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Abstract: A hybrid short-term wind power prediction model based on data decomposition and
combined deep neural network is proposed with the inclusion of the characteristics of fluctuation
and randomness of nonlinear signals, such as wind speed and wind power. Firstly, the variational
mode decomposition (VMD) is used to decompose the wind speed and wind power sequences in
the input data to reduce the noise in the original signal. Secondly, the decomposed wind speed
and wind power sub-sequences are reconstructed into new data sets with other related features
as the input of the combined deep neural network, and the input data are further studied for the
implied features by convolutional neural network (CNN), which should be passed into the long
and short-term memory neural network (LSTM) as input for prediction. At the same time, the
improved particle swarm optimization algorithm (IPSO) is adopted to optimize the parameters of
each prediction model. By superimposing each predicted sub-sequence, the predicting wind power
could be obtained. Simulations based on a short-term power prediction in different months with
huge weather differences is carried out for a wind farm in Guangdong, China. The simulated results
validate that the proposed model has a high prediction accuracy and generalization ability.

Keywords: short-term wind power prediction; data decomposition; combined deep neural network;
improved particle swarm optimization algorithm; optimal parameter

1. Introduction

As a source of clean and renewable power generation, the installed capacity of wind
power is increasing year by year. However, wind power is volatile and stochastic, improv-
ing the accuracy of wind power prediction contributes to control the power grid stability,
and maximizes the wind energy consumption of the power grid operation. According to
the following references, predicting model based on Artificial Intelligence (AI) has more
potential in the short-term prediction. At the same time, to enhance the prediction model
with better performance and to address the limitations of a single AI model in terms of pre-
diction accuracy, combined prediction models have been used in wind power prediction in
recent years. Combined prediction models have been improved from multiple perspectives,
such as data decomposition [1], feature clustering [2], parameter optimization [3], and error
correction [4], which have greatly improved the performance of wind power prediction.

As the first step in combined prediction models, mode decomposition of data is usually
performed with the purpose to reduce the volatility of data. The commonly used decompo-
sition methods for wind power prediction are empirical mode decomposition (EMD) [5],
ensemble empirical mode decomposition (EEMD) [6], and improved methods are based on
EMD [7–10]. At the same time, there are also Wavelet Decomposition (WPD) [11], singular
spectrum analysis [12], and other methods for smoothing data. Variational mode decompo-
sition (VMD) [13] was proposed by Konstantin Dragomiretskiy et al. in 2014, which can
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effectively suppress the phenomenon of spectral aliasing during EMD by controlling its
bandwidth [14]. The merits and shortcomings of the above-mentioned model decomposi-
tions are shown in Table 1. Compared with the original data, the decomposed sub-data are
more likely to be mined by the prediction model for implied features, thus improving the
training effectiveness. After one-step decomposition of the original wind speed and wind
power, the sub-series may keep high complexity. To further reduce the noise of the original
data, the framework of multi-step mode decomposition was firstly proposed in [15] to be
applied to wind power prediction, and the experimental results verified the effectiveness
of the method. In [16], after dividing the data into long and short time scales, the data of
the two time scales are processed separately using EEMD and reinforcement learning, and
the experimental results verify that the method is feasible. Parameter optimization, the
use of intelligent algorithms to solve a problem, has the issues that the prediction model
parameters are difficult to be determined. By setting the solution space of the prediction
model parameters, the optimal solution of the parameters is continuously searched and
optimized, which greatly maximizes the potential of the intelligent algorithm in parameter
optimization [17]. Reference [18] used a combination of Adaboost and PSO algorithms to
optimize the thresholds and weights of ELM to improve the prediction accuracy of the
model and to avoid the impact on accuracy caused by manually setting parameters. Using
the idea of using FAR and AR models for forecasting uncertain components in [19] to apply
to short-term wind power forecasting, the decomposed components of the data are divided
into deterministic and non-deterministic components, and adopting a combined forecasting
model to deal with the deterministic component and applying an autoregressive model to
deal with the uncertain component will be helpful for forecasting accuracy. Wind power
prediction is not only related to the input at the current moment but also correlated with the
past inputs and outputs since As LSTM is equipped with memory function and captures
the temporal correlation between wind power and other meteorological features, such
as wind speed and temperature, LSTM is more suitable for wind power prediction [20].
A detailed and in-depth study and analysis of the application of artificial intelligence
techniques (deep learning models) to wind speed and wind power has been conducted in
the literature [21] to verify the applicability of the combined depth model to wind power
prediction from different perspectives, such as data pre-processing, data feature mining,
and data relationship learning.

By summarizing the above results, the models used in wind power prediction mostly
consider multiple perspectives and combine prediction models to ensure that prediction
accuracy can be at a high level. Table 2 gives a detailed comparison of this paper with
some other references. In this paper, a novel hybrid short-term wind power prediction
model was proposed that is based on data decomposition (VMD) and combined deep
neural network (CNN-LSTM). Firstly, the model uses VMD to decompose wind speed and
wind power, with the aim of smoothing such time series as needed due to the volatility of
wind speed and wind power. The decomposed wind speed and wind power sub-series
are reconstructed with other correlated feature variables (temperature and humidity) into
several new data sets as the multi-feature inputs to the prediction model. Secondly, to
dig deeper into the implied relationships between the variables, the input data are subject
to feature extraction using CNN. The prediction model is constructed independently for
each new data set, and the network structure parameters are optimized using improved
particle swarm algorithm (IPSO). Then, the optimized parameters are substituted back
into the prediction model for wind power prediction. The final wind power is obtained by
superimposing each prediction component. The simulated results verify the improvement
of the proposed model in prediction accuracy and the effectiveness of combining IPSO to
optimize the network structure parameters.
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Table 1. Merit and demerit of different decomposition methods.

Decomposition Method Merit Demerit

EMD

1. Adaptive: automatic generation of basis
functions based on the data itself, adaptive

filtering characteristics,
adaptive multi-resolution

2. Completeness: the properties of the original
series can be reproduced by superimposing

the decomposed components

1. Endpoint effect: there is no guarantee that
the left and right endpoints of

the signal are exactly the local poles
2. Mode mixing: the signals of different
characteristic scales appear in one IMF

component, and the other is that the signals of the same characteristic scales are dispersed into
different IMF components

EEMD

White noise is added to the original
signal before each decomposition to

overcome the mode mixing
in the EMD method

Due to the addition of noise, there is a
possibility of inaccuracy in the
reconstructed signal and noise

cannot be ignored after reconstruction

CEEMD

The CEEMD effectively solves the problems of
inaccurate reconstruction caused by noise

pollution in the EEMD by adding
positive and negative pairs of noise

Differences in the number of IMFs
generated during decomposition
lead to errors in decomposition

SSA
SSA can be applied to

a wide range of time series
without model restrictions

SSA does not have an explicit method
to determine a threshold to

distinguish the signal component
from the noise component

VMD

VMD transforms signal decomposition
into non-recursive, variational decomposition mode, which can effectively overcome the mode

mixing phenomenon generated in EMD
and has stronger noise robustness and

weaker endpoint effect than EMD

Empirical knowledge is needed to adjust the choice of the
K parameter in VMD

Table 2. Literature review of recent works.

This Work Anfeng Zhu,
et al. [7]

Chao Zhang,
et al. [9]

Hao Yin,
et al. [15]

Rasoul Rahmani,
et al. [22]

Country China China China Spain Iran

Research
context

Presenting a
hybrid model combined

with VMD and
CNN-LSTM for short-term wind

power prediction

A combined
prediction model
is proposed which

employs CEEMD as a wind speed
decomposition method

as well as an Elman
neural network to learn

the relationship between wind
speed and wind power

Presenting a
novel hybrid
wind power
short-term

prediction model for
wind power

prediction that is
combined with CEEMD-LZC,

ALO, and
ELM network

Presenting a
hybrid wind power

prediction approach by applying a
cascaded deep
learning model
and a two-layer

of mode
decomposition

method

Presenting a new
hybrid swarm

technique applied in forecasting the
wind energy that

makes the best
advantage of
mixing search

ability of ACO and PSO
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Table 2. Cont.

This Work Anfeng Zhu,
et al. [7]

Chao Zhang,
et al. [9]

Hao Yin,
et al. [15]

Rasoul Rahmani,
et al. [22]

Prediction
interval 15 min 15 min 1 h 1 h 1 h

Model
considered

VMD
CNN
LSTM
IPSO

CEEMD
WOA
Elman

CEEMD
LZC
LLE
ALO
ELM

EMD
VMD
CNN
LSTM

ACO
PSO
HAP

Findings

Optimizing the network
structure

parameters of
CNN-LSTM model by

improved PSO
algorithm to
improve the
prediction

accuracy of wind power

The combined
prediction model

utilizes CEEMD as a wind speed
decomposition method to

effectively solve the problem of
reconstruction
error and low

efficiency of wind speed
decomposition by EEMD

The hybrid model uses LZC to
evaluate the

complexity of each IMF after
applying CEEMD to

decompose the wind power and
merges the IMFs according

to the value of
complexity, thus

reducing the overall complexity
of the model and improving the

training efficiency

The original time
series is

decomposed by EMD and the
sub-series that need to be

decomposed in two steps are
filtered out and further

decomposed by VMD, while the
implied relationship

between wind speed, wind
direction, and wind power are

extracted by CNN

With the hybrid
algorithm of ACO and PSO for

the search of parameter
values in the

mathematical model,
it can converge more quickly
than the single ACO and PSO
algorithm, and the accuracy of

the model is also optimal

Drawback

Further
validation of the
generalization

capability of this model by
obtaining data from wind farms

in other
regions would

strengthen the generalization
ability of this model

The high number of IMFs in the
CEEMD decomposition may lead

to a higher
complexity of the
combined model

The LLE method
proposed in this

paper, as a novel data
dimensionality

reduction method,
effectively reduces the

dimensionality of the data.
However, traditional

dimensionality reduction
methods are missing for

comparison, such as PCA and
other methods

The two-step
decomposition

results in a complex model and
an increase in the time used for

model training

The mathematical model consists
of the S-curve and

parabola, but it would be useful
for the simulation to provide

reasons why the model is
composed of both of two curves
and how much the effect can be
improved compared to a single

curve case
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This paper is organized as follows: Section 2 describes the methodology. Section 3
presents the construction of the wind power prediction model and the evaluation metrics.
Section 4 provides case study. The conclusion is drawn in Section 5.

2. Methodology
2.1. Variational Mode Decomposition

VMD is an adaptive and completely non-recursive mode decomposition method,
which essentially smooths the sequence signal [23]. VMD uses iterative search for the
optimal solution of the variational model to select the center frequency and bandwidth of
each component, so the decomposed modes can achieve the reproduction of the original
sequence, and at the same time each mode demodulation to the baseband can be smooth.
In this paper, VMD is chosen as the decomposition method because it can effectively
reduce the non-smoothness of time series by overcoming the problem of mode component
mixing in EMD. The specific decomposition process and the algorithmic steps are described
in References [24–28]. VMD is used as a pre-processing tool for time series, and the
decomposed mode quantities with different characteristics can be applied as input to
subsequent analysis methods for further in-depth analysis.

2.2. Convolutional Neural Network

CNN has features, such as shared weights and local connectivity [29], which makes
it an efficient processing tool for data feature extraction. CNN can be classified into 1D,
2D, and 3D, and each of the three types of CNN is applicable to different categories. The
data sets that make up wind power prediction are essentially time series composed of
multiple feature variables, and 1D CNN is mainly used for feature extraction of time series
data. In this paper, the time series of temperature and humidity related to wind power
are combined with the sub-series of wind speed and wind power decomposed by VMD to
form the multi-feature input of the 1D-CNN, which aims to further explore the implied
relationship between the feature variables and to improve the training efficiency of the
model. Considering the small number of features in the data of this paper, no pooling layer
is set in this CNN. The computation process of the 1D CNN is:

xk
i = f (

N

∑
j=1

xk−1
i ∗ωk

ji + bk
i ) (1)

Figure 1 shows the CNN-LSTM combined neural network model used in this paper.
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...
...

Output

Figure 1. CNN-LSTM combined neural network model.
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2.3. Long Short-Term Memory Neural Network

LSTM is the improved recurrent neural network (RNN), which aims to overcome
the problem of gradient explosion and gradient disappearance in traditional RNN. The
internal structure of LSTM is mainly composed of three gates, which are forget gate ft,
input gate it, and output gate ot. LSTM has the function of memory and can capture the
correlation between past and future information, so LSTM is very advantageous for its
application on time series [30]. Considering that wind speed and wind power data are
typically nonlinear and volatile time series, the prediction model uses LSTM as the neural
network for modeling. The structure of LSTM is shown in Figure 2.
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Forget Gate

Figure 2. Internal structure of LSTM.

Firstly, the role of the forget gate ft in LSTM is to decide whether to keep or delete the
information in the previous cell state Ct−1 according to the size of the output value. ft input
is the current moment input Xt and the previous moment output ht−1. The input gate it is
used to determine which part of Xt can be retained in Ct. The input of it is also used by the
sigmoid function to generate an output value of size between 0 and 1 to control the tanh
function to generate a new candidate cell state C̃t. The cell state Ct at the current moment is
updated by the combined action of the forget and input gates. The output of the LSTM is
controlled by the output gate ot. The output ht of the LSTM at the current moment is equal
to the product of the output weights and the pending output. The relationships among the
variables in the LSTM are shown in Equations (2)–(7).

ft = σ(W f × [ht−1, xt] + b f ) (2)

ft = σ(Wi × [ht−1, xt] + bi) (3)
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∼
Ct = tanh(Wc × [ht−1, xt] + bc) (4)

Ct = ft × Ct−1 + it ×
∼
C (5)

σt = σ(Wo × [ht−1, xt] + bo) (6)

ht = ot × tanh(Ct) (7)

2.4. Adaptive Weighted Particle Swarm Algorithm Combined with Elimination Mechanism

The original data set is decomposed to form different data sub-sets, and manually setting
the optimal network structure parameters corresponding to each data sub-set will increase
the time cost, while the prediction error caused by manually setting parameters will cause
the error to expand as the number of data sub-sets increases. Therefore, particle swarm
optimization (PSO) algorithm, which has a strong search capability, is introduced to optimize
the network structure parameters [31]. The particle swarm continuously updates its position
during the search process to finally obtain the totally optimal solution. During each iteration,
the velocity and position of the particles are updated as shown in Equations (8) and (9).

Vk+1
i = ω×Vk

i + c1r1

(
Pbestk

i − Xk
i

)
+ c2r2

(
Gbestk

i − Xk
i

)
(8)

Xk+1
i = Xk

i + Vk+1
i (9)

When the standard PSO algorithm is used to optimize the parameters, multiple
particles are usually involved in iterations to fully utilize the search capability of the
particle swarm. In each round of iteration, some particles move to the position with a better
fitness value, while others move to the position with a worse fitness value. If particles move
to the position with a worse fitness value in the previous iteration, the inertial component of
particles in the current iteration will lead to a worse fitness value for the particles, which is
not good for the particles to converge to the global optimal solution. If the inertia direction
of each particle is dynamically adjusted in each iteration according to the fitness value
obtained in the previous iteration, it will be very beneficial to the particle convergence.
Therefore, adaptive adjustment is used for the inertia weights, as shown in Equation (10).

ωk
i =

 ωmin + (ωmax −ωmin)×
f (Xk

i )− f k
min

f k
average− f k

min
, f
(

Xk
i

)
≤ f k

average

ωmax, f
(

Xk
i

)
≥ f k

average

(10)

where f k
average is the average fitness of all particles at the kth iteration; f k

min is the minimum
fitness of all particles at the kth iteration.

To take further advantage of the total search capability of the particle swarm, this
paper introduces the elimination mechanism in the genetic algorithm into the standard PSO
algorithm [32]. After the adaptive adjustment of the inertia weights, particles are arranged
in descending order according to the fitness value of each particle in this round, and the
particles ranked in the bottom 50% of the fitness value are eliminated, while the particles
ranked in the top 50% are used as the boundary. The new 50% of the particles are randomly
generated within the boundary and combined with the top 50% of the retained particles
to form a new population to start the next round of iterations, thus improving the total
optimization capability of the algorithm. When the IPSO algorithm is used to optimize
the network structure parameters, the positions of the particles are used to represent the
number of LSTM layers, the number of DENSE layers, and the number of neurons in each
layer of the prediction model. The flowchart of the IPSO algorithm for optimizing the
network structure parameters is shown in Figure 3.
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3. Construction of Wind Power Prediction Model and Evaluation Metrics
3.1. VMD-CNN-IPSO-LSTM Prediction Model

In this paper, VMD-CNN-IPSO-LSTM prediction model is used for short-term wind
power prediction, which is mainly divided into six steps, and the prediction process is
shown in Figure 4.

Step 1: Decomposition of the original wind speed and wind power using VMD after
removing and repairing the outliers and missing values of the data set;

Step 2: Reconstruct the new dataset with other correlated meteorological features
(temperature, humidity) after obtaining the sub-sequence and normalize the dataset at the
same time;

Step 3: Constructing CNN- LSTM combined prediction models according to the
different datasets;

Step 4: In the pending training model, the number of layers for LSTM layers and
DENSE layers and the number of neurons in each layer are optimized by IPSO;

Step 5: The mean square error between the true and predicted values is used as the
fitness function, and the optimal network structure parameters of each prediction model are
obtained based on the merit of the fitness value and substituted back into the corresponding
prediction model;

Step 6: Add all prediction components to obtain the final wind power.
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Figure 4. Flow chart of prediction model.

3.2. Evaluation Metrics

In this paper, four evaluation metrics are used to measure the prediction performance
of this model. They are mean absolute error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE), and Adjusted R-Square (adj-R2) and are defined as follows:

MAE =

n
∑

i=1
|yi − ŷ|

n
(11)

RMSE =

√
1
n
×

n

∑
i=1

(yi − ŷi)
2 (12)

MAPE =
n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%
n

(13)

y =
1
n
×

n

∑
i=1

yi (14)
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R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(15)

adj− R2 = 1−
(
1− R2)× (n− 1)

n− p− 1
(16)

The smaller the value of MAE, RMSE, and MAPE, the better the prediction perfor-
mance of the model. The value of adj-R2 is between [0, 1], and if the value is closer to 1, the
model can perform better.

4. Case Study

In this paper, simulations are conducted with historical data from a wind farm in Guang-
dong, and the dataset include wind speed, temperature, humidity, and wind power. The
dataset is selected from 1 January 2019 to 31 January 2019, with a sampling interval of 15 min.
The training set is selected for the first 29 days, while the test set is from the last 2 days.

4.1. Decomposition of Wind Speed and Wind Power Series Using VMD

The decomposition of the wind speed and wind power series are performed by using
VMD to reduce the self-contained volatility of the original series. The results of wind speed
and wind power decomposition are shown in Figures 5 and 6, respectively.
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Figure 6. Decomposed sub–sequence of wind power by VMD.

After VMD processing, wind speed and wind power are decomposed into five modes,
and the decomposed modes maintain the characteristics of the original series, while reduc-
ing their non-smoothness.

Before presenting the model, three groups of prediction models (Standard LSTM, EMD-
LSTM, and VMD-LSTM) are introduced for comparison. Figure 7 shows the improvement
of the prediction curves after EMD and VMD decomposition over the undecomposed
prediction curves, which are closer to the true value in terms of trend. Table 3 gives the
MAE, RMSE, MAPE, and adj-R2 error analysis for the predictions of the three models.
The LSTM model without data decomposition is the worst in MAE, RMSE and adj-R2

for prediction, so it’s reasonable to apply data decomposition as data pre-processing;
meanwhile, the prediction model with VMD is higher than EMD in terms of accuracy,
which proves that the decomposition method can learn deeper information on the data set
used in this paper.
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Table 3. Prediction performance analysis of single model and decomposed combined model.

Model
Prediction Performance Analysis

MAE RMSE MAPE adj-R2

LSTM 2.38732 3.32454 0.59477 0.87264

EMD-LSTM 2.31746 2.88094 1.29272 0.90436

VMD-LSTM 2.14829 2.63109 1.46155 0.92023

4.2. IPSO Optimized Prediction Model Network Structure Parameters

The decomposed wind speed and wind power sub-series were combined with other
feature variables to reconstruct the data to obtain five datasets, and five CNN-LSTM
combined prediction models were constructed simultaneously. The constructed combined
neural network contains four 1D-CNN layers, the number of filters in each layer is 4, 4, 8,
and 16, and the filter training step is 2. The number of training iterations of IPSO are set to
200; the number of particles is set to 10; the initial inertia weight ω is set to 0.9; c1 and c2 are
set to 2.0. For the five combined neural networks, the LSTM layer and the DENSE layers
are set at [1, 3] layers; the number of neurons in each layer is set at [8, 96], and the optimal
number of layers and neurons are searched by IPSO. After 200 generations of training,
the results of the optimal parameters of the network structure corresponding to the five
prediction models are shown in Table 4 below.

Table 4. Optimal structural parameters of each prediction model.

Combined Prediction Model LSTM Layers DENSE Layers The Number of Neurons

Model 1 3 2 85/59/13/33/58

Model 2 2 1 66/57/37

Model 3 2 2 38/94/63/35

Model 4 1 2 71/79/21

Model 5 3 1 64/26/86/26

To verify the effectiveness of this model, the VMD-LSTM model and VMD-CNN-
LSTM model are introduced to compare the performance of the two models. The network
structures of both models are two LSTM layers and two DENSE layers; the number of
neurons in the two LSTM layers are 32 and 16, and the number of neurons in the two
DENSE layers are 100 and 50, respectively.

Figure 8 shows the prediction values of each model compared to the true values. It is
clear that the prediction values obtained by this model are the best fit and demonstrate the
best prediction performance of the model.
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Table 5 shows the values of the prediction performance analysis of each model under
the evaluation metrics. Firstly, the accuracy of the model has been improved after VMD
processing. After VMD processing, using CNN to further capture the data features will
lead to better prediction performance of the model. However, manually setting model
structure parameters are not the optimal structure parameters, so IPSO is used to search
for the optimal structure parameters of the prediction model corresponding to each VMD-
CNN processed dataset. After substituting the optimal parameters in Table 4 back to
each prediction model for prediction, it is proven that all the metrics of the VMD-CNN-
IPSO-LSTM model are optimal. Compared with the VMD-CNN-LSTM model, the MAE is
reduced by 25.7%, the RMSE is reduced by 20.87%, and the MAPE also showed a substantial
decrease compared to the above comparative models, while adj-R2 = 0.97349 also indicates
that the proposed model is helpful for short-term wind power prediction.

Table 5. Analysis of the prediction performance of each model.

Model
Prediction Performance Analysis

MAE RMSE MAPE adj-R2

VMD-LSTM 2.14829 2.63109 1.46155 0.92023

VMD-CNN-LSTM 1.48819 1.91680 1.38401 0.95766

VMD-CNN-IPSO-LSTM 1.10571 1.51672 0.43060 0.97349

4.3. Verify the Generalization Ability of the Model under the New Data Set

To further evaluate the prediction performance and the generalization ability of this
model, it was validated for different meteorological conditions of this wind farm. Consid-
ering the large differences of weather in Guangdong in January and June, 1 June 2019 to
30 June 2019 was chosen as the new data set for simulation.

The optimal parameters of the network structure after IPSO optimization for the five
prediction models in the new dataset are shown in Table 6, while the wind power curves of
the three models with the real values for 48 h are shown in Figure 9.

Table 6. Optimal structural parameters of each prediction model in the new data set.

Combined Prediction Model LSTM Layers DENSE Layers The Number of Neurons

Model 1 3 3 68/74/46/15/78/82

Model 2 1 1 66/75

Model 3 3 1 64/54/78/52

Model 4 1 3 32/34/77/40

Model 5 2 3 58/77/14/24/39
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Since this model is adopted with a deep neural network, it can sharply capture the
temporal correlation between the feature in the new data set and thus quickly learn the
coupling relationship implied by each feature. The prediction curves of the VMD-CNN-
IPSO-LSTM model still fit the real wind power curve well in terms of both trend and
turning points, as seen in Figure 9, thus demonstrating that the prediction performance
of the model remains robust with the new data set. The prediction error analysis of each
model in the new data set is given in Table 7.

Table 7. Prediction performance analysis of each model in new data set.

Model
Prediction Performance Analysis

MAE RMSE MAPE adj-R2

VMD-LSTM 3.30657 4.07535 0.35427 0.95683

VMD-CNN-LSTM 3.20033 4.01825 0.43912 0.95803

VMD-CNN-IPSO-LSTM 2.92668 3.59604 0.20147 0.96639

In the new data set, the MAE, RMSE, MAPE, and adj-R2 of all three models have
increased. However, the VMD-CNN-IPSO-LSTM model still outperforms the comparison
models in all error metrics. Compared with the model processed by VMD-CNN only, the
MAE of this model is reduced by 8.55%, the RMSE is reduced by 10.5%, and the MAPE is
reduced by 43.1%. Additionally, the adj-R2 of the proposed model is greater than 0.96 for
both January and June data sets, which proves that the VMD-CNN-IPSO-LSTM model has
strong generalization ability for short-term wind power prediction.

5. Conclusions

In this paper, a hybrid short-term wind power prediction model is proposed based
on data decomposition (VMD) and combined deep neural network (CNN-LSTM) for
wind speed and wind power series with the consideration of the characteristics of non-
linearity and volatility. The effectiveness of the model is confirmed through comparative
simulated analysis with a wind farm in Guangdong, China. Some of the observations can
be summarized as follows:

(1) The volatility and noise of wind speed and wind power series are effectively reduced
after variational mode decomposition;

(2) The combined deep neural network has a sharp learning ability for the data implicit
feature. However, the overall consumption time is longer than that of the single model,
so it is important to choose the number of decomposed modes reasonably. If the number
of modes is too much or too little, it will have an impact on the hybrid model;

(3) The network structure parameters of the prediction model can be optimized by the
improved PSO algorithm to further enhance prediction accuracy;

(4) To verify the generalized potential of the proposed model, the output of the same
wind farm in two months with large climate difference is investigated. The analysis
of the prediction results confirms that the model has a strong generalized ability;

(5) For future research directions, the authors intend to use a multi-step decomposi-
tion model after which the sub-sequence obtained from the decomposition is passed
through different neural networks for feature extraction, such as using graph con-
volutional neural networks for implicit mining, and to compare whether the model
proposed in this paper makes a breakthrough in accuracy through simulation.
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Abbreviations
The following abbreviations are used in this manuscript:
VMD Variational Mode Decomposition
EMD Empirical Mode Decomposition
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long and Short-term Memory Neural Network
IPSO Improved Particle Swarm Optimization
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
R2 Coefficient of Determination
Adj-R2 Adjusted R-Square
xk

i , wk
ji, bk

i Output, Weight, Threshold of the ith Convolution Kernel in the kth Layer
f Activation Function
N the Number of Input Convolution Kernels
∗ Convolution Operation
ft, it, ot Outputs of the 3 Gates of LSTM
Wf, Wi, Wc, Wo Weight matrix of LSTM
bf, bi, bc, bo Biased vector of LSTM
Vk+1

i , Vk
i Updated, Current Velocity of the ith Particle

Xk+1
i , Xk

i Updated, Current Position of the ith Particle
w Inertia Weight
c1, c2 Learning Factor
r1, r2 Random Number between [0, 1]
n the Total Amount of Data Set
p Number of features in the dataset
yi, ŷi, y True value, Predicted value, the Average of True Value

References
1. Zhou, J.; Xu, X.; Huo, X.; Li, Y. Forecasting models for wind power using extreme-point symmetric mode decomposition and

artificial neural networks. Sustainability 2019, 11, 650. [CrossRef]
2. Wang, Y.; Wang, D.; Tang, Y. Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods.

IEEE Access 2020, 8, 17071–17079. [CrossRef]
3. Han, Y.; Tong, X. Multi-step short-term wind power prediction based on three-level decomposition and improved grey wolf

optimization. IEEE Access 2020, 8, 67124–67136. [CrossRef]
4. Zhang, Y.; Han, J.; Pan, G.; Xu, Y.; Wang, F. A multi-stage predicting methodology based on data decomposition and error

correction for ultra-short-term wind energy prediction. J. Clean. Prod. 2021, 292, 125981. [CrossRef]
5. Bokde, N.; Feijóo, A.; Villanueva, D.; Kulat, K. A review on hybrid empirical mode decomposition models for wind speed and

wind power prediction. Energies 2019, 12, 254. [CrossRef]
6. Li, M.; Li, Y. Dispatch Planning of a Wide-Area Wind Power-Energy Storage Scheme Based on Ensemble Empirical Mode

Decomposition Technique. IEEE Trans. Sustain. Energy 2020, 12, 1275–1288. [CrossRef]
7. Zhu, A.; Zhao, Q.; Wang, X.; Zhou, L. Ultra-Short-Term Wind Power Combined Prediction Based on Complementary Ensemble

Empirical Mode Decomposition, Whale Optimisation Algorithm, and Elman Network. Energies 2022, 15, 3055. [CrossRef]
8. Liu, Z.; Hara, R.; Kita, H. 24 h-ahead wind speed forecasting using CEEMD-PE and ACO-GA-based deep learning neural network.

J. Renew. Sustain. Energy 2021, 13, 046101. [CrossRef]

http://doi.org/10.3390/su11030650
http://doi.org/10.1109/ACCESS.2020.2968390
http://doi.org/10.1109/ACCESS.2020.2984851
http://doi.org/10.1016/j.jclepro.2021.125981
http://doi.org/10.3390/en12020254
http://doi.org/10.1109/TSTE.2020.3042385
http://doi.org/10.3390/en15093055
http://doi.org/10.1063/5.0051965


Energies 2022, 15, 6734 16 of 16

9. Zhang, C.; Ding, M.; Wang, W.; Bi, R.; Miao, L.; Yu, H.; Liu, L. An improved ELM model based on CEEMD-LZC and manifold
learning for short-term wind power prediction. IEEE Access 2019, 7, 121472–121481. [CrossRef]

10. Chen, X.; Lai, C.S.; Ng, W.W.; Pan, K.; Lai, L.L.; Zhong, C. A stochastic sensitivity-based multi-objective optimization method for
short-term wind speed interval prediction. Int. J. Mach. Learn. Cybern. 2021, 12, 2579–2590. [CrossRef]

11. Zhang, D.; Peng, X.; Pan, K.; Liu, Y. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier
robust extreme learning machine. Energy Convers. Manag. 2019, 180, 338–357. [CrossRef]

12. Safari, N.; Chung, C.; Price, G. Novel multi-step short-term wind power prediction framework based on chaotic time series
analysis and singular spectrum analysis. IEEE Trans. Power Syst. 2017, 33, 590–601. [CrossRef]

13. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [CrossRef]
14. Ali, M.; Khan, A.; Rehman, N.U. Hybrid multiscale wind speed forecasting based on variational mode decomposition. Int. Trans.

Electr. Energy Syst. 2018, 28, e2466. [CrossRef]
15. Yin, H.; Ou, Z.; Huang, S.; Meng, A. A cascaded deep learning wind power prediction approach based on a two-layer of mode

decomposition. Energy 2019, 189, 116316. [CrossRef]
16. Zhang, H.; Yue, D.; Dou, C.; Li, K.; Hancke, G.P. Two-step wind power prediction approach with improved complementary

ensemble empirical mode decomposition and reinforcement learning. IEEE Syst. J. 2021, 16, 2545–2555. [CrossRef]
17. Li, L.-L.; Chang, Y.-B.; Tseng, M.-L.; Liu, J.-Q.; Lim, M.K. Wind power prediction using a novel model on wavelet decomposition-

support vector machines-improved atomic search algorithm. J. Clean. Prod. 2020, 270, 121817. [CrossRef]
18. An, G.; Jiang, Z.; Cao, X.; Liang, Y.; Zhao, Y.; Li, Z.; Dong, W.; Sun, H. Short-term wind power prediction based on particle swarm

optimization-extreme learning machine model combined with AdaBoost algorithm. IEEE Access 2021, 9, 94040–94052. [CrossRef]
19. Jan, F.; Shah, I.; Ali, S. Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis. Energies 2022, 15, 3423.

[CrossRef]
20. Jaseena, K.; Kovoor, B.C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks.

Energy Convers. Manag. 2021, 234, 113944. [CrossRef]
21. Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks.

Appl. Energy 2021, 304, 117766. [CrossRef]
22. Rahmani, R.; Yusof, R.; Seyedmahmoudian, M.; Mekhilef, S. Hybrid technique of ant colony and particle swarm optimization for

short term wind energy forecasting. J. Wind Eng. Ind. Aerodyn. 2013, 123, 163–170. [CrossRef]
23. Wu, X.; Lai, C.S.; Bai, C.; Lai, L.L.; Zhang, Q.; Liu, B. Optimal kernel ELM and variational mode decomposition for probabilistic

PV power prediction. Energies 2020, 13, 3592. [CrossRef]
24. Bo, H.; Niu, X.; Wang, J. Wind speed forecasting system based on the variational mode decomposition strategy and immune

selection multi-objective dragonfly optimization algorithm. IEEE Access 2019, 7, 178063–178081. [CrossRef]
25. Ma, Z.; Chen, H.; Wang, J.; Yang, X.; Yan, R.; Jia, J.; Xu, W. Application of hybrid model based on double decomposition, error

correction and deep learning in short-term wind speed prediction. Energy Convers. Manag. 2020, 205, 112345. [CrossRef]
26. Shi, X.; Lei, X.; Huang, Q.; Huang, S.; Ren, K.; Hu, Y. Hourly day-ahead wind power prediction using the hybrid model of

variational model decomposition and long short-term memory. Energies 2018, 11, 3227. [CrossRef]
27. Naik, J.; Bisoi, R.; Dash, P. Prediction interval forecasting of wind speed and wind power using modes decomposition based low

rank multi-kernel ridge regression. Renew. Energy 2018, 129, 357–383. [CrossRef]
28. Li, C.; Tang, G.; Xue, X.; Saeed, A.; Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. IEEE Trans.

Sustain. Energy 2019, 11, 1370–1380. [CrossRef]
29. Ju, Y.; Sun, G.; Chen, Q.; Zhang, M.; Zhu, H.; Rehman, M.U. A model combining convolutional neural network and LightGBM

algorithm for ultra-short-term wind power forecasting. IEEE Access 2019, 7, 28309–28318. [CrossRef]
30. Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.; Sun, Y.; Zheng, M. Wind power short-term prediction based on LSTM and discrete

wavelet transform. Appl. Sci. 2019, 9, 1108. [CrossRef]
31. Zhang, Y.; Sun, H.; Guo, Y. Wind power prediction based on PSO-SVR and grey combination model. IEEE Access 2019, 7,

136254–136267. [CrossRef]
32. Liu, J.; Shi, Q.; Han, R.; Yang, J. A Hybrid GA–PSO–CNN Model for Ultra-Short-Term Wind Power Forecasting. Energies 2021, 14, 6500.

[CrossRef]

http://doi.org/10.1109/ACCESS.2019.2936828
http://doi.org/10.1007/s13042-021-01340-6
http://doi.org/10.1016/j.enconman.2018.10.089
http://doi.org/10.1109/TPWRS.2017.2694705
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1002/etep.2466
http://doi.org/10.1016/j.energy.2019.116316
http://doi.org/10.1109/JSYST.2021.3065566
http://doi.org/10.1016/j.jclepro.2020.121817
http://doi.org/10.1109/ACCESS.2021.3093646
http://doi.org/10.3390/en15093423
http://doi.org/10.1016/j.enconman.2021.113944
http://doi.org/10.1016/j.apenergy.2021.117766
http://doi.org/10.1016/j.jweia.2013.10.004
http://doi.org/10.3390/en13143592
http://doi.org/10.1109/ACCESS.2019.2957062
http://doi.org/10.1016/j.enconman.2019.112345
http://doi.org/10.3390/en11113227
http://doi.org/10.1016/j.renene.2018.05.031
http://doi.org/10.1109/TSTE.2019.2926147
http://doi.org/10.1109/ACCESS.2019.2901920
http://doi.org/10.3390/app9061108
http://doi.org/10.1109/ACCESS.2019.2942012
http://doi.org/10.3390/en14206500

	Introduction 
	Methodology 
	Variational Mode Decomposition 
	Convolutional Neural Network 
	Long Short-Term Memory Neural Network 
	Adaptive Weighted Particle Swarm Algorithm Combined with Elimination Mechanism 

	Construction of Wind Power Prediction Model and Evaluation Metrics 
	VMD-CNN-IPSO-LSTM Prediction Model 
	Evaluation Metrics 

	Case Study 
	Decomposition of Wind Speed and Wind Power Series Using VMD 
	IPSO Optimized Prediction Model Network Structure Parameters 
	Verify the Generalization Ability of the Model under the New Data Set 

	Conclusions 
	References

