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ABSTRACT Environmental concerns and the impact of technology on climate change are now a global
concern. To this effect, reducing CO, emission is one of the factors that has been the focus of researchers,
activists, and governments. This has been included in the UN’s 2030 Agenda for Sustainable Development.
The emissions produced due to running software have remained largely unquantified or neglected in Carbon
Accounting. This paper proposes “CO, Emission Efficiency” as a measurable Non-Functional requirement.
We propose a framework for estimating software’s CO, emissions and compare two well-known databases,
Apache Cassandra and Aerospike. The paper presents the method, process, and comparisons. The paper then
considers the costs of each of these technologies and concludes that reducing CO, emissions not only has a
positive impact on the environment but can also be cheaper and reduce costs.

INDEX TERMS Aerospike, Apache Cassandra, CO; emissions, Carbon Accounting, net-zero target, non-
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I. INTRODUCTION

Concern over mankind’s impact on the environment and the
unchecked effects of climate change is the dominant global
issue of our time. Burning fossil fuels is the principal contrib-
utor to the creation of planet-heating greenhouse gases [1].
Any industry reliant on electrical power will therefore poten-
tially contribute to global warming. This includes the IT
sector - its consumption impact is substantial and growing.

The impact is more significant than you might think. Har-
vard researchers expect that by 2030 information and com-
puting technology will account for as much as 20% of global
energy demand [2].

Environmental costs are not limited to the running costs -
equipment manufacturing is significant in its own right.
IT infrastructure manufacturers already have a larger carbon
footprint than more obviously polluting industries. For exam-
ple, a recent Bloomberg article noted that “Intel’s factories
used more than three times as much water as Ford Motor
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Co.’s plants and created more than twice as much hazardous
waste.” [3]

The concern is registered at all levels of society, includ-
ing the boardroom. Two-thirds of FTSE100 companies have
voluntarily committed to net-zero targets, meaning that CO,
Emission reduction is front and centre for executives around
the world. This also falls in with the UN’s 17 Sustainable
Development Goals (SDGs), which are an urgent call for
action by all countries - developed and developing - in a
global partnership [4].

Given the significance of the emissions produced by IT
infrastructure, decision-makers need to consider “CQO;, Emis-
sion Efficiency” as a Non-Functional Requirement for IT
systems.

Il. RELATED STUDY

Until recently, emissions of running software platforms
were largely unquantified and mostly neglected in Carbon
Accounting [5]. This is changing however, and perhaps the
best evidence of this is that the three major cloud technology
providers (AWS, Azure, and GCP) are now reporting the CO,
emissions produced by the consumption of their resources
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by individual customers [6], [7], [8]. Therefore, there are
no technical reasons for not accounting for these emissions
in consumer CO, balance sheets, and there will likely be
pressure to do so. Bare metal emissions will likely not be far
behind.

To help IT decision-makers reduce the environmental
impact of their software platforms, this article introduces a
framework for estimating and comparing the efficiency of
similar technologies. In the end, the reader can expect to have
answers to the following two questions:

1) What is the impact of the CO, emission savings that

a switch between two nominally similar technologies
can cause?

2) What is the cost of a CO, Emission Efficient technol-

ogy compared to its rivals?

A. SCALABILITY

Before the advent of the Internet and the rise in availability
of distributed, scalable computing resources, efficient use of
computing resources was mandatory [9]. When faced with the
scale of the Internet, efficiency concerns gave way to scala-
bility - first and foremost, the user base had to be provided
for [10].

Scalable resources allow us to address performance-related
non-functional requirements such as latency, throughput,
capacity, and growth effectively, but not efficiently [10].
As the access to virtually unlimited resources has never
been easier, scaling has become the solution to almost
every performance-related requirement, with efficiency often
neglected. Times are changing however.

o Enterprises are committing to net-zero emission tar-
gets which forces them to reduce resource and energy
consumption.

« Business owners are increasingly alert to the often sub-
stantial cost of ownership of software platforms.

o Platform owners are concerned with the operational
complexity of managing sometimes vast infrastructure
estates.

o Limits on growth such as network and computing speed
mean developers must once again address efficiency
when designing and writing software.

Scaling resources without considering efficiency is ulti-
mately not sustainable. This opens the door to revisiting effi-
ciency. This time around, we are talking about the efficiency
of scalable applications.

B. EFFICIENCY
In computer science, efficiency is generally evaluated in
terms of CPU usage [11], [12], [13]. An algorithm is more
efficient than another if it uses fewer CPU cycles to solve
a problem. Therefore, reducing CPU time is often the main
focus of software developers. Efficiency and speed have
therefore become synonymous in the computer industry.

But efficiency is not only about speed. More efficient
software also requires less hardware, uses less energy, and
has a lower Total Cost of Ownership (TCO). In the context of
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this research, we only consider the total cost of infrastructure
ownership as TCO.

To illustrate the point, let us consider a scenario where we
need to perform a task 1000 times per second. Suppose there
are two algorithms for performing that task:

o Algorithm A, which requires 10 CPU cycles.

o Algorithm B, which requires 100 CPU cycles.
Assuming that a CPU core can execute 1000 cycles per
second, algorithm A requires 10 cores to run 1000 times per
second, and algorithm B needs 100 cores to fulfil the same
requirement. So if A is used:

« Each task would complete 10x faster.

« 10x fewer resources would be required.

o The cost of the infrastructure would be 10x lower.

o Emissions produced by the underlying infrastructure

would be 10x lower.

Ill. METHODOLOGY: EMISSION ESTIMATION
FRAMEWORK

This article proposes a framework for estimating CO, emis-
sion of software systems and their TCO, consolidated into
CO; Emission Efficiency. This approach can be applied to
various software systems and technologies.

This framework has three stages; 1) Technology and work-
load selection, 2) Resource estimation, and 3) Emission
and cost estimation. Once the technology/technologies are
selected, their requirements are used to estimate the physi-
cal resources needed to operate the software. The resource
requirements are then used to estimate the operational cost
of the software and the corresponding CO> emission. The
proposed framework is presented in Fig. 1.

Technology
and
Workload

Technology and
Workload Selection

Physical Resource Estimation

CO, Emission Estimation Operational Cost Estimation

Instance Cost || Storage Cost Cost of
per hour per month ‘Ownership

Resource
Estimation
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FIGURE 1. Proposed framework for estimating CO, emission.

In stage 1, the technology and the workload, w, are identi-
fied. Then in stage 2, using best practices for the technology,
the minimum physical resources required for handling the
workload, Ry, are estimated, which is presented in (1).

The minimum physical resource estimation is a function
of the workload, and depends on the data size, |datas,|,
the processing power, |comps,|, the memory complexity,
|memy,|, and overheads such as networking, monitoring, and
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cooling, |overheadss,| (1).
Ry, = |datay,| + |compsy| + |memy,| + |overheadss,| (1)

In practice, the physical resources are determined by the
number of instances of a specific type, n(nodes), and the
capacity of the data storage equipment for storing the data
size, C(storage), needed to accommodate the technology and
the workload. Hence, in most cases in this framework, (1) is
in practice equivalent to (2).

Ry, = n(nodes) 4+ C(storage) 2)

In stage 3, we estimate the technology’s emission and the
cost of ownership. The emission is the sum of the instance
emission, em_insy,, and storage emission, em_stry,, of the
minimum physical resources required as presented in (3).

emy, = em_inssy, + em_stry, 3)

Emission of instances, em_ins;,, is the sum of the energy
consumption emission, em_ins_cony,, and the manufacturing
emissions, em_ins_mf ,,,, which is presented in (4).

em_insy, = em_ins_cony, + em_ins_mf ,,, )

The instance energy consumption emission calculations
are based on [14], [15], and [16] and presented in (5), where
IPC is Instance Power Consumption measured in Watts at
50% load, PUE is Data center Power Usage Effectiveness
and ECI is Electricity Carbon Intensity of the instance region
inr. Accordingly, H represents the computing hours. PUE is
calculated as the total annual energy entering the data center
building, Eg4, divided by the annual energy consumed to
operate devices of the IT room (Ejzg).

em_ins_consy, = (IPCl X PUE jp, X ECIinr) x H
- 1000
E,
PUE = =% ()
Eirr

Instance manufacturing emission is estimated using the
manufacturer’s published data or other publicly available data
sources, em_ins_mfyoq. per node per year multiplied by the
number of nodes, n(nodes). This is presented in (6)

em_ins_mf ,, = em_ins_mf 4, X n(nodes) (6)

The estimated emission of storage, em_stry,, is equal to the
sum of the manufacturing emission, em_str_mf ,, the energy
consumption emission, em_str_cons;,, and the emissions
produced by the other extra resources, em_str_exy,,, required
by the storage technology (7).

em_Stry, = em_str_cony, + em_str_mf w T em_str_exy,
)

The storage energy consumption emission is estimated and
presented in (8), where str_eng_conrp is the manufacturer’s
published storage consumption per terabyte of disk per year,
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€M_eng ,,iop 18 emissions produced per unit of energy used in
the region, and d is the size of required disk.

eM_SIr_CONgyy = SIF_eNng_CONTp X eMm_eng eion X d  (8)

The storage manufacturing emission is estimated and pre-
sented in (9), where em_str_mf 1 is the manufacturer’s pub-
lished emission per terabyte of disk per year, and d is the size
of required disk.

em_str_mf ,, = em_str_mf rp X d )

The storage emission produced by the other resources is only
relevant if an external storage technology is used. In case the
specification of the storage technology is known, (10) can be
used to estimate the emission for extra resources. Otherwise,
a percentage of energy consumption and manufacturing emis-
sions of the disks, S, can be factored in as a surplus.

em_srt_exp, = (em_str_cony, + em_str_mf ) X Sny
(10)

The annual total cost of ownership (TCO) for each technology
is estimated based on the cost of running an instance per
node added to external storage cost such as EBS. This is
demonstrated in (11). This is based on the number of nodes
required, the hourly cost of running an instance (HC;), the
number of hours in a year (), the monthly cost of external
storage, such as EBS, costs (MC,,) and the number of months
in a year (m).

TCOy, = n(nodes) x HC; x h+ C(storage) x MC,, x m
(11)

Finally, the CO, Emission Efficiency is presented,
using (12), as a combination of emission per workload and
cost per workload.

(12)

TCO
CO>EmEffic,, :[ M w }

workload’ workload

IV. APPLYING THE FRAMEWORK: DATABASES USE CASE
Almost all software solutions deal with some kind of data.
Data requirements form an integral and essential part of any
requirement analysis for software systems [17], [18], [19].
Data would require storage and processing, making it a suit-
able use case to examine the proposed framework. To this
effect, the following sections will adopt two distributed
database technologies for estimating their CO; emission,
their TCO, and compares the CO, emission efficiencies.
In this use case, we compare the two software platforms,
Apache Cassandra and Aerospike.
For each of the database technologies under investigation,
the following stages are discussed for a fixed workload:
1) Physical Resource Estimate: Minimum recom-
mended hardware if using AWS.
2) Emission and Cost Estimation
a) Emissions Estimate: This includes emissions
produced during the hardware manufacturing pro-
cess and emissions generated by operational use.
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b) Operational Cost: The monetary cost of deploy-
ing versus the AWS platform.

A. PHYSICAL RESOURCE ESTIMATION FOR DISTRIBUTED
DATABASES

To estimate physical resource for a distributed database, the
size of the unique data, replication factor (RF’), compres-
sion ratio (CR) and density per node is required. Using this
information, the total data size, the size of data on disk, and
finally the number of nodes required can be deduced. These
are calculated using (13), (14) and (15).

|total _data| = |unique_data| x RF (13)

|data_on_disk| = |total_data| x CR (14)
dat disk

n(nodes) = | data_on_disk| (15)

density_per_node

B. OPERATIONAL COST ESTIMATION FOR DISTRIBUTED
DATABASES

As the world’s most popular cloud computing platform,
AWS is a common logical choice when comparing rela-
tive costs. Hence, the AWS platform was chosen to use
benchmark data already sourced using the platform. We used
AWS on-demand pricing for the Ireland region, a popu-
lar AWS region for UK businesses. Also, the CO; emissions
of AWS EC2 instances were available. Finally, this allows the
reported results to be reproduced, examined and evaluated.

V. STAGE 1: TECHNOLOGY AND WORKLOAD SELECTION
The framework’s first stage is selecting the technology and
the workload for the estimation and comparison. As men-
tioned, the use case for this article would be database tech-
nologies. In this section, we will discuss the selection process
for the technologies and their corresponding workload.

A. THE TECHNOLOGY

The research team has expertise in databases and extensive
experience with well-known databases Apache Cassandra
and Aerospike. This article estimates and compares the CO»
emission differences of these nominally similar technologies
as a use case. Based on this selection, the methodology has
been revised, Fig. 2, to reflect the specific aspects of these
technologies. However, the framework introduced in this arti-
cle could be used for comparing other software platforms.

B. THE WORKLOAD

To compare these databases, we need to specify fixed work-
loads and compare the resulting emissions and costs. The
workload choices are:

1) Handling a specific level of throughput.

2) Managing a specific volume of data.

A throughput-oriented test is problematic as it in turn
necessitates a large number of choices - respectively
read/write balance, record size, data model, overall through-
put and testing client type and number. It can be seen that
any one choice may favour one platform over the other.
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FIGURE 2. Applying framework to estimate CO, emission for Apache
Cassandra and Aerospike.

For that reason, the comparison chosen is volume-based,
with the volume being 1 PB. This is a reasonable order of
magnitude choice as:

o A large organisation often has hundreds of databases.
The data size in each database will range from a few
hundred gigabytes to a few hundred terabytes.

« In addition to production environments, organisations
will also make use of non-production environments such
as Test, Staging, UAT, and Pre-Production.

Most enterprises will therefore have petabytes, if not tens
or even hundreds of petabytes of data in their databases.
Additionally, the databases subject to this study are linearly
scalable. Therefore the emissions for a 1 PB use case can be
readily converted to those arising from larger or smaller data
volumes.

V1. STAGE 2: PHYSICAL RESOURCE ESTIMATE

This section determines the required AWS hardware to
store 1 PB of raw data using the vendors’ best practice
guides. Assumptions, calculations and disk choices for the
three chosen databases are presented and discussed.

A. APACHE CASSANDRA
1) ASSUMPTIONS

o Data Density: The main contributor to the Apache
Cassandra project (DataStax) recommends storing no
more than 1 terabyte of data per node of Apache
Cassandra [20].

« Replication Factor: Cassandra requires 3 copies of the
data to remain consistent and available in case of a node
failure.

o Compression Ratio: Assume the data can be com-
pressed to 30% of its original size.

o Operational Requirements: Cassandra requires 50%
of the disk to be empty.

2) CALCULATIONS
The physical resources required for 1 PB of data and the
assumptions above are calculated for each technology to
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determine the number of nodes required for the data on
a specific database system. Table 1 presents the required
resources for 1 PB data on Apache Cassandra, and the cal-
culated required number of nodes using equations (13), (14)
and (15).

TABLE 1. Calculations for Apache Cassandra.

Cassandra
Unique data size (TB) 1000
Replication Factor 3
Total Data Size (TB) 3000
Compression Ratio 30%

Size of data on Disk (TB) 900
Disk Space Required (TB) 1800
Density per node (TB) 1

Number of nodes 900

3) DISK CHOICES
Apache Cassandra can use two types of AWS resources to
store data.

o Local NVMe drives (a.k.a. ephemeral storage)

« Elastic Block Storage (EBS) - network-attached virtual

drives

Both options are considered in this analysis as there is
a meaningful difference between the results of these two
approaches.

The Apache Cassandra website recommends c4.4xlarge
instances on EC2 with EBS storage [21]. As the density
is 1 TB and Cassandra needs 50% empty disk space, the
size of the EBS volume must be at least 2 TB. Also recom-
mended is an additional .5 TB capacity for snapshots [22],
commitlog [23], hinted handoffs [24], and other Cassandra
overheads.

When storing the data on ephemeral storage, i3 instances
with attached NVMes are recommended [21]. Storing 1TB
of data in Cassandra requires a minimum of 16 virtual cores.
i3.4xlarge is the smallest instance type in this series, offering
16vCPU or above.

The resulting instance type choices for storing 1PB of data
are summarised in Table 2.

TABLE 2. Resulting instance type choices for storing 1PB of data with
Apache Cassandra.

Disk Size
Instance Cores | RAM (GB) | Number of disks (TB)
c4.4xlarge on EBS 16 30 EBS 2500
i3.4xlarge on NVMe | 16 122 2 1900

The recommendations available on Apache Cassandra and
DataStax respective websites regarding the instance types
might not the best options. Using more modern equivalent
instance types like c6g and i3en, the cost and emissions could
be reduced by up to 20% without affecting the performance.
To avoid subjectivity however, as the research aims to be
reference-able and reproducible, the standard recommenda-
tions were used. Although an additional 20% saving is sig-
nificant, it does not change the conclusions of this article.
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B. AEROSPIKE
1) ASSUMPTIONS
o Data Density: The theoretical per node limit for disks
using Aerospike is 256 TB. In practice, the limit is the
disk capacity that can be attached to a single node.
« Replication Factor: Aerospike requires 2 copies of the
data to guarantee consistency and availability.
« Compression Ratio: Assume the data can be com-
pressed to 30% of its original size.
o Operational Requirements: Aerospike requires 50%
of the disk to be empty to minimise write amplification.

2) CALCULATIONS

As mentioned, Aerospike has a theoretical density limit
of 256 TB per node. Yet, AWS does not provide instances
with NVMe disks larger than 60 TB. Since Aerospike
requires 50% empty disk space, the highest practical density
per node is limited to 30 TB. These can be used to estimate the
hardware requirements using (13), (14) and (15) summarised
in table 3.

TABLE 3. Calculations for Aerospike.

Aerospike
Unique data size (TB) 1000
Replication Factor 2
Total Data Size (TB) 2000
Compression Ratio 30%

Size of data on Disk (TB) 600
Disk Space Required (TB) 1200
Density per node (TB) 30
Number of nodes 20

Additionally, in August 2021, Aerospike published a
research study demonstrating the hardware required to store
1PB on AWS [25]. It found that 20 x i3en.24xlarge instances
were required, matching the estimation above.

3) DISK CHOICES
Detail of the i3en.24xlarge instance type is presented in
Table 4.

TABLE 4. Resulting instance type choice for storing 1PB of data with
Aerospike.

Disk Size
Instance Cores | RAM (GB) | Number of disks (TB)
i3en.24xlarge | 96 768 8 7500

C. PHYSICAL RESOURCE ESTIMATION DISCUSSION

Table 5 compares the required node resources required for
each database. It shows that each Aerospike node requires sig-
nificantly more resources than the Apache Cassandra nodes.
However, table 6, the total amount of hardware used in the
entire solution is nevertheless clearly significantly smaller for
Aerospike for all of CPU, RAM, and disk volume.
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TABLE 5. Required resources for storing 1PB.

RAM | Number | Disk | Required
Instance Cores | (GB) | of disks | Size nodes
c4.4xlarge (Cass. EBS) 16 30 EBS 2500 900
i3.4xlarge (Cass. NVMe) 16 122 2 1900 900
i3en.24xlarge (Aerospike) | 96 768 8 7500 20

TABLE 6. Total amount of hardware used in the entire solution for each
database.

Total number | Total Ram | Total disk
Instance of cores (TB) (TB)
Cassandra on EBS 14,400 27 6,750
Cassandra on NVMe 14,400 109.8 3,420
Aerospike 1,920 15.36 1,200

VIl. STAGE 3A: ESTIMATING THE EMISSIONS PRODUCED
BY THE INFRASTRUCTURE

By establishing the underlying resources required by each
solution, it is possible to estimate the CO, emissions each
solution produces over one year.

A. CO, EMISSIONS

Currently, none of the cloud providers allowed forecasting of
CO; emissions based on estimated consumption. Their tools
only enable users to monitor the report of actual emissions
with a 3-month delay. Additionally, the reported numbers
by the cloud providers are not comparable across providers
because they are calculated using different methodologies.

Due to these limitations, we have adopted the previous
research done for evaluating carbon footprint [26], power
consumption [14], [16] and Carbon Emissions dataset [27].
This series of articles explains why and how they decided
to independently estimate the CO, emissions of AWS infras-
tructure. Teads Engineering has published a tool [28] that esti-
mates the manufacturing and energy consumption emissions
of different EC2 instances in each region. This approach has
been based on previous work, which presents comparative
evaluations of power models in data-centers [29] and cloud
servers [30].

It is important to acknowledge the limitations of the
dataset [27]. Due to a lack of information, the emissions
produced by some components are omitted. Most notable
omissions are related to the data centre facilities, networking
equipment, and storage hardware.

Since one of the essential components that databases use
is storage, the storage emissions were estimated using data
that hardware manufacturers publish and included in the
calculations. Nevertheless, the emissions produced by the
other omitted components are not negligible. Therefore, this
study’s estimates can only be treated as a lower bound.

Choice of the region affects both cost and CO; emissions.
Depending on the source of energy that an AWS region
uses, the CO; emissions can vary significantly. For example,
according to the calculator, the emissions produced by the
energy consumption of instances in eu-west-1 (Ireland) are
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around 2.5 times lower than those in the me-south-1 (Bahrain)
region. In this analysis, Ireland was used as the basis for
estimations as it is the most popular AWS region for UK
businesses.

TABLE 7. CO, emissions of EC2 instance types used in each solution
calculated using the estiamtor tool.

EC2 Annual
EC2 Annual Energy
Manufacturing | Consumption
Emissions Emissions
Instance (kgCO2eq) (kgCO2eq)
c4.4xlarge (Cassandra on EBS) 117.384 365.73
i3.4xlarge (Cassandra on NVMe) 145.416 356.43
i3en.24xlarge (Aerospike) 746.352 3,042.43

TABLE 8. Manufacturing CO, emissions of a typical SSD drive.

SSD Manufacturing Emission Estimation
Samsung 8TB SSD Manufacturing Emissions per year | 204.67
(kgCO2eq)

SSD Manufacturing Emissions per 1TB per year (kgCO2zeq) | 25.58

TABLE 9. Manufacturing CO, emissions of EBS.

EBS Manufacturing Emission Estimation
EBS replication factor 3

Annual SSD Manufacturing Emissions per 1TB capacity on | 76.75
EBS (kgCO2eq)

EBS additional surplus 30%

Estimated Annual Manufacturing Emissions per 1TB of Ca- | 99.78
pacity on EBS (kgCOazeq)

TABLE 10. SSD energy consumption emission estimation.

SSD Energy Consumption Emission Estimation
Average Annual Energy usage of SSD ((kWh) 6.7

CO, Emissions per kWh energy usage in Ireland (kg/kWh) | 0.316

Annual SSD Energy Consumption Emissions per TB|2.12
(kgCOzeq)

Using the estimator tool, equation (4), the emissions of
EC2 instance types used in each solution are presented in
table 7.

TABLE 11. EBS energy consumption emission estimation.

EBS Energy Consumption Emission Estimation
EBS replication Factor 3

Annual SSD Energy Consumption Emissions for EBS per TB | 6.35
(kgCO2eq)

Estimated Annual Energy Consumption Emissions for EBS | 8.26
per TB (kgCO2eq)
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TABLE 12. Estimated annual infrastructure emissions for each solution.

Instance Annual EC2 Instance | Annual EC2 Instance En- | Annual Storage | Annual Storage Energy
Manufacturing Emissions | ergy Consumption Emis- | Manufacturing Emissions | Consumption Emissions
(kgCO2eq) sions (kgC'Ozeq) (kgCO2eq) (kgCO2eq)

c4.4xlarge (Cassandra on EBS) 117.384 365.73 249.44 20.64

i3.4xlarge (Cassandra on NVMe) | 145.416 356.43 97.22 8.05

i3en.24xlarge (Aerospike) 746.352 3,042.43 1,535.03 127.03

TABLE 13. Estimated total annual emissions for each solution.

Solution Total Total Annual EC2 | Total Annual | Total Annual | Total Annual | Total Annual Emis-

Number | Manufacturing EC2 Energy | Storage Manu- | Storage Energy | sions (kgCO2eq)

of nodes | Emissions Consumption facturing Emissions | Consumption

(kgCO2eq) Emissions (kgCO2eq) Emissions
(kgCO3eq) (kgCO3eq)

Cassandra on EBS 900 105,646 329,156 224,497 18,578 677,878
Cassandra on NVMe | 900 130,874 320,785 87,496 7,241 546,397
Aerospike 20 14,927 60,849 30,701 2,541 109,017

B. STORAGE EMISSIONS

As discussed, the Teads estimator does not include the emis-
sions related to storage hardware. In this section, the emis-
sions produced by the manufacturing and usage of disk drives
are estimated using data published by disk manufacturers
and (7). This section also includes a rough estimate of emis-
sions produced by EBS for Apache Cassandra on EBS.

1) MANUFACTURING EMISSIONS

Samsung has reported their CO, emissions for SSD Manufac-
turing [31], which they believe to be the lowest in the indus-
try. 204.67 kgCO»eq emissions per year were reported for
their 8 TB SSDs. We can conclude that manufacturing 1 TB of
SSD produces at least 204.67 + 8 & 25.58 kgCOeq per 1 TB
per year. The results are summarised in table 8.

For EBS emission estimation, we need to consider the
replication factor. The EBS replication factor is 3. Hence,
the emissions produced by manufacturing each TB of SSD
drives used in EBS would be 25.58 x 3 = 76.75 kgCOjeq
per year. Since the specification of EBS architecture is not
public, a 30% surplus is added (10) to the sum to account
for the manufacturing emissions of the other components
of EBS (processors, memory, etc.). Hence the total emis-
sion of EBS infrastructure per TB of data in a year is:
76.75 4+ 30% = 99.78 kgCOseq per year. The final results
are summarised in table 9.

2) ENERGY CONSUMPTION EMISSIONS

According to Seagate, the average annual energy usage
of their SSD drives is 6.7 kWh per TB [32]. Emissions
produced per kWh of energy in Ireland are equal to
0.316 kgCO,/kWh [33]. Therefore the average annual emis-
sions per 1 TB of SSD is 6.7 x 0.316 ~ 2.12 kgCO;eq per
year. Results are presented in table 10.

Considering the replication factor, the annual emissions
caused by the energy usage of EBS SSD drives are 2.12 x
3 & 6.35 kgCOjeq per year. And if we similarly assume a
30% surplus for the other components of EBS (processors,
memory, etc.). The total annual energy usage of EBS per TB
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is 6.35 4 30% = 8.26 kgCO,eq per year. The final results are
summarised in table 11.

C. ESTIMATED INFRASTRUCTURE EMISSIONS
DISCUSSION

Putting all of the above together, the detail of the emissions of
AWS resources used by each solution is presented in table 12.
Based on these findings, it is possible to calculate the total
emission for each database. Total emissions are presented in
table 13.

The results are noteworthy. As presented, the choice of
hardware can reduce the CO; emissions of a solution by
20% (Cassandra: 678 — 546). But perhaps more interest-
ingly, nominally similar solutions may have order of magni-
tude differences for CO; emissions (Cassandra vs Aerospike:
678 — 109). They may seem puzzling until we consider
each solution’s minimum amount of resources as presented in
tables 5 and 6. Once these two tables are merged, as presented
in table 14, the results are clearly explained.

TABLE 14. Total amount of resources required in the entire solution for
each database.

Total Total
number of | humber of | Total Ram | Total disk
Instance nodes cores (TB) (TB)
Cassandra (on EBS) 900 14,400 27 6,750
Cassandra (on NVMe) 900 14,400 109.8 3,420
Aerospike 20 1,920 15.36 1,200

VIIl. STAGE 3B: COST OF THE INFRASTRUCTURE ON AWS
As explained initially, more efficient software requires less
hardware, produces fewer emissions, and is cheaper. So far,
we have seen that one of the solutions requires less hardware
and produces fewer emissions. This section investigates the
cost of running each solution over a year. The cost of the
required AWS resources for each solution is presented in
table 15. Based on these, each solution’s total cost of own-
ership is calculated and presented in table 16.

Based on the data presented in this section, it is evident that
the solution with an order of magnitude lower CO> emissions
is also a fraction of the cost of alternative solutions.
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TABLE 15. Total cost of of each database on AWS* The EBS cost is
estimated for EBS on SSD with a minimum of 10k I0PS which is
DataStax’s recommendation [15].

Instance EBS
Instance Hourly Rate | Monthly Rate [34]
c4.4xlarge (Cassandra on EBS) $0.91 $258.64%*
i3.4xlarge (Cassandra on NVMe) $1.38 0
i3en.24xlarge (Aerospike) $12.00 0

TABLE 16. Total cost of ownership for each database.

Total
Total Instance
number of | Cost EBS Cost Annual
Instance nodes per hour | per month TCO
Cassandra EBS 900 $815 $232,776 | $9,928,332
Cassandra NVMe 900 $1,238 $0 $10,848,384
Aerospike 20 $240 $0 $2,102,400

IX. CONCLUDING DISCUSSIONS

This research aimed to answer two questions that could help
researchers and IT decision-makers understand their chosen
technology stack’s environmental impact.

o What is the impact of the CO;, emission savings that a
switch between two nominally similar technologies can
cause?

o What is the cost of a CO; Emission Efficient technology
compared to its rivals?

The discussions presented in this article allow us to arrive at

conclusions which answer these questions. We will consider
these under impact and cost.

A. IMPACT OF REDUCING CO, EMISSIONS

It is considering how significant 500 tonnes of CO, emis-
sions per year is. Whilst 500 tonnes of CO, emissions is
vanishingly small compared to the estimated 36.4 billion
tonnes of global emissions in 2021 [35], nevertheless, there
are significant constructive perspectives to this saving:

o It is estimated that each hectare of trees absorbs
10 tonnes of CO; per year [36]. Therefore, reducing
500 tonnes of CO;, emissions per year is equivalent to
planting 50 hectares of trees.

« If, as predicted, stored data volumes double every two
years [37], the amount of CO, emission saving would
also be doubled every two years if the more efficient
technology is used.

o The estimated global size of stored data in 2022 is
97 zettabytes [38] (97 million petabytes). Depending
on the portion of the data stored in databases globally,
there is an opportunity to reduce millions of tonnes of
CO; emissions just by switching to more efficient data
management solutions.

B. CO, EMISSION EFFICIENCY: EMISSION VS COST

Sometimes efficiency has a price. For example, in the case
of Apache Cassandra-based platforms, the solution with the
least amount of CO; emissions is more expensive, while the
cheaper solution is more polluting. Table 17 presents the
CO, Emission Efficiency for 1 PB workload (12) in terms of
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annual TCO and emissions, illustrating the trade-off between
emission efficiency and costs.

TABLE 17. CO, emission efficiency for 1 PB workload: Cassandra disk
choice storage comparison.

Total Annual Emissions
(kgCO2eq) Annual TCO
Cassandra on NVMe 546,397 $10,848,384
Cassandra on EBS 677,878 $9,928,332

However, the efficiency of platforms based on different
underlying technologies can be dramatically different. As we
saw in this comparison, a more efficient software solution
can be many times cheaper and less polluting. Table 18
presents CO, Emission Efficiency for 1 PB workload (12),
illustrating the case where emission efficiency and cost are
complementary. Fig. 3 presents the CO, Emission Efficiency
for all three options by plotting the Total Annual Emission
against their Annual TCO.

TABLE 18. CO, emission efficiency for 1 PB workload: Cassandra vs
Aerospike.

Total Annual Emissions
(kgCO2eq) Annual TCO
Cassandra on NVMe 546,397 $10,848,384
Aerospike 109,017 $2,102,400
700,000 A
' Cassandra on EBS '

§' | Cassandra on NVMe
S 600,000 . Aerospike
)
= 500,000
2
°
@ 400,000 4
£
w
T 300,000
c
<
<
© 200,000 4
o
2

100,000 4 .

$2 Million $4 Million $6 Million $8 Million $10 Million $12 Million

Annual TCO

FIGURE 3. CO, emission efficiency: complete picture.

Although the purpose of this article is not to compare the
“performance” of these technologies, it is worth mentioning
that the expected latency of Cassandra is in the region of
a single-digit millisecond (<10ms). In contrast, Aerospike
works in less than a millisecond latency range (<1ms). Yet
another substantial improvement.

C. FINAL WORDS AND FUTURE DIRECTIONS
In this article, a case was made for the importance of consid-
ering CO; emissions efficiency as a Non-Functional require-
ment for IT systems. The data shows the considerable positive
effects of good practice and, conversely, the adverse effects of
ignoring CO, production.

It is hoped that the framework suggested here can be used
to compare other similar technologies. Going beyond this,
we might consider a universal CO, emissions metric that
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measures different technologies based on CO; emissions.
Such a metric would allow IT decision-makers to incorpo-
rate environmental considerations when choosing technology
components. It would also encourage technology vendors to
reduce the environmental impact of their products.

The results also show that reducing environmental impact
would also reduce costs - we don’t necessarily have to choose
between one or the other. We can satisfy our budgets and
our consciences at the same time. In summary, this article
presents three contributions:

1) A framework for estimating and comparing the CO,

emissions of software,

2) Introducing CO, Emission Efficiency as a measurable

non-functional requirement,

3) Demonstrating that reducing the environmental impact

of software would also reduce its costs.
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