definitions are shown for three copies of the processing
units. The top-level design can accept a new input at every clock cycle or the
initiation interval of one. Other quantities such as loop latency, loop
Initiation Interval, and trip counts are also shown. FPGA are effectively
efficient in providing logic slices for custom-designed data processors.

Figure 7.1: Timing definitions in a fully pipelined design.

In the Linear Fitter design, the modules are divided into sub-modules with
the strategy of only transferring the required data to different sub-modules at
the appropriate time. If data is not needed in a given clock cycle, the
corresponding logic components are kept idle to save resources and
processing power. The data dependencies in the sub-modules are carefully
considered to eliminate critical paths and increase throughput. The critical
path is the path with the longest latency. Vivado Design Suite [105] provides
tools for measuring the longest path. Once the path is identified, alternative
logic mapping can be used to change the flow of data. In uncomplicated
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scenarios, often delaying the path with the use of clocked latches can divide
the longest path into two clock cycles. In complicated scenarios, the longest
path contributes to the total latency in the system, if not modified. In Figure
7.2, the pipelined architecture with paralleled structure is shown. In section
a of the diagram, the Linear Fitter is displayed as a filter module with two
memory blocks for storing stubs and tracks, and feedback to the stub RAM to
facilitate the iterations if more than one is needed.

Figure 7.2: Linear Fitter in a fully pipelined recursive design.

The expanded overview of the hardware structure is shown in section b of
the diagram with paralleled sub-modules. A program counter is used to
increment the memory addresses in the stub RAM and track RAM with
multiplexing logic to either write to a new location or read from an existing
location in stub RAM. Once a stub with the largest residual is found, it is
removed from memory by inverting the stub word valid signal to invalidate it
rather than clearing the memory location, which is costly in hardware. The
structure also permits recursive realisation of a fully pipelined logic rather
than placing n number of copies in the hardware chain. A slice of the lookup
table stores the current layer populations at runtime instead of RAM. The exit
block decides when the criteria for a genuine track candidate have been
satisfied and accordingly terminates all processes.
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In the first design iteration, all Linear Fitter modules are implemented in
HDL and HLS. However, in the final version, sub-modules are categorised
into two types: data flow and arithmetic blocks. The data flow modules,
including layer population, find stubs (PS), find layers (PS), find stubs (2S),
find layers (2S), and exit, are implemented in HDL. The arithmetic blocks
including calculate fit, calculate residual and find largest residual are
implemented in HLS hardware accelerators and integrated into the
architecture as HLS IP cores. In this configuration, designing in HDL has
provided wider control over the logic structure and behaviour of the system in
the RTL architecture. The hardware acceleration tool has permitted
pipelining of the design regions where HDL-only development did not. The
compatibility of HLS with the CMS software framework has also helped with
the verification and debugging stages in the physics performance evaluations.

An alternative fully pipelined implementation of the Linear Fitter algorithm
has also been designed in HDL to allow comparison with the development in
HLS. The logic level implementation of the Linear Fitter explicitly describes
the behaviour of the circuits for one iteration only. The process begins with
streaming the stub parameters in buffers with a timing interval of one stub
in, and one stub out per clock. The layer information is used to identify stubs
on the different tracker layers to generate virtual stubs. All the arithmetic
blocks such as multiply/accumulate, multipliers, adders, and reciprocal
slices are custom designed and tested in preparation for the system. The
structure is concatenated to its copies to model the recursive behaviour of
HLS design as there is no feedback loop in this architecture. Therefore, one
iteration can only find and eliminate one stub.

The Linear Fitter arithmetic operations are divided into four blocks: one
block (top-level) is the wrapper for the other three blocks Update Sums, Update
Fit and Calculate Residuals required to compute the trajectory estimations.
Four BRAM of (24,1) dimensions are dedicated to holding stub information (ϕ,
r, z, layerID) and mapping them according to the layer in which they were first
detected. The implementation follows the configuration of streams of sixteen
stubs per processing nonant, covering all seven layers with a maximum of four
stubs per layer. This configuration covers all scenarios in the tt̄ pileup events.
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In Figure 7.3, the distribution of average stub count (ranging from 0 to
280) per tracker layer is shown for 100 tt̄ pileup events.

Figure 7.3: Average stub count per tracker layers per event.

The particles are divided into two categories according to the pT modules
(2S and PS) appearing on seven layers of the tracker with a maximum of three
stubs per layer. The stub mapping can be presented by a two-dimensional
array of seven rows and three columns. The stub map configuration in Linear
Fitter allows for higher stub occupancy in the future, hence an extra column
is added to the stub map array to accommodate a possible fourth stub on
each layer. To create a virtual stub per layer, the algorithm must know the
correct mapping of stub occurrences on all layers. The information is
particularly used in layers with no stub occupancy to avoid divide-by-zero in
the fit arithmetic operations when calculating the average stubs on each
layer. The mapping uses a custom-designed address generator to store
sixteen stubs according to their corresponding layers. The implementation
avoids nested loops and complicated logic for the cross-conversion from
one-dimensional to two-dimensional array and vice versa. In this
configuration, the rows hold information for the layers and the columns hold
the information for stub occurrences on each layer. The indexes are
calculated by a multiplier, an adder and two simple up-counters.
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The mapping model is shown in Figure 7.4.

Figure 7.4: Converting 2D layer mapping to 1D mapping and vice versa.

The cost of array conversion producing a 1 x 28 array increases as a result
of the additional logic resources. Yet, the advantages are more significant in
removing synthesis issues for generating two-dimensional mapping algorithms
using ready-built libraries such as std::map class in C++ STL [106]. The FIFO
blocks used in the single iteration design operate on ϕ, r, z and layer identifiers.
The configuration enforces a fully pipelined design for one stub per clock cycle.
At the rising edge of the clock, the stubs are moved to ϕ, r, z and layer FIFO
blocks and shifted forward one location per clock cycle. The layer population
mapping is implemented in a LUT block to determine the correct exit condition
when the desired filtering is achieved. The variable means are calculated with
primitive logic gates and adder slices for the r−ϕ and r−z planes separately.
The gradient and intercept are computed with the MAC and reciprocal slices,
eliminating the use of DSP48E1 blocks [107] to save resources. The offsets for
ϕ and z are incorporated into the structure as constants, and the total residual
for the elements (ϕresid + zresid) are calculated to return the index to the stub
memory with the largest distance from the fit. The valid bit of the stub word
in memory is set to zero to indicate the stub is not part of the reconstructed
track any longer.
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In the Figure 7.5, an overview of the Linear Fitter single iteration
architecture is shown.

Figure 7.5: Single iteration RTL implementation of Linear Fitter.

The communication between logic components and memory modules is
implemented using simple (start, done) signals in the top-level module. The
clock signals (φ1 and φ2) are generated from half the system clock, each one
phase apart. The logic and arithmetic processor is clocked using φ1 and the
dual-port RAM block is clocked on φ2 to allow one read and write per clock
cycle. When the data become available, the start signal is raised which is the
indication for the arithmetic processor to commence transition. Once the
processor has completed its operation, it will raise the done signal, which is
an indication to the top level to reset the start signal and prepare for the next
operation. In addition to two-phase clocking, extra registers are used to
enforce pipelining. The communication protocol is necessary to ensure that
one processing module completes its operations before accepting new input.
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Figure 7.6 shows the arithmetic block with the communication protocol and
clock transitions for stub transmission.

Figure 7.6: Simple communication protocol for Linear Fitter.

The next step in the hardware implementation is to study the
input/output parameter ranges for fixed-point instrumentation. When
converting a double-precision floating-point value to a fixed-point, the
optimal fixed-point data types must meet the instrumentation and
acceleration constraints to satisfy system numerical accuracy requirements.
Closely monitored parameters are ϕ, r, z for input/output stub parameters
along with generated output track variables gradientrϕ (q/pT ), interceptrϕ
(ϕT ), gradientrz (cotθT ) and interceptrz (zT ). In addition, the intermediate fit
parameters and effects of finite word length representation at runtime are
considered carefully. The variable ranges are determined by using the
simulated data from tt̄+200PU generated events for the D49 tracker geometry.
Table 7.1 shows the variable ranges seen by the top-level Linear Fitter with
word length, fractional length, and proposed fractional length. In scenarios
where the fraction length is less than or equal to the proposed length, no
action is required as the effects of precision loss and overflow have been
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accounted for. When the proposed fraction length is greater than the current
fraction length, additional consideration must be made to reach an optimal
value that minimises the error between planned HLS fixed-point variables
and HDL implementation. The component class determines if the parameter
is a scalar (1 x 1) sample-based or a vector (1 x 16) stream-based. The
declared quantities including sim min/max define the parameter ranges
assigned to the variables during the simulations.

parameter type size WL FL PFL sim min sim max

ϕi input 16x1 14 11 11 −0.7250(22) +0.6000(22)

ri input 16x1 12 4 4 −0.8602(27) +8577(27)

zi input 16x1 14 4 4 −0.5220(29) +0.9796(28)

gradientrϕ output 1x1 12 8 16 +0.8579(2−5) +0.9359(2−5)

interceptrϕ output 1x1 14 8 20 −0.9575(2−9) +0.9378(2−7)

gradientrz output 1x1 14 8 11 +0.6514(22) +0.7336(22)

interceptrz output 1x1 12 10 11 +0.6087(2−2) +0.8269(20)

ϕo output 16x1 14 11 11 −0.7250(22) +0.6000(22)

ro output 16x1 12 4 4 −0.8602(27) +8577(27)

zo output 16x1 14 4 4 −0.5220(29) +0.9796(28)

Table 7.1: Linear Fitter top-level fixed-point variables.

In Table 7.2, the run-time parameters are shown with their word length
declarations of integer bits and fraction bits including their proposed fraction
bits based on the observed ranges during the simulation of tt̄+200PU events.

parameter type size WL FL Proposed FL sim min sim max

bscale local 1x1 5 0 0 +0.0000(20) +1.0000(25)

xrϕ local 1x1 18 8 8 +0.0000(20) +0.7221(29)

yrϕ local 1x1 18 13 13 −0.8000(2−3) +0.7375(24)

xxrϕ local 1x1 18 1 1 +0.0000(20) +0.5848(216)

xyrϕ local 1x1 18 7 6 −0.6489(2−1) +0.5306(211)

xrz local 1x1 18 8 8 +0.0000(20) +0.7221(29)

yrz local 1x1 18 6 6 +0.0000(20) +0.5669(211)

xxrz local 1x1 18 1 1 +0.0000(20) +0.5848(216)

xyrz local 1x1 18 0 0 +0.0000(20) +0.8111(217)

Table 7.2: Proposed fixed-point variables with a scaling factor.
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In calculating the mean of variables, the logic is developed to receive stubs
within the stub sector boundaries to create virtual stubs per layer. According
to the fit equations given in the previous Chapter 6.3, the parameters are
placed in local variables declarations in the fit calculations. As the fit is
generated in two planes, two sets of local variables are declared to hold the
parameters x, y, xx and xy in both planes. The xx variable holds the result of
the multiplication of the stub radius, and xy holds the multiplication of the
stub radius r with the local angle ϕ. In the r-z plane, the xy holds the
multiplication result of stub radius r and the longitudinal stub parameter z.
In the update fit block, the algorithm expects the largest bit growth as the
parameter summations in the sum update block are reused in the fit
calculations. Hence, an additional parameter is added as the scaling factor to
scale down the variables to contain them within a finite word length with
fewer integer bits.

The effects of using different values for the scaling factor are considered,
and the optimal value is obtained for a maximum of an 18-bit word length in
fit calculation and a 20-bit in the residual arithmetic operations. The radix2

classification of the scaling factor is significant in replacing the division
operator with the bitwise shifting operations, given in Equation 7.1.

x

b
=

SHIFT X︷ ︸︸ ︷
x ≫ log2(b) =

{
b : b ≥ 2

b : (b)2
(7.1)

In the update fit section of the design, the scaled-down variables calculate
the gradient and intercept in two planes. The reciprocal hardware slice is
reused to implement the division operator in two stages of multiplication and
reciprocal operations. The accumulator in 18-bit reciprocal needs to be two
bits wider because the remainder becomes unfitting. For example, when we
divide eight by nine, the remainder should be eight 4’b1000, but without the
wider accumulator the left-most digit would be lost, and the remainder would
appear to be 4’b0000.
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Table 7.3 shows the local variables and their fixed-point integer and
fraction bits with their proposed fraction bit counterparts.

parameter type size WL FL Proposed FL sim min sim max

gradientrϕ local 1x1 12 8 16 +0.0000(20) +0.9359(2−5)

interceptrϕ local 1x1 14 8 20 −0.9575(2−9) +0.9378(2−7)

1/denomrϕ local 1x1 18 1 3 +0.0000(20) +0.5077(214)

gradientrz local 1x1 14 8 11 +0.0000(20) +0.7336(12
2
)

interceptrz local 1x1 12 10 11 +0.0000(20) +0.8269(12
0
)

1/denomrz local 1x1 18 1 3 +0.0000(20) +0.5077(12
14
)

Table 7.3: Proposed fixed-point variables for fit.

The sim max and min values are the errors expected with the current
fixed-point instrumentation. As observed from the proposed fractional bits,
the precision of the variables must be increased for both gradients in both
planes. A similar approach is adopted in the largest residual block. The
generated update fit block parameters are used to calculate all stub residuals
and identify the stub with the largest residual in ϕ and z. It can be seen in
Table 7.4, that except for the residualϕ, there are disagreements between
fraction length and proposed length for defined variables. The effects of
precision loss in these variables are considered, along with adjusting the
scaling factor to minimise the effects. It is worth noting that some
disagreement between these variables is expected in all stages of the
hardware implementation due to the fixed-point representation of
double-precision native variables.

parameter type size WL FL Proposed FL sim min sim max

residualidx local 1x1 5 0 0 +0.0000(20) +1.0000(25)

residualϕ local 1x1 18 17 17 +0.0000(20) +0.8563(21)

residualz local 1x1 18 18 11 +0.0000(20) +0.5605(27)

residualϕz local 1x1 18 15 11 +0.0000(20) +0.5739(27)

residualϕ > local 1x1 18 13 17 −0.5000(21) +0.8563(21)

residualz > local 1x1 18 13 11 −0.5000(21) +0.5605(27)

Table 7.4: Proposed fixed-point variables for residuals.
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The output of the largest residual block is an index to the stub location in
the RAM. Should the find largest residual block provides a valid index, the valid
signal of the stub word in memory is negated to indicate the stub is invalid. The
bookkeeping block prioritises reading the valid bit of the stub word. If the test
returns an invalid bit, it is an indication that the tracking process must stop.
The bookkeeping block raises a flag to allow valid stubs to be read from the
memory. All valid stub information in the stub RAM is considered as genuine
hit candidates generated by a single particle, hence returning a genuine track.

7.2 All High-Level Synthesis Tracking System

Until recently, all firmware applications for LHC trigger and tracking systems
were implemented in VHDL [108] and Verilog [109]. The algorithm was
initially designed and tested in CMSSW using simulated data generated for
the high luminosity upgrade of the CMS detector. At this stage, compatibility,
robustness, and algorithm performance for validation are obtained using
physics simulations. The next stage involves designing a standalone version
of the design in preparation for hardware implementation, which involves
eliminating dynamic data allocations and libraries that are not synthesizable
in FPGAs. A standalone version of the design is implemented in HLS with
several testbench entities verifying the accuracy of the outputs.

The verification also invokes C++/RTL co-simulation [56] to ensure the
behaviour of the software and the generated hardware are identical. Once the
design has passed the desired latency and resource usage tests, a logic
synthesis of the implementation is exported as a self-contained IP core for
integration into the Level-1 Tracking firmware architecture. The integration
processes are described in Chapter 8. The HLS libraries allow automatic
transformation from software to hardware synthesisable code that is
programmed into FPGAs. Even though the task of programming logic gates
using low-level languages has been reduced in coding complexity, the HLS
language is somewhat different to C++ language when targeting specific
latency and resource usage.
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In Figure 7.7, the process involved in the high-level design of the Linear
Fitter HLS is shown.

Figure 7.7: High-Level Synthesise design flow in CMSSW.

Code written in CMSSW is not compatible with HLS. Even if the C++ STL
and ROOT [110] dependencies are removed, the resource utilisation may still
surpass the logic resources available on an FPGA board for a simple design.
In the case of the Linear Fitter, the initial synthesis results indicated that the
logic utilisation is about 500% higher than all logic resources available in the
Xilinx Virtex UltraScale board. Considering that sixteen copies of the Linear
Fitter are required for just one nonant, the design was not feasible. The
primary consideration had to be made in reducing the memory usage in a
fully pipelined architecture. The conventional memory blocks (ROM, RAM,
BRAM, ultraRAM) on an FPGA chip have one read or write command
execution constraint per clock cycle in single-port memory and two read or
write command execution in dual port memory per clock cycle. This
limitation introduces a data dependency issue or bottleneck in pipelining
stage where more memory access per clock cycle is required. The Xilinx
Vitis-HLS synthesis tool [111] provides access to hardware reports and
control logic to identify the problem area. The tool is particularly useful in
identifying performance bottlenecks by looking at profiling reports. The
synthesis tool also provides directives to customise the synthesis results
across different solutions by highlighting the aspects of data access that limit
the hardware performance. A few examples of applying these directives in
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Linear the Fitter design architecture are discussed here. The HLS
optimisation directives (pipeline, array-partitioning, loop unrolling, function
inlining) have been applied to different data flow algorithm locations to
achieve the required performance using minimum resources. In terms of
managing input/output, a block-level interface protocol is added to the design
to control the communications between modules. The stub stream data flow
between individual modules at the top-level hierarchy is modelled using the
hls::stream library and ap-fifo of infinite depth. The library creates data
containers similar to std::vector in the C++ Standard Template Library [106]
for instances when the total number of stubs is unknown at runtime. The
double-precision native variables in the initial CMSSW version of the Linear
Fitter are converted to arbitrary precision fixed-point types using Vivado-HLS
and the Vitis-HLS ap-fixed library to ensure the decimal point is correctly
positioned and aligned in arithmetic operations. The library also provides
quantisation models to represent variables in a finite word length.

7.3 Linear Fitter Firmware Configuration

The Linear Fitter hardware design has been developed in three variations
based on the evolution of the Track-Trigger and Tracking system in Level-1
Demonstrator. In the early stages of the Time-Multiplexed Track-Trigger and
Hybrid project, the data flow was specified as either sample-based [112] or
frame-based [113] for hardware pipeline strategies. Although the movement
of data in these two configurations is different, in performance, they are
similar. The concept is to create a design with the highest possible
performance, processing one sample of new input stubs every clock cycle,
and addressing the optimizations before reducing latency and resources. The
optimisation stage aims to reduce the initiation interval by allowing the
concurrent execution of operations by classifying the available data flow. The
primary characteristic of the sample-based data flow is how to read and write
operations for a single stub. Often, the style uses static variables such as
counters or accumulators to retain the values of the variables between
transitions, otherwise, the values will be lost or set to zero. The system must
process one input per clock cycle to achieve the required initiation interval.
The design is then considered to be fully pipelined. In the frame-based
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strategy, the primary characteristic is to process more than one sample in a
transition. In this form, the data movement is often in memory blocks with
pointer declarations to their first element. A transition is defined by complete
read and write operations of all samples. This style produces maximum
throughput in processing a stream of data, however, the pipelining to achieve
the required initiation interval is not trivial and needs careful consideration
to solve dependencies to eliminate bottlenecks. In a hardware
implementation, there are strict rules in the declaration of memory size
before runtime for compilers to allocate adequate storage. When compilers
can not determine the exact size of a block memory, they throw exceptions
that can lead to the termination of the processes. If there is no good strategy
for dynamic memory allocation, pipelining the design is also impossible. In
the following sections, three designs of the Linear Fitter using sample- and
frame-based models are described and a hybrid of these is introduced.

7.3.1 Linear Fitter Single Iteration

The Linear Fitter single iteration architecture follows sample-based design
development. The stubs are stored in shift registers or line buffers fed to the
first Linear Fitter modules through the top-level design. Each Linear Fitter
single iteration block receives and processes only one stub per clock cycle. In
this configuration n number of blocks are integrated into the firmware chain
with n number of bookkeeping blocks to process and update the variable
counts. The bookkeeping blocks are also responsible for terminating the
algorithm when appropriate. The number of iterations is in sync with the
fixed number of samples. The latency is defined by the ratio of clock cycles
and the number of blocks in the chain. The implementation emulates the
dynamic configuration as the total number of stubs can be unknown at
runtime. The disadvantage of the implementation is excessive resource
utilisation in some cases, the number of stubs is less than the number of
blocks. The inefficiency become more evident in the later development of
Time-Multiplexed Track-Trigger when a reconstructed track candidate
reduced the number of processing stubs. This resulted in several down-chain
blocks staying idle throughout the track fitting process. The advantage of the
single iteration model is its flexibility for integrating various tracking system
architectures to estimate latency and resources accurately. A single iteration
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block with an initiation interval of one is often sufficient for assessing and
evaluating latency and logic resources. Figure 7.8 shows the single iteration
block with the Linear Fitter and the bookkeeping modules.

Figure 7.8: Linear Fitter Single Iteration model.

7.3.2 Linear Fitter Recursive Architecture

The Linear Fitter Recursive architecture follows the frame-based design
development. The process aims to maximise throughput by increasing the
number of stubs processed per clock cycle. In frame-based development, the
Top-Level Linear Fitter module sees an array of stubs at its input and is
capable of processing more stubs concurrently. The input is stored in a block
RAM implemented as a dual-port interface supplying two samples per clock.
Single-port or Dual-port memories can only supply a limited number of stubs
per clock, resulting in bottlenecks and highly paralleled hardware design
often unable to process all the data within the required initiation interval. In
cases where higher concurrency and throughput are required, the RAM is
partitioned, resulting in multiple small memories or multiple registers instead
of one large memory, increasing the number of read and write ports
significantly. In addition, the number of addresses in memory must be
declared as a constant variable for compilers to allocate the necessary
resources for RAM implementation. In the Linear Fitter, a block RAM to store
16 x 64-bit stub words1 utilises an 18 kb memory slice and a block RAM to

1Maximum number of stubs in a stub stream.
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store 16 x 96-bit track work utilises a 36 kb slice. In the recursive
configuration shown in Figure 7.9, the Linear Fitter processes all sixteen
stubs in a fixed-sized loop to efficiently assist compilers in applying pipelining
optimisations. The advantage of the frame-based implementation is high
throughput as more samples are processed per clock cycle. The disadvantage
is the excessive memory usage and array optimisations for a fully pipelined
design.

Figure 7.9: Linear Fitter Recursive model.

7.3.3 Linear Fitter Combined Model

In the Linear Fitter Combined configuration, the advantages and
disadvantages of both single and recursive models are investigated to create a
design compatible with different architectures of the Level-1 tracking systems
for various real event samples. The model overcomes the variable-sized loop
constraint by studying the average number of stubs using simulated tt̄ + (0,
140, 200, 250) pileup events. A Linear Fitter recursive module is integrated
into combined architecture which permits the hardware assembly for any
number of stubs in a track candidate with the cost of adding or removing a
single iteration block from a design. For example, in tt̄+200PU events, the
minimum number of stubs is known to be six and the maximum number is
eleven. The recursive fixed-sized loop is set to six, and one (11 - 6 - 4 = 1)
single iteration block is instantiated if four stubs are required in the
reconstructed track. in the Top-Level architecture. The hardware model in
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Figure 7.10, imitates the dynamic loop with the cost of adding a few logic
gates for the bookkeeping process and FIFO blocks for storing incoming
stubs. The combined design is used in Time-Multiplexed Track-Trigger and
Hybrid architectures for its dynamic characteristic of handling the
variable-sized stub streams.

Figure 7.10: Linear Fitter Combined model.

7.4 Linear Fitter Performance

This section presents preliminary results of Linear Fitter against the applied
trigger algorithm offline with standalone modules. As the Trigger system is
not available yet, there is currently no real data from which to build samples.
Therefore the required data is generated offline by particle physics event
generators and Monte Carlo (MC) simulation toolkit. The data for simulations
is usually produced by the CMS event generator group which is responsible
for MC production and incorporating the required and expected parameters
defined by the experts. The first stage of generating samples involves the MC
event generator containing packages usually written by the
theorists/phenomenologists. There are many packages, but basically, all
work in the same way, using a theoretical model to simulate the produced
particles in a specific type of collision. The theory is most commonly the
Standard Model of Particle Physics or a new theory that the simulation
author (programmer) likes to test. For top and anti-top quark pairs in
proton-proton collisions at 7 GeV, the generator is instructed to produce
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processes with these definitions in every event. If a variety of collisions is
required, a random number generator will produce a sample of events, where
each event contains a complete list of particles produced in that event with
their physics properties. In generated events with top quark pair, the particle
listing contains quark and gluon from the interaction of two protons
producing t, t and the top pair itself. A comprehensive list of the behaviour of
different fundamental particles can be found elsewhere [114].

For producing pileup events, the generator can be used to generate
samples of typical pileup in proton-proton collisions. The samples are mixed
with the top quark pair event produced in the first stage, overlaid. The
particle listing for each event contains all the produced particles in both types
of the pileup and tt̄ events.

In the final stage, the generated events are fed into software packages that
simulate the CMS detector. The detector simulation is based on the GEANT4
[115] software package, designed by CERN to specifically simulate the
behaviour of the detector. The samples are fed to the detector as input to
determine what the output looks like for each event. The ramification of new
optimisations and the detector material are studied from these simulations. If
required, the existing particle listings are modified to reproduce samples to
study a particular behaviour in a sub-detector (e.g., Tracker). With the benefit
of knowing how the collision that created the output looked, using the
simulated samples rather than the raw data in the simulations is
recommended during the analysis stage of the detector’s development.

The MC truth particles are the particles from the event listing that are used
for efficiency studies. Only particles from the event that could realistically
have produced a track in the tracker will be included in the truth particle
collection. The track matching process associates the truth particles to the
particles from a reconstructed track. The event listing contains values η and pT

for all truth particles. For the new module’s testing, these values are compared
to the values from the reconstructed tracks for one or many events.
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In Figure 7.11 and 7.12 the tracking efficiency of Linear Fitter as a
function of η and pT for Single, Recursive and Combined modules are shown.

Figure 7.11: Tracking efficiency as a function of η.

Figure 7.12: Tracking efficiency as a function of pT .
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The tracking efficiency (efftrack) is calculated by the number of matched
tracks (k) over the simulated tracks (n) for 1000 tt̄ pileup events given in the
Equation 7.2 [27].

efftrack =
(k
n

)
100 (7.2)

Linear Fitter track reconstruction in standalone configuration for three
Single, Recursive and Combined modules for the pT ranges is shown in Table
7.5. Tracking performance is characterised separately in low-pT (8 > pT ≥ 2),
mid-pT (100 > pT ≥ 8) and high-pT (pT ≥ 100) ranges. The motivation for this
is to observe the tracking efficiency under the challenges of calculating a
particle trajectory in different stub occupancy regions. The low-pT region
corresponds to the highest number of stub occupancy making the tracking
more challenging, and the high-pT region corresponds to the lowest number
of stub occupancy making the tracking less challenging for all Level-1 Track
Finding modules.

pT [GeV/c] 8 > pT ≥ 2 100 > pT ≥ 8 pT ≥ 100
Simulated 896 414 56

Single 849 397 54

Recursive 854 399 54

Combined 861 405 55

Table 7.5: Number of matched and simulated tracks for pT ranges.

The tracking efficiency for reconstructed tracks is shown in the Table 7.6
in percentages. The Complexity represents the module characteristics
concerning the overall algorithm and hardware implementation for producing
the given efficiency and performance. The track-finding modules can be
selected according to the different levels of required efficiency and available
resources on an FPGA chip. The single iteration module has the lowest overall
complexity and dependency on memory usage which is suitable for chips with
fewer Block RAMs and FIFOs. The Recursive module uses memory for storing
intermediate results between iterations which are implemented in Block
RAMs or FIFOs. The number of Block RAM slices depends on the number of
bits required for storing the stubs and track parameters. The Combined
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module is a mixture of Single and Recursive modules specifically designed for
future scalability or downsizing of the Level-1 Track-Trigger system which will
affect the number of stubs in the stub streams. This value is currently set to
sixteen, however, in future system developments, the value might be
decreased or increased depending on the integrated luminosity upgrades.

pT [GeV/c] 8 > pT ≥ 2 100 > pT ≥ 8 pT ≥ 100 Complexity

Single 94.7% 95.8% 96.4% low

Recursive 95.3% 96.3% 96.4% medium

Combined 96.1% 97.8% 98.2% high

Table 7.6: The ratio of matched and simulated tracks for pT ranges.

The Linear Fitter tracking efficiency increases as the pT range increases.
For particles with pT > 200 GeV,̧ almost all tracks are reconstructed. With
99.7% efficiency, only tracks that their trajectories are partially in the barrel
and partially in the endcap suffer from one or two missed layers due to pT

modules alignment in the tracker. The layers encoding schemes can help the
Linear Fitter algorithm to identify such tracks and reconstruct them differently
by connecting two partially reconstructed tracks into one. This introduces
additional costs in hardware design and changes with other tracker layouts.

7.5 Track Bend Analysis

Linear Fitter is designed based on pT module development that selects
particles with high transverse momentum pT ≥ 2 GeV/c. A correlation
window of the strips in r − ϕ can discriminate against the particles whose
trajectory bends significantly in the 4 T magnetic field. Correlations using
stacked sensors can identify hits from straight tracks interacting within the
coincidence window at high efficiency. This is because the ratio of a pT

module’s radius installed close to the interaction point is considerably
smaller than the radius of a high transverse momentum track. The Linear
Fitter algorithm is particularly effective in reconstructing a track where its
corresponding particle trajectory approaches a straight line in the r − ϕ

plane. As the particle trajectories are bent by the magnetic field, there might
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be some curve to data that a straight line provides a reasonable enough fit to
make a prediction. However, for a precise fit, this is not enough. In contrast to
linear relationships, curved relationships between variables are more difficult
to fit and evaluate. In Linear Fitter design two scenarios have been considered
for adding curve fitting feature for particle trajectories in the lower pT range.
The first scenario is the development of polynomial regression in the
hardware implementation which resulted in excessive use of logic resources
(up to 200%) in calculating the gradient, intercept and fitting process. The
second scenario is the studying of the relationship between the transverse
momentum and the track bend in an extended version of the Linear Fitter,
which is discussed in more detail. One important metric for curved tracks is
the stub reconstruction efficiency, and its dependence on angle α, which can
be used to emulate the bending of a track in the CMS detector. The
parameters involved in the calculation are shown in Figure 7.13.

Figure 7.13: Relationship between angle α and pT .

The radius of curvature R (in m) of a charged particle with transverse
momentum pT (in eV), and charge q (in electron units), bent in the transverse
plane by a homogeneous magnetic field of strength B (in Tesla) is given by
Equation 7.3.

R =
pT

qBc
(7.3)
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With the information from Figure 7.13, the angle α can be denoted as:

sin(α) =
r

2R
(7.4)

Combining with the Equation 7.3, the relationship between the angle α, and
the pT of a traversing particle at radius r is derived within the CMS magnetic
field by Equation 7.5 [96].

pT [eV/c] =

(
qBc

2

)
r

sin(α)
, pT [GeV/c] =

0.57r

sin(α)
(7.5)

The radius of curvature of traversing particle from the interaction point (IP)
for a module at a given radius r and the angle α concerning the perpendicular
of a pT , α decreases with an increased radius of curvature R which corresponds
to an increase in pT . Figure 7.14 shows the relationship between α, ϕ0 and ϕ

of a track in the transverse plane generating at the interaction point.

Figure 7.14: Relationship between angle α and ϕ0 and ϕ.

Using the angle relationship between parallel lines in Figure 7.13, the
Equation 7.6 can be written as;

r

2R
= sin(ϕ− ϕ0) (7.6)



138 CHAPTER 7 LINEAR FITTER FIRMWARE

For tracks with pT > 2 GeV, the radius of curvature is large (at least 1.75
m), so the small angle approximation can be used, which gives:

r

2R
≈ (ϕ− ϕ0) (7.7)

Combining Equation 7.3 and 7.7, one obtains the relation between the (r, ϕ)
coordinates of a single stub, and the corresponding straight line in the (q/pT ),
ϕ0 as:

ϕ0 = ϕ−
(
Bcr

2

)
q

pT

(7.8)

It is now evident how one can transform a stub with coordinates (r, ϕ) to a
line with intercepting ϕ0 and a gradient q/pT proportional to r. The Equation
7.8 is used to convert Cartesian stubs coordinates (x, y) equivalent to (r, ϕ) into
the line in (q/pT , ϕ0). The gradient of each line is proportional to the radius r
of the stub, so is always positive. To make sure that a given track has stubs
with an appropriate range of positive and negative gradients in (q/pT , ϕ0), it
is preferable to measure the radius of the stub using the variable rT = r + T ,
where T is a selected offset.

ϕT = ϕ−
(BcrT

2

) q

pT

(7.9)

Where ϕT is the ϕ of the track at a chosen radius T . The technique is used
to measure Linear Fitter sensitivity of the assumption that a high transverse
momentum pT > 2 GeV/c approaches a straight line in the tracker r-ϕ plane. As
the result, an additional feature is added to the Linear Fitter as a plugin module
to compare the tracking efficiency in an extended version. To implement the
module in FPGA logic, it is necessary to create an array cell with a range of
|q/pT | < q/pmin

T where pmin
T = 2 GeV/c and ϕmin

T < ϕT < ϕmax
T . A track candidate

is identified if its stubs from the tracker barrel layers or endcaps accumulate
in one of these cells. The coordinates of the cell are used in the Linear Fitter
as the extended parameters instead of retrieving the inputs directly from the
Geometric Processor.
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In Figure 7.15 the simulation output is compared to the original Linear
Fitter results to observe the tracking efficiency in transverse plane r−ϕ.

Figure 7.15: Tracking efficiency as a function of pT .

Figure 7.16 shows the tracking efficiency of the Linear Fitter against the
extended tracking in the r−z plane. The tracking efficiency is marginally
affected in η due to non-existing overlapping regions 6.4 for curved tracks.

Figure 7.16: Tracking efficiency as a function of η.
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According to the simulation, the tracking efficiency is improved by
considering the track bend in the algorithm, however the associated
hardware cost is greater for added capability. The overall tracking is generally
more effective with finer array cell granularity. For a 32x32 cell layout, it is
estimated that an additional cost of approximately 10% or the utilisation of
146 block RAMs is required. The cost will increase if finer granularity, such
as 64x32 array cells, is desired. In addition, a cost for arithmetic logic will
occur in the multiplication/division stage of the implementation which is
discussed in the hardware development section in the original Linear Fitter
Section 6.3.

7.6 Potential for Improvement

The Linear Fitter is linked to the DTC and GP modules in the tracking
system. The geometric processor parameters have been primarily tuned for
the Kalman filter algorithm, dividing the tracker into 2π/9 nonants, with
each segment further divided into 36 (18η, 2ϕ) stub sectors. The
segmentation creates large regions that impact the efficiency of the Linear
Fitter due to virtual stub creation. The algorithm for calculating a virtual
stub per layer of the tracker uses the boundaries of the stub sector to
generate one stub from many detected stubs by the mean algorithm. If two
tracks are formed in a stub sector, they will be merged into one track. Despite
Linear Fitter reconstructing a track in every clock cycle, the probability of
filtering a genuine track is high. Therefore, an alternative geometry
segmentation is under investigation that divides the nonants into 48 (24η, 2ϕ)
stub sectors, reducing the area between boundaries even further in the
process. The segmentation is implemented in the GP module by taking into
account the stub distribution over all sectors and the consistency with
tracker regions. Each sector must receive a similar number of stubs to
reconstruct tracks. In addition, the feasibility of the segmentation must be
studied in the hardware implementation to ensure the load balancing can be
divided across the hardware links. As the stub sectors are processed in
parallel, it is expected that the latency will not be affected, however, the
number of added links can present challenges in hardware implementation
due to the limited availability of peripherals on the FPGA devices.



This page was intentionally left blank.



Chapter 8

Track-Trigger Demonstrator

The demonstrator system encompasses a collection of software and firmware
modules running in parallel to provide simulation results for testing and
verifying the firmware modules. In the Level-1 upgrade, individual modules
were initially created as standalone devices independent of other software
and hardware modules. After successfully verifying their functionalities in
standalone mode, the modules with both software and hardware
counterparts are transferred to the demonstrator for further debugging. All
modules in the demonstrator must comply with the integration rules and
design optimisations under the Level-1 Tracking system specifications, which
are described in detail in this chapter.

8.1 Demonstrator Overview

The Level-1 Track-Trigger demonstrator is a replica of the software and
firmware necessary for prototyping the entire system. The prototypes and the
demonstrator firmware slices are located at Tracker Integration Facility (TIF)
at CERN and the Rutherford Appleton Laboratory in the UK. Progress is
regularly reviewed by a CMS internal expert committee [116]. Figure 8.1
shows the µ-TCA demonstrator located at the TIF, which comprises several
general-purpose FPGA Master Processors in a Carrier Hub (MCH). The
modules in the Tracker system are assigned to MP7 blades in a chained
configuration based on their functionality and location in the track finder and
track fitter hardware chain. The modules are exported as IP cores, including
unique, verified software and hardware identifiers with custom

141
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configurations. The IP cores are programmed onto the FPGA chips and
deployed in the demonstrator architecture. The input to the demonstrator is
converted to pattern files to create test vectors for both software and
hardware simultaneously. There are several modules in the demonstrator
responsible for preparing data for testing and verification.

First, a producer module processes stubs and converts them into digital
tracks, followed by a writer module that generates pattern files from tracks
for hardware. After the data has been interfaced and processed by the Unit
Under Test (UUT), a reader module captures the patterns and converts them
back into digital tracks. Finally, a comparator module compares the patterns
generated from both producer and hardware to create simulation files. The
performance of the system in software and hardware is superimposed in a
plot. If there is an inconsistency between tracks generated by the software
and tracks generated by the hardware, it can be seen at this stage.

Figure 8.1: The µ-TCA hub at the Tracker Integration Facility [117].

The verification process relies on simulation tools and ROOT data analysis
software to produce plots or histograms. The demonstrator architecture is
complex and written in several programming languages, it therefore has a
user-friendly interface to facilitate integration with all parts of the system.
The processes have been automated using executable scripts and source files,
so the system can be used by people with little or no knowledge of the
demonstrator’s components.
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8.2 Demonstrator Scope

The CMS Level-1 upgrade [118] specifies a Track-Trigger system that
produces efficient physics results under intensive conditions expected at the
HL-LHC. This specification has been applied to the demonstrator system as it
is intended to be a replica of the tracking system planned for the experiment.
The timeline for the Level-1 Track-Trigger is laid out in Appendix A7.
Successful module integration must comply with the required latency and
resource allocations for each module.

The goal of the demonstrator is to confirm the creation of Level-1
Track-Trigger firmware that can operate within a 3 µs latency for events
containing a large numbers of particles. The system must particularly
evaluate the performance of fixed-point hardware development replacing the
floating-point software design. The demonstrator must represent the
minimum feasible segment of the detector to minimise the hardware
necessary for effective demonstration. The software and hardware modules in
the demonstrator must produce robust physics performance results within
the specified hardware resource usage and latency. The architecture of the
demonstrator must be scalable without requiring additional sub-modules and
external memory.

The consistent use of a specified set of simulated data samples produced
by CMS in both simulation and emulation analysis. For example, a sample
of tt̄+250PU events to examine the performance under extreme conditions to
determine the impact of latency. The performance is quantified as the efficiency
in pT and η ranges to ensure robust tracking for overall matched tracks. The
number of fitted tracks per bunch-crossing as a function of genuine tracks and
duplicate tracks must be studied to estimate fake rates. When low efficiency
is obtained, the simulation results must be reviewed to investigate the cause
and to attempt to improve the performance.



144 CHAPTER 8 TRACK-TRIGGER DEMONSTRATOR

8.3 Hardware Platforms

The high luminosity upgrade requires new custom-designed FPGA
development boards with backward compatibility with the current CMS
Trigger and DAQ system. The specifications for hardware-based platforms
require the use of Xilinx technology with modular capability, support for
Samtec FireFly optics up to 25 Gb/s and high versatility for the Level-1
hybrid tracking algorithm [119]. High-performance connectivity is required
for stub and track transmission between modules (FPGA-to-FPGA) using
high-speed multi-gigabit transceivers. Currently, three separate development
strands are being pursued simultaneously to customise FPGA platforms for
the Level-1 tracking system. A short description of each is given in the
following sections as one of them will be used in the planned Track-Trigger
system.

8.3.1 Master Processor

The use of all-FPGAs systems allows fast data processing at a substantial rate
of 10 Tbps. The Imperial Master Processor (MP) board [120] was developed
and upgraded for the Track-Trigger to meet the latency requirement and to
handle complex algorithms with minimum resource usage. A combination of
a Xilinx Virtex-7 (XC7VX690T) FPGA chip and optical interfaces on a single
board has simplified the chaining process for different modules. The chip is
mounted on an MP7 board for portability and future upgrades. Each board is
customised to endure harsh heat environments with a mounted heat sink.
The generated heat by many FPGA boards will be a concern in the all-FPGA
system. The board has 72 peripherals that facilitate 72 output links to DTC
modules with a 10 Gb/s data rate per link. The board is compact and smaller
compared to other boards under development. The dimensions of the board
allow installation in tight spaces in CMS experimental testing facility and
tracker integration lab. The power consumption of each board is estimated
from the total number of active pins and firmware configurations at around
30-40 W [121]. Power is a concern for usability in µ-TCA crates with many
connections simultaneously. Therefore, other proposals are being considered
for the cooling systems or alternative master processors. Despite this, the
MP7 board is widely used for various CMS upgrade projects.
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The MP7 board can be seen in Figure 8.2.

Figure 8.2: A Master Processor platform with a heat sink [122].

8.3.2 Apollo Platform

Apollo is a generic open-source development platform that uses ATCA blades
designed for high throughput data processing applications [123]. Two
programmable high-speed FPGA chips provide a transmission rate of up to 28
Gb/s with onboard memory and optical fibre interfaces operating jointly or
independently. Apollo provides a service module for ATCA control for
board-to-board communication and a command module for
application-specific data processing algorithms. Various communication
protocols have been considered for the Trigger readout electronics from the
detector’s front-end modules to FPGA pins through I2C, and AXI peripherals.
The board uses Xilinx Kintex XCKU15P and Xilinx Virtex UltraScale+
XCVU7P chips to accommodate track finding modules [124] required in the
Hybrid configuration. An entire nonant can be placed on one Apollo board for
demonstration and verification with an efficient floorplanning 1 scheme.
There is a large heat sink covering both FPGA chips connected to an extended
frame to help heat dissipation across the hub. The board has more optical
links peripherals to increase connectivity to sub-detector front- and back-end
electronics and board-to-board interfacing.

1Choosing the best layout for placing synthesised modules on an FPGA chip.
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The Apollo development board can be seen in Figure 8.3.

Figure 8.3: Apollo Platform with the heat sink [123].

8.3.3 Serenity platform

Serenity aims to simplify board-to-board communications by separating
software from hardware using onboard Central Processing Units and
standardised board-level control [125]. ATCA is used for intercommunication
between FPGA chips and the operating system that controls the board with
Daughter Cards for the data processing applications. The UK collaboration is
currently designing Serenity boards for use in the various high luminosity
upgrade and Trigger subsystems. The board accommodates two replaceable
Xilinx Kintex UltraScale XCKU115 FPGA chips with 144 links at 25 Gb/s
each. The Serenity board has been tested in the demonstrator at 320 MHz
clock frequency. If general concerns about power management and noise
reduction can be addressed, the board will be the preferred platform for the
Track-Trigger system.



SECTION 8.4 EMP INFRASTRUCTURAL FIRMWARE 147

Figure 8.4 shows a prototype Serenity board including daughter cards.

Figure 8.4: Serenity platform with the Daughter Cards [126].

8.4 EMP Infrastructural Firmware

The EMP framework is designed for trajectory reconstruction using the
prototype Level-1 Track-Trigger FPGA boards. The reconstruction algorithms
are verified and exported as self-contained IP cores which are chained in line
with the EMP architecture for testing and monitoring. The interface to the
EMP framework is through a user-defined data module known as the payload.
Transmission between modules is managed through signalling protocols and
on-chip IP Bus Builder (IPBB) [127] connections. IPBB supports both Vivado
and Mentor Graphic emulation tools [128], providing a simple command-line
interface for project creation, synthesis, implementation and bit file
generation for programming FPGA chips. The input data is loaded into the
channel buffers and injected into the payload. The processed data are then
captured from the specified payload output channels and downloaded into
output buffers to be read. The Hardware Access Library (uHAL) [129]
provides complete access to memory blocks in the design to either write or
read in RAM or FIFO configuration. The IPBB protocol supports User
Datagram Protocol (UDP) and Peripheral Component Interconnect (PCI) for
communication between all-FPGA IP cores. The top-level function of the EMP
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framework provides access to and configuration for hardware components
with user-defined parameters. In Figure 8.5, the architecture of the EMP
framework is illustrated along with the Linear Fitter top-level module in the
firmware chain. The EMP framework allows Tracking system modules to be
chained together in sequential configuration.

Figure 8.5: Linear Fitter integration in EMP framework.

The additional modules are labelled as null algorithm 8.9 interfacing
before and after the Linear Fitter module. These locations are reserved for
other modules depending on which version of the system is being used. The
parameters in the payload are specific to the desired hardware behaviour,
such as the number of bits per channel, LHC bunch-count, data-path
regions, and clock ratio. The data is transmitted in frames specific to regional
and geometric segmentation. One frame contains a sequence of 64-bit
hexadecimal format words containing the stub information per clock per link
per stub sector. The frames are used in prototype testing and verification by
capturing the output data in text files or electronic waveforms.
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8.5 Latency Requirements in Demonstrator

The trigger must reconstruct tracks with pT ≥ 2 GeV/c from stub streams
during live data taken by the CMS detector. The stubs are produced at a 40
MHz clock frequency. The output rate of the Level-1 Trigger is fixed at a 750
kHz clock frequency. A reduction from 40 MHz to 750 kHz is achieved
through the application of selection criteria and filtering. In terms of
input/output, the difference between the time the first input is injected into
the module and the time the module generates the first computed output
defines the latency. The time allocation for individual modules is provisionally
calculated by dividing the total latency by the number of modules in the
system. This is only an estimate as some modules in the system require more
time than others. More modules in the system mean shorter latency
assignments for individual modules in the chain.

To create a system with good latency, parallel processing rather than the
use of additional resources is inevitably the way forward. The modules in the
Level-1 Tracking system aim to reduce the data rate according to a fixed latency
specification by using n copies of the TFPs to cover the entire tracker. Every
module is designed with a specific algorithm to be used at different stages and
to do so with limited resource usage and within its latency allowance. Once the
results are within acceptable limits, the modules are added to the demonstrator
for further evaluation and validation.

8.6 Data Format in the Demonstrator

Stubs from 18 consecutive bunch-crossings are fed to the demonstrator in text
file format using 72 channels [70]. A channel is an optical link to/from the
tracking system. A text file is formatted into rows known as frames which
contain packets from all channels for one clock cycle. A packet contains a
64-bit binary encoded with the hit coordinates, stub sector identifier and a
valid signal. A valid stub generated from the first stub sector in the tracker
transmitting from the first nonant on the first channel is represented as Frame
0000: 1v00123456789abcef. If empty frames are required between frames,
they are added using empty packets 0v0000000000000000.
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Figure 8.6 shows a text file with eighteen frames for three channels.

Figure 8.6: Event data packet for injection into the EMP firmware [70].

8.7 Modules in the Demonstrator

A top-level design is created to wrap around the modules and grant access to
their ports. During testing, a testbench is created to verify the correct
functionality of the module through the use of test vectors and reporting
utilities. Once validated, a fixed-point implementation of the module is
created and utilisation reports are obtained. The design is optimised to
produce the same outputs in software and hardware, correcting the loss of
precision and overflow. Once the design has been optimised, an FPGA
synthesis is created in HDL or as an IP core. The result is added to the
demonstrator as a UUT to ensure it meets the Level-1 design specifications.

8.8 Efficiency and Performance Metrics

Dedicated upgrade documentation [101] outlines a series of baseline metrics
using analysis tools and techniques developed by CMS. The metrics include
tracking performance, robustness, and efficiency for the Multivariate Linear
Fitter, Time-Multiplexed Track-Trigger and Hybrid systems. This approach
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helps developers to evaluate new modules for the upgrade using standardised
performance plots and efficiency measurements. The collaboration also
specifies standard test conditions and data samples to facilitate performance
comparisons between candidate systems.

8.9 Null Interface in the Demonstrator

The null interface creates a templated blueprint with plugin capability in the
EMP architecture. For the hardware prototype, the aim is to configure the
demonstrator to generate data flow similar to the FIFO back-end CIC
electronics. As shown in Figure 8.5, the interconnections between the Linear
Fitter module and EMP structure are through two memory blocks, stub RAM
at the input and track RAM at the output. In Figure 8.9, the Top-Level Linear
Fitter architecture in the EMP structure with the null interface and memory
module is shown.

Figure 8.7: Null interface development for EMP framework.

The memories are only required in the EMP firmware demonstrator for
storing inputs/outputs at the rate of the LHC system clock. Synchronising
the data is particularly significant when comparing different approaches. The
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stubs entering the EMP firmware are buffered at both ends to create the
required initiation interval in a pipelined structure. The null interface is used
to accurately calculate the latency in the demonstrator through time-zero
marking. The timing coincides with draining the FIFOs before initiating a new
process or clearing the block RAM counters before every run. In practice, If
pre-processing of stubs is not required, time-zero corresponds to the
transmission of the first stub for a given packet from the DTC-equivalent
output. The null interface is particularly helpful in measuring the latency of
the top-level subsystems before adding new modules to the demonstrator.
The input and output storage are block RAMs programmed to function as
FIFOs by shifting the stubs in and out of the null interface block on every
rising edge of the clock. The implementation is also used to ensure the
memory read/write instructions are efficiently executed. After verification,
the Linear Fitter replaces the null interface module. An implementation of
the null interface module in the Vivado Design Suite with the stub RAM as
RAMFE and the track RAM as RAMBE on each side as shown in Figure 8.8.

Figure 8.8: Null interface in Vivado Design Suite.

The input to the module is passed to the output on every clock transition.
The Vivado implementation is based on the Virtex 7 Master Processor FPGA
chip (XC7VX690T) at 40 MHz clock frequency. The RAM blocks are
synthesised to Distributed RAM (LUTRAM), LUT for I/O interfaces, and FIFO
for buffering and transmitting stubs per clock cycle. In addition, a global
buffer (BUFG) [49] to distribute high fanout signals and the latency for the
longest critical path is shown in the Table 8.1. The null interface effectively
estimates the Linear Fitter resources and latency without considering the
cost of utilising memory and interfaces exclusively. In the Linear Fitter
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demonstrator, the depth of the block RAMs is equal to the number of stubs in
the stream. The number varies in the different tracking systems approaches,
leading to different latency and logic resource usage.

resources utilisation available utilisation (%) time (ns)

LUT 64 433,200 0.01 -
FF 4 866,400 0.03 -
BRAM 2 1,470 0.01 -
IO 2 600 5.33 -
DSP 0 3,600 0 -
BUFG 2 32 6.25 -
LATENCY - - - 400

Table 8.1: Logic resource usage estimates in the null interface.

8.10 Modules in the Linear Fitter Demonstrator

The Linear Fitter is instantiated in the TFP hardware structure following
regional segmentation (2π/9, ±z) and geometric (24η, 2ϕ) segmentation of
the tracker with a time-multiplexing factor of sixteen. The TFP receives a
stream of stubs from two nonants with a maximum depth of sixteen. The
firmware configuration is the simplest tracking system, placing only two
modules (GP + LF) in the firmware chain. The DTC receives the stream of
stubs from the front-end tracker electronics generated by the pT modules and
distributes them to the FPGA boards based on the regional segmentation
scheme. The DTC first merges all stubs from all modules to one stream using
routing blocks. Then, it organises the stubs according to stub streams per
region. Next, the conversion from DTC stubs to stub streams is implemented
for distribution to GP modules. The GP modules receive the stub streams and
extract the η and ϕ components to produce stub sectors. If the segmentation
follows 48 (24η, 2ϕ) segmentation per 2π/9 it will produce 432 (η, ϕ) sectors
that covers all the tracker regions. The number of TFP depends on the
processing time of the Linear Fitter in the system. The Linear Fitter Combined
module processes stub at 400 MHz. The algorithm in the Linear Fitter
recognises the stub sectors boundaries and begins the extraction of stub
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components r, ϕ, z, PS, 2S, layerID and a valid bit from the stub stream for
processing. The result would be one stub per layer if any stub occurrences
were detected on the processed layer. The fit is calculated in the r-ϕ and r-z
planes. The distance from the fit to the stub positions is calculated and the
stub with the largest residual from the fit is removed from the stub stream. In
the following iterations, more fits are calculated with fewer stubs until the
minimum number of stubs that qualify for a valid track remains. There is no
need for duplicate removal in this approach as the stubs with pT ≥ 2 GeV/c
near the stub-sector boundaries have the most significant residuals and will
be eliminated. The Linear Fitter is synthesised for deployment in the Master
Processor Xilinx Virtex-7 (690T). An illustration of Time-Multiplexed Linear
Fitter architecture in the demonstrator is shown in Figure 8.9 with Source
and Sink modules to store stubs before and after the processing.

Figure 8.9: MVLF configuration of the TFP demonstrator.

8.10.1 Latency and Resource usage

This section presents the latency and resources estimates for the MP7
development board using 48 links over 72 available links and a mounted
FPGA chip (XC7VX690T). The power estimation is discussed in Chapter 9.
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The latency and resources for a TFP correspond to the sum of all latency
and resources required for individual modules presented in Table 8.2.

board resources utilisation available utilisation (%) time (ns)

FPGA 2 8.9 LUT 343,528 433,200 79.3 -
FF 752,901 866,400 86.9 -
BRAM 693.8 1,470 48.3 -
IO 112 600 18.8 -
DSP 288 3,600 8 -
BUFG 5 32 15.6 -
LATENCY - - - 1,033.33

Table 8.2: Latency and resource in MVLF Demonstrator.

The utilisation is calculated as a percentage of the total available resources
on the FPGA chip (690T) used in the demonstrator. The values for the source
and sink modules are not presented as these modules are redundant in the
complete system assembly. In instances where the estimates are capped to
100%, the suitability of the design is rejected, considering the null interface
requires at least 2% logic availability for buffering and transmitting stubs
between modules in the system. The input stubs are transmitted upstream
over 48 x 25-Gb/s serialiser/deserialiser links out of the available 72 links to
provide nearest-neighbour communications. The output stubs (reconstructed
tracks) are transmitted downstream over a 25 Gb/s link to the correlator
system. The information from the tracking detector is combined with
information from other sub-detectors to identify physics quantities.

8.10.2 Physics Performance

The track reconstruction efficiency is measured relative to all generated
charged particles from the primary interaction producing at least four hits on
four layers of the tracker. A trajectory is considered to be successfully
reconstructed if it is fitted from a track candidate consisting of stubs
produced by a single charged particle with the pT ≥ 2 GeV/c and the |η| < 2.4.
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The baseline performance metrics are shown in Figures 8.10 to 8.13.

Figure 8.10: MVLF tracking efficiency as a function of η.

Figure 8.11: MVLF tracking efficiency as a function of pT .
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Figure 8.12: MVLF duplicate fractions for 0 < pT < 25 GeV/c.

Figure 8.13: MVLF goodness of the fit χ2 for matched tracks.

8.11 Modules in TMTT Demonstrator

Following the Linear Fitter integration in the demonstrator, the module is
instantiated in the TMTT, replacing the Kalman system as the tracking
algorithm. The TMTT architecture is more complex than the Linear Fitter
design as it uses more modules in the firmware chain. The concern in TMTT
development is achieving the required latency. The Linear Fitter aims to
reduce the latency of the TMTT through a simplified algorithm and increased
throughput. In addition, the Linear Fitter aims to achieve similar or better
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efficiency through a precision fit algorithm in an integer-based design
process. The TMTT system contains the DTC, GP, HT, mini HT, KF and DR
modules. The additional modules are intended to increase efficiency and
remove fake tracks. The functionality of DTC and GP modules has already
been described. The HT module detects tracks in the r-ϕ plane and the value
for z is determined from calculated values. Therefore, in Linear Fitter the
value for z is obtained from the input of the HT instead of the output. This
has eliminated the use of mini HT from the configuration. As a trajectory is
reconstructed in every clock cycle, there will be sixteen tracks, however, the
final track with the minimum number of stubs is selected. In cases,
duplicates are present due to regional overlapping where one track crosses
one region to the neighbouring region, they are removed by the χ2 algorithm.
In the demonstrator, the modules are chained using IP Bus Builder in the
EMP framework at the system clock frequency of 240 MHz. The
implementation is optimised for MP7 for the tt̄+200PU events for consistency.
The figreffig:fig814 shows an assembly of the TMTT. The goal of the
demonstration is to use a minimum number of FPGA boards for practicality
and cost reasons.

Figure 8.14: TFP demonstrator in the TMTT firmware chain.
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The DTC in the demonstrator processes a packet of 72 events through 25
Gb/s µ-TCA blades. For emulation of two adjacent nonants, one FPGA board
is used for both sourcing and sinking stubs to/from the TFP. The source in
the FPGA board is responsible for storing two incoming text vectors and
transmitting them to the TFP board. The sink FPGA board is responsible for
receiving stubs from TFP and storing them in onboard block RAMs. The stubs
are buffered in FIFOs before and after the TFP with the transmission interval
of one stub per clock cycle. With efficient floorplanning, the GP and HT are
programmed onto one FPGA board, and Linear Fitter and DR are
programmed onto one FPGA board. In total, three boards are used in the
emulator to verify the feasibility of the TMTT in the demonstrator. In the
following section, the latency and resource usage of the TMTT implementation
are examined.

8.11.1 Latency and Resources

The latency and resource usage in the TMTT configuration are shown in Table
8.3 for the FPGA boards marked 2 and 3. For resource usage estimates for
the entire system, the logic utilisation is multiplied by the total number of
TFP blocks.

board resources utilisation available utilisation (%) latency (ns)

FPGA 2 8.14 LUT 299,774.4 433,200 69.2 -
FF 750,302.4 866,400 86.6 -
BRAM 2,456.4 1,470 167.1 -
IO 134 600 22.4 -
DSP 1,440 3,600 40 -
BUFG 3 32 3.13 -
LATENCY - - - 2,479

FPGA 3 8.14 LUT 389,446.8 433,200 89.9 -
FF 855,136.8 866,400 98.7 -
BRAM 1,026.06 1,470 69.8 -
IO 14 600 19.3 -
DSP 288 3,600 8 -
BUFG 4.8 32 15.3 -
LATENCY - - - 1,641

Table 8.3: Latency and resource usage in the TMTT demonstrator.
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8.11.2 Physics Performance

The TMTT physics performance in the demonstrator is evaluated against the
metrics used in the Linear Fitter emulation for consistency. The aim of
obtaining efficiency results in the TMTT is to compare them to other systems
under development. Results are shown in the 8.15 to 8.18.

Figure 8.15: TMTT tracking efficiency as a function of η.

Figure 8.16: TMTT tracking efficiency as a function of pT .
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Figure 8.17: TMTT duplicate fractions for 0 < pT < 25 GeV/c.

Figure 8.18: TMTT goodness of the fit χ2 for matched tracks.

Comparing the plots generated in the TMTT to the Linear Fitter reveals that
the efficiency in pT and η are similar, however, in the goodness of fit plot, the
hardware stops processing the stubs that produce χ2 with a value under the
precision range of its corresponding fixed-point representation. This would not
present problems in determining the genuine tracks as the critical value for the
χ2 for a high degree of freedom is much larger than the plotted values.
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8.12 Linear Fitter in the Hybrid Demonstrator

Following the integration of the Linear Fitter in the TMTT demonstrator, the
module is instantiated in the Hybrid system, replacing the Kalman filter. The
Hybrid architecture is more complex than the Linear Fitter and the TMTT as
it uses more modules in the firmware chain. These modules have been
required to provide a minimum number of candidate tracks to the KF module
to reduce the fake rate. The concern in the Hybrid development is achieving
the required latency. The Linear Fitter aims to reduce latency in Hybrid
architecture by replacing the Kalman filter with Linear Fitter and removing
the DR module. In addition, the Linear Fitter aims to achieve similar or better
efficiency through the precision fit algorithm through custom-designed
arithmetic slices to minimise DSP block usage. In the following section, the
modules in the Hybrid system and the hardware performance in the
demonstrator are discussed.

8.12.1 Modules in Hybrid Demonstrator

The Hybrid system is divided into Tracklet, Purge Duplicates (DP) and the
Linear Fitter design. In the Tracklet design [67], several modules are chained
in sequence to find track seeds from pairs of stubs in adjacent layers. Once
the pairs or tracklets are identified, a road search algorithm defines their
relationship to produce loose tracks. The tracks are interfaced to the DP
module to identify reoccurring tracks in overlapping regions and remove
them. The output from DP is interfaced with the Linear Fitter module to
eliminate invalid tracks. A novel Track Quality algorithm replaces the χ2

algorithm in the tracking efficiency and goodness of the fit stage. The use of
the Track Quality algorithm as the final module in the Hybrid architecture is
currently being studied. The geometry segmentation in Hybrid development
is different from the Linear Fitter and the TMTT, as the tracker is divided into
28 x ϕ sectors with a time-multiplexing factor of six. The first module in the
tracklet system [29] is the input router which maps and distributes the stubs
to BRAMs according to the layers in which the stub vertices are initially
detected. The virtual router divides the stubs into ϕ and z units known as
virtual modules. The tracklet engine creates pairs from particle hit positions,
and their parameters are calculated in the tracklet calculator module. The
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projection transceiver and the projection router modules find the association
between tracklets in adjacent layers and store them according to their
corresponding modules. The match engine and the match calculator modules
compare stub positions and transmit matches to their relative sectors. At this
point, candidate tracks are formed with a high data rate and are accumulated
in the full match module. The purge duplicate module is necessary to reduce
the data rate for transmission to the next module. In the Track Fitter section,
the Linear Fitter is used as a track fitter and added to the Hybrid firmware
chain. In Figure 8.19, an overview of the Hybrid hardware architecture is
shown, divided into four processing steps.

Figure 8.19: Modules in the Hybrid architecture.

Currently, the HLS modules are instantiated in the firmware chain with
one wrapper per module. The use of one wrapper for all modules can reduce
the algorithm complexity by removing redundant memory blocks between
modules, providing the number of inputs/outputs are less than the number
of available I/O pins in the MP7. The processing sectors receive a new stream
of stubs at 150 ns intervals instead of 450 ns in the TMTT.
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Additional parallelisation is achieved in both Track-Finder and Track-Fitter
algorithms with the help of the HLS pipeline and loop unrolling directives.
Figure 8.20 shows the Linear Fitter in the Hybrid configuration.

Figure 8.20: TFP demonstrator in the Hybrid configuration.

The Hybrid system has a different data format compared to the Linear
Fitter and TMTT systems. More parameters such as χ2

rphi, χ2
rz are

concatenated in a 96-bit binary track word for trajectory estimations. The
coordinate parametrisation follows the trajectory of charged particles in a
right-hand Cartesian coordinate system, creating a helical path rotating in
both negative and positive directions. However, for high pT particles, the
trajectory resembles a straight line. All parameters in the track word with
their bit assignments and ranges have been assigned. A valid bit confirms the
validity of the track in the LSB location. The r coordinate is replaced with the
signed inverse radius 1/R, the tanλ represents the relation between dip angle
θ and the hit latitude λ. The azimuthal angle ϕ0 and the longitude z0 are
calculated from the centre of the stub sectors. The d0 is the distance of the
closest approach of the track to the centre in the r-ϕ plane. The number of
bits for each parameter considers the minimum and maximum variables in
conversion from floating-point to fixed-point implementation. Stub
transmission in the Hybrid architecture is similar to Linear Fitter and TMTT
through 72 links with 25 Gb/s µ-TCA compatibility. The stubs are buffered
in FIFOs before and after the TFP with the transmission interval of one stub
per clock cycle.
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With efficient floorplanning, the GP and Tracklet are synthesised on one
FPGA board and the DP and the Linear Fitter on another FPGA board. Table
8.4 shows the bit assignments to the parameters.

parameter unit resolution range min range max bits signed bit range

valid - - 0 1 1 no [0:0]
1/R 1/cm 0.00000052 −0.00852662681 +0.00852662681 15 yes [1:15]
ϕ0 rad 0.0003 −0.69823248 +0.69813248 12 yes [16:27]
tanλ rad 0.0002 −8 +8 16 yes [28:43]
z0 cm 0.0099 −20.46922512 −20.46912512 12 yes [44:57]
reserved - - - - - - [58:70]
χ2

rϕ - - 0 ∞ 4 - [71:74]
χ2

rz - - 0 ∞ 4 - [75:78]
reserved - - 0 ∞ 3 - [79:81]
reserved - - - - 13 - [82:94]
total - - - - 96 - [0:95]

Table 8.4: Data format for the Hybrid demonstrator.

With 150 ns for six events and a clock speed of 240 MHz, a maximum of
36 stub pairs is transmitted from DTC-equivalent to the TFP through 28 links
instead of 36 links. The stubs are processed and transmitted on 28 links to
the sink module. If the number of stubs in-stream exceeds 36, the stream is
truncated, resulting in a slight degradation of the efficiency if the effects are
not significant.

8.12.2 Latency and Resource usage

In this section, the latency and resource usage of the Hybrid demonstrator is
presented. A firmware implementation of the Hybrid demonstrator is
assembled to emulate tt̄+200PU events. The demonstrator system is
optimised for data transmission and cross-module communications using the
MP7 board with a mounted Xilinx Virtex-7 (690T) FPGA chip. The Hybrid
demonstrator is also tested with the tt̄+250PU. The total latency of the
Tracklet with Linear Fitter module is found to be 3.3 µs, which can be
optimised to meet the required latency of 3 µs. Hardware acceleration tools
and HLS have been beneficial in achieving shorter latency through pipelining
directives and array partitioning in a Hybrid system. The Linear Fitter is
implemented in HLS for compatibility with the Tracklet firmware as part of an



166 CHAPTER 8 TRACK-TRIGGER DEMONSTRATOR

additional module for the Hybrid system. The Latency and resource usage is
shown in Table 8.5 are estimated by instantiating the Linear Fitter IP core in
the Xilinx Vivado platform and the Virtex-7 690T FPGA chip through Vivado
Quality By Design model [130] to ensure the design operates reliably under
the Level-1 Tracking requirements. The reports from the source and the sink
modules are not included as these modules are redundant in the complete
system. It is estimated that the entire system requires 182 MP7 µ-TCA blades
to achieve latency below 3 µs. The validation for the total number of FPGA
boards is obtained in Chapter 9.

board resources utilisation available utilisation(%) time (ns)

FPGA 2 8.20 LUT 387,714 433,200 89.5 -
FF 998,959.2 866,400 115.3 -
BRAM 1,946.2 1,470 132.4 -
IO 459 600 76.5 -
DSP 576 3,600 16 -
BUFG 4 32 14 -
LATENCY - - - 3,133.3

FPGA 3 8.20 LUT 296,742 433,200 68.5 -
FF 756,370.1 866,400 87.3 -
BRAM 1,005.4 1,470 68.4 -
IO 137.4 600 22.9 -
DSP 1,476 3,600 41 -
BUFG 6 32 18.8 -
LATENCY - - - 1,136.5

Table 8.5: Resource and latency estimates for the Hybrid system.

The total latency exceeds the timing requirements. Another area of
concern in the firmware configuration is the number of FIFO and Block RAM
slices in the FPGA-2 board that are greater than the number of available
resources in the MP7 chip. It is possible to use LUT slices to balance the load
and divert the memory requirements to other available resources on the chip.
For example, the layer information in the Tracklet can be stored in lookup
tables and accessed when required. The modifications can be made trivially
made in the HLS implementation through directives to optimise the design
and reduce storage dependencies of the resulting synthesis.
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8.12.3 Physics Performance

The Hybrid demonstrator is examined for its ability to perform tracking
efficiently in tt̄+200PU events. The same samples are used throughout the
performance evaluation for consistency with other developments. The Hybrid
design achieves high efficiency and good resolution in software and hardware
with relatively low duplicate fractions and χ2 statistic as shown in Figure 8.21
to 8.24.

Figure 8.21: Hybrid tracking efficiency as a function of η.

Figure 8.22: Hybrid tracking efficiency as a function of pT .
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Figure 8.23: Hybrid duplicate fractions for 0 < pT < 25 GeV/c.

Figure 8.24: Hybrid χ2 for matched tracks.

The efficiency in the η and the pT are similar to other systems, however,
the use of the Tracklet has resulted in fewer duplicate tracks and better
agreements between the software and hardware in the χ2 tests. As mentioned
previously slight degradation is expected when representing native double
precision values in software with their corresponding fixed-point values in
hardware. Reducing the discrepancies requires further tuning of fixed-point
variables at the runtime.
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8.13 Latency and Resource Usage for All Modules

In the previous sections, the hardware resources and physics performance of
MVLF, TMTT and Hybrid were considered separately. In this section, the
latency and hardware resources are compared side by side for LUTs, FIFOs,
BRAMs, DSPs, IOs and the Latency shown in Figure 8.25.

Figure 8.25: Latency and resource usage of MVLF, TMTT and Hybrid.

Deployment of linear regression algorithm in the Level-1 Track-Trigger
design has led to a significant reduction in the utilisation of logic resources.
As a result, the latency has decreased to comply with other readout devices
for the CMS high luminosity upgrade. The main area of reduction belongs to
the on-chip BRAM and IO slices. The data flow management and pipelining
in MVLF have revamped the storage necessity for RAM usage to asynchronous
registers by transmitting data to the components where it is needed,
otherwise held in the latches for one clock cycle only. The use of AXI
interfaces in block design has replaced single pin assignment to buses with
standard communication protocol providing a register-like structure with
reduced complexity. The feature can be used as a single-bit data transfer or
burst mode which is suitable for high-throughput data processing of stub
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streams. Other reductions are in DSP slice usage as a result of the
custom-designed arithmetic logic unit with multiply/accumulate and
asynchronous multipliers. Overall on-chip resources are reduced by
floorplanning and optimising the area that modules use on the FPGA chip
with minimised routing resources 2. In Figure 8.26, total hardware resources
for modules MVLF, TMTT and Hybrid is shown.

Figure 8.26: Total hardware resources for MVLF, TMTT and Hybrid.

8.14 Demonstrator Results

In the demonstrator, the software and hardware components of the modules
that made up the Level-1 Track-Trigger are placed in a system to validate their
performance. Several activities are conducted in the demonstrator that
involves integrating tracking modules in the EMP framework, building and
uploading firmware, simulation and emulation, and finally comparing the
extensive results between different modules and prototypes. If a module
under test passes the Level-1 Track-Trigger requirements, it is considered
feasible for use in the upgraded CMS detector. Currently available modules
(MVLF, TMTT, Hybrid) for a viable and cost-effective pT trigger system have
been considered. The aim is to assemble a Track-Trigger that performs well
under extreme tracking conditions of high pileup within a latency of 3 µs and
practical hardware resource usage.

2The more routing resources that are used, the slower the design will operate.
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All combinations are examined with the same simulated event samples
and firmware setup, minimising the external interference for achieving robust
results. The effects of achieving lower latency are proportional to hardware
resource usage in creating parallel structures or generating faster
components that can be clocked at a higher frequency. The proposed Linear
Fitter achieves this by dividing the tracker into π regions and further
segmentation in the η and the ϕ sectors, time-multiplexed to process all
regions in parallel. In addition, designing asynchronous application-specific
custom-built arithmetic slices that can process stubs faster, combined with
extremely fast µ-TCA technology to overcome the data flow timing constraints.
The Linear Fitter is integrated with the demonstrator as the module for the
track finding/fitting, and the results are presented accordingly.

The preliminary simulations indicated that the Linear Fitter demonstrator
produces fewer genuine tracks than other systems. The initial prognostic was
that the module is not sufficient for single module implementation in the
tracking system. Therefore, the TMTT demonstrator was assembled to
validate the results with help of Hough Transform. During two years of
development, the Hybrid system gradually replaced the TMTT system. At this
time, the Hybrid demonstrator was assembled. The Linear Fitter continued to
produce fewer tracks in both TMTT and Hybrid systems. The simulations
concluded that the Linear Fitter tends to over-filter genuine tracks.
Overfiltering is the process of merging two candidate tracks that both are
genuine into one track and as a result reducing the number of output tracks.
As discussed in Section 6.5, the investigation into the cause pointed to the
generation of virtual stubs within the stub sector boundaries. A feasible
solution to this problem was the segmentation of π regions into smaller
segments. The concluded simulation results indicated that many filtered
tracks were recovered in final track reconstruction at additional costs of more
I/O links and their associated logic resources. This problem was mitigated by
introducing an Advanced eXtensible Interface (AXI) communication protocol
[131] that is discussed in the Chapter 9.

As a result, the Linear Fitter performs within a maximum of ±3 deviations
from other systems in the physics simulation. In the hardware simulation, a
significant reduction in logic resources is achieved.
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The number of FPGA boards required to process two neighbouring
nonants with the total latency for MVLF, TMTT and Hybrid modules is
displayed in Table 8.6. The latency is somewhat different to the standalone
emulations, as the EMP framework has difficulty scaling to system-level
performance while maintaining the capability to run in real-time for FPGA
simulations. In comparison to standalone simulations, the latency is slightly
different as the EMP framework struggles to scale to system-level speed while
maintaining the ability to run FPGA emulation in real-time.

architecture FPGA boards efficiency η (%) efficiency pT (%) latency (ns)

MVLF 7 96.7 94.2 1472.86

TMTT 16 97.1 94.8 3263.06

HYBRID 18 96.5 95.1 3342.43

Table 8.6: Comparing tracking systems for a nonant.

In the next chapter, the scalability of Linear Fitter for the entire Track-Trigger
system is discussed.
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Chapter 9

Project Scaling and Summary

9.1 Demonstrator Migration

New hardware modules are integrated into the EMP demonstrator for testing
and verification. Even though the EMP framework is designed with backward
compatibility with the Xilinx Vivado, it has limited functionalities such as
constraints in pipelining the modules and compatibility with Xilinx’s new tool
features for estimating power and efficient floorplanning. In addition, in the
EMP demonstrator, the number of I/O links exceeds the maximum number of
I/O pins on FPGA chips required for the more refined segmentation of the
nonants and array partitioning for pipelining the design. The Xilinx platform
extends the Vivado capability to AXI to consolidate an array of interfaces into
one. The AXI is defined by ARM as part of the Advanced Microcontroller Bus
Architecture standard [132] acting as a single bus that groups single data
links into data buses. AXI-based system design [133] defines the key concept
of the communication protocol for three types of interfaces: AXI4, AXI-Lite,
and AXI4-Stream. The AXI4-Stream can transmit high-speed data streams
through master/slave interfaces, with the master initiating the transactions
and the slave responding to them. The main feature beneficial to TFP
development is the AXI4-Stream FIFO core for memory mapping through a
single bus architecture. The feature also reduces memory utilisation for
storing input parameters in BRAMs for all I/Os. In addition, the optimisation
of a TFP allows the development to be completely independent of the IP
Bus-Builder protocol in the EMP framework. Hence the implementation is
transferable to Vivado Design Suite or Vitis platform for new modules. The

173
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components required for performance in Vivado Design Suite are shown in
Figure 9.1. The CPU provides flexibility to select the combination of
peripheral and interfaces to ensure smooth data flow from the Block RAM to
the modules under test at the lowest cost possible.

Figure 9.1: Module instantiation in the Xilinx Vivado design suite.

The AXI4-Stream implementation of the TFP blocks reduces the number of
I/O links resulting in a decrease in the number of LUT slices by
approximately 50% and BRAM slices by 50%; however, the number of FIFO is
increased by about 25%. The optimisation benefits the design in two areas:
choosing the larger value for the time-multiplexing factor and implementing
fewer processors per nonant and eventually the entire system. In addition,
redirecting the memory resources to the FIFOs makes the design suitable for
the proposed Kintex KU15P device. A view of the AXI4-Stream
implementation of the TFP is shown in Figure 9.2 with added components for
managing the module reset and clock ports for one slice only. The GP and
Linear Fitter modules are integrated into a block design sequentially. The
input to the first module contains twelve interfaces or AXI bus-in (0 → 11)
generated by the first twelve stub sectors out of 48. The TFP block processes
the stubs at 360 MHz frequency producing a track in 2.77 ns intervals. The
output generated by the TFP is transmitted to the next Block Design through
an AXI bus through the link (0 → 0).
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The maximum clock frequency is 480 MHz with the current configuration
before timing violations are reported in the synthesis phase. In areas where
the timing violations are too severe, a review of the algorithm and techniques in
post-implementation needs to be evaluated before considering a faster target
technology. The results from single iteration Linear Fitter indicate that the
module can run at a higher frequency if the dependencies on BRAMs for storing
stub/track parameters are removed.

Figure 9.2: Module migration from EMP to Xilinx Vivado design suite.

The concept follows combinational sample-based modelling with fixed
latency and centralised shared memory between each module to establish
read/write operations. As the data are fed to the design as bursts, the
AXI4-Lite can provide similar performance at a frequency higher than 480
MHz. An issue in this configuration is the memory bandwidth in the
demonstrator, which must handle all I/O transitions at a higher frequency.
Achieving higher speed is possible through the AXI Interconnect and the AXI
BRAM Controller by providing multiple masters access to a local BRAM. The
Xilinx Kintex UltraScale devices provide Double Data Rate 4 Synchronous
Dynamic Random-Access Memory (DDR4 SDRAM) with support for up to
2666 Mb/s [134].
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The components required for the implementation in Vivado are shown in
Figure 9.3. Up to 64 TFP blocks can be added to this configuration trivially.

Figure 9.3: TFP implementation in Vivado Design Suite.

An implementation of the design indicates the Linear Fitter Single
Iteration IP can run at a maximum frequency of 649 MHz with the longest
path of 1.49 ns at an extra cost of 1024 kb DDRAM. The realisation is
validated via Microblaze CPU [135] soft IP core and Xilinx Software
Development Kit (XSDK) [136]. The TFP blocks are exported as self-contained
IP cores and added to the IP Integrated block with general-purpose memories
and logic fabrics. Additional components are required for integration into the
design to manage the AXI interfaces, memory access and tracking modules
through the Address Editor. In the address editor, each module is mapped to
a portion of the memory with start and end addresses. The data flow is
through the DDRAM with one read/write with an initiation interval of two.
The initiation interval becomes less significant in this configuration as the
blocks communicate through sophisticated handshake protocols. Once the
master initiates the first transaction, the process continues until the slave
returns the "done" signal. The master then takes control and moves to the
next address block assigned to the next module.
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The components required for the implementation in Vivado Design Suite are
shown in Figure 9.3.

Figure 9.4: TFP implementation with DDRAM shared memory.

If additional modules are required, they are added to the system as slave
interfaces by modifying the number of ports in the AXI interconnect and
address editor for the automation tool to map all the necessary connections.
The IP Integrator tool (industry-standard IP-XACT data formatter) [137]
captures memory requirements and endpoint master/slave mapping to
assign address segments to available memory spaces. For the testing phase
of the design, a Microblaze can manage up to 32 modules as a deterministic
real-time processing unit. The test vectors are written to textfiles and
temporarily stored in volatile arrays to be interfaced to the Track Finder
top-level block. The custom-designed subsystems such as the GP and the
Linear Fitter are added hierarchically as pre-production IP packages
containing the inner modules and a testbench to verify the basic functionality
of AXI masters and AXI slaves. The system response is captured in the form
of text files to allow comparisons to be made.
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9.2 Scaling Projection

In theory, one FPGA board must handle all incoming transmissions from all
tracker regions. In practice, the number of modules and the I/O links in the
Linear Fitter system exceeds the available resources on one FPGA board. The
latest regional and geometry segmentation produces 48 stub sectors per
nonant. For a stub with seven parameters, 6,048 I/O pins are required with
additional pins necessary for the implementation of the communication
protocols. In the Linear Fitter system, the number of boards in a nonant is
estimated at seven, with each handling maximum of twelve stub sectors. The
description of the segmentation is shown in more detail in Appendix A3. In
the design life cycle, following the software evaluation and hardware
verification, the transition from Xilinx Virtex-7 to the relatively new Xilinx
UltraScale+ FPGA chip has provided an increased link bandwidth up to 58
Gb/s transceivers with more peripherals. The number of available logic slices
has been also considered to suit the TFP hardware needs. Table 9.1, shows
the logic resource usage for the under development FPGA boards, including
the estimated resources required for a single TFP block. The last row refers to
the proposed FPGA device being utilised and tested in the Level-1
Track-Trigger demonstrator. The number of available LUT, RAM, FIFO and
DSP slices makes the device suitable for high-performance computing and
burst readout operations within the baseline budgeting.

Board Chip LUT FIFO BRAM DSP IO

Dev A TFP Unit 514,954 343,792 694 228 224

MP7 Virtex X690T 633,200 866,200 1,470 3,600 600

Apollo Virtex VU7P 788,160 176,320 1,440 4,560 832

Serenity Kintex KU115 663,360 1,326,729 2,160 5,520 832

Proposed Kintex KU15P 522,720 1,045,440 984 1,968 668

Table 9.1: Resources compared for a TFP unit and FPGA chips.

The number of LUT in the current development is very close to the
maximum available resources on the proposed Kintex KU15P device. LUT
slices are the main resources for implementing logic functionalities in FPGA
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hardware development that are frequently used as static random-access
memory cells. In the Linear Fitter design, a TFP is linked to twelve channels,
each streaming 64-bit stub information from the DTC units. The number
follows the time-multiplexing factor and the processing speed of a single TFP
block. The channels are decoded into stub parameters from streams at the
input. Before output, they are encoded back into streams utilising 229,379 or
43.88% of available LUT slices in the process. The number of FIFO slices in
the TFP uses 32.88% of the available resources. Hence the design has been
modified to account for SoC buses as the communication medium between
modules redirecting the LUT resources to FIFO slices by replacing the twelve
links with one channel per TFP.

9.3 Power Estimation

In Table 9.2, the static and dynamic power estimates for the MP7 chip at
junction temperature1 60.0◦ C are shown. The MP7 requires 30–40 W, which
is a significant amount of power to supply and heat to dissipate [138]. The
generated temperature from power dissipation must ideally be kept below
50.0◦ C [139], which becomes extremely challenging for high-speed devices
installed in a dense environment. The total power consumption increases
with a faster clock cycle, more BRAM and input/output pins per TFP block
and as a result temperature increases too. It will be beneficial to design
software processors and cooling systems to monitor power and temperature
periodically if a long life expectancy is desired.

frequency static clock signals logic BRAM DSP I/O total

240 MHz 340 807 629 297 470 301 1,290 4,134 (mW)

360 MHz 366 992 856 502 542 411 1,801 5,470 (mW)

480 MHz 391 1,342 1,145 782 876 581 2,234 7,351 (mW)

650 MHz 462 1,895 1,567 1,011 2,519 862 2,903 11,219 (mW)

Table 9.2: Power consumption for TFP blocks at different frequencies.

1Junction temperature includes the heat-sink temperature obtained from the MP7
datasheet.
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9.4 Scaled Multistage Linear Fitter

In a Multivariate Linear Fitter design with 48 (η, ϕ) sectors and a
time-multiplexing factor of twelve, a nonant is processed by seven FPGA
chips. For the entire system of nine nonants, 64 (63 + 1) chips will be
sufficient to process the stubs from all tracker regions. The processors are
labelled 0−→62, beginning with the track finder processing 0−→2π with the
64th device processing output from all nonants, if required. The connectivity
between the devices will be via chip-to-chip mid-board optical cables at a rate
up to 28 Gb/s over a maximum 100 m distance. The transmitters TX and RX
are configured as 12-channel unidirectional optical channels through optical
Firefly modules. Figure 9.4 shows nonants (1→9) with 64 (0→63) TFP blocks
and identification labels.

Figure 9.5: The 5-stage Linear-Fitter for the entire Tracker.

The architecture is fully reconfigurable in operational frequency settings
up to 480 MHz and the number of desired TFP blocks. In this configuration,
the processing is done in five stages with the first stage, the FPGA chips
receive a maximum of twelve links as I/O, channel one. In the second, third
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and fourth stages, the chips receive two channels left and right or up and
down and produce one output. In the final stage, the last chip receives nine
inputs and produces one output. All chips are connected to the global clock
at a 40 MHz frequency through the local clock dividers to generate transitions
with phase offset. The data transition takes place at 25 ns intervals, with the
longest path of 1,333.25 ns. This is the time required for at least one fitted
track per nonant to arrive at the input of the last TFP. The final processor
selects the track with the χ2 smaller than the pre-defined significance level
from nine nonants at 750 kHz frequency. In the final system, the latency of
the final TFP is added to the total latency which will be approximately 2,666.5
ns.

The templated algorithm can be trivially modified to incorporate new devices
at the desired frequency in the Vivado demonstrator without dependency on
the EMP framework. The effects of modifications can be automatically cross-
referenced between hardware and software as the algorithm is directly linked
to the CMSSW framework. At this stage, it is beneficial to investigate various
tunings of the residual weights in new kinematic cut regions and to study the
effect of using fewer bits to represent the modified parameters in hardware.

9.5 Final System Estimates

The floor planning has improved the performance of the TFP by grouping
connectivity and manually placing them on the chip to meet the timing. In
TFP design, two floorplanning techniques [140], Cell-Levels and Hierarchical,
are used to investigate better logic placement to reduce route delays. In
Cell-Level, the critical path in the architecture is identified, and the
corresponding logic elements are hand-placed on a specific site in the chip.
In Hierarchical, the hierarchy levels are placed on different chip regions to
achieve the best timing result. Cell-Level placement becomes increasingly
tricky in complex systems and does not guarantee solving timing issues even
after modifying the RTL. In the Hierarchical approach, the modules are
placed very close to one another on a small chip region. The process is
iterative and often provides good results if the critical path does not span
more than one hierarchical module. The Vivado interactive design
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environment [141] provides floorplanning assistance by visualisation of I/O
pins and clocked logic resources by simultaneously displaying the available
packages next to the device view. This capability is particularly helpful in
designing a null interface by assigning I/O banks and clock regions to both
the physical package and internal die before adding the subsystem to the
chip. Other benefits include examining the chip resources in various ways to
optimise the place&route phase, differentiating between external and internal
connectivity, and building relationships based on proximity to internal
resources. In the early stages of the development, if the device for the end
product is unknown for pin planning, the assignment is done using alternate
devices by allocating I/O across multiple viable chips. The technique has
been beneficial in removing obstructions in the Level-1 Track-Trigger module
development as the optimisations aim to reduce the number of FPGA chips
over time. In Figure 9.4, the package and device view of the MP7
(xc7vx690tffg1157-1) after pin configuration and floorplanning for a TFP is
shown.

Figure 9.6: The MP7 package (left) and the device view (right).

The optimisations have not achieved the ultimate goal of placing two TFPs
on a chip, however, it has made a total of 13,184 slices (I/O, DSP, LUT, RAM)
available for additional hardware implementation, if required. At this stage,
further investigation of the design can determine which hierarchy is most
suitable for floorplanning by identifying the timing issues of each block
separately.
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Total on-chip power for a single device is estimated from the implemented
netlist and activity derived from the constraints files, simulation files or vector
less analysis [141] at two stages. The static power is usually estimated by
programming the FPGA chip with an empty bitstream to record the response
of the transistor leakage in various voltages and temperatures. The dynamic
power is calculated by the summation of all static powers with I/O activities
and levels of logic routing in the design. Off-chip power consumption is also
generated from external power sources and interlinks to FPGA boards through
I/O pins buffers and LEDs, independent of the chip. Essentially the toggle
rate at which the clocked elements change status from on to off and vice versa
determines the dynamic power consumption at the device level. The Xilinx
Power Estimator (XPE) [142] allows an individual or group power estimation by
accounting for slices utilisation and the probability of switch rates at various
clocking frequencies. Faster clock activities result in higher dynamic power
consumption. It is worth reiterating that if FPGA power consumption is not
measured accurately and managed effectively, it can result in very high power
dissipation, which correlates with high power temperature.

9.6 Summary

A firmware demonstrator has been assembled to prove the feasibility of a
complexity-reduced hardware-based Track-Trigger for the CMS
High-Luminosity LHC upgrade. The system will reconstruct tracks within a 3
µs latency to comply with electronic readout devices developed for 40 MHz
event generation. Track reconstruction is an important addition to the future
of the Track-Trigger system to select only particles with high transverse
momentum in high pileup events. This not only increases the probability of
exciting discoveries, but also reduces the data volume significantly. The
Track-Trigger was implemented for FPGA-based devices using
custom-designed hardware modules for real-time data transmission and data
processing during CMS data-tacking phase. The demonstrator implements a
Geometric Processor module for coarsely segmenting the Tracker into regions,
followed by a Linear Fitter module to reconstruct charged particle trajectories
using logic design methodologies and a hardware acceleration platform. The
development was successfully demonstrated in the simulation of track
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finding and track fitting for the particles with pT ≥ 2 GeV/c within specified
latency and hardware resource usage under extreme conditions of data
containing high pileup events. The candidate tracks are used to trigger a
capture signal to the trigger system to keep or discard the corresponding
event. For the evaluation stage, past and current Track-Trigger systems have
been considered as the baseline metrics for comparing the system
performance. In physics simulation, the system performs similarly in most
aspects of track reconstruction with an efficiency ±2% of precision, whereas,
a significant reduction in latency and the number of FPGA devices required
for the entire system is observed in hardware emulation. The achievement is
accomplished by designing several custom-designed application-specific logic
slices, algorithm optimisation at Register Transfer-Level architecture and
High-Level Synthesis acceleration techniques in FPGA technology. A
significant reduction in latency and hardware resource usage is expected with
further optimisation of the planned system and foreseen hardware accelerator
technologies.
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A1 Arithmetic and Bit Growth

In the Xilinx 7-Series DSP48E1 Slice User Guide [107], the allowed word
length is given as 18-bit for A and 25-bit for B in a (A x B) operations using
one DSP48E1 slice. A study of word length growth using the Xilinx 7 Series
DSP48E1 arithmetic block the HLS is displayed in Table, A1. The word length
in fixed-point implementation accommodates multiplication and addition
within the specified ranges. The maximum word length allowance in the
multiplications, additions and accumulations using only one DSP48E1 block
is set to 26-bits, however, the number of DSP slices increases almost
exponentially if the word length exceeds the maximum value, as can be seen
in the table. If the maximum word length has been reached, the synthesis
tool automatically increases the number of DSP blocks to produce an
accurate result. This will negatively impact the hardware implementation and
resource usage if a suitable strategy is not put in place.

operation min range max range DSP(s)

A x B = C 1 26 1
A x B = C 27 28 2
A x B = C 29 39 4
A x B = C 40 44 5
A x B = C 45 56 9
A x B = C 57 67 10
A x B = C 68 68+ 11+
C = C + D 1 48 1
C = C + D 49 49+ overflow

Table A1: Bit growth in arithmetic operations Xilinx 7-Series.
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A2 Finite Wordlength Division

In Kalman filter arithmetic, matrix inversion is one of the operations that
contribute to resource usage in the hardware implementation. As shown in
Equation A2, there are two multiplications, where, the word length will grow
at runtime, resulting in an overflow and incorrect arithmetic results.

x−1 =

[
x00 x01

x10 x11

]−1

=
1

d

[
x11 −x01

−x10 x00

]
, where, d = (x00x11 − x01x10) (A2)

The word length is redefined as the summation of powers of two in this
scenario. The summation term is divided into parts of Most Significant Bit
(MSB) and Least Significant Bit (LSB). The simplification has allowed MSB to
use an 11-bit word length implementation with a 36 kb block ROM as a
lookup table with maximum precision when the MSB is one. If the MSB is
not one, then a bitwise shift operation is performed to push the first ’1’
occurrence to the MSB position. The values generated from the subtraction of
xMSB and xLSB bits are multiplied by the value representing 1/xMSB stored
in the LUT, using only one DSP48E block. To analyse the quantisation errors,
a utility library is designed to compare double-precision floating-point and
fixed-point variables to provide estimated word length at runtime. The utility
also calculates the precision loss and flags overflows in all multiplication and
subtraction operations. In hardware implementation. the structure allows
access to intermediate results for the deployment of a rounder and limiters as
shown in Figure A2.

Figure A2: Inverse matrix custom hardware architecture.
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A3 Time and Regional Multiplexing

Track-Trigger system with the minimum logic resource usage, the tracker is
divided into regions of 1/2π/9, each segmented into 48 (24η, 2ϕ) stub sectors
with a time-multiplexing factor of 16. A TPF processes 16 stubs from 12 stub
sectors at 40 MHz. Figure A3, shows a nonant 1/2π/9 containing 48 stub
sectors (columns) with the linked TPF blocks. HL-LHC creates an event at 40
MHz or 25 ns intervals. It takes 400 ns (16 x 25 ns) for all 48 column buffers
to be filled, one clock phase apart. Four TFP blocks process stubs at 480 MHz
with 25 ns intervals (1/480MHz x 12) at the first stage. In the second stage,
stubs that survived from the first stage are processed by the next TFP blocks
within 25 ns. In the third stage, the process continues with the remaining
stubs from the second stage being processed in 25 ns. If a final track for the
entire tracker is required, nine candidate tracks from nine nonants are fed into
one TFP block to generate one track. The latency of the system is 475 (400 +
25 x 3) ns for a nonant or 500 ns for the entire tracker, whereas, in emulation,
the total latency is dictated by the longest critical path from the first stage to
the final stage estimated to 1,333.03 ns.

Figure A3: A nonant in Time-Multiplexed Linear Fitter.
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A4 DAQ Sub-Systems FED Architecture

Figure A4 shows the central Triggering and Data Acquisition system with all
sub-systems. The DAQ monitors and controls all the sub-detectors
interlinked through readout electronics via newly upgraded µ-TCA, full-size,
double-width Advanced Mezzanine Cards, holding the Xilinx Kintex-7 FPGA
devices and optical SLINK-express 10 Gb/s transmitters. Triggering in the
CMS DAQ operates at two levels: the Level-1 and the High-Level trigger
systems, which are very different in how they filter the data. The High-Level
Trigger is a 13,000 CPU core farm with a ∼500 Hz accept rate. The Level-1
Trigger uses FPGA custom-built devices with an acceptable rate up to 750
kHz. The Level-1 Trigger is being upgraded with a Track-Trigger system. For
Tracker, this means using pT modules as the filtering mechanism for data
reduction. As is shown in Figure A4, the Tracker occupy a significant portion
of the CMS DAQ system with an event size of up to 1 MB. Each rectangular
green box is a readout device connected to the TEC-, TIB, TOB, and TEC+.
The figure is a screenshot from Level-1 DAQ online system during
cruzet-2021 data-taking period.

Figure A4: Central Triggering and Data Acquisition system.
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A5 Driving the Linear Fit Algebraically

The gradient (m) and intercept (b) are parameters in a linear fit (mxn + b) with
n data points, and the sum of Squared Errors SEfit = (yn − (mxn + b))2 are
the distances from the data points to the fit in y, given:

SEfit =
n∑

i=1

(yi − (mxi + b))2

= (y1 − (mx1 + b))2+(y2 − (mx2 + b))2+ . . .+(yn − (mxn + b))2

= (y2
1 − 2y1(mx1 + b) + (mx1 + b)2)+

(y2
2 − 2y1(mx2 + b) + (mx2 + b)2)+ . . .

y2
n − 2y1(mxn + b) + (mxn + b)2

= y2
1 − 2y1mx1 − 2y1b+m2x2

1 + 2mx1b+ b2+

y2
2 − 2y2mx2 − 2y2b+m2x2

2 + 2mx2b+ b2+ . . .

y2
n − 2ynmxn − 2ynb+m2x2

n + 2mxnb+ b2

= (y2
1+y2

2+ . . .+y2
n)−

2m(x1y1+x2y2+ . . .+xnyn)−

2b(y1+y2+ . . .+yn)−

m2(x1
1+x2

2+ . . .+x2
n)+

2mb(x1+x2+ . . .+xn) + nb2

= ny2 − 2mnxy − 2bny +m2nx2 + 2mbnx+ nb2(δSEfit

δm
= 0

)
+

(δSEfit

δb
= 0

)
δSEfit

δm
= −2nxy + 2nx2m+ 2bnx = 0 → −xy +mx2 + bx = 0

→ mx2 + bx = xy → m
x2

x
+ b =

xy

x
→ (mx2 + bx = xy)− (m

x2

x
+ b =

xy

x
)

→ m
(
x− x2

x

)
= y − xy

x
→ m =

y − xy
x

x− x2

x

→ m =
x̄ȳ − xy

x2 − x2

→ m =
xy − x̄ȳ

x2 − x2

δSEfit

δb
= −2ny + 2mnx+ 2bn = 0 → −y +mx+ b = 0 → mx+ b = y

→ b = y −mx

∴ y = mx+ b → y =
(xy − x̄ȳ

x2 − x2

)
x+ (y −mx)
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A6 High Luminosity LHC Plan

Figure A6 shows a ten years timescale encompassing the Long Shutdown 1 (2013), Long Shutdown 2 (2019) and Long
Shutdown 3 (2025). The LHC/HL-LHC plan constitutes Tracker, DAQ, Level-1 Trigger development and Technical Design
Report (TDR) documentation in high luminosity upgrade. This plan has been obtained in 2018 and updated regularly by
the CMS Collaboration.

Figure A6: Design, development and prototype timescale [22].
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A7 Project Milestone

The current HL-LHC upgrade production plan for the Level-1 Track-Trigger modules for the CMS detector is shown in
Figure A7. The information concerning the Kalman Filter, Linear Fitter and the Demonstrator is added for the period
2018 to 2021. The Level-1 Trigger project was in the pre-production stage in the year 2021. The milestone was last
updated at the end of 2021.

Figure A7: Level-1 Track-Trigger scheduling and timing.
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Acronyms

A
ALICE A Large Ion Collider Experiment
ASIC Application Specific Integrated Circuit
ATCA Advanced Telecommunications Computing Architecture
AMC Advanced Mezzanine Card
ALU Arithmetic Logic Unit
AOD Analysis Objects DData
AM Associative Memory
AXI Advanced eXtensible Interface

B
BX Bunch Crossing in Accelerator Experiment
BE Back-End Electronics
BRAM Block Random Access Memory

C
CMS Compact Muon Solenoid
CMSSW CMS Software Framework
CMOS Complementary Metal Oxide Semiconductor
CC Charge Collection in Sensors
CIC Concentrator Integrated Circuit
CBC CMS Binary Chip
CI Continues Integration
CD Continues Development
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CPU Central Processing Unit
CKF Combinatorial Kalman Filter
CT Correlator Trigger

D
DAQ Data Acquisition
DTC Data Trigger and Control
DR Duplicate Removal
DAS Data Aggregation Services
DQM Data Quality Monitoring
DAQ Triggering Data Acquisition
DSP Digital Signal Processing
DOF Degree of Freedom
DDR Double Data Rate Memory

E
ECAL Electromagnetic Calorimeter
ES Electromagnetic Preshower
EP Experimental Physics
EDA Electronic Design Automation
EMP Common Infrastructural Firmware Framework
EDM Event Data Model
EDA Electronic Design Automation

F
FinFET Fin Field-effect CMOS Transistor
FPGA Field Programmable Gate Array
FE Front-End Electronics
FED Front-End Devices
FEC Front-End Controllers
FF Flip Flope
FIFO First in First Out
FET Field-Effect Transistor
FL Fractional Length
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G
GPU Graphical Processing Unit
GP Geometric Processor
GUI Grphical User Interface
GLD Configurable Logic Blocks
GBDT Gradient Boosted Decision Tree

H
HL-LHC High Luminosity Large Hadron Collider
HL High Luminosity
HCAL Hadron Calorimeter
HEP High Energy Physics
HLT High Level Trigger
HDL Hardware Description Language
HLS High Level Synthesis
HT Hough Transform
HTTP Hypertext Transfer Protocol

I
IP Intellectual Property
IPBB IP Bus Builder
II Initiation Interval

K
KF Kalman Filter
KG Kalman Gain

L
LHC Large Hadron Collider
LEP Large Electron-Positron
LpGBT Low-Power Giga-Bit Transceiver
LF Linear Fitter
LR Linear Regression
LUT Lookup Table
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LSB Least Significant Bit

M
MSGC MicroStrip Gas Chambers
MVLF Multivariate Linear Fitter
MC Monte Carlo Simulations
ML Machine Learning
MAC Multiply Accumulate
MSB Most Significant Bit
MP7 General Purpose Processor 7
MCH Micro-TCA Carrier Hub

O
OOP Object Oriented Programming

OOM Object Oriented Modelling

P
PS Pixel Strip Module in Tracker
PAT Physics Analysis Toolkit
PU Event Pileup
PP Proton Proton
PLD Programmable Logic Devices
PL Proposed Length
PCI Peripheral Component Interconnect

R
R&D Recearch and Development
RTL Register Transfer Level
RAW Raw Data Production
RECO Reconstructed Trackes
RAM Random Access Memory
R2 Goodness of Fit
RAL Rutherford Appleton Laboratory

S
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SM Standard Model
SW Software Development
SB Synchrotron Booster
SoC System on Chip
SS Sum-of-Squared
SST Total Sum-of-Squares
SSE Sum-of-Square Errors
SST Sum-of-Squares Regression
SNR Noise to Signal Ratio
STL Standard Template Library

T
TDR Technical Design Report
TB Tracker Barrel
TE Tracker Endcap
TIB Inner Barrel Regions
TOB Outer Barrel Regions
TIB Inner Barrel Regions
TID Inner Barrel Endcap Regions
TEC Tracker Endcap Regions
TRG Level-1 Trigger Mechanism
TCA Telecommunication Computing Architecture
TT Track Trigger
TM Time Multiplexing
TFP Track Finder Processor
TMTT Time-Multiplex Track-Trigger
TL Traclet System
TMLF Time-Multiplexed Linear Fitter
TXRX Transmit and Receive
TP Tracking Particle
TIF Tracker Integration Facility

U
UUT Unit Under Test
UDP User Datagram Protocol
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V
VHSIC Very High-Speed Integrated Circuit

W
WLCG Worldwide LHC Computing Grid

X
XML Extendable Markup Language
XSDK Xilinx Software Development Kit
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