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ABSTRACT Environmental concerns and the impact of technology on climate change are now a global
concern. To this effect, reducing CO2 emission is one of the factors that has been the focus of researchers,
activists, and governments. This has been included in the UN’s 2030 Agenda for Sustainable Development.
The emissions produced due to running software have remained largely unquantified or neglected in Carbon
Accounting. This paper proposes ‘‘CO2 Emission Efficiency’’ as a measurable Non-Functional requirement.
We propose a framework for estimating software’s CO2 emissions and compare two well-known databases,
Apache Cassandra and Aerospike. The paper presents the method, process, and comparisons. The paper then
considers the costs of each of these technologies and concludes that reducing CO2 emissions not only has a
positive impact on the environment but can also be cheaper and reduce costs.
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INDEX TERMS Aerospike, Apache Cassandra, CO2 emissions, Carbon Accounting, net-zero target, non-
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I. INTRODUCTION12

Concern over mankind’s impact on the environment and the13

unchecked effects of climate change is the dominant global14

issue of our time. Burning fossil fuels is the principal contrib-15

utor to the creation of planet-heating greenhouse gases [1].16

Any industry reliant on electrical power will therefore poten-17

tially contribute to global warming. This includes the IT18

sector - its consumption impact is substantial and growing.19

The impact is more significant than you might think. Har-20

vard researchers expect that by 2030 information and com-21

puting technology will account for as much as 20% of global22

energy demand [2].23

Environmental costs are not limited to the running costs -24

equipment manufacturing is significant in its own right.25

IT infrastructure manufacturers already have a larger carbon26

footprint than more obviously polluting industries. For exam-27

ple, a recent Bloomberg article noted that ‘‘Intel’s factories28

used more than three times as much water as Ford Motor29

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

Co.’s plants and created more than twice as much hazardous 30

waste.’’ [3] 31

The concern is registered at all levels of society, includ- 32

ing the boardroom. Two-thirds of FTSE100 companies have 33

voluntarily committed to net-zero targets, meaning that CO2 34

Emission reduction is front and centre for executives around 35

the world. This also falls in with the UN’s 17 Sustainable 36

Development Goals (SDGs), which are an urgent call for 37

action by all countries - developed and developing - in a 38

global partnership [4]. 39

Given the significance of the emissions produced by IT 40

infrastructure, decision-makers need to consider ‘‘CO2 Emis- 41

sion Efficiency’’ as a Non-Functional Requirement for IT 42

systems. 43

II. RELATED STUDY 44

Until recently, emissions of running software platforms 45

were largely unquantified and mostly neglected in Carbon 46

Accounting [5]. This is changing however, and perhaps the 47

best evidence of this is that the three major cloud technology 48

providers (AWS, Azure, and GCP) are now reporting the CO2 49

emissions produced by the consumption of their resources 50
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by individual customers [6], [7], [8]. Therefore, there are51

no technical reasons for not accounting for these emissions52

in consumer CO2 balance sheets, and there will likely be53

pressure to do so. Bare metal emissions will likely not be far54

behind.55

To help IT decision-makers reduce the environmental56

impact of their software platforms, this article introduces a57

framework for estimating and comparing the efficiency of58

similar technologies. In the end, the reader can expect to have59

answers to the following two questions:60

1) What is the impact of the CO2 emission savings that61

a switch between two nominally similar technologies62

can cause?63

2) What is the cost of a CO2 Emission Efficient technol-64

ogy compared to its rivals?65

A. SCALABILITY66

Before the advent of the Internet and the rise in availability67

of distributed, scalable computing resources, efficient use of68

computing resources wasmandatory [9].When facedwith the69

scale of the Internet, efficiency concerns gave way to scala-70

bility - first and foremost, the user base had to be provided71

for [10].72

Scalable resources allow us to address performance-related73

non-functional requirements such as latency, throughput,74

capacity, and growth effectively, but not efficiently [10].75

As the access to virtually unlimited resources has never76

been easier, scaling has become the solution to almost77

every performance-related requirement, with efficiency often78

neglected. Times are changing however.79

• Enterprises are committing to net-zero emission tar-80

gets which forces them to reduce resource and energy81

consumption.82

• Business owners are increasingly alert to the often sub-83

stantial cost of ownership of software platforms.84

• Platform owners are concerned with the operational85

complexity of managing sometimes vast infrastructure86

estates.87

• Limits on growth such as network and computing speed88

mean developers must once again address efficiency89

when designing and writing software.90

Scaling resources without considering efficiency is ulti-91

mately not sustainable. This opens the door to revisiting effi-92

ciency. This time around, we are talking about the efficiency93

of scalable applications.94

B. EFFICIENCY95

In computer science, efficiency is generally evaluated in96

terms of CPU usage [11], [12], [13]. An algorithm is more97

efficient than another if it uses fewer CPU cycles to solve98

a problem. Therefore, reducing CPU time is often the main99

focus of software developers. Efficiency and speed have100

therefore become synonymous in the computer industry.101

But efficiency is not only about speed. More efficient102

software also requires less hardware, uses less energy, and103

has a lower Total Cost of Ownership (TCO). In the context of104

this research, we only consider the total cost of infrastructure 105

ownership as TCO. 106

To illustrate the point, let us consider a scenario where we 107

need to perform a task 1000 times per second. Suppose there 108

are two algorithms for performing that task: 109

• Algorithm A, which requires 10 CPU cycles. 110

• Algorithm B, which requires 100 CPU cycles. 111

Assuming that a CPU core can execute 1000 cycles per 112

second, algorithm A requires 10 cores to run 1000 times per 113

second, and algorithm B needs 100 cores to fulfil the same 114

requirement. So if A is used: 115

• Each task would complete 10x faster. 116

• 10x fewer resources would be required. 117

• The cost of the infrastructure would be 10x lower. 118

• Emissions produced by the underlying infrastructure 119

would be 10x lower. 120

III. METHODOLOGY: EMISSION ESTIMATION 121

FRAMEWORK 122

This article proposes a framework for estimating CO2 emis- 123

sion of software systems and their TCO, consolidated into 124

CO2 Emission Efficiency. This approach can be applied to 125

various software systems and technologies. 126

This framework has three stages; 1) Technology and work- 127

load selection, 2) Resource estimation, and 3) Emission 128

and cost estimation. Once the technology/technologies are 129

selected, their requirements are used to estimate the physi- 130

cal resources needed to operate the software. The resource 131

requirements are then used to estimate the operational cost 132

of the software and the corresponding CO2 emission. The 133

proposed framework is presented in Fig. 1. 134

FIGURE 1. Proposed framework for estimating CO2 emission.

In stage 1, the technology and the workload, tw, are identi- 135

fied. Then in stage 2, using best practices for the technology, 136

the minimum physical resources required for handling the 137

workload, Rtw, are estimated, which is presented in (1). 138

The minimum physical resource estimation is a function 139

of the workload, and depends on the data size, |datatw|, 140

the processing power, |comptw|, the memory complexity, 141

|memtw|, and overheads such as networking, monitoring, and 142
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cooling, |overheadstw| (1).143

Rtw = |datatw| + |comptw| + |memtw| + |overheadstw| (1)144

In practice, the physical resources are determined by the145

number of instances of a specific type, n(nodes), and the146

capacity of the data storage equipment for storing the data147

size, C(storage), needed to accommodate the technology and148

the workload. Hence, in most cases in this framework, (1) is149

in practice equivalent to (2).150

Rtw = n(nodes)+ C(storage) (2)151

In stage 3, we estimate the technology’s emission and the152

cost of ownership. The emission is the sum of the instance153

emission, em_instw, and storage emission, em_strtw, of the154

minimum physical resources required as presented in (3).155

emtw = em_instw + em_str tw (3)156

Emission of instances, em_instw, is the sum of the energy157

consumption emission, em_ins_contw, and the manufacturing158

emissions, em_ins_mf tw, which is presented in (4).159

em_instw = em_ins_contw + em_ins_mf tw (4)160

The instance energy consumption emission calculations161

are based on [14], [15], and [16] and presented in (5), where162

IPC is Instance Power Consumption measured in Watts at163

50% load, PUE is Data center Power Usage Effectiveness164

and ECI is Electricity Carbon Intensity of the instance region165

inr . Accordingly, H represents the computing hours. PUE is166

calculated as the total annual energy entering the data center167

building, Edc, divided by the annual energy consumed to168

operate devices of the IT room (EITR).169

em_ins_constw =
( IPC inr

1000
× PUE inr × ECI inr

)
× H170

PUE =
Edc
EITR

(5)171

Instance manufacturing emission is estimated using the172

manufacturer’s published data or other publicly available data173

sources, em_ins_mfnode per node per year multiplied by the174

number of nodes, n(nodes). This is presented in (6)175

em_ins_mf tw = em_ins_mf node × n(nodes) (6)176

The estimated emission of storage, em_strtw, is equal to the177

sum of the manufacturing emission, em_str_mf w, the energy178

consumption emission, em_str_constw, and the emissions179

produced by the other extra resources, em_str_ex tw, required180

by the storage technology (7).181

em_str tw = em_str_contw + em_str_mf tw + em_str_ex tw182

(7)183

The storage energy consumption emission is estimated and184

presented in (8), where str_eng_conTB is the manufacturer’s185

published storage consumption per terabyte of disk per year,186

em_engregion is emissions produced per unit of energy used in 187

the region, and d is the size of required disk. 188

em_str_contw = str_eng_conTB × em_engregion × d (8) 189

The storage manufacturing emission is estimated and pre- 190

sented in (9), where em_str_mf TB is the manufacturer’s pub- 191

lished emission per terabyte of disk per year, and d is the size 192

of required disk. 193

em_str_mf tw = em_str_mf TB × d (9) 194

The storage emission produced by the other resources is only 195

relevant if an external storage technology is used. In case the 196

specification of the storage technology is known, (10) can be 197

used to estimate the emission for extra resources. Otherwise, 198

a percentage of energy consumption andmanufacturing emis- 199

sions of the disks, Stw, can be factored in as a surplus. 200

em_srt_ex tw = (em_str_contw + em_str_mf tw)× Stw 201

(10) 202

The annual total cost of ownership (TCO) for each technology 203

is estimated based on the cost of running an instance per 204

node added to external storage cost such as EBS. This is 205

demonstrated in (11). This is based on the number of nodes 206

required, the hourly cost of running an instance (HCi), the 207

number of hours in a year (h), the monthly cost of external 208

storage, such as EBS, costs (MCov) and the number of months 209

in a year (m). 210

TCOtw = n(nodes)× HCi × h+ C(storage)×MCov × m 211

(11) 212

Finally, the CO2 Emission Efficiency is presented, 213

using (12), as a combination of emission per workload and 214

cost per workload. 215

CO2EmEffictw =
[

emtw
workload

,
TCOtw
workload

]
(12) 216

IV. APPLYING THE FRAMEWORK: DATABASES USE CASE 217

Almost all software solutions deal with some kind of data. 218

Data requirements form an integral and essential part of any 219

requirement analysis for software systems [17], [18], [19]. 220

Data would require storage and processing, making it a suit- 221

able use case to examine the proposed framework. To this 222

effect, the following sections will adopt two distributed 223

database technologies for estimating their CO2 emission, 224

their TCO, and compares the CO2 emission efficiencies. 225

In this use case, we compare the two software platforms, 226

Apache Cassandra and Aerospike. 227

For each of the database technologies under investigation, 228

the following stages are discussed for a fixed workload: 229

1) Physical Resource Estimate: Minimum recom- 230

mended hardware if using AWS. 231

2) Emission and Cost Estimation 232

a) Emissions Estimate: This includes emissions 233

produced during the hardwaremanufacturing pro- 234

cess and emissions generated by operational use. 235
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b) Operational Cost: The monetary cost of deploy-236

ing versus the AWS platform.237

A. PHYSICAL RESOURCE ESTIMATION FOR DISTRIBUTED238

DATABASES239

To estimate physical resource for a distributed database, the240

size of the unique data, replication factor (RF), compres-241

sion ratio (CR) and density per node is required. Using this242

information, the total data size, the size of data on disk, and243

finally the number of nodes required can be deduced. These244

are calculated using (13), (14) and (15).245

|total_data| = |unique_data| × RF (13)246

|data_on_disk| = |total_data| × CR (14)247

n(nodes) =
|data_on_disk|
density_per_node

(15)248

B. OPERATIONAL COST ESTIMATION FOR DISTRIBUTED249

DATABASES250

As the world’s most popular cloud computing platform,251

AWS is a common logical choice when comparing rela-252

tive costs. Hence, the AWS platform was chosen to use253

benchmark data already sourced using the platform. We used254

AWS on-demand pricing for the Ireland region, a popu-255

lar AWS region for UK businesses. Also, the CO2 emissions256

of AWS EC2 instances were available. Finally, this allows the257

reported results to be reproduced, examined and evaluated.258

V. STAGE 1: TECHNOLOGY AND WORKLOAD SELECTION259

The framework’s first stage is selecting the technology and260

the workload for the estimation and comparison. As men-261

tioned, the use case for this article would be database tech-262

nologies. In this section, we will discuss the selection process263

for the technologies and their corresponding workload.264

A. THE TECHNOLOGY265

The research team has expertise in databases and extensive266

experience with well-known databases Apache Cassandra267

and Aerospike. This article estimates and compares the CO2268

emission differences of these nominally similar technologies269

as a use case. Based on this selection, the methodology has270

been revised, Fig. 2, to reflect the specific aspects of these271

technologies. However, the framework introduced in this arti-272

cle could be used for comparing other software platforms.273

B. THE WORKLOAD274

To compare these databases, we need to specify fixed work-275

loads and compare the resulting emissions and costs. The276

workload choices are:277

1) Handling a specific level of throughput.278

2) Managing a specific volume of data.279

A throughput-oriented test is problematic as it in turn280

necessitates a large number of choices - respectively281

read/write balance, record size, data model, overall through-282

put and testing client type and number. It can be seen that283

any one choice may favour one platform over the other.284

FIGURE 2. Applying framework to estimate CO2 emission for Apache
Cassandra and Aerospike.

For that reason, the comparison chosen is volume-based, 285

with the volume being 1 PB. This is a reasonable order of 286

magnitude choice as: 287

• A large organisation often has hundreds of databases. 288

The data size in each database will range from a few 289

hundred gigabytes to a few hundred terabytes. 290

• In addition to production environments, organisations 291

will also make use of non-production environments such 292

as Test, Staging, UAT, and Pre-Production. 293

Most enterprises will therefore have petabytes, if not tens 294

or even hundreds of petabytes of data in their databases. 295

Additionally, the databases subject to this study are linearly 296

scalable. Therefore the emissions for a 1 PB use case can be 297

readily converted to those arising from larger or smaller data 298

volumes. 299

VI. STAGE 2: PHYSICAL RESOURCE ESTIMATE 300

This section determines the required AWS hardware to 301

store 1 PB of raw data using the vendors’ best practice 302

guides. Assumptions, calculations and disk choices for the 303

three chosen databases are presented and discussed. 304

A. APACHE CASSANDRA 305

1) ASSUMPTIONS 306

• Data Density: The main contributor to the Apache 307

Cassandra project (DataStax) recommends storing no 308

more than 1 terabyte of data per node of Apache 309

Cassandra [20]. 310

• Replication Factor: Cassandra requires 3 copies of the 311

data to remain consistent and available in case of a node 312

failure. 313

• Compression Ratio: Assume the data can be com- 314

pressed to 30% of its original size. 315

• Operational Requirements: Cassandra requires 50% 316

of the disk to be empty. 317

2) CALCULATIONS 318

The physical resources required for 1 PB of data and the 319

assumptions above are calculated for each technology to 320
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determine the number of nodes required for the data on321

a specific database system. Table 1 presents the required322

resources for 1 PB data on Apache Cassandra, and the cal-323

culated required number of nodes using equations (13), (14)324

and (15).325

TABLE 1. Calculations for Apache Cassandra.

3) DISK CHOICES326

Apache Cassandra can use two types of AWS resources to327

store data.328

• Local NVMe drives (a.k.a. ephemeral storage)329

• Elastic Block Storage (EBS) - network-attached virtual330

drives331

Both options are considered in this analysis as there is332

a meaningful difference between the results of these two333

approaches.334

The Apache Cassandra website recommends c4.4xlarge335

instances on EC2 with EBS storage [21]. As the density336

is 1 TB and Cassandra needs 50% empty disk space, the337

size of the EBS volume must be at least 2 TB. Also recom-338

mended is an additional .5 TB capacity for snapshots [22],339

commitlog [23], hinted handoffs [24], and other Cassandra340

overheads.341

When storing the data on ephemeral storage, i3 instances342

with attached NVMes are recommended [21]. Storing 1TB343

of data in Cassandra requires a minimum of 16 virtual cores.344

i3.4xlarge is the smallest instance type in this series, offering345

16vCPU or above.346

The resulting instance type choices for storing 1PB of data347

are summarised in Table 2.348

TABLE 2. Resulting instance type choices for storing 1PB of data with
Apache Cassandra.

The recommendations available on Apache Cassandra and349

DataStax respective websites regarding the instance types350

might not the best options. Using more modern equivalent351

instance types like c6g and i3en, the cost and emissions could352

be reduced by up to 20% without affecting the performance.353

To avoid subjectivity however, as the research aims to be354

reference-able and reproducible, the standard recommenda-355

tions were used. Although an additional 20% saving is sig-356

nificant, it does not change the conclusions of this article.357

B. AEROSPIKE 358

1) ASSUMPTIONS 359

• Data Density: The theoretical per node limit for disks 360

using Aerospike is 256 TB. In practice, the limit is the 361

disk capacity that can be attached to a single node. 362

• Replication Factor: Aerospike requires 2 copies of the 363

data to guarantee consistency and availability. 364

• Compression Ratio: Assume the data can be com- 365

pressed to 30% of its original size. 366

• Operational Requirements: Aerospike requires 50% 367

of the disk to be empty to minimise write amplification. 368

2) CALCULATIONS 369

As mentioned, Aerospike has a theoretical density limit 370

of 256 TB per node. Yet, AWS does not provide instances 371

with NVMe disks larger than 60 TB. Since Aerospike 372

requires 50% empty disk space, the highest practical density 373

per node is limited to 30 TB. These can be used to estimate the 374

hardware requirements using (13), (14) and (15) summarised 375

in table 3. 376

TABLE 3. Calculations for Aerospike.

Additionally, in August 2021, Aerospike published a 377

research study demonstrating the hardware required to store 378

1PB on AWS [25]. It found that 20× i3en.24xlarge instances 379

were required, matching the estimation above. 380

3) DISK CHOICES 381

Detail of the i3en.24xlarge instance type is presented in 382

Table 4. 383

TABLE 4. Resulting instance type choice for storing 1PB of data with
Aerospike.

C. PHYSICAL RESOURCE ESTIMATION DISCUSSION 384

Table 5 compares the required node resources required for 385

each database. It shows that eachAerospike node requires sig- 386

nificantly more resources than the Apache Cassandra nodes. 387

However, table 6, the total amount of hardware used in the 388

entire solution is nevertheless clearly significantly smaller for 389

Aerospike for all of CPU, RAM, and disk volume. 390
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TABLE 5. Required resources for storing 1PB.

TABLE 6. Total amount of hardware used in the entire solution for each
database.

VII. STAGE 3A: ESTIMATING THE EMISSIONS PRODUCED391

BY THE INFRASTRUCTURE392

By establishing the underlying resources required by each393

solution, it is possible to estimate the CO2 emissions each394

solution produces over one year.395

A. CO2 EMISSIONS396

Currently, none of the cloud providers allowed forecasting of397

CO2 emissions based on estimated consumption. Their tools398

only enable users to monitor the report of actual emissions399

with a 3-month delay. Additionally, the reported numbers400

by the cloud providers are not comparable across providers401

because they are calculated using different methodologies.402

Due to these limitations, we have adopted the previous403

research done for evaluating carbon footprint [26], power404

consumption [14], [16] and Carbon Emissions dataset [27].405

This series of articles explains why and how they decided406

to independently estimate the CO2 emissions of AWS infras-407

tructure. Teads Engineering has published a tool [28] that esti-408

mates the manufacturing and energy consumption emissions409

of different EC2 instances in each region. This approach has410

been based on previous work, which presents comparative411

evaluations of power models in data-centers [29] and cloud412

servers [30].413

It is important to acknowledge the limitations of the414

dataset [27]. Due to a lack of information, the emissions415

produced by some components are omitted. Most notable416

omissions are related to the data centre facilities, networking417

equipment, and storage hardware.418

Since one of the essential components that databases use419

is storage, the storage emissions were estimated using data420

that hardware manufacturers publish and included in the421

calculations. Nevertheless, the emissions produced by the422

other omitted components are not negligible. Therefore, this423

study’s estimates can only be treated as a lower bound.424

Choice of the region affects both cost and CO2 emissions.425

Depending on the source of energy that an AWS region426

uses, the CO2 emissions can vary significantly. For example,427

according to the calculator, the emissions produced by the428

energy consumption of instances in eu-west-1 (Ireland) are429

around 2.5 times lower than those in theme-south-1 (Bahrain) 430

region. In this analysis, Ireland was used as the basis for 431

estimations as it is the most popular AWS region for UK 432

businesses. 433

TABLE 7. CO2 emissions of EC2 instance types used in each solution
calculated using the estiamtor tool.

TABLE 8. Manufacturing CO2 emissions of a typical SSD drive.

TABLE 9. Manufacturing CO2 emissions of EBS.

TABLE 10. SSD energy consumption emission estimation.

Using the estimator tool, equation (4), the emissions of 434

EC2 instance types used in each solution are presented in 435

table 7. 436

TABLE 11. EBS energy consumption emission estimation.
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TABLE 12. Estimated annual infrastructure emissions for each solution.

TABLE 13. Estimated total annual emissions for each solution.

B. STORAGE EMISSIONS437

As discussed, the Teads estimator does not include the emis-438

sions related to storage hardware. In this section, the emis-439

sions produced by the manufacturing and usage of disk drives440

are estimated using data published by disk manufacturers441

and (7). This section also includes a rough estimate of emis-442

sions produced by EBS for Apache Cassandra on EBS.443

1) MANUFACTURING EMISSIONS444

Samsung has reported their CO2 emissions for SSDManufac-445

turing [31], which they believe to be the lowest in the indus-446

try. 204.67 kgCO2eq emissions per year were reported for447

their 8 TBSSDs.We can conclude that manufacturing 1 TB of448

SSD produces at least 204.67÷ 8≈ 25.58 kgCO2eq per 1 TB449

per year. The results are summarised in table 8.450

For EBS emission estimation, we need to consider the451

replication factor. The EBS replication factor is 3. Hence,452

the emissions produced by manufacturing each TB of SSD453

drives used in EBS would be 25.58 × 3 = 76.75 kgCO2eq454

per year. Since the specification of EBS architecture is not455

public, a 30% surplus is added (10) to the sum to account456

for the manufacturing emissions of the other components457

of EBS (processors, memory, etc.). Hence the total emis-458

sion of EBS infrastructure per TB of data in a year is:459

76.75 + 30% = 99.78 kgCO2eq per year. The final results460

are summarised in table 9.461

2) ENERGY CONSUMPTION EMISSIONS462

According to Seagate, the average annual energy usage463

of their SSD drives is 6.7 kWh per TB [32]. Emissions464

produced per kWh of energy in Ireland are equal to465

0.316 kgCO2/kWh [33]. Therefore the average annual emis-466

sions per 1 TB of SSD is 6.7 × 0.316 ≈ 2.12 kgCO2eq per467

year. Results are presented in table 10.468

Considering the replication factor, the annual emissions469

caused by the energy usage of EBS SSD drives are 2.12 ×470

3 ≈ 6.35 kgCO2eq per year. And if we similarly assume a471

30% surplus for the other components of EBS (processors,472

memory, etc.). The total annual energy usage of EBS per TB473

is 6.35+ 30%= 8.26 kgCO2eq per year. The final results are 474

summarised in table 11. 475

C. ESTIMATED INFRASTRUCTURE EMISSIONS 476

DISCUSSION 477

Putting all of the above together, the detail of the emissions of 478

AWS resources used by each solution is presented in table 12. 479

Based on these findings, it is possible to calculate the total 480

emission for each database. Total emissions are presented in 481

table 13. 482

The results are noteworthy. As presented, the choice of 483

hardware can reduce the CO2 emissions of a solution by 484

20% (Cassandra: 678 → 546). But perhaps more interest- 485

ingly, nominally similar solutions may have order of magni- 486

tude differences for CO2 emissions (Cassandra vs Aerospike: 487

678 → 109). They may seem puzzling until we consider 488

each solution’s minimum amount of resources as presented in 489

tables 5 and 6. Once these two tables are merged, as presented 490

in table 14, the results are clearly explained. 491

TABLE 14. Total amount of resources required in the entire solution for
each database.

VIII. STAGE 3B: COST OF THE INFRASTRUCTURE ON AWS 492

As explained initially, more efficient software requires less 493

hardware, produces fewer emissions, and is cheaper. So far, 494

we have seen that one of the solutions requires less hardware 495

and produces fewer emissions. This section investigates the 496

cost of running each solution over a year. The cost of the 497

required AWS resources for each solution is presented in 498

table 15. Based on these, each solution’s total cost of own- 499

ership is calculated and presented in table 16. 500

Based on the data presented in this section, it is evident that 501

the solution with an order of magnitude lower CO2 emissions 502

is also a fraction of the cost of alternative solutions. 503
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TABLE 15. Total cost of of each database on AWS∗ The EBS cost is
estimated for EBS on SSD with a minimum of 10k IOPS which is
DataStax’s recommendation [15].

TABLE 16. Total cost of ownership for each database.

IX. CONCLUDING DISCUSSIONS504

This research aimed to answer two questions that could help505

researchers and IT decision-makers understand their chosen506

technology stack’s environmental impact.507

• What is the impact of the CO2 emission savings that a508

switch between two nominally similar technologies can509

cause?510

• What is the cost of a CO2 Emission Efficient technology511

compared to its rivals?512

The discussions presented in this article allow us to arrive at513

conclusions which answer these questions. We will consider514

these under impact and cost.515

A. IMPACT OF REDUCING CO2 EMISSIONS516

It is considering how significant 500 tonnes of CO2 emis-517

sions per year is. Whilst 500 tonnes of CO2 emissions is518

vanishingly small compared to the estimated 36.4 billion519

tonnes of global emissions in 2021 [35], nevertheless, there520

are significant constructive perspectives to this saving:521

• It is estimated that each hectare of trees absorbs522

10 tonnes of CO2 per year [36]. Therefore, reducing523

500 tonnes of CO2 emissions per year is equivalent to524

planting 50 hectares of trees.525

• If, as predicted, stored data volumes double every two526

years [37], the amount of CO2 emission saving would527

also be doubled every two years if the more efficient528

technology is used.529

• The estimated global size of stored data in 2022 is530

97 zettabytes [38] (97 million petabytes). Depending531

on the portion of the data stored in databases globally,532

there is an opportunity to reduce millions of tonnes of533

CO2 emissions just by switching to more efficient data534

management solutions.535

B. CO2 EMISSION EFFICIENCY: EMISSION VS COST536

Sometimes efficiency has a price. For example, in the case537

of Apache Cassandra-based platforms, the solution with the538

least amount of CO2 emissions is more expensive, while the539

cheaper solution is more polluting. Table 17 presents the540

CO2 Emission Efficiency for 1 PB workload (12) in terms of541

annual TCO and emissions, illustrating the trade-off between 542

emission efficiency and costs. 543

TABLE 17. CO2 emission efficiency for 1 PB workload: Cassandra disk
choice storage comparison.

However, the efficiency of platforms based on different 544

underlying technologies can be dramatically different. As we 545

saw in this comparison, a more efficient software solution 546

can be many times cheaper and less polluting. Table 18 547

presents CO2 Emission Efficiency for 1 PB workload (12), 548

illustrating the case where emission efficiency and cost are 549

complementary. Fig. 3 presents the CO2 Emission Efficiency 550

for all three options by plotting the Total Annual Emission 551

against their Annual TCO. 552

TABLE 18. CO2 emission efficiency for 1 PB workload: Cassandra vs
Aerospike.

FIGURE 3. CO2 emission efficiency: complete picture.

Although the purpose of this article is not to compare the 553

‘‘performance’’ of these technologies, it is worth mentioning 554

that the expected latency of Cassandra is in the region of 555

a single-digit millisecond (<10ms). In contrast, Aerospike 556

works in less than a millisecond latency range (<1ms). Yet 557

another substantial improvement. 558

C. FINAL WORDS AND FUTURE DIRECTIONS 559

In this article, a case was made for the importance of consid- 560

ering CO2 emissions efficiency as a Non-Functional require- 561

ment for IT systems. The data shows the considerable positive 562

effects of good practice and, conversely, the adverse effects of 563

ignoring CO2 production. 564

It is hoped that the framework suggested here can be used 565

to compare other similar technologies. Going beyond this, 566

we might consider a universal CO2 emissions metric that 567
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measures different technologies based on CO2 emissions.568

Such a metric would allow IT decision-makers to incorpo-569

rate environmental considerations when choosing technology570

components. It would also encourage technology vendors to571

reduce the environmental impact of their products.572

The results also show that reducing environmental impact573

would also reduce costs - we don’t necessarily have to choose574

between one or the other. We can satisfy our budgets and575

our consciences at the same time. In summary, this article576

presents three contributions:577

1) A framework for estimating and comparing the CO2578

emissions of software,579

2) Introducing CO2 Emission Efficiency as a measurable580

non-functional requirement,581

3) Demonstrating that reducing the environmental impact582

of software would also reduce its costs.583
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