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a b s t r a c t

Bio-inspired computing promises fundamentally different ways to advances in artificial intelligence with
extreme energy efficiency. Memristive technologies due to the non-volatility, high density, low-power,
and synaptic bionic properties can help in realizing bio-inspired architecture and its hardware imple-
mentation. This paper proposes a novel physics-oriented memristor model with coexistence of negative
differential resistance (NDR) effect and resistive switching (RS) memory behavior for bio-inspired
computing. Firstly, an Ag/TiOx/FTO memristor is fabricated using sol-gel and magnetron sputtering
method, and its performance test demonstrates that the coexistence of NDR effect and RS memory
behavior can be modulated by the moisture. Then, a physical-oriented memristor model is constructed,
which provides the possibility to explore the dynamics of the coexistence of NDR effect and RS memory
behavior in simulation. Furthermore, a memristor-based affective computing circuit emulating the
process of human affective associative learning is designed. The experiment demonstrates that the
coexistence of NDR effect and RS memory behavior can change the memory time without additional
circuit and cost, which is expected to realize the automatic conversion from short-term memory to long-
term memory in bio-inspired computing.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The bio-inspired computing system is a very-large-scale inte-
grated circuit that uses dynamic and static circuits to mimic the
neurobiological structure and function of the biological brain [1e4].
This system offers the potential to overcome imminent problems of
the von Neumann computer architecture, particularly energy effi-
ciency, device reliability, and software complexity [5e7]. Many
studies have pointed out that brain intelligence research inspired
by neuroscience can promote the development of a new generation
of artificial intelligence technology and information industry
[8e10].

Memristors are two-terminal electronic devices that exhibit
resistive switching (RS), non-volatility, high density, low-power
neering, Zhejiang University,
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consumption, synaptic bionic, and have potential applications in
the field of bio-inspired computing [11]. Especially, the coexistence
of physical effect and RS memory behavior achieves a high-level
simulation of the biomimetic or neuromorphic computing, which
has been widely studied by researchers [12e16]. The coupling be-
tween capacitance and RS memory behavior was employed to
implement the Hebbian-like learning in Ref. [12]. In Ref. [13], re-
searchers fabricated an environment friendly memristor with
coexistence of digital and analog switching properties, which was
expected to achieve the realization of green-electronics and bio-
inspired systems. The coexistence of negative differential resis-
tance (NDR) effect and RS memory behavior observed in the NbOx-
based memristor could perform Boolean operations and be the
third-order nanocircuit elements for bio-inspired computing en-
gineering [14]. The prepared memristor exhibited the coexistence
of negative photoconductance effect (NPC) and RS memory
behavior, which could be used as a reconfigurable neuromorphic
vision sensor and make the bio-inspired computing system more
efficiency [15,16].
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The memristor models aim to correlate the electrical properties
with the underlying physical mechanisms [17]. Researchers pre-
sented a linear ion-drift model for a memristive device [18]. On this
basis, in Ref. [19], a non-linear model with different window
functions was constructed, which alleviated the bounds issue.
Simmons proposed a memristor model based on the quantum
tunnelling effect [20]. However, this model is complex as it does not
consider an explicit relationship between current and voltage. The
threshold adaptive memristor (TEAM) model has become
renowned for its simplicity, generality, accuracy, and low compu-
tational complexity [21]. Reference [22] presented the voltage
threshold adaptive memristor (VTEAM) model, which extends the
TEAM model to describe the behavior of voltage-controlled mem-
ristors. The above-mentioned memristor models seldom consider
the physical phenomena including the coexistence of physical ef-
fect and RS memory behavior. Recently, most of the studies have
verified the coexistence of physical effect and RS memory behavior
in material-level and analyzed the physical mechanism of the
coexistence by piecewise linear fitting [12e16]. Meanwhile, the
coexistence of physical effect and RS memory behavior that
possibly realized the automatic conversion from short-term
memory to long-term memory in bio-inspired computing does
not fully explore. The thorough analysis of the coexistence of NDR
effect and RSmemory behavior bymemristor model offers a chance
for the efficient hardware implementation to faithfully mimic the
function of biological brain, such as learning, memory, and cogni-
tion. A highly accurate compact dynamical model with the S-type
NDR effect was developed in Ref. [23], which can serve as selectors
in emerging non-volatile crossbar memory arrays. In Ref. [24], a
parallel memristor model was proposed after fabricating the two-
terminal metal-oxide-metal devices, enabling a systematic anal-
ysis of the coexistence of NDR effect and RS memory behavior. A
practical model of NbO2-based mott memristor with the typical
NDR effect was designed, it was ideal for circuit-theoretic in-
vestigations [25]. However, these models are complex and do not
consider an explicit relationship between current and voltage,
which are unsuitable for application in bio-inspired computing
systems. Reference [26] reported on a novel TiOx-based memristive
model considering the drifting effect, diffusion, and NDR behavior.
This model attempted to balance complexity and accuracy, while
seldom considered the physical mechanism of the coexistence of
physical effect and RS memory behavior. Based on this, a physics-
oriented memristor model with the coexistence of NDR effect and
RS memory behavior for bio-inspired computing is proposed. The
main contributions of this study are as follows:

1) The Ag/TiOx/FTO memristor is prepared using sol-gel and
magnetron sputtering method. It provides the physical support
for the subsequent model construction. Meanwhile, a detailed
electrochemical analysis is carried out, indicating that the
coexistence of NDR effect and RS memory behavior memory
behavior can be modulated by the moisture with a good
reversibility at room temperature.

2) The physics-oriented mathematical model of the Ag/TiOx/FTO
memristor is constructed, which provides the possibility to
explore the dynamics of the coexistence of NDR effect and RS
memory behavior in simulation and help realize the deep
integration of physical memristors into bio-inspired computing
systems and energy-efficient integrated circuits.

3) Considering the coexistence of physical effect and RS memory
behavior, the prepared memristor can be applied to associative
memory, enabling a full-hardware implementation of affective
computing to be feasible and simple.
2

2. Preparation and testing

2.1. Preparation of Ag/TiOx/FTO memristor

The memristor is fabricated using the solegel method and the
magnetron sputtering method. The former method is used to pre-
pare the TiOx functional layer, while the latter method is used to
synthesize the Ag and FTO electrodes. The fabrication process (as
shown in Fig. 1) can be summarized in the following steps:

Step 1 : The surface of the FTO substrate is cleaned with deionized
water and ethyl alcohol thrice to remove any possible
contaminants.

Step 2 : Plasma machine (PDC-32G-2) is adopted to the cleaned
surface of the FTO substrate for 30 s.

Step 3 : 350 mL of C12H28O4Ti, 5 mL of C3H8O, and 25 mL of HCl are
mixed and continuously stirred using a magnetic stirrer for
12 h to fabricate the precursor.

Step 4 : The FTO glass substrate is placed on a spin coater in vac-
uum. The mixed precursor is continuously spin-coated on
the patterned FTO glass substrate at 4,500r/min for 60 s.

Step 5 : The FTO substrate is transferred to a muffle furnace and
annealed at 550 �C in ambient atmosphere for 3 h. This leads
to the formation of a blue grey TiOx film on the substrate.

Step 6 : Magnetron sputtering is used to fabricate the Ag electrode
(diameter ¼ 200 mm, thickness ¼ 150 nm) on the TiOx

functional layer. In this manner, the Ag/TiOx/FTO memristor
is fabricated.
2.2. Performance test of Ag/TiOx/FTO memristor

Based on the prepared Ag/TiOx/FTO memristor, the necessary
performance testing is further carried out. The electrical charac-
teristics of Ag/TiOx/FTO memristor is tested on an electrochemical
workstation (CHI-660D) with a probe station (Lake Shore TTPX).
The workstation is used to measure the currentevoltage (IeV)
characteristics of the device, and the probe station is used to test
the relative humidity (RH) of air. We generate an experimental
environment with three different RH levels: 1) RH of 0% (dry
ambient) by injecting synthetic air (20% O2, 80% N2, and
H2O < 5 ppm) through three interconnected heated glass-delivery
Fig. 1. Preparation process of the Ag/TiOx/FTO memristor.
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tubes filled with dry CaO nano-powders; 2) RH of 35% (ambient RH
of the laboratory); 3) RH of 95% (moist ambient) by passing labo-
ratory air into a gas washing bottle containing deionized water.

The curve has a bias voltage of ±6 V and scan rate of 1 V/s in
steps of 0.025 V. The bias voltage sweep sequence is 0 V/�6 V/

0 V / 6 V / 0 V. The memristor exhibits typical RS memory
behavior under a RH of 0%, as shown in Fig. 2(a), and the inset is a
structural representation of the Ag/TiOx/FTO memristor. As the RH
is increased to 35%, the device exhibits a significant NDR effect in
the positive voltage region with a maximum current Ip of approx-
imately 35 mA, a valley current Iv of approximately 25 mA, and a
compliance current Icc of approximately 50 mA (Fig. 2(b)). As
observed in Fig. 2(c), when RH reaches 95%, the device exhibits a
strong coexistence of NDR effect and RS memory behavior in the
positive voltage region with maximum current Ip increased to
85 mA, valley current Iv increased to 78 mA, and compliance cur-
rent Icc increased to 100 mA. To investigate the stability of the
Fig. 2. The performance test of Ag/TiOx/FTO memristors. (a) IeV curves of Ag/TiOx/FTO mem
IeV curves of Ag/TiOx/FTO memristor under a RH of 95%.

Fig. 3. IeV curves of Ag/TiOx/FTO memristor under different RH levels: (a) RH ¼

3

coexistence of NDR effect and RS memory behavior, a 1 V reading
voltage is applied in the Ag/TiOx/FTO memristor at RH of 95% for
104 s, as shown in inset of Fig. 2(c). During the retention time, a
resistance ratio between the high-resistance state (HRS) and low
resistive state of HRS/LRS@ Ip, HRS/LRS@ Iv, and HRS/LRS@ Icc is
about 50, 20, and 100 respectively indicating that the coexistence of
NDR effect and RS memory behavior has good stability.

To investigate the sensitivity of the Ag/TiOx/FTO memristor to
moisture, the IeV measurements were repeated with different RH
levels (Fig. 3). The coexistence phenomena disappeared at a RH of
0% but reappeared and then gradually increased with RH, having
the most significant effect at 95%. This indicates that the RS
memory behavior and the NDR effect can be simultaneously trig-
gered in the Ag/TiOx/FTO memristor at room temperature, and the
coexistence of NDR effect and RS memory behavior is affected by
the RH.
ristor under a RH of 0%; (d) IeV curves of Ag/TiOx/FTO memristor under a RH of 35%; (e)

95%; (b) RH ¼ 35%; (c) RH ¼ 0%; (d) RH ¼ 0%; (e) RH ¼ 35%; (f) RH ¼ 95%.
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3. Metristor modeling

3.1. Analysis of physical mechanism of memristor

To explain the influence of the Ag/TiOx/FTO memristor to
moisture, this paper further analyzed the physical mechanism
involving the migration of Agþ, oxygen vacancy (Vo), and water-
related reaction process.

Fig. 4(a) illustrates the IeV curve of the Ag/TiOx/FTO memristor
plotted at RH of 95%. The trend can be divided into five sections: (i)
scan voltage from 0 V to �6 V; (ii) scan voltage from�6 V to Vp (the
voltage corresponding to the maximum current Ip of the NDR); (iii)
scan voltage from Vp to Vv (the voltage corresponding to the valley
current Iv of the NDR); (iv) scan voltage from Vv to þ6 V; (v) scan
voltage fromþ6 V to 0 V. In part (i), the memristor is in the HRS. Vo
at the TiOx/FTO interface gradually migrates towards the Ag elec-
trode and forms the Vo conduction path. Meanwhile, the H2O
molecules at the Ag/TiOx interface produce OH�when Vo is applied.
These ions move along the grain boundaries of TiOx and migrate
towards the FTO electrode. The dynamic migration of Vo and OH�

results in the memristor switching from the HRS to the LRS,
signaling the completion of the “SET” process (Fig. 4(b)). In part (ii),
the memristor remains in the LRS. When the voltage is varied
from �6 V to 0 V, the conduction path established by Vo is
enhanced. When the voltage is varied from 0 V to Vp, Vo gradually
returns to the side of the FTO electrode, indicating the gradual
breaking of the path. Meanwhile, the Agþ ions from the Ag elec-
trodemigrate towards the FTO electrode, where they are reduced to
Ag. Thus, metallic conduction filaments are gradually produced
with the steady agglomeration of Ag. Note that the Vo conduction
path is established in the direction opposite to that of the Ag fila-
ment, representing a pair of competing modes. Before the path is
broken, the device reaches the peak current Ip (Fig. 4(c)). In part
(iii), the Vo conduction path is ruptured, and the device current is
Fig. 4. Schematic diagram of physical mechanism for the coexistence NDR effect and RS mem
five sections; (b) The physical mechanism of part (i); (c)The physical mechanism of part (ii);
physical mechanism of part (v).

4

solely generated by Ag conduction filaments. The current decreases
from the peak current Ip to the valley current Iv. (Fig. 4(d)). In part
(iv), the increasing positive voltage leads to the production of more
Ag filaments, which elevates the current to the compliance value Icc
(Fig. 4(e)). In part (v), when the voltage is varied from þ6 V to 0 V,
the metallic conduction path is disintegrated, and the memristor
changes from the LRS to HRS, signaling the completion of the
“RESET” process (Fig. 4(f)).

Based on this, the coexistence of NDR effect and RS memory
behavior in Ag/TiOx/FTO memristors is governed by the migration
of Vo, as well as the formation and rupture of metallic (Ag) fila-
ments from a micro perspective. OH� ions are generated by H2O
molecules on interaction with the surface Vo. Then, the grain
boundaries of TiOx are broadened by the OH� migration, acceler-
ating the migration of Agþ and Vo.

When a negative voltage is applied to the Ag/TiOx/FTO mem-
ristor, the RS phenomenon is governed by the conduction path
formed by oxygen vacancy migration, satisfying the space-charge
limited current (SCLC) mechanism [27] with the following mathe-
matical expression:

Jf
Vmþ1

L2mþ1 (1)

where J is the current density, V denotes the external voltage, L
denotes the microwire's length, and m is a fitting parameter.

When m ¼ 0, the current is linearly related to the voltage,
demonstrating an Ohmic or Ohmic-like conduction law. When a
positive voltage is applied to the Ag/TiOx/FTO memristor, the RS
memory behavior and NDR effect coexist due to the effects of both
oxygen vacancy migration and Ag conduction filament formation,
satisfying the SCLC and Schottky tunnelling mechanisms [28]. The
Schottky tunnelling model is described by the following equations:
ory behavior observed in Ag/TiOx/FTO device: (a) Typical IeV curve can be divided into
(d) The physical mechanism of part (iii); (e) The physical mechanism of part (iv); (f)The
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where 4 denotes the Schottky barrier, KB denotes the Boltzmann
constant, T denotes the temperature, E denotes the electric field, q
denotes the electric charge, and ε0 and εr represent the vacuum
permittivity and relative permittivity, respectively.
3.2. Demonstration of PSpice analysis

Based on this analysis, a physics-oriented model of Ag/TiOx/FTO
memristor is constructed for the element to explore the dynamics
of the coexistence of NDR effect and RS memory behavior in
simulation. The relationship between current and voltage can be
concluded as follows:

iGmðtÞ¼
�
a1xðtÞn1vðtÞ þ a2

�
1� xðtÞn2

��
1� e�m1vðtÞ

	
; vðtÞ � 0

a3xðtÞn3vðtÞ þ a4
�
1� xðtÞn4

�
vðtÞm2 ; vðtÞ<0

(4)

where v(t) denotes the applied voltage, iGm(t) denotes the current in
the memristive device, and a1, a2, a3, a4, n1, n2, n3, n4,m1, andm2 are
the fitting parameters of the model used such that the IeV response
curve of the mathematical model could approximate the actual
physical model. The right-hand side of (4) represents the parallel
conductive channels. Specifically, for the positive voltage region,
the right-hand side of (4) represents the Ohmic and Schottky
tunnelling currents. For the negative voltage region, the right-hand
side of (4) represents the Ohmic and SCLC currents, respectively.
x(t) denotes the state variable for characterizing the conductivity of
the device, where x 2 [0,1]. The value of x(t) is derived by inte-
grating the current iGx(t) over time through capacitor Cx in the
equivalent circuit.

Reference [29] demonstrated that the ion migration behavior in
a memristor under an applied electric field satisfies the following
exponential relationship:

dx
dt
fsinh

�
v=E0
D� x

�
(5)

where v denotes the applied voltage, x denotes the state variable, D
denotes the layer thickness of the memristor, and fitting parameter
E0 represents the characteristics of the electric field.

Inspired by (5), a change in the state variable can be mathe-
matically expressed as:

iGxðtÞ¼
dx
dt

¼
�

a sinh bvðtÞfoff ðxÞ � gx; vðtÞ>0
a sinh bvðtÞfonðxÞ � gx; vðtÞ � 0

(6)

where a is the fitting parameter, and the larger its magnitude, the
faster the rate of change of the state variable. b denotes the voltage
control parameter, and g denotes the effect of different levels of RH
on the ionic migration and Vo diffusion. foff(x) and fon(x) repre-
senting the window functions [18] mainly used to ensure that the
state variable x(t) is always in the range of [0,1] and are expressed as
follows:
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where wc, aoff, and aon are all fitting parameters.

3.3. Simulation analysis of memristor model

To measure the fit between the experimental data of the Ag/
TiOx/FTO memristor and the proposed circuit model, we used
gradient descent and minimized the relative error function value
[30]. The error function is selected as the relative root mean
squared error (RRMSE):

Errms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where N denotes the total number of samples, Vk and Vref,k denote
the kth voltage applied to the terminals of the memristor and the
circuit model, respectively. Ik and Iref,k represent the kth current
through the memristor and circuit model, respectively. Vref and Iref
are the Euclidean norms of voltage and current of the circuit model,
respectively.

The fitting results of the memristor are depicted in Fig. 5, where
the solid spheres represent the experimental data obtained from
the Ag/TiOx/FTO memristor, and the solid lines represent the IeV
curves of the constructed circuit model. Here, the following pa-
rameters of the circuit model are obtained using sequential model-
based global optimization (SMBO) [31]: a1 ¼ 4.614 � 10�3,
a2 ¼ �0.105, a3 ¼ 0.040, a4 ¼ 7.035 � 10�5, n1 ¼ 3.300 � 10�12,
n2¼ 0.160, n3¼ 0.051, n4¼ 90.074,m1¼�0.460,m2¼ 4.818� 10�3,
a ¼ 1.763, b ¼ 0.729, aon ¼ 0.255, aoff ¼ 0.576, and wc ¼ 0.141. The
initial value of state variable x(t) is 0. Fig. 5(a) illustrates the
simulation results of the device under a RH of 0%. In this environ-
ment, the model parameter g is 0.012, and the device exhibited a
typical RS phenomenon. The RRMSE obtained after fitting the
theoretical results to the experimental data is 0.14%.When the RH is
increased to 35%, the model parameter g is 0.037, and the sym-
metrical, weaker coexistence of NDR effect and RS memory
behavior is observed in the positive voltage region (Fig. 5(b)). In this
region, the fitted curve matched the target data closely and the
RRMSE obtained is 0.46%. When the RH is increased to 95%, the
model parameter g is 0.088, and the combined effects of NDR effect
and RS memory behavior observed in the positive voltage region
are relatively stable and significant (Fig. 5(c)). Compared with
Fig. 5(b), the peak current Ip of the memristor in Fig. 5(c) increased
from 25 to 85 mA, and the RRMSE is 0.48%.

In Fig. 5(d), when a triangular-wave voltage is applied to the
memristor, the overall current through the device tended to in-
crease in the positive voltage region but decreased in the negative
voltage region. The same trend of current variation can be observed
in Fig. 5(h) and (k). The coexistence of NDR effect and RS memory
behavior disappeared under a RH of 0% (Fig. 5(e)). When the RH is
increased to 35%, a feeble synergy between NDR effect and RS
memory behavior is observed in the positive voltage region with a
more pronouncedmigration (Fig. 5(i)). When the RH is increased to
95%, the NDR effect and RS memory behavior shared a strong
synergy (Fig. 5(l)). This is because the OH�migration broadened the
electrical channel, enhancing the migration of Agþ and Vo along the
boundary. The internal state variable x(t) tended to change



Fig. 5. Simulation results of the physical-oriented memristor model (a) The fitting result of Ag/TiOx/FTO memristor under a RH of 0%; (b) The fitting result of Ag/TiOx/FTO memristor
under a RH of 35%; (c) The fitting result of Ag/TiOx/FTO memristor under a RH of 95%; t-V&I under RH of 0%; (b) VeI under RH of 0%; (c) t-x under RH of 0%; (d) t-V&I under RH of
35%; (e) VeI under RH of 35%; (f) t-x under RH of 35%; (g) t-V&I under RH of 95%; (h) VeI under RH of 95%; (i) t-x under RH of 95%.
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identically for all the three RH levels, as shown in Fig. 5(f), (j) and
(m). When the input voltage is positive, x(t) tended to increase, and
vice versa. In particular, enabled x(t) to reach its upper and lower
boundaries during the change under a RH of 95%.

A comparative summary of different memristivemodels is given
in Table 1.

Different memristor models based on quantum tunnelling the-
ory were proposed to analysis the coexistence of NDR effect and RS
memory behavior [23e25]. However, these models are complex,
6

without an explicit relationship between current and voltage, and
are not suitable for further application in bio-inspired computing.
Another simplified model has recently been proposed, considering
the drifting effect, diffusion, and NDR behavior [26]. In this model,
the coexistence of NDR and RS cannot be regulated by changing a
single parameter. The current mainstream memristor models (i.e.,
linear memristor model [18] and voltage threshold adaptive
memristor (VTEAM) model [22]) have become renowned for their
simplicity, generality, accuracy, and low computational complexity.



Table 1
Comparative summary of different memristive models.

Reference [18] [19] [20] [21] [25] [28] This work

State variable No physical
explanation

Core
temperature

Ambient
temperature

aoff � x � aon
Undoped region
width

aoff � x � aon
Undoped region
width

0 � x � 1
No physical
explanation

0 � x � 1
Conductivity of the
device

Control mechanism Electric field Charge Voltage Voltage Voltage Voltage Voltage
IeV relationship Ambiguous Ambiguous Ambiguous Explicit Explicit Explicit Explicit
Physical mechanism QTT QTT QTT Ambiguous IMT Ambiguous QTT&SCLC
Model Complexity Complex Complex Complex Medium Easy Medium Medium
Boundary effects No No No Unsolved Solved Solved Solved
Threshold effects No NO No No No Yes Yes
NDR effects Yes Yes Yes Yes No No Yes
Fitting accuracy High High High Moderate Low Moderate High
Applied rang Narrow Narrow Narrow Wide Wide Wide Wide

Note: IMT/Ion migration theory; QTT/Quantum tunnelling theory; SCLC/Space-charge limited current.
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However, these models [18,22] seldom consider the physical
mechanism of the real memristor and the physical phenomena
including the coexistence of NDR effect and RS memory behavior.
Compared with other works, the proposed model is a simple,
flexible and convenient model that can fit practical memristive
devices better than previously proposed models and improve the
simulation runtime, with a RRMSE of 0.48%. These results are
dependent on the particular fitting parameters. A lower value for
aon and aoff produces lower accuracy and enhanced computational
runtime [22]. The proposed model exhibits a voltage threshold and
nonlinear dependences on the state variable which alleviates the
boundary effects and shows the coexistence of NDR and RSmemory
behavior. This model fits practical memristive devices better than
previously proposed models. The proposed model is suitable for
bio-inspired computing.

4. A memristor-based affective computing circuit

Emotion is central to the quality and range of everyday human
experience [32]. According to the theories of psychology [33,34],
the human brain can establish the connections between emotion
and external stimulus (such as text, sound and image). Notably, the
fabricatedmemristor exhibits obvious the coexistence of NDR effect
and RS memory behavior under a RH of 95% which provides mul-
tiple stable resistance states and can adjust memory time without
additional circuit and cost, enabling a fully hardware-implemented
memristor-based affective computing circuit to be feasible and
simple.

4.1. Circuit design

This paper presents a thought experiment on the emotional
response of human beings, which intend to use as the application
basis for designing the affective computing circuit with the pre-
pared memristor. A person may not express a specific emotional
response to message notifications. However, depending on the
nature of the message (“good” or “bad”), they may feel happy or
sad. Suppose that a person receives only “good” messages for a
certain period. On receiving a message notification thereafter, s/he
will assume the message to be “good” without reading its contents
and will feel happy. Conversely, if a person receives only bad
messages for a certain period, s/he will respond with angst on
receiving a notification after that period. If there are no message
notifications for a long period, the established associations of a
person's “happiness” and “sadness” will cease. Furthermore, the
person's emotional responsewill not fluctuatewhen s/he receives a
new message notification. To more intuitively represent this
emotional change process, Fig. 6(a) summarizes the relevant
information.
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Based on the information in Fig. 6(a), this paper further con-
structs an affective computing circuit based on the prepared Ag/
TiOx/FTO memristor to simulate the process of emotional response
change in this hypothetical scenario (as shown in Fig. 6(b)).

In Fig. 6(b), the proposed circuit consists of four parts, namely
the input module, logic module, calculation module, and output
module. The logic module includes two XOR gates, which are
mainly used to change the state of the input signals. The calculation
module contains two memristors,M1 andM2 (with high-resistance
state HRS and three low resistive states LRS@ Ip, LRS@ Iv, and LRS@
Icc), two conventional resistors, R1 and R2, and two transistors (with
control voltage g). The circuit has three inputs and two outputs,
where the inputs US1, MS, and US2 represent the “good” message,
message notification, and “bad” message signals, respectively. Each
input has two states, i.e., high-voltage state VH and low-voltage
state VL. Specifically, the inputs US1, MS, and US2 are in VH, indi-
cating that the person receives the corresponding signals;
conversely, the three inputs are all in VL, indicating that they receive
no signal. The outputs are represented by the output voltages Vout1

and Vout2. When Vout1 (Vout2) is in VH, the person is “happy” (“sad”).
When the voltages are in VL, the person does not exhibit any change
in their emotional response. To stimulate the process of change in
human emotional responses, this paper assumes that LRS@
Icc ¼ R1 ¼ R2 « HRS, and the initial resistance of both M1 and M2 is
HRS.

4.2. Results and discussion

Fig. 6(c) depicts the results according to the experiment setup.
For clarity, the simulation results are classified into six stages
(Initial state, Test 1, Learning, Test 2, Forgetting, and Test 3).

In Initial state (0se8s), when the control signal g is in VH, the
branch circuit of M1 is connected, the input signal US1 (red solid
line) remains in VH while MS (yellow solid line) remains in VL. The
output signal Vout1 (pink solid line) is also in VH, implying that the
person feels happy after s/he receives a “good” message. However,
when g is in VL and the branch circuit of M2 is connected, US2 (blue
solid line) remains in VH while MS (yellow solid line) is the oppo-
site. The output signal Vout2 (green solid line) is in VH as well,
indicating that the person feels sad after s/he received a “bad”
message.

During Test 1 (8se15s), when US1 and US2 are in VL but MS is in
VH, both Vout1 and Vout2 enter the low state VL. We conclude that the
person's emotion does not significantly fluctuate when s/he re-
ceives the message notification. Note thatM1 (purple solid line) and
M2 (green solid line) are always in HRS during the above two
processes.

At the Learning stage (15se23s), when signal g is in the high
state VH and the branch circuit of M1 is connected, MS is injected



Fig. 6. A fully hardware-implemented affective computing circuit for bio-inspired computing (a) The collected information of affective associative learning experiment; (b) Affective
computing circuit based on Ag/TiOx/FTO memristor; (c) Simulation result of affective computing circuit based on Ag/TiOx/FTO memristor.
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Table 2
Comparison of different memristor-based bio-inspired computing circuits.

Reference Metristor model Switching type Complexity Automatic conversion Applications

[12] Pt/Ag/SiOx:Ag/Ag/Pt RS Simple No Hebbian-like learning
[13] Ag/TCNC/FTO RS Simple No Nonvolatile memory
[14] NbOx-based memristor NDR þ RS Simple No Boolean operations
[15,16] TiOx-based memristor NPC þ RS Simple No Vision sensor
[35] VTEAM model RS Complex No Associative learning
[39] Ag/HfOx/ITO TS/RS Simple No Associative learning
[36,37] VTEAM model RS Complex No Affective computing
[38] Linear memristor model RS Complex No Affective computing
This work Ag/TiOx/FTO NDR þ RS Simple STM to LTM Affective computing
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into the circuit before US1, and M1 tend to LRS@ Icc. Vout1 is a high-
state signal synchronized with US1, implying the happy state of the
person. Especially when tz 19s, only MS is assigned to the person,
and Vout1 is in the high state VH. At this time, M1 approximately
equals to 103U (i.e., the threshold resistance). This suggests that the
person has established the corresponding associative memory at
that moment, and the message notification changed from neutral
stimulus (NS) to conditional stimulus (CS). Similarly, when g is in
the opposite state, the circuit retrieved the corresponding asso-
ciative memory after learning the “bad” message and message
notification.

As for Test 2 (23se33s), when the control signal g is in VH, the
branch circuit of M1 is connected and MS remains in the high state
VH while US1 remains in the low state. M1 gradually increases from
LRS@ Icc to LRS@ Iv, then decreases to LRS@ Ip within a short time,
after that M1 will exceed the threshold resistance 103U. During this
time, Vout1 is synchronized with the control voltage g, indicating
that the person feels happy by simply receiving the message noti-
fication. Once M1 tends to the threshold resistance, Vout1 quickly
goes down to the low state VL, indicating that the established
associative learnings fades, person does not exhibit any change in
their emotional response after s/he received another message
notification. Similarly, the associative memory of the person forms
by the message notification and sadness changed from present to
absent.

During Forgetting stage (33se38s), when the input signals US1,
US2, and MS, as well as the output signals Vout1 and Vout2 are all in
the low state VL, M1 and M2 are maintained at 1.2 kU. The results
demonstrate a lack of change in the emotional response of the
person when they do not receive a message.

During Test 3 (38se42s), when g is in the high state and M1
increases from 1.2 kU to HRS, Vout1 remains in the low state VL. As a
result, when the person receives only the message notification, her/
his emotions do not fluctuate and the message notification be-
comes an NS. When g is low and M2 changed from 1.2 kU to HRS,
Vout2 remains in the low state VL and the same outcomes are
obtained.

To further explore the influence of the coexistence of NDR effect
and RS memory behavior, a comparative experiment under a RH of
0% is conducted, the corresponding results (represented by dash
line) as shown in Fig. 5(c). It is worth noting that the results of M1,
M2, Vout1 and Vout2 from the Initial stage, Test1, and Learning stage
are the same as the results under a RH of 95%. Due to the mem-
ristors only exhibit typical RS memory behavior under a RH of 0%,
M1 and M2 are continuously increased from LRS@ Icc to the HRS
without downward changes in Test 2. During this process, Vout1 is
synchronized with the control voltage g and Vout2 is contrary with
the control voltage g, until M1 and M2 tend to the threshold resis-
tance, Vout1 and Vout2 quickly go down to the low state VL. During
the Forgetting stage and Test3, M1 and M2 are maintained in HRS
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and Vout1 and Vout2 remain in the low state VL. The comparative
experiment demonstrates that the coexistence of NDR effect and RS
memory behavior memory behavior can increase memory time
without additional circuit and cost. Furthermore, proper humidity
adjustment can change the memory time, which is expected to
realize the automatic conversion from short-termmemory to long-
term memory in bio-inspired computing.

A comparison between different memristor-based bio-inspired
computing circuits is provided in Table 2. It is clear that all these
above-mentioned implementations have proved effective in high-
level simulation of the biomimetic or neuromorphic computing.
References [35,36e38] directly use the mathematical memristor
model (i.e., the VTEAM model and linear memristor model) to
mimic the brain function, such as forgetting, learning, and memory.
But the specific circuit design is complex and does not consider the
physical characteristics of memristor, leading to high energy con-
sumption and large computational overhead. Meanwhile, refer-
ences [14e16] and our work all discuss the coexistence of physical
effect (i.e., the NDR and NPC effect) and RS memory behavior, while
only our work further utilizes this coexistence phenomenon to
realize the automatic conversion from STM to LTM in bio-inspired
computing, which may be helpful in reducing additional circuit
components and energy consumption.

Based on these, the proposed fully hardware-implemented
memristor-based affective computing circuit is a simple, flexible,
and convenient one that can adjust memory time without addi-
tional circuit and cost, enabling the automatic conversion from STM
to LTM in bio-inspired computing to be feasible.
5. Conclusion

This work presents an investigation of a physics-oriented
memristor model with coexistence of NDR effect and RS memory
behavior for bio-inspired computing. Firstly, the Ag/TiOx/FTO
memristor is prepared using sol-gel method and magnetron sput-
tering method and its performance test indicates that the coexis-
tence of NDR effect and RS memory behavior can be modulated by
the moisture with a good reversibility at room temperature. Then,
the corresponding dynamics in simulation are also explored by
constructing a physical-oriented model of the Ag/TiOx/FTO mem-
ristor. The accuracy of the proposed model is calibrated against the
experimental data by tuning the fitting parameters, yielding an
RRMSE of less than 0.48%. Furthermore, a memristor-based affec-
tive computing circuit is proposed, which contains emotional
learning and forgetting features based on the corresponding bio-
logical mechanism of the human brain. The fabricated memristor
exhibiting the coexistence of NDR effect and RS memory behavior
provides multiple stable resistance states and can adjust memory
time without additional circuit and cost. The future direction of
research includes the development of bio-inspired computing
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systems based on memristor and investigation of new techniques
for the deep integration of nanomaterials science and the modern
circuit theory.
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